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1 Basic concepts of Neural Networks and Fuzzy Logic Systems
Inspirations based on course material by Professors Heikki Koiovo http://www.control.hut.fi/Kurssit/AS-74.115/Material/ and
David S. Touretzki http://www-2.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15782-s04/slides/ are duly acknowledged

Neural networks and Fuzzy Logic Systems are often considered as a part of Soft Computing area:

115

Chapter 8

Conclusion

Figure 8.1 Soft computing as a union of fuzzy logic, neural networks and probabilistic reasoning.
Intersections include neurofuzzy techniques, probabilistic view on neural networks (especially
classification networks) and similar structures of fuzzy logic systems and Bayesian reasoning.

The strengthnesses of each methods are summarized in the following table:

 FUZZY
LOGIC

NEURAL
NETWORKS

PROBAB.
REASONING

SOFT COMPUTING

Figure 1–1: Soft computing as a composition of fuzzy logic, neural networks and probabilistic reasoning.

Intersections include

• neuro-fuzzy systems and techniques,

• probabilistic approaches to neural networks (especially classification networks) and fuzzy logic
systems,

• and Bayesian reasoning.
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Neuro-Fuzzy systems

• We may say that neural networks and fuzzy systems try to emulate the operation of human brain.

• Neural networks concentrate on the structure of human brain, i.e., on the “hardware” emulating the
basic functions, whereas fuzzy logic systems concentrate on “software”, emulating fuzzy and symbolic
reasoning.

Neuro-Fuzzy approach has a number of different connotations:

• The term “Neuro-Fuzzy” can be associated with hybrid systems which act on two distinct
subproblems: a neural network is utilized in the first subproblem (e.g., in signal processing) and a
fuzzy logic system is utilized in the second subproblem (e.g., in reasoning task).

• We will also consider system where both methods are closely coupled as in the Adaptive Neuro-Fuzzy
Inference Systems (anfis)

Neural Network and Fuzzy System research is divided into two basic schools

• Modelling various aspects of human brain (structure, reasoning, learning, perception, etc)

• Modelling artificial systems and related data: pattern clustering and recognition, function
approximation, system parameter estimation, etc.
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Neural network research in particular can be divided into

• Computational Neuroscience

– Understanding and modelling operations of single neurons or small neuronal circuits, e.g.
minicolumns.

– Modelling information processing in actual brain systems, e.g. auditory tract.

– Modelling human perception and cognition.

• Artificial Neural Networks used in

– Pattern recognition

– adaptive control

– time series prediction, etc.

Areas contributing to Artificial neural networks:

• Statistical Pattern recognition

• Computational Learning Theory

• Computational Neuroscience

• Dynamical systems theory

• Nonlinear optimisation

A.P. Papliński 1–3
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We can say that in general

• Neural networks and fuzzy logic systems are parameterised computational nonlinear algorithms for
numerical processing of data (signals, images, stimuli).

• These algorithms can be either implemented of a general-purpose computer or built into a dedicated
hardware.

• Knowledge is acquired by the network/system through a learning process.

• The acquired knowledge is stored in internal parameters (weights).

(Parameters)

Unknown
System

Neural Network/
Fuzzy System

control signals

data
Essential aspects of data, or
parameters of the unknown system model

Figure 1–2: System as a data generator
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1.1 Biological Fundamentals
of Neural Networks

A typical neuron, or nerve
cell, has the following
structure:

from Kandel, Schwartz and Jessel, Principles of Neural Science

• Most neurons in the vertebrate nervous system have several main features
in common.

• The cell body contains the nucleus, the storehouse of genetic information,
and gives rise to two types of cell processes, axons and dendrites.

• Axons, the transmitting element of neurons, can vary greatly in length;
some can extend more than 3m within the body. Most axons in the central
nervous system are very thin (0.2 . . . 20 µm in diameter) compared with
the diameter of the cell body (50 µm or more).

• Many axons are insulated by a fatty sheath of myelin that is interrupted at
regular intervals by the nodes of Ranvier.

• The action potential, the cell’s conducting signal, is initiated either at the
axon hillock, the initial segment of the axon, or in some cases slightly
farther down the axon at the first nod of Ranvier.

• Branches of the axon of one neuron (the presynaptic neuron) transmit
signals to another neuron (the postsynaptic cell) at a site called the
synapse.

• The branches of a single axon may form synapses with as many as 1000
other neurons.

• Whereas the axon is the output element of the neuron, the dendrites
(apical and basal) are input elements of the neuron. Together with the cell
body, they receive synaptic contacts from other neurons.
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Simplified functions of these very complex in their nature “building blocks” of a neuron are as follow:

• The synapses are elementary signal processing devices.

– A synapse is a biochemical device which converts a pre-synaptic electrical signal into a chemical
signal and then back into a post-synaptic electrical signal.

– The input pulse train has its amplitude modified by parameters stored in the synapse. The nature of
this modification depends on the type of the synapse, which can be either inhibitory or excitatory.

• The postsynaptic signals are aggregated and transferred along the dendrites to the nerve cell body.

• The cell body generates the output neuronal signal, activation potential, which is transferred along the
axon to the synaptic terminals of other neurons.

• The frequency of firing of a neuron is proportional to the total synaptic activities and is controlled by
the synaptic parameters (weights).

• The pyramidal cell can receive 104 synaptic inputs and it can fan-out the output signal to thousands of
target cells — the connectivity difficult to achieve in the artificial neural networks.
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Another microscopic view of typical neuron of the mammalian cortex (a pyramidal cell):

• Note the cell body or soma, dendrites, synapses
and the axon.

• Neuro-transmitters (information-carrying
chemicals) are released pre-synaptically, floats
across the synaptic cleft, and activate receptors
postsynaptically.

• According to Calaj’s “neuron-doctrine”
information carrying signals come into the
dendrites through synapses, travel to the cell
body, and activate the axon. Axonal signals are
then supplied to synapses of other neurons.
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1.2 A simplistic model of a biological neuron
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Figure 1–3: Conceptual structure of a biological neuron

Basic characteristics of a biological neuron:

• data is coded in a form of instantaneous frequency of pulses

• synapses are either excitatory or inhibitory

• Signals are aggregated (“summed”) when travel along dendritic trees

• The cell body (neuron output) generates the output pulse train of an average frequency proportional to
the total (aggregated) post-synaptic activity (activation potential).
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Levels of organization of the nervous system

from T.P.Trappenberg, Fundamentals of Computational Neuroscience, Oxford University Press, 2002
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A few good words about the brain
Adapted from S. Haykin, Neural Networks – a Comprehensive Foundation, Prentice Hall, 2nd ed., 1999

The brain is a highly complex, non-linear, parallel information processing system. It performs tasks like
pattern recognition, perception, motor control, many times faster than the fastest digital computers.

