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THEORY OF FUZZY SETS.,
*L.A. Zadeh

The theory of fuzzy sets may be viewed as an attempt at developing a---~-----._--_.------_._----
body of concepts and techniques for dealing in a systematic way with a type------ -- ~---~-----. -" . - ..- --
~i~precisi01l..-'db-icb rj-ses-when the b0l!ndariesQf a cla~_s_<?f.objects are
not sharply defined. Among the very common examples of such classes are~-
as they are suggestively called, fuzzy sets is a matter of degree rather
than an all or nothing proposition. Thus, informally, a fuzzy set may be
regarded as a class in which there is a graduality of progression from mem-
bership to nonmembership or, mQre recisely, in which an object may have a---_.- _._-------
grade of membership intermediate between unity (full membership) and zero~---- --- ......•_- ----
(nonmembers ".p_).~In this perspective, then, a s~t jn the con_ve~t_ional.
mathematical sense of the term may be viewed as a degenerate case of a fuzzy---------- - - -

~-- that is, a nonfuzzy set which admits of only two grades of membersh~p:
uni ty and zero.---- -

Clearly, most of the classes <:>(oJ>ject~ which_ we encounter. in the real
~Le fU~ly_~e~s_ in the informal sense defined above. And yet, the major

focus of attention in mathematics, logic and the "hard" sciences has been

form of randomness and as such can be adequat~~_treated by the tools pro-
vided by probabilit¥ theEry. However, as we develop a better understanding
of the different varieties of imprecision, it is becoming increasingly clear
*Computer Science Division, Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley, CA 94720.



that (a) fuzziness is fundaflK~tally different ',om randomness; (b) that
,

fuzziness plays a much more basic role in huma~ cognition than randomness~---------- --
and (c) that to deal with fuzziness effectively, we may have to abandon many

--- - - -#"'~... ---'.-- ..•.•

~g-held ~~ief~d attit~i!es,._and develop radicall)' new conc~ptual frame-
works for the analysis of humanistic as well as mechanistic s stems ....._- "'""""~~... _ - _ .. - - -- ..-.',....... . -- ....,_.- _~,..._"'I"-'·_- -,..~~ ..__ ..'

clarification relates to the distinction between fuzziness and vagueness.

"1ore specifically, a ~z~.
proposition, e.g., "Jill is quite tall" is fuzzy by virtue of the fuzziness-~--_.- .- - ........-- - _._--=-~.~~--- -- -..- ~ -..-~.-- . -
of the class labeled 9uit~. tall. A vague proposition, on the other hand, is

~ ------ -------
one which is (i) !uzzy and lLL~ambiguo~s_-- in the sense of providing---

sition "Jill is quite. ~~" may not be sufficiently specific for decidinq
which size jeans to buy for Jill. In this case, then, the proposition in

hand, "Jill is qU2-t~ tall" may provide sufficient information for choosing
a necklace for Jill, in which case the proposition in question is fuzzy

dependent characteristic of a ro osition, whereas fuzziness is not ....-.... .._--------
To understand the distinction between fuzziness and randomness it is

helpful to interpret the grade Q...Lmembersbip irLLfu~y set as a degree of--- ----- ---.. --~------
compatibility (or possibility) rather than probability. As an illustration,----------- .



we may have for wand p :n n

n I 1 2 3 4 5 6 7

lJ I 0 1 1 1 0:7 0.2 0n I

Pn I 0 0.6 0.3 0.1 0 0 0

in which lJn is interpreted as the degree of ease with which n passengers
can squeeze into a Pinto. Thus, Ws = 0.7 means that, by some specified or
unspecified criterion, the degree of ease of squeezing five passengers into

This simple example brings out three important points. First, that
possibility is not an all or nothin property and may be present to a degree.
Two, that the degrees of possibilitl' are not the same as probabilities. And----- - -----_.-
three, that poSSibilisticl information is more elementary and less context-
dependent than probabilistic information. But, what is most important as a
motivation for the theory of fuzzy sets is that much, perhaps most, of human
reasoning is based on inf9rmation t a js_possibilistic rathe ~n roba---
bilistic in nature. This basic issue will be discussed in greater detail at

~

will be stated as a possibility/probabili!l consistency principle.
'The term possibilistic in the sense close to that used here was coined by

B.R. Gaines and L. Kohout in connection with their analysis of
so-called possible automata [69].



The theory of fuzzy sets has two distinct branches at this juncture.
In one, a fuzzy set is treated gs.a m~t_he~atjj:;g_Lco~_tructconcerning__"'fhi~_h
on~ ca~ ~~e prova.b~_~sgrt i~_. Th is "nonfuzzy" theory of fuzzy sets is
in the spirit of traditional mathematics and is typified by the rapidly grow-
ing literature on fuzzy topological spaces, fuzzy switching functions, fuzzy
orderings, applications to system analysis, etc. (See the appended

The other branch may be viewed as a "fuzzy" theory of fuzzy sets in-------~--
which fuzziness is introd"'y-'d into the loqic which underlies -cherules of--------- . --------------
manipulation of fuzzy sets and assertions about them. The genesis of this
branch of the theory is related to the introduction of the so-called linguis--tic ap roach [245J, [248Jwhich in turn has led to the development· of fuzzy
logic [247J, [18J. In this logic, the truth-values as well as the rules of'--_-_-'0. -- -- __

inference are allowed to be imprecise, with the result that the assertions
about fuzzy sets based on this logic are not, in general, provable as propo-
sitions in two-valued logic. For example, the proposition "Helen is very

the "fuzzy" theory of fuzzy sets is still in its initial stages of develop-
ment, it is important as a foundation for approximate or, equivalently,

at the base of the remarkable human ability to attain imprecisely specified
goals in an incompletely known environment.

