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Abstract. In this paper we introduce and discuss a concept of syntactic n-grams 

(sn-grams). Sn-grams differ from traditional n-grams in the manner how we 

construct them, i.e., what elements are considered neighbors. In case of sn-

grams, the neighbors are taken by following syntactic relations in syntactic 

trees, and not by taking words as they appear in a text, i.e., sn-grams are 

constructed by following paths in syntactic trees. In this manner, sn-grams 

allow bringing syntactic knowledge into machine learning methods; still, 

previous parsing is necessary for their construction. Sn-grams can be applied in 

any NLP task where traditional n-grams are used. We describe how sn-grams 

were applied to authorship attribution. We used as baseline traditional n-grams 

of words, POS tags and characters; three classifiers were applied: SVM, NB, 

J48. Sn-grams give better results with SVM classifier. 

Keywords. syntactic n-grams, sn-grams, parsing, classification features, 

syntactic paths, authorship attribution, SVM, NB, J48. 

1   Introduction 

N-gram based techniques are predominant in modern natural language processing 

(NLP) and its applications. Traditional n-grams are sequences of elements as they 

appear in texts. These elements can be words, characters, POS tags, or any other 

elements as they encounter one after another in texts. Common convention is that “n” 

corresponds to the number of elements in a sequence.  

The main idea of this paper is that n-grams can be obtained based on the order in 

which the elements appear in syntactic trees. Namely, we follow a path in the tree and 

construct n-grams, rather than taking them as they appear in the surface representation 
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of the text. Thus, we consider as neighbors the words (or other elements like POS 

tags, etc.) that follow one another in the path of the syntactic tree, and not in the text. 

We call such n-grams syntactic n-grams (sn-grams). The great advantage of sn-

grams is that they are based on syntactic relations of words and, thus, each word is 

bound to its “real” neighbors. This allows ignoring the arbitrariness that is introduced 

by the surface structure. Note that syntactic n-grams are NOT n-grams constructed by 

using POS tags, as one can interpret in a naive fashion. In fact, this cannot be so 

strictly speaking, because POS tags represent morphological information, and not 

syntactic data. 

So, the main idea of our proposal is related to the method of construction of these 

n-grams. In this manner, we get rid of surface language-specific information in 

sentences that causes problems for traditional n-grams and maintain only persistent 

and pertinent linguistic information that has very clear interpretation. In our opinion, 

this is the way how syntactic information can be introduced into machine learning 

methods. Note that syntactic n-grams, though they are obtained in a different manner, 

keep being n-grams and can be applied practically in any task when traditional n-

grams are used. 

Obviously, there is a price to pay for using syntactic n-grams. Namely, parsing 

should be performed for obtaining the mentioned syntactic paths. There are many 

parsers available for many languages, but parsing takes time. Also, not for all 

languages there are parsers ready to use, though for well-studied languages like 

English or Spanish this consideration is not a problem. An interesting question for 

future work is evaluation of shallow parsing usageshallow parsing is much faster 

than complete parsing: but if shallow parsing is enough for obtaining syntactic n-

grams of good quality. Our intuition is that for many tasks it will be sufficient. 

Another interesting question for future is if syntactic n-grams allow better comparison 

of results between languages. Obviously, during translation some syntactic relations 

are changed, but many of them are maintained. So, syntactic n-grams will be more 

“comparable” across the languages, since they try to get rid of the influence of 

language-specific surface structures.  

In this paper, we apply sn-grams in authorship attribution problem using three 

popular classifiers and compare their performance with traditional n-grams. The 

experiments show better results for this task using sn-grams than using traditional n-

grams. For this specific task, we also believe that sn-grams have real linguistic 

interpretation as far as the writing style of authors is concerned because they reflect 

real syntactic relations. 

The rest of the paper is organized as follows: examples of syntactic n-grams are 

presented in Sections 2 and 3. The concept of sn-grams and their types are discussed 

in Section 4. The problem of authorship attribution is briefly introduced in Section 5. 

Then experimental results for authorship attribution based on syntactic n-grams are 

presented and compared with baseline sets of features in Section 6. Finally, we draw  

the conclusions in Section 7. 



2   Dependency and Constituency Trees in Construction of 

Syntactic N-grams 

Let us consider a very simple example of application of sn-grams, a couple of similar 

phrases: “eat with wooden spoon” vs. “eat with metallic spoon”, see Fig. 1. Note that 

we can use both dependency and constituency representations of syntactic relations. 