• Biological neurons, the basic building blocks of the brain, are slower than silicon logic gates. The
neurons operate in milliseconds which is about six–seven orders of magnitude slower that the silicon
gates operating in the sub-nanosecond range.

• The brain makes up for the slow rate of operation with two factors:

– a huge number of nerve cells (neurons) and interconnections between them. The number of
neurons is estimated to be in the range of 1010 with 60 · 1012 synapses (interconnections).

– A function of a biological neuron seems to be much more complex than that of a logic gate.

• The brain is very energy efficient. It consumes only about 10−16 joules per operation per second,
comparing with 10−6 J/oper·sec for a digital computer.

Brain plasticity:

• At the early stage of the human brain development (the first two years from birth) about 1 million
synapses (hard-wired connections) are formed per second.

• Synapses are then modified through the learning process (plasticity of a neuron).

• In an adult brain plasticity may be accounted for by the above two mechanisms: creation of new
synaptic connections between neurons, and modification of existing synapses.
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What can you do with Artificial Neural Networks (aNN)
Adapted from Neural Nets FAQ: ftp://ftp.sas.com/pub/neural/FAQ.html

• In principle, NNs can compute any computable function, i.e., they can do everything a normal digital
computer can do.

• In practice, NNs are especially useful for classification and function approximation/mapping
problems which are tolerant of some imprecision, which have lots of training data available, but to
which hard and fast rules (such as those that might be used in an expert system) cannot easily be
applied.

• Almost any mapping between vector spaces can be approximated to arbitrary precision by feedforward
NNs (which are the type most often used in practical applications) if you have enough data and enough
computing resources.

• To be somewhat more precise, feedforward networks with a single hidden layer, under certain
practically-satisfiable assumptions are statistically consistent estimators of, among others, arbitrary
measurable, square-integrable regression functions, and binary classification devices.

• NNs are, at least today, difficult to apply successfully to problems that concern manipulation of
symbols and memory. And there are no methods for training NNs that can magically create
information that is not contained in the training data.
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Who is concerned with NNs?

• Computer scientists want to find out about the properties of non-symbolic information processing with
neural nets and about learning systems in general.

• Statisticians use neural nets as flexible, nonlinear regression and classification models.

• Engineers of many kinds exploit the capabilities of neural networks in many areas, such as signal
processing and automatic control.

• Cognitive scientists view neural networks as a possible apparatus to describe models of thinking and
consciousness (high-level brain function).

• Neuro-physiologists use neural networks to describe and explore medium-level brain function (e.g.
memory, sensory system, motorics).

• Physicists use neural networks to model phenomena in statistical mechanics and for a lot of other tasks.

• Biologists use Neural Networks to interpret nucleotide sequences.

• Philosophers and some other people may also be interested in Neural Networks for various reasons.
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Neuro-Fuzzy Comp. — Ch. 1 May 25, 2005

1.3 Taxonomy of neural networks

• From the point of view of their active or decoding phase, artificial neural networks can be classified
into feedforward (static) and feedback (dynamic, recurrent) systems.

• From the point of view of their learning or encoding phase, artificial neural networks can be classified
into supervised and unsupervised systems.

• Practical terminology often mixes up the above two aspects of neural nets.

Feedforward supervised networks

This networks are typically used for function approximation tasks. Specific examples include:

• Linear recursive least-mean-square (LMS) networks

• Multi Layer Perceptron (MLP) aka Backpropagation networks

• Radial Basis networks

A.P. Papliński 1–13
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Feedforward unsupervised networks

This networks are used to extract important properties of the input data and to map input data into a
“representation” domain. Two basic groups of methods belong to this category

• Hebbian networks performing the Principal Component Analysis of the input data, also known as the
Karhunen-Loeve Transform.

• Competitive networks used to performed Learning Vector Quantization, or tessellation/clustering of
the input data set.

• Self-Organizing Kohonen Feature Maps also belong to this group.

Recurrent networks

These networks are used to learn or process the temporal features of the input data and their internal state
evolves with time. Specific examples include:

• Hopfield networks

• Associative Memories

• Adaptive Resonance networks
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1.4 Models of artificial neurons

Three basic graphical representations of a
single p-input (p-synapse) neuron:

.

. ...

summing
node

. . .

. . .

x1

y

w1

= [

= [ ]

] Tx

w

xx2

w2 w

p

p

v
synapse
dendrite

a.
activation
potential

Input layer Output layer
x

x2

x1

y

w1

y

x = 

x w

p

p

v

v

synapse

c.

Dendritic representation

b.

Block−diagram representation

σ

σ

σ

w

Signal flow representation

2

wn
.

v = w1 · x1 + · · · + wp · xp = w · x

y = σ(v)

Artificial neural networks are nonlinear information
(signal) processing devices which are built from
interconnected elementary processing devices called
neurons.

An artificial neuron is a p-input single-output signal
processing element which can be thought of as a simple
model of a non-branching biological neuron.

From a dendritic representation of a single neuron we
can identify p synapses arranged along a linear dendrite
which aggregates the synaptic activities, and a neuron body
or axon-hillock generating an output signal.

The pre-synaptic activities are represented by a p-element
column vector of input (afferent) signals

x = [x1 . . . xp]
T

In other words the space of input patterns is p-dimensional.

Synapses are characterised by adjustable parameters called
weights or synaptic strength parameters. The weights are
arranged in a p-element row vector:

w = [w1 . . . wp]
A.P. Papliński 1–15
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• In a signal flow representation of a neuron p synapses are arranged in a layer of input nodes. A
dendrite is replaced by a single summing node. Weights are now attributed to branches (connections)
between input nodes and the summing node.

• Passing through synapses and a dendrite (or a summing node), input signals are aggregated
(combined) into the activation potential, which describes the total post-synaptic activity.