~ 11o~.i.ng_eXl20si..!.!..onof !.~_.theo!:,y_offuzzy set~, the accent is
on the basic aspects of the theory. Expositions of such topics as the lin-- ~ ---------- -- - - -- - .

guistic approach, fuzzy logic, fuzzy topological spaces, fuizy languages,-fuzzy algorithms and the applications to~y-stems analysis, decision anal sis,



pattern classification and other fields may be found in the papers listed in
the bibliography and in the comprehensive texts by Kaufmann [102J and
Negoita-Ralescu [155J.

Notation, Terminology and Basic Operation
A fuzzy set is generally assumed to be imbedded in a nonfuzzy universe

of discourse, which ma be any collection of objects, concepts_or mathema-------- -..------ -
tical constructs. For example, a universe of discourse, U, may be the set

, ---

in a room; the set of all names in a telephone directory, etc. ~
of discourse are usually denoted by the symbols U,V,W, ... , with or without
~. ----_.- -

subscripts and/or superscripts. A fuzzy set in U or, equivalently, a------=-
fuzzy subset of U, is usually denoted by o~e_of the u ercase sy~b~ls
A, B, C, 0 ~F G, H with or without subscripts and/or superscripts.

A fuzzy subset A of a universe of discours~ _U i~~haracterized by a
membership function ]JA: U -=:.-[~1lwhich as~oci~t~s with each_ ele.Dlent_u.
of_~er ]J_Su) in the interval [o,lJ (or, more qenerally, ~~int
in a partially ordered set [75J), with ]JA(u) representing the~d~~
membership of u in A. The support of _A _2-s the set ~f points in U at

~positive. The height o!..A is th~ s~'p'remumof---.J:A~)---A crossover point of A is a point in U whose grade of member---------- --
in A iso.5. A-----

this is not the case.------
Example. Let the universe of discourse be the interval [0,100J, with

u interpreted as~. A fuzzy subset of U labeled old may be defined by



·In this case, the support of old is the interval [50,100]; the height of
old is effectively unity; and the crossover point of old is 55.

It should be remarked that in many applications the rade of members~~
~(u) may be interp!eted as the degree of c~i~1l~ty of ~~!th t~

conce t reer~s_ented b.¥~..}...:(For example, in the case of the fuzzy set old
as defined by (1), the degree to which the numerical age 60 is compatible
with the concept of old is ~old(60) = 0.8.)
be in _eLQreted as the degree of possibility of---
9lays the role

In other cases, ~A(u) may
iven A. ~hen ~8(u)

~._-_ .•.~
of a degree of compatibility or possibility, the function_

s ....- __ ~,,,.:.,-::::::===;" ..~_~ __,__ ._~ __ ..-- _

~A: U ~ [0,1] may be referred to as the compatibility function. The less
..............- ;:::::z:;;wc:;:_ ..-. _ ~_~.... '1>, --'1IIlii'i <'\;'." •.••.. - '.~""'" _9 _ •• -~::

~ecific term membership func!20n is generally used in situations in whi~h_
-------.......- ~ ."', __ "';:'-" _"'_ _ _ ,.-- ~ •• m ~~.,~:... iJWl _,."... ~>\ S(-::;: _~_ ..... '>"_

the int:-.Jeg~o~~~~", .is-::~~';C.i~ie<4-
It is important to note that ~h~Janing attached ~

numerical value of membership function is purely subjective in nature._.---~,- -_. .~-,-------
For example, in sta } that the degree of ease with which 5 passengers may
be squeezed into a Pinto is 0.7, one mayor may not be able to explain how

(i.e., a reference) point on the scale may be explained and the meaning of
others might be defined in relative terms. As will be seen later, what
matters in most cases is not the meaning attached to the grades of membership
in a particular context, but the manner in which the membership function of



u +u +"'+u1 2 n

n
U = L u·. 1 11=---

with the understanding that (2) is a representation of U as the union Qf

its constituent sinletons, with + playi.ng, th.e role of the union rather

than the arithmetic sum. Thus,
':::::::::::::: ••••••• =::::s=:===

u.+u. = u.+u.
1 J _ J 1

U.+U. = U.
1 1 1

As an extension of this notation, a finite fuzzy subset, A, of U

is expressed as the linear form

A = \l U +"'+\lU (3)1 n n

n
A = L \l.U.

.11 11=

1, ... ,n, is the grade of membership of u. in A. Inwhere \1i' i =--- ui__ a_re_n_u_m_be_r_s_,there m;ght be some ambi gu; ty regard; ng

and u.
1

A = \l Iu + ... + \l Iun n



8
~~-- - n -"

A = ~ u ./u. ~I. 1· 1 11=

several = 0.5/3 + 0.8/4 + 115 + 1/6 + 0.8/7+ 0.5/8 (5)



Like (2), (3) may be interpreted as a representation of a fuzzy set as
(or w./u.).

1 1

definition of the union (see (26)), it follows that if in the representation
of A we have u. = u., then we can make the substitution expressed by

1 J

;A'
, ) (7)lJ·U. + lJ·u. = (lJ.vW.)u.

11 Jl 1 J 1

form in the u., an arbitrary fuzzy subset of U may be expressed in the
1

form of an integral

with the understanding that WA(u) is the grade of membership of u in A,
and the integral denotes the union of the fuzzy singletons WA(u)/u, u e U.
(The symbol ~ stands for "is defined to be.")

