Computing Text Similarity using Tree Edit Distance

Grigori Sidorov,
Helena Gomez-Adorno,
[lia Markov
Center for Computing Research (CIC),
Instituto Politécnico Nacional (IPN),
Mexico City, Mexico
Email: sidorov@cic.ipn.mx,
helena.adorno @ gmail.com,
markovilya@yahoo.com

Abstract—In this paper, we propose the application of the
Tree Edit Distance (TED) for calculation of similarity between
syntactic n-grams for further detection of soft similarity between
texts. The computation of text similarity is the basic task for many
natural language processing problems, and it is an open research
field. Syntactic n-grams are text features for Vector Space Model
construction extracted from dependency trees. Soft similarity is
application of Vector Space Model taking into account similarity
of features. First, we discuss the advantages of the application
of the TED to syntactic n-grams. Then, we present a procedure
based on the TED and syntactic n-grams for calculating soft
similarity between texts.

I. INTRODUCTION

Computation of similarity between texts is a basic op-
eration for a variety of Natural Language Processing (NLP)
applications and some other fields related to text processing,
like Information Retrieval, for example. Text similarity plays
a crucial role in many NLP tasks such as Recognizing Textual
Entailment (RTE), answer selection for Question Answering
(QA), Paraphrase Identification (PI), Plagiarism Detection, and
many others.

The principal operation for calculation of similarity of texts
is string comparison. There are extensive studies conducted on
the comparison of string data using simple word overlap mea-
sures (bag of words, n-grams) [1], but they are not sufficient
to solve these tasks accurately [2]. The main problem when
using word overlap measures is the lack of understanding of
the semantic relation between words and phrases.

Recently, we proposed a concept of text elements that are
constructed in a non-linear way: syntactic n-grams, i.e., n-
grams that are constructed by following paths in syntactic
trees [3], [4]. There are various types of syntactic n-grams
according to the types of elements they are composed of:
lexical units (words, stems, lemmas), POS tags, SR tags
(names of syntactic relations), characters, or the mixed ones.

Furthermore, we extended the concept of syntactic n-grams
with the Integrated Syntactic Graph (ISG) [5]. The ISG inte-
grates linguistic features from the different levels of language
description in a single structure. The ISG can represent a
sentence, a paragraph or a whole document. Its construction is
based on the dependency parsing of each sentence of a given
document and further integration of the syntactic trees.

David Pinto,
Nahun Loya
Faculty of Computer Science,
Autonomous University of Puebla (BUAP),
Puebla, Puebla, Mexico
Email: dpinto@cs.buap.mx,
nahun.loya@gmail.com

In our previous studies we showed that syntactic n-grams
allow taking into account syntactic information and can be
used like traditional n-grams as features for the Vector Space
Model (VSM) representation of texts [4]. Thus, we can use
machine learning algorithms for the NLP tasks.

The other idea that we proposed recently is to calculate the
similarity between texts using the Soft Cosine Similarity Mea-
sure [6], i.e., to take into account similarity of features in the
Vector Space Model. Traditional Cosine Similarity Measure
considers all features as independent ones. In the paper [6], we
used traditional string similarity measure: Levenshtein distance
(edit distance) for comparison of n-grams or syntactic n-grams.

In this paper, we propose to apply the Tree Edit Distance
(TED) for computing the similarity between syntactic n-grams
and Integrated Syntactic Graphs. Since they are non-linear
tree structures, the TED should be the right measure for
their comparison. Tree edit distance is a generalization of the
edit distance for two strings, which measures the similarity
between two strings. Tree edit distance was applied in several
NLP applications such as information retrieval [7] and textual
entailment [8], but only as an isolated heuristic.

We believe that TED is a more natural way to compute
similarity of syntactic n-grams in comparison to what we have
been doing so far in [6]. In comparison with our previous work
that exploits various ad-hoc or heuristic ways of incorporating
tree-edit operations, our proposal is a straightforward applica-
tion of the TED as a general framework for computing text
similarity based on soft comparison of syntactic n-grams or
ISGs.