They are equivalent if the head of each constituent is known. In our example of 

constituents, the heads are marked by heavier lines. It is very easy to add information 

about heads into constituency based grammar, namely, one of the components should 

be marked as the head in the rules. 

In case of dependencies, we follow the path marked by arrows and obtain sn-

grams. In case of constituents we first “promote” the head nodes so that they occupy 

the places in bifurcations, as shown in Fig. 2. Then we obtain sn-grams starting from 

the dependent constituencies and taking the heads from the bifurcations. 

Let us consider the case of bigrams for this example. If we extract traditional 

bigrams from the phrases, then they have only one bigram in common: “eat with”. 

Meanwhile, if we consider sn-grams, then two common bigrams are found: “eat 

with”, “with spoon”.  

 

                                                   
eat with wooden spoon 

Fig. 2. Promoted head nodes. 

The same happens in case of trigrams. In case of traditional n-grams, these two 

phrases have no common n-grams, but if we use sn-grams then there is one common 

trigram: “eat with spoon”. 

 

 

 

 
 

                        eat with wooden spoon    eat with metallic spoon      
 
 
 
 
 
 
                      eat with wooden spoon      eat with metallic spoon 

Fig. 1. Representations of syntactic relations. 

spoon 

with 



In this example, sn-grams allow ignoring the surface phenomenon of the English 

language that adds an adjective before noun and in this way spoils traditional 

bigrams/trigrams. The same happens in case of, say, subordinate clauses, and, in 

general, in any type of syntactic structures. 

Another possibility while obtaining sn-grams is to construct those ignoring 

auxiliary words (stop words). We follow the paths in the tree and just pass through the 

nodes of the stop words without adding them to the sn-gram. In case of our examples, 

the phrases have the common sn-bigram “eat spoon” that cannot be obtained using 

traditional n-grams. 

3   Full Example of Construction of Sn-grams 

Now let us present real-world example. We will discuss only dependency tree 

structure. We took the phrase from the novel “Dracula” by Bram Stocker: I can even 

now remember the hour from which I dedicated myself to this great enterprise. It has 

the following syntactic structure obtained by Stanford parser [23]. 

 (ROOT 

  (S 

    (NP (PRP I)) 
    (VP (MD can) (, ,) 

      (ADVP (RB even) (RB now)) 

      (, ,) 
      (VP (VB remember) 

        (NP (DT the) (NN hour)) 

        (PP (IN from) 

          (SBAR 

            (WHNP (WDT which)) 

            (S 
              (NP (PRP I)) 

              (VP (VBD dedicated) 

                (NP (PRP myself)) 
                (PP (TO to) 

                  (NP (DT this) (JJ great) (NN enterprise))))))))) 

    (. .))) 
nsubj(remember-7, I-1) 

aux(remember-7, can-2) 

advmod(now-5, even-4) 
advmod(remember-7, now-5) 

root(ROOT-0, remember-7) 

det(hour-9, the-8) 
dobj(remember-7, hour-9) 

prep(remember-7, from-10) 

dobj(dedicated-13, which-11) 
nsubj(dedicated-13, I-12) 

pcomp(from-10, dedicated-13) 

dobj(dedicated-13, myself-14) 



prep(dedicated-13, to-15) 

det(enterprise-18, this-16) 

amod(enterprise-18, great-17) 
pobj(to-15, enterprise-18) 

Stanford parser generates two types of the output: tree structure, where the level of 

the component is represented by their indenting spaces, and syntactic relations that 

correspond to dependency tree. For example, dobj(remember-7, hour-9) means that 

the word remember has 7th position in the phrase and the word hour the 9th position, 

and that there is a relation dobj between them, where remember is the head word (it is 
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Fig. 3. Example of a syntactic tree. 
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Fig. 4. Example of a syntactic tree with tags of syntactic relations. 
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the first one) and hour is the dependent word (the second one). We present the final 

syntactic tree in Figures 3 and 4. In Figure 3 we present only arrows that correspond 

to syntactic relations, while in Figure 4 we also show labels of the syntactic relations. 

Stanford parser handles 53 relations.  