Example. In the universe of discourse consistinQof the interval [O,lOOJ,
with u =~, the fuzzy subset labeled old (whose membership function is
given by (1)), may be expressed as



a fuzzy subset of the real line in terms of a standard function whose para-
meters may be adjusted to fit a specified membership function in an approxi-

S(u;a.8.y) = a for" u < a
= 2(u-a)2 for a < u < 8y-a
= 2(~)2 for 82.u2.Yy-a

cl.\. = 1 for u ~ yS ...,.,f

~F
S(u;y-B. y-~.y)~ 'IT(u;8.y)= for u 2.y

-::: Z.
( - S(u;y.y+~.y+B)= 1 for u ~ y

8 =~.2

over points of 'IT.while y is the point at which 'IT is unity.
In some cases. the assumption that ~A iSla mapping from U to [0.1]

may be too restrictive, and it may:) desir )le to allow ~A to take values
in a lattice or, more particularly. in a Boolean algebra. For most purposes,

Definition. A fuzzy subset. A. of U is of ~ 1 if its membership
function. ~A' is a mapping from U to [0.1]; and A is of Type n.
n = 2,3, ...• if ~A is a mapping from U to the set of fuzzy subsets of
Type n-l. For simplicity. it will always be .understood that A is of Type
if it is not specified to be of a higher type.



Example. Suppose that U is the set of all nonnegative integers and
A is a fuzzy subset of U labeled small integers. Then A is of Type 1
if the grade of membership of a generic element u in A is a number in

U 2 -1lJsmall integers(u) = (1 + (-5) )

On the other hand, A is of Type 2 if for each u in U, lJA(u) is a fuzzy
subset of [o,lJ of Type 1, e.g., for u = 10,

lJsmall integers(lO) = low

where low is a fuzzy subset of [0,1] whose membership function is defined

lJlow(v) = 1 - S(v;O,O.25,O.5) ,

low: I: (1 - 5(v;0,0.25.0.5))/v .

if and only if lJA(u) ~ lJB(u) for all u in U. In symbols



Level-Sets of a Fuzzy Set
If A is a fuzzy subset of U, then an a-level set of A is a non-

fuzzy set denoted by A which comprises all elements of U whose grade
Ct.

of membership in A is greater than or equal to Ct.. In symbols

~~,,;~h1A = {ul llA(u) > Ct.} • O.7d...,· -- (17)
Ct. -

~- , .

il

A fuzzy set A may be decomposed into its level-sets through the

'--
v ,
)

where aA
Ct. is the product of ar (or n is theo Ct.

scalar Ct. with the set A
Ct.

of (30) and
o to 1.

union of the A, with Ct.Ct.

The resolution identity may be viewed as the result of combining
together those terms in (3) which fall into the same level-set. More speci-
fically, ~uppose that A is represented in the form

A = 0.1/2 + 0.1/1 + 0.1/7 + 0.1/6 + 0.1/9
+ 0.3/1 + 0.3/7 + 0.3/6 + 0.3/9

+ 0.5/7 + 0.5/6 + 0.5/9
+ 0.9/6 + 0.9/9

1'3J ,./

I
/rz- t- \\O,\\lO.z.,)~ llo.\\JJ~J

0'1 / j}
) ,!.•' .
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or
A = 0.1 (1/2 + 1/1 + 1/7 + 1/6 + 1/9) (21 )

+ 0.3(1/1 + 1/7 + 1/6 + 1/9)
+ 0.5(1/7+1/6+1/9)
+ 0.9(1/6+1/9)
+ 1/9

which is in the form (19), with the level-sets given by

AO.1 = 2 + 1 + 7 + 6 + 9

AO.3 = + 7 + 6 + 9
AO.5 = 7 + 6 + 9
AO.9 = 6 + 9

A1 = 9

only if for all A € [0,1] and all ul' u2 in U,

A is convex if and only if the A are0.



~
V.\

\j

".~

)j "".1\

Operations on Fuzzy Sets
Among the basic opera ions which can be performed on fuzzy sets are

the following. (A, B are fuzzy subsets of U.)
1. The complement of A is denoted by AI and is defined by

2. The union of fuzzy sets A and B is denoted by A + B (or,
more conventionally, by AUB) and is defined by

defined by
lffiA n B ~ I (lJA(U)AlJB(U))/U

- ~ U

where " is the symbol for min.

( ,)
(

ClThus, A, where Cl is any positive number, should be interpreted as

Similarly, if Cl is any nonnegative real number such that Cl sup lJA(u) ~ 1,
u



As a special case of (29), the operation of concentration is defined as

CON(A) ~ A2
"r'(( (/:= ,', - '-

(31 )

DIL(A) ~ AO.S

5. The bounded-sum of A and B is denoted by A $ Band ;s
defined by

<;: (", :?Od(<;{ '/ 1 (33)
~t'; 1.

where + is the arithmetic sum.
J 1-- _.( " :.: :..--•.•. ::)v

6. The bounded-difference of A and B is denoted by A e Band

The left-square of A is denoted by 2A and is defined by I )
I, j

A = 0.8/3 + 1/5 + 0.6/6
B = 0.7/3 + 1/4 + 0.5/6



~I = 1/1 + 1/2 + 0.2/3 + 1/4 + 0.4/6 + 1/7 + 1/8 + 1/9 + 1/10 (37)
A + B = 0.8/3 + 1/4 + 1/5 + 0.6/6
An B ~ 0.7/3 + 0.5/§