II. RELATED WORK

The TED has been broadly studied in algorithmic research.
For example, Akutsu [9] reports that the TED is extensively
used for comparison of tree structured data in bioinformatics,
which is one of the fundamental tasks, for example, in ana-
lyzing glycans, RNA secondary structures, phylogenetic trees,
etc.

In the last years, TED based methods have been widely ap-
plied in NLP related tasks. Kouylekov and Magnini [10] target
the TED application to the dependency trees for recognizing
textual entailment. The authors also study different methods of
computing the cost functions for the edit distance algorithm.

Wang and Manning [11] apply probabilistic tree-edit mod-
els with structured latent variables for the tasks of Textual En-
tailment and Question Answering. The authors describe a tree-
edit conditional random field model for predicting semantic
relatedness of pairs of sentences. The authors also demonstrate
that the generalized TED in a principled probabilistic model
allows to embed alignments as structured latent variables.

The main contribution of the work by Alabbas and Ramsay
[8] is extension of the TED in order to deal with subtree
transformation operations as well as with single nodes. The
authors claim that the extended TED with subtree operations
is more effective and flexible than the standard TED.

Finally, Lin et al. [7] use the TED in measuring structure
similarity for natural language processing based information
retrieval.

Therefore, in the recent years, a significant number of new
approaches and application of the TED is implemented in the
NLP related tasks. However, to the best of our knowledge, no
work has been done yet on applying the TED to the analysis of
similarity of textual features. This makes it important to study
its impact in the task of the calculation of text similarity.

III. TREE EDIT DISTANCE

Tree Edit Distance between two trees is defined as the
minimum cost of edit operations to transform one tree into
another. Different edit operations can be used, but the most
common edit operations are: (1) insert a node into a tree, (2)
delete a node from a tree, (3) change the label of a node [12].
Each operation has a cost function and an edit script .S between
two trees 17 and 75 is a sequence of edit operations turning 77
into 75. The cost of S is the sum of the costs of the operations
in S. The edit cost is denoted by (T}, T5).

Let us consider an example. Figure 1 shows the syntactic
trees of two sentences: (a) John likes to eat big red apples and
(b) John likes big red apples. In order to calculate the TED
between the trees in Figures l.a and 1.b, it is necessary to
perform delete operations over the nodes fo and eat.

Dynamic programming is often used to calculate the edit
distance and there are many algorithms for calculating edit
distance without any constraints on insert and delete operations
[12]. The most popular dynamic programming algorithm to
compute edit distance between two ordered trees is Zhang-
Shasha’s algorithm [13].

A. Edit Operations and Edit Mappings

Let us consider two trees 77 and 7». Each edit operation
is represented by (I3 — lz), where (I1,12) €(X x Xy (A, N)).
The operation is an insert if [y =), is a deletion is [= A
and a relabeling if [y # Aandls # A. Given a metric, cost
function ~ is defined on pairs of labels, the cost of an edit
operation is defined by setting v(Iy — lo = v(l1,12)). The
cost of a sequence S = si,..., S, of operations is given by
~v(S) = Zle ~(s;). The edit distance, 6(71,T>), between T}
and Ty is formally defined as: 6(77,7%) = min{é(S) | S is a
sequence of operations transforming 7} into T5}.

Since + is a distance metric, 6 becomes a distance metric too.
An edit distance mapping (or just a mapping) between 7 and

T5 is a representation of the edit operations, which is used
in many of the TED algorithms. Formally, define the triple
(M, T1,T5) to be an ordered edit distance mapping from T}
to Ty, if M C V(T1) x V(Ts) and for any pair (v, w;),
(vg, wa)eM:

1) v = vy iff w; = wo (one-to-one condition),

2) vy is an ancestor of vy iff wq is an ancestor of wsy
(ancestor condition),

3) v is to the left of vy iff w; is to the left of ws (sibling
condition).

B. A simple algorithm for the TED calculation

In this section, we describe a simple recursion-based algo-
rithm developed by [14], which constitutes the basis for the
dynamic programming algorithm of Zhang-Shasha [13].

