
Algoritmos
Complejidad

Sorting
Ordenamiento

Course

Operating System (with focus on Security)

Instructor

Acosta Bermejo Raúl et al.

Lecture notes
Instituto

Politécnico
Nacional

Centro de
Investigación en

Computación

1. Introduction
2. Bubble sort
3. Radix sort
4. Binary tree sort
5. Heapsort
6. Mergesort algorithm

2

Table of contents (outline)
Tabla de contenido

3

Some problems become easier once elements are sorted.
• Identify statistical outliers.
• Binary search in a database.
• Remove duplicates in a mailing list.

There are a lot of obvious applications.
Non-obvious applications.

• Convex hull.
• Closest pair of points.
• Interval scheduling / interval partitioning.
• Minimum spanning trees (Kruskal's algorithm).
• ...

Introduction
Introducción

4

Lists of sorting algorithms (most known)

1. Bubble sort
2. Binary tree sort
3. Bucket sort
4. Heapsort
5. Insertion sort
6. Merge sort
7. Quicksort
8. Radix sort
9. Shell sort
10. Selection sort

En la wikipedia hay 24 (https://en.wikipedia.org/wiki/Sorting_algorithm).
https://es.wikipedia.org/wiki/Algoritmo_de_ordenamiento.

Introduction
Introducción

https://en.wikipedia.org/wiki/Sorting_algorithm

5

Referencias

Algunas genéricas son:
1. Visualgo

Para ordenamientos
https://visualgo.net/en/sorting

2. .

Introduction
Introducción

.

Bubble Sort
Ordenamiento de burbuja

7

Bubble sort
Ordenamiento de burbuja

Sorting problem
Given a list of n elements from a totally-ordered universe, rearrange
them in ascending order.

The classic (historic) algorithm is:

for(int x=0; x<n; x++){
for(int y=0; y<n-1; y++){
if(array[y]>array[y+1]){

swap(a[y], a[y+1]);
}

}
}

0 1 2 3 4 5 6 7 8 9

7 2 1 8 6 3 4 8 11 9

n=9
x=0, y=0, (0, 1)

0 1 2 3 4 5 6 7 8 9

2 7 1 8 6 3 4 8 11 9

x=0, y=1, (1,2)

0 1 2 3 4 5 6 7 8 9

2 1 7 8 6 3 4 8 11 9

x=0, y=2, (1,2)
n-1

un registro antes del último
la proxima vez uno menos

8

Bubble sort
Ordenamiento de burbuja

How many comparisons does the algorithm do?
How many swappings?

Worst-case:
Data is order descendently.

n-1, n-2, n-3, n-4, ... 2, 1
=> (n-1) * (n-2) * (n-3) * ... 1

= (n-1)! equiv (n-1)! x n (si n>0)
n

= Π k =O(n2)
k=1

How do you debug the program in order to mesure the time?

0 1 2 3 4 5 6 7 8 9

2 1 7 6 3 4 8 8 9 11

1th cicle: 6 swappings

0 1 2 3 4 5 6 7 8 9

1 2 6 3 4 7 8 8 9 11

2th cicle: 4 swappings

9

Bubble sort
Ordenamiento de burbuja

bubbleSort(A : list of sortable items)
n = length(A)

repeat
swapped = false;

for i = 1 to n-1 do
if A[i-1] > A[i] then
swap(A[i-1], A[i])

swapped = true; /* remember something changed */

end if

end for

until not swapped.

Complexity
Worst-case: O(n2)
Best-case: O(n)
Datos ya ordenados!

.

Bucket Sort
Ordenamiento de canastas

11

Bucket sort
Ordenamiento de canastas (cubo, cubeta)

l It works by distributing the elements of an array into a number of
buckets.

l Each bucket is then sorted individually, either using a different sorting
algorithm, or by recursively applying the bucket sorting algorithm.