AB = 0.56/3 + 0.3/6
A2 = 0.64/3 + 1/5 + 0.36/6

0.4A = 0.32/3 + 0.4/5 + 0.24/6
CON(B) = 0.49/3 + 1/4 + 0.25/6
DIL(B) = 0.84/3 + 1/4 ~ 0.7/6
A ~ B = 1/3 + 1/4 + 1/5 + 1/6
A e B = 0.1/3 + 1/5 + 0.1/6

2A = 0.8/9 + 1/25 + 0.6/36
3A = 0.8/27 + 1/125 + 0.6/216

8. If Al, ...,An are fuzzy subsets of U, and w, ,...•wn are non~
negative weights adding up to unity, then a ~x combination of Al,· ..,An
is a fuzzy set A whose membership function is expressed b;) J)

, I ILt :'c i .0'(.-
/j.

s- /0 (38)
J" <,,\~,\.ll~D" .,;');,.,-;., <'c'

/l r , '\i~.,s ( , ,t I I,l /7 { v
denotes the arithmetic sum. The concept of a convex combination /

typically, etc. which modify the weights associated with the components
of a fuzzy set [243J.

9. If Al, ... , Ar.
cartesian product of A
as a fuzzy subset of U,

are fuzzy subsets of Ul, ...,Un, respectively, the
. A is denoted by F " ••• x A a· .s defined, n ; n

.• x U whose membershiJ function is ,pressed by
n

~ (u u)-~ (U)A'''''~ (u)Alx· .. xAn l'..., n - Al 1 An n



( (W A (u1) " ... "wA (u ))/ (u1 '... ,u )) 1 n n n
U x··· xU1 n

Example. If Ul = Uz = 3+5+7, Al =

AZ = 113+0.6/5, then
0.5/3+1/5+0.6/7 and

(;j I'3 .S" -s
S \ ' Go •
7 " . (,-.-J _ .fl

Al xAZ = 0.5/(3,3) + 1/(5,3) + 0.6/(7,3) (41)

+ 0.5/(3,5) + 0.6/(5,5) + 0.6/(7,5) fi
S'cr c«c: clC 1/ v( rtr/ttf/O ' ,;?( \I.~tr,[-o Co.;J/ ,.... . (J ..•.~L;>... L;
et:: r;:, (,-~l..,.. ~~ v'f\~d

Fuzzy Relations
If U is the cartesian r duct of n universes of discourse U ,... ,U ,

then an n-ary-fuzzy relation, R, in U is a fuzzy subset of U. As in
(8), R may be expressed as the union of its constituent fuzzy singletons

-R (!s tJ", .(vbc.••<'.t1..; de-I '" ~;J'!' .\..!R(ul"",un)/(ul, ... ,un), i.e., P"-oJJ<:...t-c<:.. c.c-r~~<:':G</\I7S -VI)VL) •• '/U"'-

where w is the me bership function of R.
Common examples of (binary) fuzzy relations are: much greater than,

For example, if U = U =1 2
(_00,00), the relation ~ close to may be defined by

where a is a scale factor. Similarly, if Ul = Uz = 1 +2+3+4 then the
relation much greater than may be defined by the relation matrix



18 \
,\

j
I ~

2 3 4 "-~,
'.a 0.3 0.8 1

a a a 0.8 \ (44)/ I i ! /a 0 a 0.3 I. -l~'
~

a a a a

~ j\l\ I
f.~J> ~A\~y

in which the (i,j)th element is the value of ~R(ul,u2) for the ith value
of ul and jth value of u2.

If R is a relation from U to V (or, equivalently, a relation in
UxV) and S is a relation from V to W, then the composition of R an.d
S isa fuzzy relation from U to W denoted by RoS and defined by

f v v (~R (u , v) " ~S (v, w)) / (u , w)
UXW

~is the max-min product of the relation matrices for Rand S. For example,
~he max-min product of the relation matrices

G~,(' is given by the right-hand member of (46):
11' l\ .

I'V
I' I' '[ fl rL-

{ '. (t-fl, \ • t"-
1 • t • )
<' !7J'!.-

,. I

J \ ()
,). ,

R

[0.30.8]0[0.5
0.6 0.9 0.4

0.9 ] = [ 0.4

1 0.5

RoS

0.8 ]
0.9

If R is an n-ary fuzzy relation in Ul x ... x Un' then its projection
(shadow) on U. x··· x U. is a k-ary fuzzy relation Rq in U which is

'1 ' k ~)p /
\1 '

Rq ~ Proj R on Uil x··· x Uik ~ PqR ~=~<:-f>y (47)
V.cl V.-v~':-

!1 f (v ~R(ul""'u ))/(u. ,... ,ui )
u( ') n'l kU. x··· xU. q

'1 \

/'r---------------'------------------------~



where q is the index sequence (il, ... ,\);

is the complement of q; and ~u is the
~(q' ),

over the u's which are in U(ql )., ;

u(q) ~ (u. , ... ,u. ); q'
'1 ' k

supremum of ~ (u , ... ,u )
n

Rl = 1/2 + 0.8/2 + 0.3/3

R2 = 0.3/2 + 0.8/3 + 1/4 (49)