• The activation potential is formed as a linear combination of input signals and synaptic strength
parameters, that is, as an inner product of the weight and input vectors:

v =
p∑

i=1
wixi = w · x =

[
w1 w2 · · · wp

]
·



x1

x2
...

xp


(1.1)

• Subsequently, the activation potential (the total post-synaptic activity) is passed through an activation
function, σ(·), which generates the output (efferent) signal:

y = σ(v) (1.2)

• The activation function is typically a saturating function which normalises the total post-synaptic
activity to the standard values of output (axonal) signal.

• The block-diagram representation encapsulates basic operations of an artificial neuron, namely,
aggregation of pre-synaptic activities, eqn (1.1), and generation of the output signal, eqn (1.2)
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A single synapse in a dendritic representation of a neuron can be represented by the following
block-diagram:
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In the synapse model we can identify:

• a storage for the synaptic weight,

• augmentation (multiplication) of the pre-synaptic signal with the weight parameter, and

• the dendritic aggregation of the post-synaptic activities.

A synapse is classified as

• excitatory, if a corresponding weight is positive, wi > 0, and as

• inhibitory, if a corresponding weight is negative, wi < 0.
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It is sometimes convenient to add an additional parameter called threshold, θ or bias b = −θ. It can be
done by fixing one input signal to be constant. Than we have

xp = +1 , and wp = b = −θ

With this addition, the activation potential is calculated as:

v̂ =
p∑

i=1
wixi = v − θ , v =

p−1∑
i=1

wixi

where v̂ is the augmented activation potential.

-��
��

σ -
v v̂ y

w1 . . . wp−1 wp

@ @ @

x1 · · · xp−1 +1

Figure 1–4: A single neuron with a biasing input
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1.5 Types of activation functions

Typically, the activation function generates either unipolar or bipolar signals.

A linear function: y = v.

Such linear processing elements, sometimes called ADALINEs, are studied in the theory of linear
systems, for example, in the “traditional” signal processing and statistical regression analysis.

A step function
unipolar:

y = σ(v) =

 1 if v ≥ 0

0 if v < 0

1

0

y

v

Such a processing element is traditionally called perceptron, and it works as a threshold element with
a binary output.

bipolar:

y = σ(v) =

 +1 if v ≥ 0

−1 if v < 0 0

1
y

-1

v

A step function with bias
The bias (threshold) can be added to both, unipolar and bipolar step function. We then say that a
neuron is “fired”, when the synaptic activity exceeds the threshold level, θ. For a unipolar case, we
have:

y = σ(v) =

 1 if w · x ≥ θ

0 if w · x < θ
θ

1

0

y

w x
(The McCulloch-Pitts perceptron — 1943)
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A piecewise-linear function

y = σ(v) =


0 if v ≤ − 1

2α

αv + 1
2 if |v| < 1

2α

1 if v ≥ 1
2α -

6

1
y

− 1
2α

1
2α

v















• For small activation potential, v, the neuron works as a linear combiner (an ADALINE) with the
gain (slope) α.

• For large activation potential, v, the neuron saturates and generates the output signal either ) or 1.

• For large gains α →∞, the piecewise-linear function is reduced to a step function.

Sigmoidal functions

unipolar:

σ(v) =
1

1 + e−v
=

1

2
(tanh(v/2)− 1)

y
1

0

v

bipolar:

σ(v) = tanh(βv) =
2

1 + e−2βv
− 1

y
1

0
-1

v

The parameter β controls the slope of the function.

The hyperbolic tangent (bipolar sigmoidal) function is perhaps the most popular choice of the
activation function specifically in problems related to function mapping and approximation.
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Radial-Basis Functions

• Radial-basis functions arise as optimal solutions to problems of interpolation, approximation and
regularisation of functions. The optimal solutions to the above problems are specified by some
integro-differential equations which are satisfied by a wide range of nonlinear differentiable
functions (S. Haykin, Neural Networks – a Comprehensive Foundation, Ch. 5).

• Typically, Radial-Basis Functions ϕ(x; ti) form a family of functions of a p-dimensional vector,
x, each function being centered at point ti.

• A popular simple example of a Radial-Basis Function is a symmetrical multivariate Gaussian
function which depends only on the distance between the current point, x, and the center point, ti,
and the variance parameter σi:

ϕ(x; ti) = G(||x− ti||) = exp

−||x− ti||2

2σ2
i


where ||x− ti|| is the norm of the distance vector between the current vector x and the centre, ti,
of the symmetrical multidimensional Gaussian surface.

• The spread of the Gaussian surface is controlled by the variance parameter σi.

A.P. Papliński 1–21
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Two concluding remarks:

• In general, the smooth activation functions, like sigmoidal, or Gaussian, for which a continuous
derivative exists,

are typically used in networks performing a function approximation task,

whereas the step functions are used as parts of pattern classification networks.

• Many learning algorithms require calculation of the derivative of the activation function (see the
assignments/practical 1).
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1.6 A layer of neurons

• Neurons as in sec. 1.4 can be arrange into a layer of
neurons.

• A single layer neural network consists of m

neurons each with the same p input signals.

• Similarly to a single neuron, the neural network can
be represented in all three basic forms: dendritic,
signal-flow, and block-diagram form

• From the dendritic representation of the neural
network it is readily seen that a layer of neurons is
described by a m× p matrix W of synaptic weights.

• Each row of the weight matrix is associated with
one neuron.

Operations performed by the network can be described as
follows:
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b. Signal−flow graph

c. Block−diagram
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v = W · x ; y = σ(W · x) = σ(v) ; v is a vector of activation potentials.A.P. Papliński 1–23
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From the signal-flow graph it is visible that each weight parameter wij (synaptic strength) is now related
to a connection between nodes of the input layer and the output layer.
Therefore, the name connection strengths for the weights is also justifiable.

The block-diagram representation of the single layer neural network is the most compact one, hence most
convenient to use.
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1.7 Multi-layer feedforward neural networks

Connecting in a serial way layers of neurons presented in sec. 1.6 we can build multi-layer feedforward
neural networks also known as Multilayer Perceptrons (MLP).
The most popular neural network seems to be the one consisting of two layers of neurons as in the
following block-diagram

W h ��
��
ϕ W y ��
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σ-
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ĥ
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o
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-
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Hidden layer
︸ ︷︷ ︸

Output layer

p input signals
L hidden neurons
m output neurons

In order to avoid a problem of counting an input layer, the two-layer architecture is referred to as a single
hidden layer neural network.

Input signals, x, are passed through synapses of the hidden layer with connection strengths described by
the hidden weight matrix, W h, and the L hidden activation signals, ĥ, are generated.