In this example, in our opinion, the parser committed an error, and connected the 

word which to dedicated, and not to from. We mark this by dashed arrow. Note that 

small number of errors if they are consistent will not affect the performance of sn-

grams (sure, it is better to have no errors). It is further research direction to analyze 

the impact of parser error in various tasks, i.e., it can also depend on the task. 

We hope that this example helps in understanding of the method of construction of 

sn-grams. Namely, we should traverse the tree node by node applying recursion in 

bifurcations. The method is intuitively very clear: follow the paths represented by 

arrows, take at each step words (or other elements) from the corresponding nodes and 

add them to the current n-grams that are under construction.  

More formal description of the method is as follows. We start from the root node 

R. Then we choose the first arrow (we will pass through all arrows, so the order is not 

important) and take the node N on the other side of the arrow. Our first bigram (or 

part of a larger sn-gram) is R-N. Note that the order is important because R is the 

head word, and N is the dependent word. Now we move to the node N and repeat the 

operation, either for the next bigram, or for the larger sn-gram. The number of steps 

for construction of a sn-grams of a given size is equal to n-1, i.e., in case of bigrams 

we make only one step, in case of trigrams we make two steps, etc. In bifurcations, 

we apply recursion, i.e., each possible direction corresponds to a new sn-gram or a set 

of new sn-grams (in case that there are more bifurcations at lower levels). When we 

finish with a sn-gram, we return to the nearest previous bifurcation and continue in 

the direction that was not explored yet. Let us compare the results for extraction of 

traditional bigrams and syntactic bigrams for the example in Figures 3 and 4. Note 

that syntactic bigrams are presented directly in the output of the parser.  

Table 1. Syntactic and traditional bigrams from the example. 

Syntactic bigrams Traditional bigrams 

remember-now, now-even, remember-

hour, remember-from, hour-the, hour-

from, dedicated-which, dedicated-I, 

from-dedicated, dedicated-myself, 

dedicated-to, to-enterprise, enterprise-

this, enterprise-great 

I-can, can-even, even-now, now-

remember, remember-the, the-hour, 

hour-from, from-which, which-I, I-

dedicated, dedicated-myself, myself-to, 

to-this, this-great, great-enterprise 

 

Now let us present syntactic and traditional bi-grams without stop words. Note that 

we continue the path if we meet the stop word, i.e., we do not stop, we skip it and 

continue. 

Table 2. Syntactic and traditional bigrams from the example without auxiliary words. 

Syntactic bigrams Traditional bigrams 

remember now, now-even, remember-

hour, remember-dedicated, dedicated-

even-now, now-remember, remember-

hour, hour-dedicated, dedicated-great, 



enterprise, enterprise-great great-enterprise 

 

Here especially interesting bigram is “dedicated-enterprise”, where we skip several 

auxiliary words. 

Now let us consider syntactic and traditional trigrams for the example. 

Table 3. Syntactic and traditional trigrams from the example. 

Syntactic bigrams Traditional bigrams 

remember-now-even, remember-hour-

the, remember-hour-from, hour-from-

dedicated, from-dedicated-which, from-

dedicated-I, from-dedicated-myself, 

from-dedicated-to, dedicated-to-

enterprise, to-enterprise-this, to-

enterprise-great 

I-can-even, can-even-now, even-now-

remember, now-remember-the, 

remember-the-hour, the-hour-from, 

hour-from-which, from-which-I, which-I-

dedicated, I-dedicated-myself, dedicated-

myself-to, myself-to-this, to-this-great, 

this-great-enterprise 

Table 4. Syntactic and traditional trigrams without auxiliary words from the example. 

Syntactic bigrams Traditional bigrams 

remember-now-even, remember-hour-

dedicated, hour-dedicated-enterprise, 

dedicated-enterprise-great 

even-now-remember, now-remember-

hour, remember-hour-dedicated, hour-

dedicated-great, dedicated-great-

enterprise 

 

In our opinion, syntactic bigrams are much more stable and less arbitrary, i.e., have 

more chances to be repeated in other sentences. We saw in Section 2 a simple 

example: what happens if we add an adjective for any noun. Traditional n-grams in 

the near context will be changed, but syntactic n-grams will maintain stable, only one 

new sn-gram will be added: Noun-Adjective.  