It is clear that distinct fuzzy relations in Ul x··· x Un can have

identical projections on U. x •.. xU .. However, given a fuzzy relation
'1 ' k

R in U. x··. xU. , there exists a unique largest relation R inq 'l·'k q
Ul x ... x U whose projection on U. x··· x U. is R. In consequence

n 'l'k q

(47), the membership function of Rq is given by t.",\v-V'O"'f'- 0
LD<" it- sJ~ oJ1}") r;;r; .f).AbJ(V'efWJ' J" ~'" ::\

wR (Ul'··· ,un) = lJR (ui , ... ,ui) ~~/ /(50)
q q 1 k '-- ~C1~, -:

with the understanding that (50) holds for all ul' ... ,un such that the

~
,; (

of j rlJ

fa. l tl-V If!-
(\ c? •
'" '(i)"tr.'-C·iJ,I' ..r

,I

il,···,\ arguments in lJRq are equal, respectively, to the

first,second, ... ,kth arguments in lJR' This implies that the value of
q

at the point (ul' ... ,un) is the same as that at the point (u" ... ,u~)lJR
q

provided that u.
'1

to as the cylindrical

For this reason, R is referred
q

with Rq constituting the base

= u~ , ... ,u. =
'1 ' k
extension of

of R.
q

Suppose that R

projection on U. X'"xU. , and R
, 1 ' k

q
Since R is the largest relation inq
U. x·"xU. is Rq' it foll ows that

'1 ' k

is an n-ary relation in U x"'xU R is its1 n' q
is the cylindrical extension of Rq.

III x ... x Un whose projection on

Rq satisfies the containment



R C R
q

for arbitrary ql"" ,qr (i ndex subsequences of (1,2, ... ,n)).

In particular, if we set ql = l, ... ,qr = n, then (52) reduces to

R C Rl n R2 n ... n ~n

where Rl, ,Rn are the projections of R on Ul , ... ,Un' respectively,

and Rl, ,R are their cylindrical extensions. But:~from the definitionn _

of the cartesian product (see (40)) it follows that

Rl n ... n R = R x··· x R
n 1 n

RCR x··,xR1 n

The concept of a cylindrical extension can also be used to provide an

intuitively appealing interpr~tation of the composition of fuzzy relations.

Thus, suppose that Rand S are binary fuzzy relations in Ul xU2 and

U2 x U3, respectively. Let Rand S be the cylindrical extensions of

Rand S in Ul x Uz x U3. Then, from the definition of RoS (see (45))

it follows that



which allows the domain of the definition of a mapping or a relation to be
extended from points in U to fuzzy subsets of U. More specifically,

A=~u+···+~u1 1 n n

Thus, the image of A under f can be deduced from the knowledge of the
images of ul' ...,un under f. When it is necessary to signify that f(A)
is to be evaluated by the use of (57), f(A) is enclosed in angular brackets.

small = 1/~)+ 1~~ + 0.8A3)+ 0.614 + 0.4/~
'\ ~ ""--"-- -

consequence of (57) and (35), we ha,e
J & ~ ~ ~

2smal1 = <sma112> = 1/1 + 1/4 + 0.8/9 + 0.6/16 + 0.4/25

(59)

,'"f (N : (5;111«



with the understanding that f(u) is a point in V and ~A(u) is its
grade of membership in f(A), which is a fuzzy subset of V.

extension principle"which follows from (62) by decomposing A into its
constituent level-sets rather than its fuzzy singletons (see the resolution

A = JlaAo a

where A is an a-level-set of A, the statement of the extension principlea
assumes the form

f(A) = f(I aAa] = I af(Aa)
a a

when either the support of A is a countable set or the distinct level-
sets of A form a countable collecti. I.

following problem. We have an n-ary function f, which is a maopinq from
a cartes ian produ t Ul x .•• x Un 'space V, and a fuzzy set (relation)
A in Ul x ••• x which is charac led by a membership function
~A(ul, ... ,un), , 1 ui' = 1,. ., denoting a qeneric point in Ui"
A direct application of the extension principle (62) to this case yields



f(A) = f[ J ~A(U1'··'tUn)/(U1'''·'Un))
U1x •.• xU

n

= J/A(U1,···,Un)/f(U1,· .. ,Un)

A1,···,An on U1, ...,Un, respectively (see (47)). The question that arises,
then, is: What expression for ~A should be used in (66)?

In such cases, unless otherwise specified it is assumed that the
membership function of A is expressed by

where ~A.' i = 1,...,n, is the membership function of A .• In view of, ,
(39), this is equivalent to assuming that A is the cartesian product of

A=A x'''xA1 n

U1 = U2 = 1 + 2 + 3 + ... + 10

A = 2 ~ approximately 2 = 1/2 + 0.6/1 + 0.8/3 (68)
1 - -----

A = 6 ~ approximately 6 = 1/6 + 0.8/5 + 0.7/7 (69)
2 - -----



f(u1,u2) = u1 x u2 = arithmetic product of u1 and u2 .

2x6 = (1/2+0.6/1 +0.8/3) x (1/6+0.8/5+0.7/7)
= 1/12 + 0.8/10 + 0.7/14 + 0.6/6 + 0.6/5 + 0.6/7

+ 0.8/18 + 0.8/15 + 0.7/21
= 0.6/5 + 0.6/6 + 0.6/7 + 0.8/10 + 1/12 + 0.7/14 + 0.8/15

+ 0.8/18 + 0.7/21 .

Thus, the arithmetic product of the fuzzy numbers approxim~~}~ 2 and
approximately 6 is.a fuzzy number given by (70).