The hidden activation signals are then normalised by the functions ψ into the L hidden signals, h.

Similarly, the hidden signals, h, are first, converted into m output activation signals, ŷ, by means of the
output weight matrix, W y, and subsequently, into m output signals, y, by means of the functions σ. Hence

h = ϕ(W h · x) , y = σ(W y · h)

If needed, one of the input signals and one of the hidden signals can be constant to form a biasing signals.

Functions ϕ and σ can be identical.

A.P. Papliński 1–25
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1.8 Static and Dynamic Systems — General Concepts

Static systems

Neural networks considered in previous sections belong to the class of static systems which can be fully
described by a set of m-functions of p-variables as in Figure 1–5.

f(x)-
x

o
p

-
y

o
m

Figure 1–5: A static system: y = f (x)

The defining feature of the static systems is that they are time-independent — current outputs depends
only on the current inputs in the way specified by the mapping function, f .
Such a function can be very complex.

Dynamic systems — Recurrent Neural Networks

In the dynamic systems, the current output signals depend, in general, on current and past input signals.

There are two equivalent classes of dynamic systems: continuous-time and discrete-time systems.

The dynamic neural networks are referred to as recurrent neural networks.
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1.9 Continuous-time dynamic systems

• Continuous-time dynamic systems operate with signals which are functions of a continuous variable,
t, interpreted typically as time. A spatial variable can be also used.

• Continuous-time dynamic systems are described by means of differential equations. The most
convenient yet general description uses only first-order differential equations in the following form:

ẏ(t) = f (x(t),y(t)) (1.3)

where
ẏ(t) df=

dy(t)

dt
is a vector of time derivatives of output signals.

• In order to model a dynamic system, or to obtain the output signals, the integration operation is
required. The dynamic system of eqn (1.3) is illustrated in Figure 1–6.

f(x,y)
-

x
o
p

-o
m

-
ẏ
o
m

∫
-
y

o
m

s

Figure 1–6: A continuous-time dynamic system: ẏ(t) = f(x(t),y(t))

• It is evident that feedback is inherent to dynamic systems.
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1.9.1 Discrete-time dynamic systems

• Discrete-time dynamic systems operate with signals which are functions of a discrete variable, n,
interpreted typically as time, but a discrete spatial variable can be also used.

• Typically, the discrete variable can be thought of as a sampled version of a continuous variable:

t = n · ts ; t ∈ R , n ∈ N

and ts is the sampling time

• Analogously, discrete-time dynamic systems are described by means of difference equations.

• The most convenient yet general description uses only first-order difference equations in the
following form:

y(n + 1) = f (x(n),y(n)) (1.4)

where y(n + 1) and y(n) are the predicted (future) value and the current value of the vector y,
respectively.
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• In order to model a discrete-time dynamic system, or to obtain the output signals, we use the unit
delay operator, D = z−1 which originates from the z-transform used to obtain analytical solutions to
the difference equations.

• Using the delay operator, we can re-write the first order difference equation into the following operator
form:

z−1y(n + 1) = y(n)

which leads to the structure as in Figure 1–7.

f(x,y)
-

x(n)
o
p

-o
m

-
y(n+1)

o
m

D -
y(n)
o
m

s

Figure 1–7: A discrete-time dynamic system: y(n+1) = f(x(n), y(n))

• Notice that feedback is also present in the discrete dynamic systems.
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1.9.2 Example: A continuous-time generator of a sinusoid

• As a simple example of a continuous-time dynamic system let us consider a linear system which
generates a sinusoidal signal.

• Eqn (1.3) takes on the following form: ẏ(t) = A · y(t) + B · x(t) (1.5)

where y =

 y1

y2

 ; A =

 0 ω

−ω 0

 ; B =

 0

b

 ; x = δ(t)

δ(t) is the unit impulse which is non-zero only for t = 0 and is used to describe the initial condition.

• In order to show that eqn (1.5) really describes the sinusoidal generator we re-write this equation for
individual components. This yields:

ẏ1 = ω y2 (1.6)
ẏ2 = −ω y1 + b δ(t)

• Differentiation of the first equation and substitution of the second one gives the second-order linear
differential equation for the output signal y1:

ÿ1 + ω2y1 = ω b δ(t)

• Taking the Laplace transform and remembering that Lδ(t) = 1, we have:

y1(s) = b
ω

s2 + ω2
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• Taking the inverse Laplace transform we finally have

y1(t) = b sin(ωt)

• The internal structure of the generator can be obtained from eqns (1.7) and illustrated using the
dendritic representation as in Figure 1–8.

-

-

∫ẏ1 y1

∫ẏ2 y2

δ(t)

@

b

r
@

−ω
r

@

ω

Figure 1–8: A continuous-time sinusoidal generator

• The generator can be thought of as a simple example of a linear recurrent neural network with the
fixed weight matrix of the form:

W = [B A] =

 0 0 ω

b −ω 0



• The weights were designed appropriately rather than “worked out” during the learning procedure.
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1.9.3 Example: A discrete-time generator of a sinusoid

• It is possible to build a discrete-time version of the sinusoidal generator using difference equations of
the general form as in eqn (1.4):

y(n + 1) = A · y(n) + B · x(n) (1.7)

where

A =

 cos Ω sin Ω

− sin Ω cos Ω

 ; B =

 0

b

 ; x(n) = δ(n)

• This time we take the z-transform directly of eqn (1.7), which gives:

(zI − A)y(z) = B ; where I =

 1 0

0 1

 , and Zδ(n) = 1

Hence
y(z) = (zI − A)−1B

and subsequently

y(z) = (

 z − cos Ω sin Ω

− sin Ω z − cos Ω


 0

b

)/(z2 − 2z cos Ω + 1)

Extracting the first component, we have

y1(z) =
b sin Ω

z2 − 2z cos Ω + 1
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Taking the inverse z-transform finally yields

y1(n + 1) = b sin(Ωn)

which means that the discrete-time dynamic system described by eqn (1.7) generates a sinusoidal
signal.

• The structure of the generator is similar to the previous one and is presented in Figure 1–9.

-

-

D
y1(n+1) y1(n)

D
y2(n+1) y2(n)

δ(n)

@

b

r@

cΩ

@

−sΩ
r

@

sΩ

@

cΩ

Figure 1–9: A discrete-time sinusoidal generator

• This time the weight matrix is:

W = [B A] =

 0 cΩ sΩ

b −sΩ cΩ



where
sΩ = sin Ω, and cΩ = cos Ω

A.P. Papliński 1–33
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1.10 Introduction to learning

• In the previous sections we concentrated on the decoding part of a neural network assuming that the
weight matrix, W , is given.