Note that while the number of syntactic bigrams is equal to the number of 

traditional bigrams, the number of sn-grams when n>2 can be less than in case of 

traditional n-grams. It is so because traditional n-grams consider just plain 

combinations, while for sn-grams there should exist “long” paths. It is very clear for 

greater values of n. Say, for n=7, there are many n-grams in the above mentioned 

example, while there is only two sn-gram: remember-hour-from-dedicated-to-

enterprise-great/this. It is obvious that the number of n-grams and sn-grams would be 

equal only if the whole phrase has only one path, i.e., there are no bifurcations. 

Another possibility in construction on sn-grams is to use tags of syntactic relations 

(SR tags) instead of words, see Section 4. Since we will use them in experiments 

further in the paper, we would like to present, say, bigrams extracted from the same 

example sentence: root-nsubj, root-aux, root-advmod, admod-advmod, root-dobj, 

dobj-det, dobj-prep, prep-pcomp, pcomp-dobj, pcomp-dsubj, pcomp-prep, prep-pobj, 

pobj-det, pobj-amod. In this case we traverse the tree as well, but instead of nodes we 

take the names of arrows (arcs). In this work, we consider that SR tags are 



comparable with POS tags: they have similar nature and the quantity of both types of 

elements is similar: 36 and 53 elements correspondingly. 

4   Syntactic N-grams (sn-grams) 

As we already explained, syntactic n-grams (sn-grams) are n-grams that are 

constructed using paths in syntactic trees. Their advantage is that they are much less 

arbitrary than traditional n-grams. Thus, their number is less than the number of 

traditional n-grams. Another advantage is that they can be interpreted as linguistic 

phenomenon, while traditional n-grams have no plausible linguistic 

interpretationthey are merely statistical artifact.  

The justification of the idea of sn-grams is related to introduction of linguistic 

information into statistically based methods of machine learning. We believe that this 

idea helps to overcome the main disadvantage of traditional n-gramsthey contain 

many arbitrary elements, i.e., a lot of noise, introduced by the surface structure.  

The obvious disadvantage of syntactic n-grams is that previous syntactic 

processing is necessary. This consumes significant time and it is not easy to apply to 

some languages, because a syntactic parser and a set of lexical resources that are used 

by the parser are needed and not for any language these resources are available. 

Previously, similar ideas were related to some specific tasks like using additional 

syntactic information in machine translation [3] or generation in machine translation 

[4], without the generalization and taxonomy that we propose in this paper. The term 

syntactic n-gram is not very common and its importance is underestimated. It is used, 

for example, in [5] for extraction of polarity of syntactic constituents (chunks) as a 

whole element, but in a different sense. 

Note that there are attempts to overcome the disadvantages of traditional n-grams 

using purely statistical approaches. We should mention skip-grams and Maximal 

Frequent Sequences (MFS).  

Skip-grams are very similar to n-grams, but during their construction some 

elements of the corresponding sequence are ignored (skipped). It is an attempt to 

avoid possible noise, namely, by considering random variations in texts. There can be 

gaps (skips) with various skip steps.  

An example of skip-grams: say, for the sequence ABCDE, we can obtain 

traditional bigrams AB, BC, CD, and DE. Skip-bigrams with the skip step of “one” 

will be AC, BD, and CE. Various skip steps can be used. Usually skip-grams also 

include traditional n-grams, in which case the skip step is zero. The problem with 

skip-grams is that their number grows very fast. 

Maximal Frequent Sequences (MFS) [6] are skip-grams with major frequency, i.e., 

we take into account only skip-grams whose frequencies are greater than a certain 

threshold. The problem with MFS is that complex algorithms should be used for their 

construction and it takes substantial processing time. Another disadvantage of MSF is 

that unlike sn-grams, they depend on text collection. And similar to skip-grams, no 

linguistic interpretation of MFS is possible in general case. 

Now let us discuss what elements can form sn-grams. First of all it can be the 

elements that form traditional n-grams: words (stems/lemmas), POS tags, and 



characters.. As we mentioned in Section 3, in case of syntactic n-grams, another type 

of elements can be used for their composition: tags of syntactic relations (SR tags), 

like pobj, det, xcomp, etc. These tags are similar to POS tags in the sense that they are 

morphosyntactic abstraction and are obtained during previous linguistic processing.  

In case of the English language, we use Stanford parser for determining SR tags, 

POS tags, and for construction of dependency-based syntactic trees [23]. Although the 

parsing process was time consuming for our large corpus, it was performed only once, 

so the subsequent experiments do not take substantial time. 