More generally, let * be a binary operation defined on U x V with
values in W. Thus, if u e U and v e V, then

A=~u +···+~u1 1 n n

B=vv +"'+vv .1 1 m m

By using the extension principle under the assumption (67), the operation
* may be extended to fuzzy subsets of U and V by the defining relation

A*B= (~~iui)*(~VjV)
1 J

= I (~."v.)(u. *v.)
• . 1 J 1 J
1 ,J



It is easy to verify that for the case where A = 2, B = 6 and * = x,

the app1icat ion 0 f (72) y ie 1ds the expression for 2 x 6. I i1 ,\ ir. "
- 1 / <. <~ u I

, 'IoJ"t",-,-
. ..1 h -' " s~ .\tlVfL~cS !,J~ , e-0"':i,J" -'

~-'I,<!<I'o" y"Fuzzy Sets with Fuzzy Membership Functions I - ro~/~_________ ~____________ '." I~c..\ ~)

Fuzzy sets with fuzzy membership functions play an important role in
the linguistic approach [245J, [248J, in which the values of variables are not
numbers but words or sentences in a natural or synthetic language. For
example, if Age is treated as a linguistic variable, its values might be:

not old, not very young and not very old, etc. Each of these values repre-
sents a label of a fuzzy subset of a universe of discourse which is asso-
ciated with Age -- e.g., the interval [O,lOOJ. A fuzzy set which corres-
ponds to a linguistic value of Age, say not very young, constitutes the
meaning of not very young. The meaning of each possible value of a linguistic
variable is defined by the semantic rule which is associated with the

Frequently, the grade of membership in a fuzzy set is not well-defined.
In such cases, it is natural to treat the grade of membership as a linguistic
variable with the linguistic values: low, not low, very low, more or less
low, medium, high, not high, very high, more or less high, not low and not
high, etc. Each of these values represents a fuzzy subset of the interval

)Jlow(v) = 1 - S(v;0,0.25,0.5) , v e [0,1] (73)

)Jvery low(v) 2 (74 )= (1 - S(v;0,0.25,0.5))

)Jmedium(v) = 1T(v;0.5,0.2) (75)

)Jhigh(v) = )Jlow(l-v) (76)



where Sand rr are the $- and rr-functions defined by (10) and (11).
The fuzzy sets in question are of Type 2 (see (13)). Consequently,

to manipulate the linguistic grades of membership, it is necessary to extend
to fuzzy sets of Type 2 the definitions of complementation, intersection,

sequel by application to the computation of the intersection of fuzzy sets
of Type 2. The same technique can be used to define other types of opera-
tions on fuzzy sets with fuzzy membership functions [138J and, in particular,

implication in fuzzy logic [18J.
To extend the definition of intersection to fuzzy sets of Type 2, it

ever, to accomplish this in two stages: First, by extending the Type 1
definition to fuzzy sets with interval-valued membershiD functions; and
second, generalizing from intervals to fuzzy sets by the use of the level-
setJorm of the extension principle (see (64)). More specifically, it will
be recalled that the expression for the membership function of the inter-
section of A and B, where A and B are fuzzy subsets of Type 1, is

Now if ,UA(u) and ~B(u) are intervals in [O,lJ rather than
points in [o,lJ" that is, for a fixed u

~B(U)



where al, a2, bl and b2 depend on u, then the application of the exten-
sion principle (64) to the function A (min) yields

Next, consider the case where, for each u, WA(u) and WS(u) are
fuzzy subsets of the interval [0,1]. For simplicity, we shall assume that

WA and WB are interval-valued membership functions.
By applying the level-set form of the extension principle (64) to the

a-level sets of WA and Ws we are led to the following definition of the
intersection of fuzzy sets of Type 2.

Definition. Let A and S be fuzzy subsets of Type 2 of U such
that, for each u e U, WA(u) and WS(u) are convex fuzzy subsets of Type
of [0,1], which implies that, for each a in (0,1], the a-level sets
of the fuzzy membership functions WA and Ws are interval-valued member-
ship functions W~ and w~.

Let the a-level-set of the fuzzy membership function of the inter-
section of A and B be denoted by a with the a-level-sets a

wA nB' WA
and a defined for each byWB u

W~ ~ {v!'JA(v)~a} (79)

a (j. {vl'JB(v)~a} (80)wB =



where vA(v) denotes the grade of membership of a point v, v e [0,1], in
the fuzzy set ~A(u), and likewise for ~B' Then, for each u,

In other words, the a-level-set of the fuzzy membership function of the
intersection of A and B is the minimum (in the sense of (78)) of the
a-level-sets of the fuzzy membership functions of A and B. Thus. using
the resolution identity (18), we can express ~A flB as

For the case where ~A and ~B have finjte supports, that is. ~A
and ~B are of the form

v. e [0,1], i = 1•...• n
1

~ = 8w +"'+BwB 11m m • w. e [0, 1] • j = 1, ... ,m
J

where ai and Sj are the grades of membership of vi and wj in wA
and ws' respectively. the expression for ~Af")B can readily be derived
by employing the extension principle in the form (72). Thus, byapplyinq
(72) to the operation A, we obtain at once

~A nB= ~A A ~B

= {alv, + ... + anvn} A {B,Wl + ... + Bmwm}
= L {a. A B.)(v. AW.}

• J' 1 J. 1 J1 ,

as the desired expression for ~AnB'



The Concept of a Fuzzy Restriction and Translation Rules
for Fuzzy Propositions

The concept of a fuzzy restriction plays a basic role in the applica-
tions of the theory of fuzzy sets to logic, approximate reasoning, pattern
classification, and many other fields. In what follows, a brief discussion
of the basic aspects of this concept is presented and its application to
the formulation of translation rules for fuzzy propositions is outlined.

Informally, by a fuzzy restriction is meant a fuzzy relation which---.. "-------
acts as an elastic constraint on the values that may be assigned to a- .----------..;::..--_----:::...-_---
variable. More specifically, if X is a variable that takes values in a-- ~-----------------
universe of discourse U, then a ~zy restriction R(X) on the values
that may be assigned to X is a fuzzy relation in U such that the assi n-
ment of a value u to X re uires a stretch of the restriction expressed by

t '(.~Ul\da.r, 1!-\.<J...<O,.r1'.r
Q

degree of stretch = 1 - ~R ~)(u)

where WR(X)(u) is the grade of membership of u in R(X). In symbols,
this is expressed as the assignment equation

x = u: WR(X)(u)

where x denotes a generic value of X and ~R(X)(u) is the "degree of
ease" with which u may be assigned to X.