• If the weight matrix is satisfactory, during the decoding process the network performs some useful task
it has been design to do.

• In simple or specialised cases the weight matrix can be pre-computed, but more commonly it is
obtained through the learning process.

• Learning is a dynamic process which modifies the weights of the network in some desirable way. As
any dynamic process learning can be described either in the continuous-time or in the discrete-time
framework.

• A neural network with learning has the following structure:

DECODING

W

LEARNING
(ENCODING)









�

W

-x r

-

-
yr

�

� d

A.P. Papliński 1–34
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• The learning can be described either by differential equations (continuous-time)

Ẇ (t) = L( W (t),x(t),y(t),d(t) ) (1.8)

or by the difference equations (discrete-time)

W (n + 1) = L( W (n),x(n),y(n),d(n) ) (1.9)

where d is an external teaching/supervising signal used in supervised learning.

• This signal in not present in networks employing unsupervised learning.

• The discrete-time learning law is often used in a form of a weight update equation:

W (n + 1) = W (n) + ∆W (n) (1.10)
∆W (n) = L( W (n),x(n),y(n),d(n) )
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2 Perceptron

• The perceptron was introduced by McCulloch and Pitts in 1943 as an artificial neuron with a
hard-limiting activation function, σ.

• Recently the term multilayer perceptron has often been used as a synonym for the term multilayer
feedforward neural network.

-��
��

σ -
v v̂ y = σ(v̂)

w1 . . . wp−1 wp

@ @ @

x1 · · · xp−1 +1

≡ w σ-xop
-
y��1

• Input signals, xi, are assumed to have real values.

• The activation function, σ, is a unipolar step function (sometimes called the Heaviside function),
therefore, the output signal is binary, y ∈ {0, 1}.

• One input signal is constant (xp = 1), and the related weight is interpreted as the bias, or threshold, θ:

wp = −θ

• The input signals and weights are arranged in the following column and row vectors, respectively:

x =
[
x1 · · · xp−1 1

]T
; w =

[
w1 · · · wp−1 wp

]
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• Aggregation of the “proper” input signals results in the activation potential, v, which can be
expressed as the inner product of “proper” input signals and related weights:

v =
p−1∑
i=1

wixi = w1:p−1 · x1:p−1

• The augmented activation potential, v̂, can be expressed as:

v̂ = w · x = v − θ

• For each input signal, x, the output, y, is determined as

y = σ(v̂) =

 0 if v < θ (v̂ < 0)

1 if v ≥ θ (v̂ ≥ 0)

• Hence, a perceptron works as a threshold element, the output being “active” if the activation potential
exceeds the threshold.
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2.1 A Perceptron as a Pattern Classifier

• A single perceptron classifies input patterns, x, into two classes.

• A linear combination of signals and weights for which the augmented activation potential is zero,
v̂ = 0, describes a decision surface which partitions the input space into two regions.

• The decision surface is a hyperplane specified as:

w · x = 0 , xp = 1 , or v = θ (2.1)

and we say that an input vector (pattern)

x belongs to a class
 #1

#0

 if
 y = 1, (v ≥ θ)

y = 0, (v < θ)

• The input patterns that can be classified by a single perceptron into two distinct classes are called
linearly separable patterns.

Example from a two-dimensional space (p = 3).
Equation of the decision line:

w1 · x1 + w2 · x2 + w3 = 0 , or
[
w1 w2 w3

]


x1

x2

1

 = 0

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

1

x2

x
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Useful remarks

• The inner product of two vectors can be also expressed as:

w · x = ||w|| · ||x|| · cos α

where ||.|| denotes the norm (magnitude, length) of the vector, and α is the angle between vectors.

• The weight vector, w, is orthogonal to the decision plane in the augmented input space, because

w · x = 0

that is, the inner product of the weight and augmented input vectors is zero.

• Note that the weight vector,
w1:p−1

is also orthogonal to the decision plane

w1:p−1 · x1:p−1 + wp = 0

in the “proper”, (p−1)–dimensional input space.

• For any pair of input vectors, say, (xa
1:p−1,x

b
1:p−1), for which the decision plane equation is satisfied, we

have
w1:p−1 · (xa

1:p−1 − xb
1:p−1) = 0

Note that the difference vector (xa
1:p−1 − xb

1:p−1) lies in the decision plane.
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Geometric Interpretation

• Let us consider a 3-dimensional augmented input space (p = 3). Input vectors are 2-dimensional, and
x =

[
x1 x2 1

]T
. The decision plane, is described as follows:

w1x1 + w2x2 + w3x3 = 0 , x3 = 1 (2.2)

6x3

�
�

�
�

�	x1

-
x2

decision
surface

H
HHH

�
�

�
�

�
�

�
�

������������
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�
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�

�
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�
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JĴ w
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Figure 2–1: Augmented 3-D input space with the decision plane

• The augmented decision plane, OAB, goes through the origin of the augmented input space (a
homogeneous equation).

• Each augmented input vector, x, lies in the this plane. The weight vector, w, is orthogonal to the OAB
plane hence to each augmented input vector.

• Intersection of the augmented decision plane, OAB, and the horizontal plane, x3 = 1, gives a 2-D
“plane” AB (a straight line, in this case) described by eqn (2.2).
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2.2 Example — a three-synapse perceptron

Consider a three-input perceptron with weights

w = [2 3 − 6]
v̂

��
��

y@ @ @

x1 x2 1

2 3 −6

-

The total (augmented) activation potential is determine as:

v̂ = w · x =
[
2 3 −6

]


x1

x2

1

 = 2x1 + 3x2 − 6

The input space, [x1 x2, is 2-dimensional and the decision plane is reduced to a straight line:

2x1 + 3x2 − 6 = 0

The 2-D weight vector ŵ = [2 3] is perpendicular to the decision line, that is, to the vector a = [−3 2]T

which is parallel to (lies in) the decision line, because the inner product ŵ · a = 0, that is

[2 3]

 −3

2

 = 0

-
x1

6
x2

0 3

2
y = 1

y = 0 













�
ŵ

a

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q

Q
Q

Q
Q

Q
Qk

Note that the weight vector ŵ points in the “positive” direction, that is, to the side of the plane where y = 1.
2
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2.3 Selection of weights for the perceptron

In order for the perceptron to perform a desired task, its weights must be properly selected.