Then, elements
are sorted within each bin

Elements are distributed among bins

deposito

12

bucketSort(array, n)
buckets ← new array of n empty lists
for i = 0 to (length(array)-1) do
insert array[i] into buckets[msbits(array[i], k)]
for i = 0 to n - 1 do
nextSort(buckets[i])

return the concatenation of buckets[0],, buckets[n-1]

The function
– msbits(x,k)
Returns the k most significant bits of x (floor(x/2^(size(x)-k)));

– nextSort
It is a sorting function. Usually bucket sort or insert sort.

Bucket sort
Ordenamiento de canastas

13

Implementation

Some implementations use hash table.

Bucket sort
Ordenamiento de canastas

14

Bucket sort
Ordenamiento de canastas (cubo, cubeta)

l Complexity
– Worst-case: O(n2)
– Best-case: Ω(n+k)
– Average-case: Θ(n+k)

El algoritmo del cartero (variantes)
l El nombre de este algoritmo viene del ejemplo de las oficinas postales. Cuando
hay que clasificar una carta para que llegue a su destino primero se clasifica
según el país, luego la ciudad, después la calle, etc. (código postal).

l Es una variante del bucket sort utilizada cuando los elementos a ordenar
disponen de varias claves y/o subclaves.

l La complejidad computacional es de O(cn), siendo c el número de claves que
se utilizan para clasificar.

15

Bucket sort
Ordenamiento de canastas (cubo, cubeta)

l Ventajas
– Se puede usar cuando los datos no caben en memoria.
– Para ordenar números reales:

l https://iq.opengenus.org/time-and-space-complexity-of-bucket-sort/

l Referencias
– Para una descripción detallada de la complejidad

https://en.wikipedia.org/wiki/Bucket_sort
– Teoria y Ejemplos

l https://www.geeksforgeeks.org/bucket-sort-2/

– Artículos
l Burnetas, A., Solow, D. & Agarwal, R. An analysis and implementation of an efficient in-place

bucket sort. Acta Informatica 34, 687–700 (1997). https://doi.org/10.1007/s002360050103.
l N. Faujdar and S. Saraswat, "The detailed experimental analysis of bucket sort," 2017 7th

International Conference on Cloud Computing, Data Science & Engineering - Confluence,
2017, pp. 1-6, doi: 10.1109/CONFLUENCE.2017.7943114.

l Upper Tail Analysis of Bucket Sort and Random Tries, Ioana O. Bercea, Guy Even.
arXiv:2002.10499, 2020.

.

Radix Sort
Ordenamiento

17

l Computers internally represent all of their data as
electronic representations of binary numbers.

l Processing the digits of integer representations by
groups of binary digit representations is most
convenient.

l Two classifications of radix sorts are:

– Least Significant Digit (LSD) radix sorts. It process
the integer representations starting from the least
digit and move towards the most significant digit.

– Most significant Digit (MSD) radix sorts. It work the
other way around.

l It dates back as far as 1887 to the work of Herman
Hollerith on tabulating machines.

l Latter in 1954 at MIT by Harold H. Seward.

Radix sort
Ordenamiento

Herman Hollerith
1860-1929

Considerado el
primer informático

18

Example
493, 812, 715, 710, 195, 437, 582, 340, 385

1000-0001-0010, 0111-0001-0000, 1000-0001-0010, 0011-0100-0000

Radix sort
Ordenamiento

Digit Sublist

0 340, 710

1

2 812, 582

3 493

4

5 715, 195, 385

6

7 437

8

9

we use
1th Digit

unidades

Notice
• The numbers were added onto the

list in the order that they were
found.

• That is why the numbers appear to
be unsorted in each of the sublists
above.

19

Example
493, 812, 715, 710, 195, 437, 582, 340, 385

340, 710, 812, 582, 493, 715, 195, 385, 437

Radix sort
Ordenamiento

Digit Sublist

0 340, 710

1

2 812, 582

3 493

4

5 715, 195, 385

6

7 437

8

9

Then, we gather the sublists
(in order from the 0 sublist to
the 9 sublist) into the main list
again.