As a simple illustration, suppose that U = 0 + 1 + 2 + ••. and that X
is a variable labeled "small integer." Assume that the fuzzy set small
integer is defined by

small integer = 1/0 + 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5. (88)



which implies that the fuzzy restriction labeled ~mall integer must be
stretched to the degree 0.4 to allow the assignment of the value 3 to the

More generally, if X = (Xl, ...,Xn) is an n-ary variable taking
values in the cartesian product space

then an n-ary fuzzy relation R(Xl, ... ,Xn) in U is a fuzzy restriction
if it acts as an elastic constraint on the values that may be assigned to

tion of translation rules for fuzzy propositions, that is, propositions
which contain names of fuzzy sets. Common examples of such propositions

Karl is very intelligent.
Anneliese is rather emotional.
John is tall and Pat is very kind.
If X is large then Y is small.
X is much smaller than Y.

Xis sma 11 is 1ike1y.
X is small is possible.
If X is small is true then Y is large is very likely.



By a translation of a fuzzy proposition is meant a representation of
the meaning of a fuzzy proposition as a system of relational assignment
eguations, that is, a set of assignment equations whose right-hand members
are fuzzy relations which are assigned to fuzzy restrictions on the variables

on the values that may be assigned to this variable, and tall is a unary
fuzzy relation which is assigned to the fuzzy restriction R(Height(John)).
More generally, the translation of a fuzzy proposition has the form

" 'c.- / '\ la? (r v'S d'P (Op6'>' .

/p-+R(Xl)=Fl
R(X2) = F2

R(X ) = Fn n

where Xl"" ,Xn are variables which are implicit or explicit in p,
R(Xl), ... ,R(Xn) are the fuzzy restrictions on these variables and
Fl, ...,Fn are fuzzy relations which are assiqned to R(Xl), ...,R(Xn),
respectively. For brevity, the system of relational assiqnment equations
associated with p is denoted by R(p).

Example. The translation of "A tall man is blond" may be expressed as

A tall man is blond -+ R(Color(Hair(X))) = blond
R(Height(X)) = tall



To deduce the translation of a given fuzzy proposition p it is
convenient to treat p as the result of a sequence of operations on a set
of kernel fuzzy propositions which play the role of generators. For example,
attr~butional modification of the kernel propositions

Wi-th each operation is associated a translation rule which describes
the effect of the oper1tion on the relational assignment equations associated
with the operand proposition. Thus, for example, if M(p) is the result
of applying a modification M to a fuzzy proposition p and M(R(p)) is
the modification induced by M in R(p), then the associated translation

then M(D) -+ M(R(p)) /
" ~,I I



In what follows, the translation process is described in qreater
detail for (i) a type of attributional modification (Type I); (ii) conjunc-
tive composition (Type II); and (iii) likelihood and possibility-qualifications.

Translation rules of this type pertain to operations involving attribute
modification; more specifically, they apply to fuzzy propositions of the
form p ~ X is mF, where F is a fuzzy subset of U = {u}, m is a modi-
fer such as not, very, more or less, slightly, somewhat, etc" and either X
or A(X) -- where A is an implied attribute of X -- is a fuzzy variable

for convenience, is referred to as the modifier rule", In essence, this
rule asserts that the translation of a fuzzy proposition of the form
p ~ X is mF is expressed by

into the fuzzy set mF.
In particular, if m ~ not, then the rule of negation asserts that

the translation of p ~ X is not Fis expressed by



~young(U) = 1 - S(u;20,30,40)

then p ~ John is not young translates into

youngl = J:S(U;20,30,40)/U
. a

a specified wayan its operand. For example, the modifier very may be
assumed to act -- to a first approximation -- as a concentrator which has
the effect of squaring the membership function of its operand. Correspond-
ingly, the rule of concentration asserts that the translation of the fuzzy
proposition p = X is very F is expressed by

X is very F -+ X is F2 -+ R(A(X)) = F2

2R(Age(Jennifer)) = young



The effect of the modifier more or less is less susceptible to simple
approximation than that of very. In some contexts, more or less acts as a
dilator, playing a role inverse to that of very. Thus, to a first approxi-

x is more or less F - X is If - R(A(X)) = If (103)

R(Age(Pat)) = Iyoung = fa(l - 5(u;20.30.40)) 1/2/u . (104)

Translation Rules of Type II
Translation rules of this type apply to composite fuzzy propositions

which are generated from fuzzy propositions of the fonn "X is F" through

the disjunction, or, the conditional if ...then ... , etc.
More specifically, let U = {u} and V = {v} be two possibly different

respectively.
Consider the propositions "X is F" and "y is G," and let q be their

conjunction "X is F and Y is G. II Then, the rule of noninteractive conjunctive



composition or, for short, the rule of conjunctive composition asserts that
the translation of q is exoressed by

where A(X) and B(Y) are implied attributes of X and Y, respectively;
R(A(X),B(Y)) is a fuzzy restriction on the values of the binary fuzzy
variable (A(X),B(Y)); and FxG is the cartesian product of F and G.

Thus, under this rule, the fuzzy proposition "Euqene is tall and Cathleen
is young" translates into

where tall and young are fuzzy subsets of the real line.
To differentiate between noninteractive and interactive conjunction, .

the latter is denoted by and*. With this understanding, the rule of
interactive conjunction, in its general form, may be expressed as

where ~ is a binary operation which maps F and G into a subset of
U x V and thus provides a definition o·fand* in a particular context.