In general two basic methods can be employed to select a suitable weight vector:

• By off-line calculation of weights. If the problem is relatively simple it is often possible to calculate
the weight vector from the specification of the problem.

• By learning procedure. The weight vector is determined from a given (training) set of input-output
vectors (exemplars) in such a way to achieve the best classification of the training vectors.

Once the weights are selected (the encoding process),
the perceptron performs its desired task (e.g., pattern classification)
(the decoding process).
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2.3.1 Selection of weights by off-line calculations — Example

Consider the problem of building the NAND gate using the perceptron. In this case the desired
input-output relationship is specified by the following truth table and related plot:

x1 0 0 1 1
x2 0 1 0 1
y 1 1 1 0

-
x1

6
x2

0 1

1

4 4

4 �
y = 1 y = 0

@
@

@
@

@
@

@
@

@
@

@
@

The input patterns (vectors) belong to two classes and are marked in the input space (the plane (x1, x2) )
with 4 and �, respectively. The decision plane is the straight line described by the following equation

x1 + x2 = 1.5 or − x1 − x2 + 1.5 = 0

In order for the weight vector to point in the direction of y = 1 patterns we select it as:

w =
[
−1 −1 1.5

]

For each input vector the output signal is
now calculated as

v̂ =
[
−1 −1 1.5

]


x1

x2

1

 ; y =

 0 if v̂ < 0

1 if v̂ ≥ 0

v̂

��
��

y@ @ @

x1 x2 1

−1 −1 1.5
-

Verify that such a perceptron does
implement a two-input NAND gate.
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2.4 The Perceptron learning law

• Learning is a recursive procedure of modifying weights from a given set of input-output patterns.

• For a single perceptron, the objective of the learning (encoding) procedure is to find the decision plane,
(that is, the related weight vector), which separates two classes of given input-output training
vectors.

• Once the learning is finalised, every input vector will be classified into an appropriate class.

• A single perceptron can classify only the linearly separable patterns.

• The perceptron learning procedure is an example of a supervised error-correcting learning law.

-
x(n)

w(n) ����

����

-
v̂(n)

-
y(n)s s

Learning-

�
�
�

�
��

?
−

�
d(n)

�
ε(n)

Figure 2–2: Error-Correcting, Supervised Learning in perceptron
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More specifically, the supervised learning procedure can be described as follows

• given the set of N training patterns consisting of input signals x(n) and the related desired output
signals, d(n):

x(n) =


x1(n)

...
xp−1(n)

1

 , d(n) , for n = 1, 2, . . . , N

• obtain the correct decision plane specified by the weight vector w.

• The training patterns are arranged in a training set which consists of a p×N input matrix, X , and an
N -element output vector, D:

X =



x1(1) x1(2) · · · x1(N)
x2(1) x2(2) · · · x2(N)

... ... ...
xp−1(1) xp−1(2) · · · xp−1(N)

1 1 · · · 1


D =

[
d(1) d(2) · · · d(N)

]

• We can assume that an untrained perceptron can generate an incorrect output y(n) 6= d(n) due to
incorrect values of weights.

• We can think about the actual output y(n) as an “estimate” of the correct, desired output d(n).
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The perceptron learning law proposed by Rosenblatt in 1959 can be described as follows:

1. weights are initially set to “small” random values

w(0) = rand

2. for n = 1, 2, . . . , N training input vectors, x(n), are presented to the perceptron and the actual
output y(n), is compared with the desired output, d(n), and the error ε(n) is calculated as follows

y(n) = σ(w(n) · x(n)) , ε(n) = d(n)− y(n)

Note that because
d(n), y(n) ∈ {0, 1}, then ε(n) ∈ {−1, 0, +1}

3. at each step, the weights are adapted as follows

w(n + 1) = w(n) + η ε(n)x(n) (2.3)

where 0 < η < 1 is a learning parameter (gain), which controls the adaptation rate. The gain must be
adjusted to ensure the convergence of the algorithm.

Note that the weight update

∆w = η ε(n)x(n) (2.4)

is zero if the error ε(n) = 0.
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The tabular form of the weight updates:

∆w = η ε(n)x(n)

d(n) y(n) ε(n) ∆w(n)

0 0 0 0
1 1 0 0
0 1 −1 −η x(n)

1 0 +1 +η x(n)

Geometric interpretation of the perceptron
learning law:

�
@@

true decision plane
d = 1

d = 0

�
�

�
�

�
�

�
�

�
�

�
�
nth decision plane

��������9
x(n)

@
@

@
@

@
@Iw(n)
���:

−ηx(n)

A
A

A
A

A
A
AK w(n + 1)

6
w∗

ε = −1

ε = 0

ε = 0

ε = +1

• Identify a current weight vector, w(n), the next weight
vector, w(n + 1), and the correct weight vector, w∗.

• Related decision planes are orthogonal to these vectors and
are depicted as straight lines.

• During the learning process the current weight vector
w(n) is modified in the direction of the current input vector
x(n), if the input pattern is misclassified, that is, if the error
is non-zero.
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• Presenting the perceptron with enough training vectors, the weight vector w(n) will tend to the correct
value w∗.

• Rosenblatt proved that if input patterns are linearly separable, then the perceptron learning law
converges, and the hyperplane separating two classes of input patterns can be determined.

• The structure of the perceptron and its learning law are presented in the following block-diagram

-
x(n)

w(n) ����

����

-
v̂(n)

-
y(n)s s

∆w(n) = η ε(n)x(n)-

�
�
�

�
��

?
−

�
d(n)

�
ε(n)

Figure 2–3: The structure of a perceptron with its learning part.

• Note the decoding part of the perceptron is a static, feedforward system, whereas the encoding part
is a discrete-time dynamic system described by the difference equation (2.3).
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Neuro-Fuzzy Comp. — Ch. 2 May 25, 2005

2.5 Implementation of the perceptron learning law in MATLAB — Example

The following numerical example demonstrates the perceptron learning law. In the example we will
demonstrate three main steps typical to most of the neural network applications, namely:

Preparation of the training patterns. Normally, the training patterns are specific to the particular
application.

In our example we generate a set of vectors and partition this set with a plane into two linearly
separable classes.

The set of vectors is split into two halves, one used as a training set, the other as a validation set.