20

Example
340, 710, 812, 582, 493, 715, 195, 385 437

710, 812, 715, 437, 340, 582, 385, 493, 195

Radix sort
Ordenamiento

Digit Sublist

0

1 710, 812, 715

2

3 437

4 340

5

6

7

8 582, 385

9 493, 195

2nd Digit

decenas

21

Example
710, 812, 715, 437, 340, 582, 385, 493, 195

195, 340, 385, 437, 493, 582, 710, 715, 812

Radix sort
Ordenamiento

Digit Sublist

0

1 195

2

3 340 385

4 437 493

5 587

6

7 710 715

8 812

9

3th Digit

centenas

22

l It works well for numbers, letters or strings.

l Disadvantages

– More space than other algo for sublist.

– If the numbers are not of the same length, then a test is needed to
check for additional digits that need sorting.

l Referencias
English versions of Wikipedia are differente (and often better) than spanish:

– https://en.wikipedia.org/wiki/Radix_sort

Worst-case : O(wn) n keys which are integers of word size w.

– https://www.geeksforgeeks.org/radix-sort/

O((n+b) * logb(k)) where b is the base, k max possibel values

– https://www.programiz.com/dsa/radix-sort

Best, worst, average: O(n+k)

Radix sort
Ordenamiento

k<=nC (constant)

23

l Tarea optativa
– https://iq.opengenus.org/time-and-space-complexity-of-radix-sort/

– Realizar un análisis de entre 5 y 10 sitios para determinar cual es
la complejidad real del algoritmo.

– Hacer el análisis para los 3 casos: peor, mejor y promedio.
– Determinar que sitios esta mal la complejidad o no se explica
suficientemente en que condiciones se alcanza dicha complejidad,
es decir, si simplificando la formula ”mas compleja” se llega a la
sencilla.

Radix sort
Ordenamiento

https://iq.opengenus.org/time-and-space-complexity-of-radix-sort/

.

Mergesort
Ordenamiento por mezcla

25

Mergesort
Ordenamiento por mezcla

l Fue desarrollado en 1945 por John Von Neumann.
l Mergesort is a divide and conquer algorithm.
l Mergesort parallelizes well due to use of previous

algorithm.
l It has an average and worst-case performance of

O(n log n).
l Many implementationes:

– https://en.wikibooks.org/wiki/Algorithm
_Implementation/Sorting/Merge_sort

– https://www.khanacademy.org/computing/comp
uter-science/algorithms/merge-sort/a/overview-
of-merge-sort.

Fue un matemático
húngaro-estadounidense.

1903-1957

https://en.wikibooks.org/wiki/Algorithm_Implementation/Sorting/Merge_sort

26

Begin
if length(m) ≤ 1

return m
else

var middle = length(m) / 2
for each x in m up to middle - 1

add x to left
for each x in m at and after middle

add x to right
left = mergesort(left)
right = mergesort(right)
if last(left) ≤ first(right)

append right to left
return left

result = merge(left, right)
return result

End

Pseudo-code

mergesort(array:m)
var list left, right, result

Mergesort
Ordenamiento por mezcla

Llamadas
recursivas

Unión de
soluciones

División del
problema

(partes iguales)

27

Mergesort
Ordenamiento por mezcla

0 1 2 3 4 5 6 7 8 9

7 2 1 8 6 3 4 8 11 9

0 1 2 3 4

7 2 1 8 6

5 6 7 8 9

3 4 8 11 9

0 1

7 2

2 3 4

1 8 6

5 6

3 4

7 8 9

8 11 9

0

7

1

2

Divide
Top-down

28

Mergesort
Ordenamiento por mezcla

0 1 2 3 4 5 6 7 8 9

7 2 1 8 6 3 4 8 11 9

0 1 2 3 4

1 2 6 7 8

5 6 7 8 9

3 4 8 9 11

0 1 2 3 4 5 6 7 8 9

left rigth
It uses:
• auxiliar array

• 3 indices

result

Bottom-up

It uses:
• auxiliar array

• Choose the minor data (left & rigth)
• Put it in result
• Increment result & minor

left

result

1

29

Mergesort
Ordenamiento por mezcla

Definition
T (n) = max number of compares to mergesort a list of size ≤ n.