A simple example of an interactive conjunction is provided by the
translation rule

Note that, in this case, an increase in the grade of membership in F can
be compensated for by a decrease in the grade of membership in G, and
vice-versa.



In general, interactive conjunction is strongly application-dependent
and has no universally applicable definition.

The translation rule for conditional fuzzy propositions of the form
"If X is F then Y is G" is referred to as the rule of conditional composition

tall = JuS(U;160,170,180)/U

young = ( (1 - S(v;20,30,40))/v
JV

R(Height(Eugene),Age(Cathleen)) (112)
= J (1" (1 - ~tall (u) + ~young(V)) )/(u,v)UxV ---- -~
= J (1" (1 - S(u; 160, 170, 180) + 1 - S(v;20,30,40)) )/(u,v)

UxV

If the conditional fuzzy proposition "If X is F then Y is G else Y
is H" is interpreted as the conjunction of the propositions "If X is F then



Y is G" and "If X is not F then Y is H," then by using in combination the
rule of negation (94), the rule of conjunctive composition (105), and the
rule of conditional composition (110), the translation of the proposition
in question is found to be expressed by

If X is F then Y is G else Y is H --- R(A(X),B(Y)) = (F' E9G) n(FE9H)

(113)

Translation Rules for Likelihood- and Possibility-Qualified Propositions
An important mechanism for effecting a modification in a proposition

p involves the use of a qualifier following or preceding p. In ordinary
diSCourse, the most commonly used qualifiers are truth-values, likelihood-
values and possibility-values. For example, if p ~ X is small, then
as modifications of p we may have propositions such as

X is small is quite true
X is small is ver~ likely
X is small is possible

A discussion of translation rules for truth-qualified fuzzy proposi-
tions of the form "X is F is T,IIwhere T is a linguistic truth-value such
as true, guite true, very true, not very true, etc. may be found in [18J.
The translation rules for likelihood-qualified propositions of the form
"X is F is A," where A is a linguistic likelihood-value such as likely,
unlikely, very likely, etc., are quite similar to the rules described in
[18J which apply to quantified propositions of the form IIQXare F," where
Q is a fuzzy quantifier such as most, many, few, etc. '.

As was stated earlier, the concept of possibility differ in essential
ways from that of probability. Reflecting these differences, the translation



rules for likelihood-qualified propositions are very different from the
corresponding rules for possibility-qualified propositions. More specifically,
the translation rule for a likelihood-qualified fuzzy proposition of the

where PA(X)(u)du is the probability that the value of the implied attribute
A(X) falls in the interval (u,u+du), and ~F is the membership function
of F as a subset of U. For example,

Laura is young is likely -+ R(I100
p (u)~ (U)dU) = likely (115)a age young

where likely is a fuzzy subset of the unit interval [0,1]. In effect,
(115) defines a fuzzy set of probability density functions Page(-) which
is induced by the proposition in question.

By contrast, the translation rule for the possibility-qualified fuzzy

X is F is possible -+ R(A(X)) = F+

where A(X) is an implied attribute of X and F+ is a fuzzy set of
Type 2 which is related to F by

which signifies that ~ + is interval-valued, with the value of ~ + at
F F

u being the interval expressed by the right-hand member of (117).



As a simple illustration of (116), consider the nonfuzzy proposition
IIXis in [a,b]1I where X is a real-valued variable. Applying (116) to
this proposition, we obtain the translation

+= [a,b]

]JR(X) (u) =

Intuitively, (118) signifl s that, whereas IlX is in [a,b]1I impl ies
that the degree of possibility that X is outside of the interval [a,b]
is zero, IIXis in [a,b] is possible" implies that the degree of possibility
that X is outside of the interval [a,b] is unknown, i.e., is the inter-

An interesting point that is worthy of note is that (118) provides a
justification for an intuitively plausible implication, namely,

associated with the consequent. This is obvious in the case of (122) and
is an immediate consequence of (118) in the case of (120)..

What is particularly important about the concept of possibility is
that much of the knowledge on which human decision-making is based is in



reality possibilistic rather than probabilistic in nature. Thus, if X is a
variable which takes the values xl"",xn with respective probabilities
Pl,···,Pn and possibilities ~l""'~n' then, in practice, one is much
more likely to know--or be given--the ~IS rather than the piS. In many
cases, the distinction between the two is not clearly understood, so that
any collection of data, regardless of whether it is possibilistic or proba-
bilistic, is treated as if it were probabilistic in nature. However, as
the foregoing analysis shows, the manipulation oT possibilities calls for
rules that are quite different from those that apply to probabilities. Thus,
in any realistic application of decision analysis, it is essential to
differentiate between probabilities and possibilities and treat them
by different methods.

Although in principle there is no connection between probabilities and
possibilities, in practice the knowledge of possibilities conveys some infor-
mation about the probabilities but not vice-versa. Certainly, if an event
is impossible then it is also improbable. However, it is not true that an
event which is possible is also probable. This rather weak connection
between the two may be stated more precisely in the form of the possibility/
probability consistency principle, namely:

If X is a variable which takes the values xl'" "xn with probabilities
Pl"" 'Pn and possibilities ~l""'~n' respectively, then the deqree of
consistency of the probabilities Pl, ...,Pn with the possibilities
~l ,...'~n is given by

Intuitively, (123) means that, in order to be consistent with ~IS, high
probabilities should not be assigned to those values of X which are associated
with low degrees of possibility.
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