Let I be a forest (a set of trees) and v is a node in F/,
where F'— v denotes the forest obtained by deleting v from F'
Furthermore, define F'—T'(v) as the forest obtained by deleting
v and all descendants of v. The following lemma provides a
way to compute edit distances for the general case of forests.

Lemma 1: Let I} and F5 be ordered forests and a metric
cost function defined on labels. Let v and w be the rightmost
(if any) roots of the trees in F; and F5, respectively. The
equations are the following:

5(6,6)=0

0(F1,0) =0(F1 —v,0)+~v(v— \)

(5(9,F2) = (5(9,F2 — ’U) + ’7()\ — ’LU)

(F1 — v, F2) + (v — A)
Fi,Fo —w) +v(A — w)
(v), Fo(w))+

= T(v), Fy — Ta(w))+
y(v = w)

0
0
0(F1
o(Fy

Lemma 1 suggests a dynamic program. The value of
0(F1, F>) depends on the constant number of subproblems of a
smaller size. Hence, we can compute 6(Fy, F») by computing
0(Sy,S2) for all pairs of subproblems S; and S, in order
of increasing size. Each new subproblem can be computed
in constant time. Hence, the time complexity is bounded
by the number of subproblems of Fj times the number of
subproblems of F5.

IV. TREE EDIT DISTANCE FOR COMPUTING TEXT
SIMILARITY BASED ON NON-LINEAR ELEMENTS

In our previous work [6], we used the Levenshtein distance
for computing the similarity between n-grams, but in that
case, we used the plain representation of the n-grams, both
traditional and syntactic n-grams. In this work, we propose
the use of the TED for this calculation, given that it is a more
natural and direct way to measure the distance between this
kind of structures. The use of the TED for calculating the
similarity between the syntactic representations of a text can
prevent the loss of information while transforming the syntactic
information (tree) into a plain representation.

For computing the similarity between the two trees let’s
consider Figure 1 that shows the dependency trees corre-
sponding to the sentences a and b. In the figure, the la-
bels in the nodes correspond to the words of the sentences.

Fig. 1.

We can extract syntactic n-grams from each tree and there
after compute the TED over them: our goal is to evaluate
their similarity. So, for 7} we have the syntactic 7-gram
likes[John,eat[to,apples[big,red]]] and for T» a syntactic 5-
gram likes[John,apples[big,red]]. Here we use metalanguage
for representation of syntactic n-grams described, for example,
in [3]. Using the Zhang-Shasha algorithm, the TED between
Ty and T3 is 2. But if we calculate the string edit distance
using the Levenshtein distance between 77 and 75, the result
is 8, i.e., the TED gives much more intuitive result because
these n-grams are very similar.

There are various ways to convert this distance into its
inverse, similarity:

simy (T3, Tj) = T d (D
. 1
simo(T;,T;) = Txd (2)

where d = TED(T;,T;) and T;, T} are trees.

For the examples above the similarity between 77 and 75
using the TED is: simq(T1,T2) = 0.33 and simo(T1,Ts) =
0.58. The corresponding similarity between 7} and 75 using
Levenshtein is: simq(T1,T2) = 0.11 and simq(Ty,T2) =
0.33.

Note that we can extract more than these two syntactic
n-grams, but, in our opinion, it is enough for demonstration
purposes. So, now we only need to apply Zhang-Shasha’s
algorithm to compute the TED between the two extracted n-
grams. Finally, the total edit distance of the complete sentence
will be the sum of the edit distances between all the syntactic
n-grams obtained from both trees.

The same procedure can be applied to the ISG for compar-
ing paragraphs or documents. When we use the ISG, we take
advantage of its enriched structure that is composed not only of
lexical-syntactic features, but also includes semantic relations.
The semantic relations are particularly useful when two texts
present the information using synonyms or hyperonyms, which
do not have the direct lexical overlap.

b)

Syntactic trees of the sentences (a) John likes to eat big red apples. and (b) John likes big red apples.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel procedure for calculating text
similarities using the tree edit distance (TED). We mention
several works that successfully used the TED in various natural
language processing tasks. We also include a brief overview
of the concepts of the Tree Edit Distance, Edit Operations and
Edit Mappings, and explain the basic recursion algorithm for
calculating the TED.