Note
T (n) is monotone (conserva el orden ≤) nondecreasing.

Mergesort recurrence

Solution
T(n) is O(n log2n).

How to Proof that recursive T(n) is Big-O?

0 if n = 1

T(n/2) + T(n/2) + n Otherwise

T(n) ≤

.

Binary Tree Sort
Ordenamiento de Árbol Binario

31

l A binary search tree is a rooted binary tree, whose internal nodes each
store a key (and optionally, an associated value) and each have two
distinguished sub-trees, commonly denoted left and right.

l The tree additionally satisfies the binary search tree property, which
states that the key in each node must be greater than all keys stored in
the left sub-tree, and smaller than all keys in the right sub-tree.

l A tree sort is a sort algorithm that builds a binary search tree from
the elements to be sorted, and then traverses the tree (in-order) so
that the elements come out in sorted order.

Binary tree sort
Ordenamiento de árbol binario

Operations
• Searching
• Insertion
• Deletion
• TRaversal
• Verification

32

Operation Deletion

Binary tree sort
Operaciones

Leaf deletion

Deleting a node with two children:
• Locate the successor node on the

right-hand side and replace the
deleted node (D) with the succesor
Finally remove the successor node.

• Locate the predecessor on the
left-hand side and ..

Two children

Deleting a node with a single child

33

Operation Insert

Binary tree sort
Operaciones

34

l Complexity
– Adding one item to a binary search tree is on average
an O(log n) process (high), so adding n items is an
O(n log n) process, making tree sort a 'fast sort'.

– But adding an item to an unbalanced binary tree needs O(n) time
in the worst-case, when the tree resembles a linked
list (degenerate tree), causing a worst case of O(n²) for this sorting
algorithm.

– This worst case occurs when the algorithm operates on an already
sorted set, or one that is nearly sorted.

l The worst-case behaviour can be improved upon by using a self-
balancing binary search tree. Using such a tree, the algorithm has
an O(n log n) worst-case performance.

Binary tree sort
Ordenamiento de árbol binario

35

Optimal binary search trees
l If we do not plan on modifying a search tree, and we know exactly how

often each item will be accessed, we can construct an optimal binary
search tree, which is a search tree where the average cost of looking
up an item (the expected search cost) is minimized.

l Self-balancing

Binary tree sort
Ordenamiento de árbol binario

36

Splay tree
l It is a self-balancing binary search tree with the additional
property that recently accessed elements are quick to access
again.
– It defines a Zig-zag rotation.
– Other balanced trees: AVL, Red-black.

l When using a splay tree as the binary search tree, the resulting
algorithm (called Splaysort) has the additional property that it is
an adaptive sort:
– Its running time is O(n log n) for inputs that are nearly sorted.

Link
– https://en.wikipedia.org/wiki/Splay_tree
– https://www.geeksforgeeks.org/splay-tree-set-1-insert/

Binary tree sort
Ordenamiento de árbol binario

37

Splay tree

Binary tree sort
Ordenamiento de árbol binario

.

Heapsort
Ordenamiento de montículos

39

Introduction

l Heapsort was invented by J. W. J. Williams in 1964.
l This was also the birth of the heap, presented already by
Williams as a useful data structure in its own right.

l In the same year, R. W. Floyd published an improved version
that could sort an array in-place, continuing his earlier
research into the tree sort algorithm.

l Complexity
– Best-case, Average & worst-case: O(n lg n)

Heapsort
Ordenamiento de montículos

40

What is a “heap”?

l Definitions of heap:
1. A large area of memory from which the programmer

can allocate blocks as needed, and deallocate them (or
allow them to be garbage collected) when no longer
needed

2. A balanced, left-justified binary tree in which no node
has a value greater than the value in its parent.

l These two definitions have little in common.
l Heapsort uses the second definition.