Learning. Using the training set, we apply the perceptron learning law as described in sec. 2.4

Validation. Using the validation set we verify the quality of the learning process.

Calculations are performed in MATLAB.
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Description of a demo script perc.m

p = 5; % dimensionality of the augmented input space
N = 50; % number of training patterns — size of the training epoch

PART 1: Generation of the training and validation sets

X = 2*rand(p-1,2*N)-1; % a (p− 1)× 2N matrix of uniformly distributed random numbers
from the interval [−1, +1]

nn = randperm(2*N); nn = nn(1:N); % generation of N random integer numbers from
the range [1..2N ].

X(:,nn) = sin(X(:,nn)); % Columns of the matrix X pointed to by nn are ”coloured” with
the function ‘sin’, in order to make the training patterns more interesting.

X = [X; ones(1,2*N)]; % Each input vector is appended with a constant 1 to implement biasing.

The resulting matrix of input patterns, X , may be of the following form:

X = -0.02 0.83 -0.72 . . . -0.68 -0.04
0.33 0.73 -0.10 . . . 0.45 -0.09
0.36 0.78 0.98 . . . -0.41 0.04

-0.57 0.09 -0.57 . . . -0.90 -0.11
1.00 1.00 1.00 . . . 1.00 1.00

where only the three initial and two final columns of the matrix X are shown.
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Specification of an arbitrary separation plane in the augmented input space:
wht = 3*rand(1,p)-1; wht = wht/norm(wht); % This is a unity length vector orthogonal

to the augmented separation plane. It is also the target weight vector.
The result may be of the form:

wht = 0.38 0.66 -0.14 0.61 0.14

D = (wht*X >= 0); % Classification of every point from the input space with respect to the class
number, 0 or 1. The three initial and two terminal values of the output vector may be of the
following form:

D = 0 1 1 ... 0 0

Xv = X(:, N+1:2*N) ; % The validation set: Xv is p×N

Dv = D(:, N+1:2*N) ; % Dv is 1×N X = X(:, 1:N) ; % The training set: X is p×N

D = D(:, 1:N) ; % D is 1×N

Visualisation of the input-output patterns.

The input space is p-dimensional, hence difficult to visualise.
We will plot projections of input patterns on a 2-D plane, say (x1 − x3) plane.
The projection is performed by extracting rows specified in pr from the X and D matrices.

pr = [1, 3]; Xp = X(pr, :);
wp = wht([pr p]); % projection of the weight vector
c0 = find(D==0); c1 = find(D==1); % c0 and c1 are vectors of indices to input patterns

X belonging to the class 0 or 1, respectively.
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figure(1), clf reset
plot(Xp(1,c0),Xp(2,c0),’o’,Xp(1,c1),Xp(2,c1),’x’) % The input patterns are

plotted on the selected projection plane.
Patterns belonging to the class 0, or 1 are marked with ’o’, or ’x’, respectively.

Setting up the plot and freezing its axes:

axis(axis), axis(’square’)
title(’Projection of the input space and a decision plane’)
xlabel([’x_’, num2str(pr(1))])
ylabel([’x_’, num2str(pr(2))])
hold on

Superimposition of the projection of the separation plane on the plot. The projection is a straight line:

x1 · w1 + x3 · w3 + w5 = 0

To plot this line we need at least two points. However, in order to account for all possible situations we will
use four co-linear points which are intersections with the four lines limiting the square as presented in sec.
2.7.

L = [-1 1] ;
S = -diag([1 1]./wp(1:2))*(wp([2,1])’*L +wp(3)) ;
plot([S(1,:) L], [L S(2,:)]), grid, drawnow % plotting the line

The relevant plot is in Figure 2–5.
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PART 2: Learning

• The training input-output patterns are stored in matrices X (p×N) and D (1×N).

• We will start the learning/training process with a randomly selected weight vector (thus related
separation/decision plane).

• During training procedure the weight vector should converge to the weight vector specifying the
correct separation plane.

eta = 0.5; % The training gain.
wh = 2*rand(1,p)-1; % Random initialisation of the weight vector with values from

the range [−1, +1]. An example of an initial weight vector follows
wh = 0.36 -0.34 -0.89 0.97 0.08

Projection of the initial decision plane which is orthogonal to wh is plotted as previously:
wp = wh([pr p]); % projection of the weight vector
S = -diag([1 1]./wp(1:2))*(wp([2,1])’*L +wp(3)) ;
plot([S(1,:) L], [L S(2,:)]), grid on, drawnow

• In what follows, the internal loop controlled by the variable n goes through N training exemplars (one
epoch).

• The loop is repeated until the performance index (error) E is small but not more than C times (C
epochs).

• The projection of the current decision surface is plotted after the previous projection has been erased.
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C = 50; % Maximum number of training epochs
E = [C+1, zeros(1,C)]; % Initialization of the vector of the total sums of squared errors

over an epoch.
WW = zeros(C*N,p); % The matrix WW will store all weight vectors wh, one weight vector

per row of the matrix WW
c = 1 ; % c is an epoch counter
cw = 0 ; % cw total counter of weight updates
while (E(c)>1)|(c==1)

c = c+1 ;
plot([S(1,:) L], [L S(2,:)], ’w’) % At the beginning of each internal loop

the former projection of the decision plane is erased (option ’w’)
for n = 1:N % The internal loop goes once through all training exemplars.
eps = D(n) - ((wh*X(:,n)) >= 0); % ε(n) = d(n)− y(n)

wh =wh+eta*eps*X(:,n)’; % The Perceptron Learning Law
cw=cw+1;
WW(cw,:)=wh/norm(wh); % The updated and normalised weight vector is stored in WW

for feature plotting
E(c)=E(c)+abs(eps); % |ε| = ε2

end;
wp=wh([pr p]); % projection of the weight vector
S = -diag([1 1]./wp(1:2))*(wp([2,1])’*L +wp(3)) ;
plot([S(1,:) L], [L S(2,:)], ’g’), drawnow

end;
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After every pass through the set of training patterns, the projection of the current decision plane, which is
determined by the current weight vector, is plotted after the previous projection has been erased.

WW = WW(1:cw, pr);
E = E(2:c+1)

An example of the performance index E and the final value of the weight vector is as follows:
E = 10 6 4 3 1 0
wt = 0.29 0.73 –0.18 0.61 0.14

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Projection of the input space and a decision plane

x
1

x 3

Figure 2–4: Projection of the input space onto a 2–D plane.