We show on a concrete example that the computation of
the similarity directly between trees (using the TED) gives a
more accurate result, as compared to a string edit distance
(Levenshtein distance).

In future work, we intend to implement the procedure
proposed here for calculating soft text similarities based on
non-linear elements. We will perform experiments for demon-
strating the viability of using the TED in this task.

REFERENCES

[1] P. Pakray, S. Bandyopadhyay, and A. Gelbukh, “Textual entailment
using lexical and syntactic similarity,” 2011.

[2] V. Jijkoun and M. de Rijke, “Recognizing textual entailment: Is word
similarity enough?” in Machine Learning Challenges. Evaluating Pre-
dictive Uncertainty, Visual Object Classification, and Recognizing Tex-
tual Entailment, ser. Lecture Notes in Computer Science, J. Quionero-
Candela, I. Dagan, B. Magnini, and F. d’Alché-Buc, Eds. Springer,
2006, vol. 3944, pp. 449-460.

[3] G. Sidorov, “Syntactic dependency based n-grams in rule based auto-
matic English as second language grammar correction,” International
Journal of Computational Linguistics and Applications, vol. 4, no. 2,
pp. 169-188, 2013.

[4] G. Sidorov, E. Velasquez, E. Stamatatos, A. Gelbukh, and L. Chanona-
Hernédndez, “Syntactic n-grams as machine learning features for natural
language processing,” Expert Systems with Applications, vol. 41, no. 3,
pp. 853-860, 2014.

[5] D. Pinto, H. Gémez-Adorno, D. V. Ayala, and V. K. Singh, “A graph-
based multi-level linguistic representation for document understanding,”
Pattern Recognition Letters, vol. 41, pp. 93-102, 2014.

[6] G. Sidorov, A. E. Gelbukh, H. Gémez-Adorno, and D. Pinto, “Soft
similarity and soft cosine measure: Similarity of features in vector space
model,” Computacion y Sistemas, vol. 18, no. 3, pp. 491-504, 2014.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Z. Lin, H. Wang, and S. McClean, “Measuring tree similarity for
natural language processing based information retrieval,” in Proceedings
of the Natural Language Processing and Information Systems, and
15th International Conference on Applications of Natural Language
to Information Systems (NLDB). Springer-Verlag, 2010, pp. 13-23.
M. Alabbas and A. Ramsay, “Dependency tree matching with extended
tree edit distance with subtrees for textual entailment,” in Computer Sci-
ence and Information Systems (FedCSIS), 2012 Federated Conference
on, Sept 2012, pp. 11-18.

T. Akutsu, “Tree edit distance problems: Algorithms and applications
to bioinformatics,” IEICE Transactions, vol. 93-D, no. 2, pp. 208-218,
2010.

M. Kouylekov and B. Magnini, “Tree edit distance for recognizing
textual entailment: Estimating the cost of insertion,” in Proc. of the
PASCAL RTE-2 Challenge, 2006, pp. 68-73.

M. Wang and C. D. Manning, “Probabilistic tree-edit models with struc-
tured latent variables for textual entailment and question answering,” in
Proceedings of the 23rd International Conference on Computational
Linguistics (COLING). Stroudsburg, PA, USA: Association for Com-
putational Linguistics, 2010, pp. 1164-1172.

P. Bille, “A survey on tree edit distance and related problems,” Theor.
Comput. Sci., vol. 337, no. 1-3, pp. 217-239, Jun. 2005.

K. Zhang and D. Shasha, “Simple fast algorithms for the editing
distance between trees and related problems,” SIAM J. Comput., vol. 18,
no. 6, pp. 1245-1262, Dec. 1989.

P. N. Klein, “Computing the edit-distance between unrooted ordered
trees,” in Proceedings of the 6th annual European Symposium on
Algorithms (ESA). Springer-Verlag, 1998, pp. 91-102.