Heapsort
Ordenamiento de montículos

41

l Goal:

– Sort an array using heap representations.

l Idea:

– Build a max-heap from the array

– Swap the root (the maximum element) with the last element in

the array

– “Discard” this last node by decreasing the heap size

– Call MAX-HEAPIFY on the new root

– Repeat this process until only one node remains.

Heapsort
Ordenamiento de montículos

42

Pseudo-code Ver. 1

function heapsort(array A[0..n])

montículo M

integer i;

for i = 0..n

insertar_en_monticulo(M, A[i])

for i = 0..n

A[i] = extraer_cima_del_monticulo(M)

return A

Heapsort
Ordenamiento de montículos

Paso 1: construir el heap
(árbol)

Paso 2: Convertirlo en una lista
ordenada

43

Pseudo-code Ver. 2

function heapSort(a, count)
heapify(a, count)
end := count - 1
while end > 0 do

swap(a[end], a[0])
end := end – 1;
siftDown(a, 0, end);

function heapify(a,count)
start := (count - 2) / 2
while start ≥ 0 do

siftDown(a, start, count-1);
start := start - 1;

Heapsort
Ordenamiento de montículos

function siftDown(a, start, end)
root := start;
while root * 2 + 1 ≤ end do

child := root * 2 + 1;
if child + 1 ≤ end and a[child] < a[child + 1] then

child := child + 1;
if a[root] < a[child] then)

swap(a[root], a[child]);
root := child;

else
return;

44

Example

l http://faculty.simpson.edu/lydia.sinapova/www/cmsc250/LN
250_Weiss/L13-HeapSortEx.htm

Heapsort
Ordenamiento de montículos

45

Time Analysis

l Build Heap Algorithm will run in O(n) time
l There are n-1 calls to Heapify each call requires O(log n) time
l Heap sort program combine:

– Build Heap program (O(n)), and
– Heapify (O(log n)), therefore.

l Total time complexity: O(n log n).

Heapsort
Ordenamiento de montículos

.

Insertion Sort
Ordenamiento por inserción

47

Main idea
The idea is similar to the way we sort playing cards in our hands.
The left side is ordered.

Insertion sort
Ordenamiento por inserción

To insert 12, we need to
make room for it by moving

first 36 and then 24.

How to make
space in arrays

efficiently?

48

l It is a simple sorting algorithm that builds the final sorted array (or
list) one item at a time.

l It is much less efficient on large lists than more advanced
algorithms such as quicksort, heapsort, or merge sort. However,
insertion sort provides several advantages:

– Simple implementation: Bentley shows a three-line C version,
and a five-line optimized version.

– More efficient in practice (for small data sets) than most other
simple quadratic algorithms such as selection sort or bubble
sort.

l Complexity
– Worst-case: O(n2)
– Best-case: O(n)

Insertion sort
Ordenamiento por inserción

insertionSort(arr, n)
Loop from i = 1 to n-1

Pick element arr[i] and
insert it into sorted sequence arr[0…i-1]

49

Example

Insertion sort
Ordenamiento por inserción

50

Pseudocode

Insert(A, size)
for i ← 1 to length(A)-1
j ← I
while j > 0 and A[j-1] > A[j]
swap A[j] and A[j-1]
j ← j – 1

end while
end for

Insertion sort
Ordenamiento por inserción

The most common variant of insertion
sort, which operates on arrays, can
be described as follows:
• It operates by beginning at the end of
the sequence and shifting each
element one place to the right until a
suitable position is found for the new
element.

• The function has the side effect of
overwriting the value stored
immediately after the sorted sequence
in the array.

• The ordered sequence into which the
element is inserted is stored at the
beginning of the array in the set of
indices already examined.

51

Variants
l D.L. Shell

– He made substantial improvements to the algorithm; the modified version
is called Shell sort.

– The sorting algorithm compares elements separated by a distance that
decreases on each pass.

– Shell sort has distinctly improved running times in practical work, with two
simple variants requiring O(n3/2) and O(n4/3) running time.

l In 2006 Bender, Martin Farach-Colton, and Mosteiro published a
new variant of insertion sort called library sort or gapped insertion
sort.
– It leaves a small number of unused spaces spread throughout the array.
– The benefit is that insertions need only shift elements over until a gap is
reached.