So, according to the types of elements that form syntactic n-grams, there can be 

various types of sn-grams: 

− Word sn-grams: the elements of sn-gram are words (or stems, or lemmas, the 

important idea is that it is a lexical unit), 

− POS sn-grams: the elements of sn-gram are POS tags, 

− Sn-grams of tags of syntactic relations: SR tags, the elements of sn-gram are 

names of syntactic relations (see Section 3), 

− Character sn-grams (see below), 

− Mixed sn-grams: sn-grams are composed by mixed elements like words 

(lexical units), POS tags and/or SR tags. Since a sn-gram follows a syntactic 

link, then there are reasons to use mixed sn-grams, for example, they can 

reflect subcategorization frames. There are many possible combinations 

regarding to what partthe head word or the dependent word in the 

relationshould be represented by lexical unit, POS tag, or SR tag. It seems 

that character sn-grams cannot be part of mixed sn-grams. These combinations 

should be explored experimentally in future. 

In paper [1] we mentioned that sn-grams of characters are impossible. Now we 

consider that they can be constructed from other syntactic n-grams. In this case, the 

main source would be sn-grams of words, though we can try stems or lemmas as well. 

So, we can construct sn-grams of characters from sn-grams of words. In general, the 

intuition behind the character n-grams is related with two things: inside the words 

they should reflect some lexical phenomena; on the word boundaries they should 

reflect word combination patterns. It would be also interesting to try these two 

possibilities separately. These ideas can be reflected in character sn-grams in the same 

manner as in traditional character n-grams. Still, it is an experimental work that 

should confirm if character sn-grams are useful. 

As far as the treatment of stop words is concerned, as we mentioned, they can be 

ignored or taken into account. This degree of freedom is always present in any 

preparation of linguistic data for machine learning. 

5   Task of the Authorship Attribution 

Authorship attribution deals with an old and difficult question: how to assign a text of 

unknown or disputed authorship to a member of a set of candidate authors for whom 

undisputed samples of texts are available [10]. Despite its application to literary 

works, the rapid expansion of online text in Internet media (e.g., blogs, e-mail 



messages, social media postings, etc.) revealed practical applications of authorship 

attribution usually associated with forensic tasks [13].  

The automated approaches to this problem involve the use of statistical or machine 

learning methods [8]. From the machine learning point of view, authorship attribution 

can be seen as a single-label multi-class classification task [12]. There are two basic 

steps: first, the texts should be appropriately represented as vectors of numerical 

values and, then, a classification algorithm can use these vectors to estimate the 

probability of class membership for any given text.  

Stylometry is the line of research studying the quantification of writing style. So 

far, there are plenty of approaches that attempt to provide reliable solutions for 

capturing the properties of textual style [9]. The most successful and robust methods 

are based on low-level information such as character n-grams or auxiliary words 

(function word, stop words, e.g. articles, prepositions, etc.) frequencies [8]. Such 

measures are easy to get extracted from texts and can easily be applied to any given 

natural language. On the other hand, low-level features capture tiny pieces of stylistic 

information and require very high dimensionality of the representation that is really 

hard to be interpreted cumulatively. Therefore, they can hardly provide an in-depth 

understanding of authorial choices, so it is not easy for them to be used in tasks where 

the explanation of stylistic analysis is required (e.g., in cases of using authorship 

attribution results as evidence in court). In such cases, we need a more elaborate 

representation of style that is based on more abstract features coming from syntactic 

or semantic analysis of texts. In the framework of forensic applications where the aim 

is not only to find the most probable author of a text but also to explain this decision, 

the use of low-level features is problematic. However, the use of high-level 

information in authorship attribution experiments has not provided encouraging 

results since they seem to be less reliable in comparison to low-level features, 

although the combination of low-level and high-level features tends to improve the 

effectiveness [14]. 