– The authors show that this sorting algorithm runs with high probability in
O(n log n) time.

Insertion sort
Ordenamiento por inserción

52

Referencias

l Ver la implementación de listas:
https://en.wikipedia.org/wiki/Insertion_sort

l Knuth, Donald (1998), "5.2.1: Sorting by Insertion", The Art of
Computer Programming, 3. Sorting and Searching (second ed.),
Addison-Wesley, pp. 80–105, ISBN 0-201-89685-0.

Insertion sort
Ordenamiento por inserción

https://en.wikipedia.org/wiki/Insertion_sort

.

Quicksort
Ordenamiento rápido

54

l Developed by Tony Hoare in 1959, with his work published

in 1961.

l It is a divide and conquer algorithm.

l It can operate in-place on an array, requiring small

additional amounts of memory to perform the sorting.

l It gained widespread adoption, appearing, for example,

in Unix as the default library sort function.

l Complexity

– Worst-case: O(n
2
) a rare behavior

– Average: O(n lg n)

– Best-case: O(n lg n)

Quicksort
Ordenamiento rápido

Tony Hoare

1934

British computer scientist

Hoare logic. CSP

OCCAM

The algorithm was developed in 1959 by he while in the Soviet Union, as a visiting student at

Moscow State University. At that time, Hoare worked in a project on machine translation for the

National Physical Laboratory. As a part of the translation process, he needed to sort the words of

Russian sentences prior to looking them up in a Russian-English dictionary which was already sorted in

alphabetic order on magnetic tape.

Link

https://en.wikipedia.org/wiki/Quicksort

55

Description of the Algorithm
l It first divides a large array into two smaller sub-arrays: the low elements and

the high elements. Quicksort can then recursively sort the sub-arrays.
l The steps are:

– Pick an element, called a pivot, from the array.
– Partitioning: reorder the array so that all elements with values less than the pivot

come before the pivot, while all elements with values greater than the pivot come
after it (equal values can go either way). After this partitioning, the pivot is in its final
position. This is called the partition operation.

– Recursively apply the above steps to the sub-array of elements with smaller values
and separately to the sub-array of elements with greater values.

l The base case of the recursion is arrays of size zero or one, which never
need to be sorted.

l The pivot selection and partitioning steps can be done in several different
ways; the choice of specific implementation schemes greatly affects the
algorithm's performance.

Quicksort
Ordenamiento rápido

56

Partition schemes
l Lomuto (Nico Lomuto/Popularized by Bentley & Cormen in their books)

– This scheme chooses a pivot which is typically the last element in the array.
The algorithm maintains the index to put the pivot in variable i and each
time it finds an element less than or equal to pivot, this index is
incremented and that element would be placed before the pivot.

– As this scheme is more compact and easy to understand, it is frequently
used in introductory material, although it is less efficient than Hoare's
original scheme.

l Hoare
– It uses two indices that start at the ends of the array being partitioned, then
move toward each other, until they detect an inversion: a pair of elements,
one greater than the pivot, one smaller, that are in the wrong order relative
to each other. The inverted elements are then swapped.

– When the indices meet, the algorithm stops and returns the final index.
– There are many variants of this algorithm.

Quicksort
Ordenamiento rápido

57

Lomuto partition scheme
There have been various
variants proposed to boost
performance including:
l Various ways to select

pivot.
l Deal with equal elements.
l Use other sorting

algorithms such
as Insertion sort for small
arrays.

l And so on.

Quicksort
O. rápido

58

Hoare partition scheme
l Hoare's scheme is more

efficient than Lomuto
because it does three
times fewer swaps on
average, and it creates
efficient partitions even
when all values are equal.

l Both schemes causes
Quicksort to degrade
to O(n2) when the input
array is already sorted

l It also doesn't produce a
stable sort.