Thousands of stylometric features have been proposed so far. These features can be 

distinguished in the following main categories according to the textual analysis they 

require [8]: lexical features (e.g., function word frequencies, word n-gram 

frequencies, vocabulary richness measures, etc.), character features (e.g., letter 

frequencies and character n-grams), syntactic features (e.g., part-of-speech tag 

frequencies, sentence and phrase structure measures, rewrite rule frequencies etc.), 

semantic features (e.g., synonym measures, semantic dependency measures etc.), and 

application-specific features (e.g., font size, font color, specific word frequencies, 

etc.). Until now, a number of studies [15, 16, 20] have shown that the most effective 

measures are lexical and character features. Although they are easy to be handled by a 

computational model, they provide little help on the explanation of the 

similarities/differences of writing style of different documents. Moreover, the 

effectiveness of all these measures depends on the text size. Modern text genres such 

as Twitter messages or SMS messages include very short texts (less than 200 words). 

In order to be able to handle short texts the distribution of each feature in the text 

(instead of a single measure) has been proposed [19], an approach that considerably 

increases the dimensionality of the representation. 

The classification methods used in authorship attribution follow two main 

paradigms [8]. The profile-based methods treat each training text cumulatively (per 



author) [20, 21]. In more detail, they concatenate all the available training texts per 

author in one big file and extract a cumulative representation of that author’s style 

(usually called the author’s profile) from this concatenated text. That is, the 

differences between texts written by the same author are disregarded. On the other 

hand, the instance-based methods require multiple training text samples per author in 

order to develop an accurate attribution model [18, 22]. That is, each training text is 

individually represented as a separate instance of authorial style. Profile-based 

methods attempt to capture a general style for each author while instance-based 

methods capture a separate style of each individual document. 

So far, two international competitions on authorship attribution have been 

organized [11, 17]. In general, the results show that the effectiveness of state-of-the-

art approaches can be very high given that the text size is not too short (at least 500 

words) and the set of candidate author is relatively small (a dozen of authors). When 

very short texts are examined, the set of candidate authors grows large, or the open-

set scenario (i.e., the true author is not necessarily included in the candidate author 

set) is adopted, the accuracy results significantly drop. However, the application of 

authorship attribution tools in difficult tasks indicates that they can perform better 

than an average human expert since they use more detailed representation of texts 

(e.g., character n-grams). On the other hand, this type of information is not easy to be 

understood by humans and this is a crucial obstacle in the exploitation of this 

technology in forensic applications.  

Note that information about syntactic relations usually is not used in this task, 

being to some extent one of the exceptions [3], where the authors analyze syntactic 

rewriting rules. In this paper, we show that syntactic relations taken as sn-grams 

represent very effective feature set. 

In this paper, we use as baseline features: character features: lexical features 

(words), and POS tags obtained using traditional n-grams, i.e., according to the 

appearance of the elements in texts. 

6   Experimental Results and Discussion 

The experiments were performed over corpus data for an authorship attribution 

problem. The corpus used in our study includes texts downloaded from the Project 

Gutenberg. We selected books of native English speaking authors that had their 

literary production in a similar period. In this paper, all experiments are conducted for 

the corpus of 39 documents by three authors. 

Table 5. Training and classification data. 

 Training Classification 

Author Novels Size (MB) Novels Size (MB) 

Booth Tarkington 8 3.6 5 1.8 

George Vaizey 8 3.8 5 2.1 

Louis Tracy 8 3.6 5 2.2 



Total 24 11 15 6.1 

 

For evaluation of the experiments, we used 60% of the data for training, and the 

rest 40% for classification, as presented in Table 5. 

We used WEKA software for classification [24]. In our previous work [1], we used 

only one classifier, SVM. In this work we present results for three classifiers: SVM 

(NormalizedPolyKernel of the SMO), Naive Bayes, and J48. Several baseline feature 

sets are analyzed that use traditional n-grams: words, POS tags and characters. Note 

that in general SVM is known to produce good results in the task of the authorship 

attribution.  

Table 6. Word based n-grams, baseline. 

Profile size Classifier 
n-gram size 

2 3 4 5 

400 

SVM 86% 81% 67% 45% 

NB 48% 67% 81% 85% 

J48 67% 76% 71% 60% 

1,000 

SVM 86% 71% 71% 48% 

NB 76% 81% 95% 90% 

J48 71% 67% 71% 67% 

4,000 

SVM 86% 95% 67% 48% 

NB 62% 65% 81% 86% 

J48 81% 70% 81% 57% 

7,000 

SVM 86% 90% 71% 45% 

NB 52% 48% 81% 81% 

J48 86% 71% 86% 51% 

11,000 

SVM 89% 90% 75% 33% 

NB 53% 52% 90% 78% 

J48 89% 81% 70% 44% 

Table 7. POS n-grams, baseline. 