Quicksort
O. rápido

59

Algorithm
Lomuto partition scheme

Quicksort
Ordenamiento rápido

quicksort(A, lo, hi)

if lo < hi then

p := partition(A, lo, hi)

quicksort(A, lo, p – 1)

quicksort(A, p + 1, hi)

partition(A, lo, hi)

pivot := A[hi]

i := lo // place for swapping
for j := lo to hi – 1 do

if A[j] ≤ pivot then

swap A[i] with A[j]

i := i + 1

swap A[i] with A[hi]

return i

Sorting the entire array is accomplished by quicksort(A, 1, length(A)).

60

Algorithm
Hoare partition scheme

Quicksort
Ordenamiento rápido

quicksort(A, lo, hi)
if lo < hi then

p := partition(A, lo, hi)
quicksort(A, lo, p)
quicksort(A, p + 1, hi)

partition(A, lo, hi)
pivot := A[lo]
i := lo – 1
j := hi + 1
loop forever

do
i := i + 1

while A[i] < pivot
do

j := j – 1
while A[j] > pivot
if i >= j then

return j
swap A[i] with A[j]

Diferencia aquí

61

Space complexity
l The space used by quicksort depends on the version used.
l The in-place version of quicksort has a space complexity of O(log n), even in

the worst case, when it is carefully implemented using the following strategies:
– In-place partitioning is used. This unstable partition requires O(1) space.
– After partitioning, the partition with the fewest elements is (recursively)
sorted first, requiring at most O(log n) space.

Time complexity
l Worst-case analysis
l Best-case analysis
l Average-case analysis

Quicksort
Ordenamiento rápido

.

Selection sort
Ordenamiento por selección

63

l Complexity
– Best-case & worst-case & : O(n2)

l .

Selection sort
Ordenamiento por selección

.

Shell sort
Ordenamiento

65

l Donald Shell published the first version of this sort in 1959.
l It is an in-place comparison sort. It can be seen as either a

generalization of sorting by exchange (bubble sort) or sorting by
insertion (insertion sort).

l The method starts by sorting pairs of elements far apart from each
other, then progressively reducing the gap between elements to be
compared. Starting with far apart elements, it can move some out-
of-place elements into position faster than a simple nearest
neighbor exchange.

l The running time of Shellsort is heavily dependent on the gap
sequence it uses.

l For many practical variants, determining their time
complexity remains an open problem.

Shellsort
Ordenamiento

Donald Shell
1924-2015

American computer scientist

66

Description
l Shellsort is a generalization of insertion sort that allows the exchange

of items that are far apart.
l The idea is to arrange the list of elements so that, starting anywhere,

considering every hth element gives a sorted list. Such a list is said to
be h-sorted.

l Equivalently, it can be thought of as h interleaved lists, each individually
sorted. Beginning with large values of h, this rearrangement allows
elements to move long distances in the original list, reducing large
amounts of disorder quickly, and leaving less work for smallerh-sort
steps to do.

l If the file is then k-sorted for some smaller integer k, then the file
remains h-sorted. Following this idea for a decreasing sequence
of h values ending in 1 is guaranteed to leave a sorted list in the end.

Shellsort
Ordenamiento

67

Pseudocode

Shellsort
Ordenamiento

Sort an array a[0...n-1].

gaps = [701, 301, 132, 57, 23, 10, 4, 1]

Start with the largest gap and work down to a gap of 1

foreach (gap in gaps) {
Do a gapped insertion sort for this gap size.
The first gap elements a[0..gap-1] are already in gapped order
keep adding one more element until the entire array is gap sorted

for (i = gap; i < n; i += 1) {
add a[i] to the elements that have been gap sorted
save a[i] in temp and make a hole at position i

temp = a[i]
shift earlier gap-sorted elements up until the correct location for a[i] is found

for (j = i; j >= gap and a[j - gap] > temp; j -= gap) {
a[j] = a[j - gap]

}
put temp (the original a[i]) in its correct location

a[j] = temp
}

}

68

l Shellsort is unstable: it may change the relative order of elements
with equal values.

l It is an adaptive sorting algorithm in that it executes faster when the
input is partially sorted.

l Links
– https://en.wikipedia.org/wiki/Shellsort

Shellsort
Ordenamiento

.

Samplesort
Ordenamiento

70

l It is a sorting algorithm that is a divide and conquer algorithm often
used in parallel processing systems.
– Conventional D&C sorting algorithms partitions the array into sub-intervals or

buckets.
– The buckets are then sorted individually and then concatenated together.
– However, if the array is non-uniformly distributed, the performance of these sorting

algorithms can be significantly throttled.

l It addresses this issue by selecting a sample of size s from the n-
element sequence, and determining the range of the buckets by
sorting the sample and choosing m -1 elements from the result.

l These elements (called splitters) then divide the sample into m
equal-sized buckets.

l It is described in the 1970 paper, "Samplesort: A Sampling Approach
to Minimal Storage Tree Sorting", by W. D. Frazer and A. C. McKellar.

Samplesort
Ordenamiento

71

Idea of the Algorithm
l Samplesort can be thought of as a refined quicksort.
l Where quicksort partitions its input into two parts at each step, based on

a single value called the pivot, samplesort instead takes a
larger sample from its input and divides its data into buckets accordingly.

l Like quicksort, it then recursively sorts the buckets.
l To devise a samplesort implementation, one needs to decide on the

number of buckets p. When this is done, the actual algorithm operates in
three phases:

– Sample p−1 elements from the input (the splitters). Sort these; each pair of adjacent
splitters then defines a bucket.

– Loop over the data, placing each element in the appropriate bucket. (This may mean:
send it to a processor, in a multiprocessorsystem.)

– Sort each of the buckets.

l The full sorted output is the concatenation of the buckets.

Samplesort
Ordenamiento

https://en.wikipedia.org/wiki/Multiprocessor

72

Graphic representation

Samplesort
Ordenamiento

73

l A common strategy is to set p equal to the number of processors
available.

l The data is then distributed among the processors, which perform the
sorting of buckets using some other, sequential, sorting algorithm.

Complexity
l Find the splitters

l Send to buckets

l Sort buckets

Samplesort
Ordenamiento

!(#$ + log $)

!(*$)

!(#$ log $) !(#$)
!(log $)!($)

reading nodes broadcasting send keys to bucketbinary search
for all keys

where c is complexity of underlying sequential sorting method

Artículos

Bibliography
Bibligrafia

75

Bibliography
Bibliografía

Una muestra de artículos:

l Analysis of Pivot Sampling in Dual-Pivot Quicksort: A Holistic Analysis
of Yaroslavskiy’s Partitioning Scheme
– 2016 Algorithmica.
– Nebel, M.E. Wild S., Martinez C.

l Deterministic Sample Sort for GPUs
– Frank Dehne, Hamidreza Zaboli. 2010.
– https://arxiv.org/abs/1002.4464

.

Conclusions
Conclusiones

77

Complexities
Complejidades

Resume of complexities

Algorithm Worst-case Averag-case Best-case

Bubble sort O(n2) O(n2) O(n) variante

Binary tree sort

Bucket sort
Algoritmo del cartero

O(n2)
O(cn) Θ(n+k) Ω(n+k)

Quicksort

Mergesort

Heapsort

Insertion sort

Radix sort O(wn)

Shell sort

Selection sort

K number of bits

n keys which are integers
of word size w.

If we compare sorting algorithms, we have:

1. Bubble sort Iterativo
2. Binary tree sort
3. Bucket sort
4. Quicksort
5. Mergesort Divide & Conquer
6. Heapsort
7. Insertion sort
8. Radix sort
9. Shell sort
10. Selection sort

Conclusions
Conclusiones

78

Raúl Acosta Bermejo

http:www.cic.ipn.mx
http://www.ciseg.cic.ipn.mx/

racostab@ipn.mx
racosta@cic.ipn.mx

57-29-60-00
Ext. 56652

79

The end
Contacto

mailto:racostab@ipn.mx
mailto:racostab@ipn.mx
mailto:racostab@ipn.mx
mailto:racosta@cic.ipn.mx