Profile size Classifier 
n-gram size 

2 3 4 5 

400 

SVM 90% 90% 76% 62% 

NB 67% 62% 57% 52% 

J48 76% 57% 52% 71% 

1,000 

SVM 95% 90% 86% 67% 

NB 76% 57% 62% 52% 

J48 71% 62% 81% 57% 

4,000 

SVM NA 100% 86% 86% 

NB NA 57% 62% 57% 

J48 NA 62% 67% 76% 

7,000 

SVM NA 100% 90% 86% 

NB NA 38% 62% 57% 

J48 NA 38% 86% 86% 

11,000 

SVM NA 95% 90% 86% 

NB NA 43% 48% 57% 

J48 NA 57% 86% 90% 
 



We used several features as baseline: word based features, character based 

features, and POS tags. For baseline features, we used traditional n-gram technique, 

i.e., the elements are taken as they appear in the texts. We applied sn-grams technique 

for the same corpus with the results that outperform baseline methods. 

We use the term “profile size” for representing the first most frequent n-grams/sn-

grams, e.g., for profile size of 400 only first 400 most frequent n-grams are used. We 

tested various thresholds for profile size and selected five thresholds for profile size as 

presented in all tables with the results.  

When a table cell contains NA (not available), it means that our data were 

insufficient to obtain the corresponding number of n-grams. It happens only with 

Table 8. Character-based n-grams, baseline. 

Profile size Classifier 
n-gram size 

2 3 4 5 

400 

SVM 90% 76% 81% 81% 

NB 71% 62% 71% 67% 

J48 76% 62% 48% 76% 

1,000 

SVM 95% 86% 86% 76% 

NB 76% 76% 67% 81% 

J48 81% 67% 67% 71% 

4,000 

SVM 90% 95% 90% 86% 

NB 90% 71% 81% 71% 

J48 76% 76% 90% 81% 

7,000 

SVM NA 90% 86% 86% 

NB NA 62% 76% 71% 

J48 NA 76% 86% 90% 

11,000 

SVM NA 100% 90% 86% 

NB NA 67% 62% 71% 

J48 NA 71% 81% 86% 

 

Table 9. Sn-grams of SR tags. 

Profile size Classifier 
n-gram size 

2 3 4 5 

400 

SVM 100% 100% 87% 93% 

NB 100% 93% 73% 67% 

J48 87% 67% 93% 73% 

1,000 

SVM 100% 100% 87% 93% 

NB 80% 67% 80% 80% 

J48 87% 67% 93% 73% 

4,000 

SVM 100% 100% 93% 73% 

NB 40% 40% 53% 60% 

J48 67% 47% 73% 73% 

7,000 

SVM 100% 100% 87% 87% 

NB 53% 33% 33% 73% 

J48 67% 80% 67% 73% 

11,000 

SVM 100% 100% 93% 87% 

NB 40% 33% 33% 60% 

J48 67% 80% 53% 73% 

 



bigrams because in general there are less bigrams than trigrams, etc. In these cases the 

total number of all bigrams is less than the given profile size. 

In Tables 6, 7 and 8 the results of the application of baseline features using 

traditional n-grams are presented. Table 9 contains the results obtained using sn-

grams.  

If we compare the results of various classifiers, it can be observed that in the vast 

majority of cases the results of the SVM classification method are better than NB and 

J48. We obtained the best performance with SVM always getting a 100% of accuracy 

with bigrams and trigrams for any profile size for sn-grams. The only case when NB 

gives the same result as SVM (of 100%) is for the profile size of 400 for bigrams. 

Still, we consider that it is due to the fact that our topline can be achieved relatively 

easy because of the corpus size and the number of authors (only three). Note that in 

all other cases SVM got better results. 

On the other hand, the tendency that sn-grams outperform traditional n-grams is 

preserved and allows us to get rid of the necessity to choose the threshold values, like 

the profile size for this corpus, for example, traditional POS trigrams got 100% for 

profile sizes of 4,000 and 7,000 only, while sn-grams (bigrams and trigrams) give 

100% for all considered profile sizes.  

For better appreciation of the comparison of the results, we present tables 10 to 13, 

where the results are grouped by the size of n-grams/sn-grams applying SVM 

classifier. We show only SVM results since they are the best. 

Table 10. Comparison for bigrams, SVM. 

Profile size 

Features 

sn-grams of 

SR tags 
n-grams of POS tags 

Character based  

n-grams 

Word based  

n-grams 

400 100% 90% 90% 86% 

1,000 100% 95% 95% 86% 

4,000 100% NA 90% 86% 

7,000 100% NA NA 86% 

11,000 100% NA NA 89% 

Table 11. Comparison for trigrams, SVM. 

Profile size 

Features 

sn-grams of 

SR tags 
n-grams of POS tags 

Character based  

n-grams 

Word based  

n-grams 

400 100% 90% 76% 81% 

1,000 100% 90% 86% 71% 

4,000 100% 100% 95% 95% 

7,000 100% 100% 90% 90% 



11,000 100% 95% 100% 90% 

Table 12. Comparison for 4-grams, SVM. 

Profile size 

Features 

sn-grams of 

SR tags 
n-grams of POS tags 

Character based  

n-grams 

Word based  

n-grams 

400 87% 76% 81% 67% 

1,000 87% 86% 86% 71% 

4,000 93% 86% 90% 67% 

7,000 87% 90% 86% 71% 

11,000 93% 90% 90% 75% 

Table 13. Comparison for 5-grams, SVM. 

Profile size 

Features 

sn-grams of 

SR tags 
n-grams of POS tags 

Character based  

n-grams 

Word based  

n-grams 

400 93% 62% 81% 45% 

1,000 93% 67% 76% 48% 

4,000 73% 86% 86% 48% 

7,000 87% 86% 86% 45% 

11,000 87% 86% 86% 33% 

 

It can be appreciated that in all cases sn-gram technique outperforms the technique 

based on traditional n-grams. We consider that SR tags and POS tags are similar for 

the purposes of our comparison; both are small sets of tags: 36 and 53 elements 

associated with words.  

As can be seen, topline of our task is very high: 100%. It is related to the fact that 

we use much data and our classification only distinguishes between three classes. In 

some cases, baseline methods also reach the topline. Still, it happens only for a small 

number of specific profile sizes. The best results are obtained by sn-grams using 

bigrams and trigrams for any profile size. For any combination of parameters baseline 

methods got worse results than sn-grams. 

The question can arise if it is worth working with the small number of classes. In 

our opinion, it is useful and important. First of all, authorship attribution is often a 

real world application in case of a dispute over the authorship of a document, and in 

this case the number of classes is reduced to two or three, i.e., it is our situation. We 

started experiments with more classes (seven) as described in [2]. 



7   Conclusions and Future Work 

In this paper we introduce a concept of syntactic n-grams (sn-grams). The difference 

between traditional n-grams and sn-grams is related to the manner of what elements 

are considered neighbors. In case of sn-grams, the neighbors are taken by following 

syntactic relations in syntactic trees, while traditional n-grams are formed as they 

appear in texts. The concept of sn-grams allows bringing syntactic information into 

machine learning methods. Sn-grams can be applied in all tasks when traditional n-

grams are used. 

Any syntactic representation can be used for application of sn-gram technique: 

dependency trees or constituency trees. In case of dependency tree, we should follow 

the syntactic links and obtain sn-grams. In case of constituency trees, some additional 

steps should be made, but these steps are very simple.  

We conducted experiments for authorship attribution task using SVM, NB, and J48 

for several profile sizes. Relatively large corpus of works of three authors was used. 

We used as baseline feature traditional n-grams of words, POS tags and characters. 

The results show that sn-gram technique outperforms the baseline technique. 

The following directions of future work can be mentioned: 

− Experiments with all feature sets on larger corpus (and more authors, i.e., 

more classes). 

− Analysis of the applicability of shallow parsing instead of full parsing. 

− Analysis of usefulness of sn-grams of characters. 

− Analysis of the impact of parser errors on the performance of sn-grams. 

− Analysis of behavior of sn-grams between languages, e.g., in parallel texts or 

comparable texts. 

− Application of sn-grams in other NLP tasks. 

− Application of mixed sn-grams. 

− Experiments that would consider combinations of the mentioned features in 

one feature vector. 

− Evaluation of the optimal number and size of sn-grams for various tasks. 

− Consideration of various profile sizes with more granularity. 

− Application of sn-grams in other languages. 
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