A.P. Papliński 2–20
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Validation

• The final decision (separation) planes differs slightly from the correct one.

• Therefore, if we use input signals from the validation set which were not used in training, it may be
expected that some patterns will be misclassified and the following total sum of squared errors will be
non-zero.

Ev = sum(abs(Dv - (wh*Xv >= 0))’)

The values of Ev over many training sessions were between 0 and 5 (out of N = 50).
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2.6 A modified perceptron learning rule

• In the basic version of the perceptron learning rule, the weight update occurs for each input vector,
x(n), which generates output, y(n), different from desired d(n), that is, when the error ε(n) is
non-zero.

• In the modified version of the perceptron learning rule, in addition to misclassification, the input vector
x(n) must be located far enough from the decision surface, or, alternatively, the net activation potential
v̂(n) must exceed a preset margin, vT .

• The reason for adding such a condition is to avoid an erroneous classification decision in a situation
when v̂(n) is very small, and due to presence of noise, the sign of v̂(n) cannot be reliably established.

• The modified perceptron learning rule can be illustrated in the following tabular and graphical forms:

d(n) y(n) ε(n) v̂(n) update if ∆w(n)

0 0 0 v < 0 — 0
1 1 0 v ≥ 0 — 0
0 1 −1 v ≥ 0 v > vT −ηx(n)

1 0 +1 v ≥ 0 v < −vT +ηx(n)
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d = 0; ε = 0, ∆w = 0
d = 1; ε = +1, ∆w = ηx

∆w = 0
d = 0; ε = −1, ∆w = −ηx
d = 1; ε = 0, ∆w = 0

-

6

−vT 0 vT

1
y(n)

v̂(n)

The additional update condition: |v̂(n)| > vT (2.5)

can be re-written as |w(n) · x(n)| > vT

Knowing that the absolute value of the inner product can be expressed as:

|w · x| = ‖w‖ · | ‖x‖ · cos α| = ‖w‖ · |x̂w|
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where ‖.‖ denotes the length (norm) of the vector, and xw = ‖x‖ · cos α

is the projection of the input vector, x on the weight vector, w.

The additional update condition (2.5) can be now written as ‖w‖ · |xw| > vT or as |xw| >
vT

‖w‖

The condition says that in order the update to occur the
current input vector, x̂ must lie outside the 2vT/‖ŵ(n)‖
strip surrounding the decision plane, as illustrated for the
2–D case in the following figure:
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2.7 Intersection of a cube by a plane. A 2-D case.

Consider a straight line described by the following equation w · x = 0 (2.6)

where w = [w1 w2 w3] ; x = [x1 x2 1]T

Given a square limited by the following four edge lines:
x1 = l11 ; x1 = l12

x2 = l21 ; x2 = l22

we would like to calculate all four intersection points of the square edges by the straight line:

l22

l11 l12

l21

x1

x2

0

21

11

22

12

s

s

s

s

Figure 2–5: A straight line intersecting a square
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The coordinates of the four intersection points can be arranged as follows:

x1 l11 l12 s11 s12

x2 s21 s22 l21 l22
(2.7)

For each column of table (2.7) we can write eqn (2.6) as

[w1 w2] ·
 s11

l21

 = −w3 , [w1 w2] ·
 s12

l22

 = −w3

[w1 w2] ·
 l11

s21

 = −w3 , [w1 w2] ·
 l12

s22

 = −w3

Grouping the unknown sij on the left-hand side we have

w1[s11 s12] = −w2[l21 l22]− w3[1 1]

w2[s21 s22] = −w1[l11 l12]− w3[1 1]

or in a matrix form

S = −
 1/w1 0

0 1/w2

 (

 w2 0

0 w1

 L + w3

 1 1

1 1

) (2.8)

where

S =

 s11 s12

s21 s22

 ; L =

 l21 l22

l11 l12

 ;
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2.8 Design Constraints for a Multi-Layer Perceptron

In this section we consider a design procedure for implementation of combinational (logic) circuits using a
multi-layer perceptron. In such a context, the perceptron is also referred to as a Linear Threshold Gate
(LTG).

Consider a single-hidden-layer perceptron as in Figure 2–6 described by the following equations

- W h -��
��
σx o o

p−1 p
�
1

o
L−1

ho o
L−1 L

�
1

- W y -��
��

-σo o
m m

y

Figure 2–6: A multi-layer perceptron

h = σ

W h ·
 x

1


 , y = σ

W y ·
 h

1


 (2.9)

where

σ(x) =

 0 for x ≤ 0

1 for x > 0
is a step function (a hard limiter).

Note that the step function has been shifted so that for a binary signal

x ∈ {0, 1} , σ(x) = x

x = [x1 . . . xp−1]
T is a (p−1)–element input vector,
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h = [h1 . . . hL−1]
T is an (L−1)–element hidden vector,

y = [y1 . . . ym]T is an m-element output vector,

W h is an (L−1)×p hidden weight matrix, and

W y is an m× L output weight matrix.

The input and hidden signals are augmented with constants:

xp = 1 , and hL = 1

The total number of adjustable weights is

nw = (L− 1)p + m · L = L(p + m)− p (2.10)

Design Procedure

Assume that we are given the set of N points
 X

Y

 =

 x(1) . . . x(N)

y(1) . . . y(N)

 (2.11)

to be mapped by the perceptron so that

y(n) = f (x(n)) ∀n = 1, . . . , N. (2.12)
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Combining eqns (2.9), (2.11), and (2.12) we obtain a set of design constraints (equations) which must be
satisfied by the perceptron in order for the required mapping to be achieved:

σ
([

W y
:,1:L−1 · σ

([
W h

:,1:p−1 ·X
]
⊕c W h

:,p

)]
⊕c W h

:,L

)
= Y (2.13)

where

M ⊕c c
def
= M + (1⊗ c)

describe addition of a column vector c to every column of the matrix M (⊗ denotes the Kronecker
product, and 1 is a row vector of ones). Eqn (2.13) can be re-written as a set of N individual constraints,
one for each output, y(n) where n = 1, . . . N .

For a binary case, the eqn (2.11) represent a truth table of m Boolean functions of (p− 1) variables. The
size of this table is

N = 2p−1

The constraints (2.13) can now be simplify to[
W y

:,1:L−1 · σ
([

W h
:,1:p−1 ·X

]
⊕c W h

:,p

)]
⊕c W h

:,L = Y (2.14)
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Conjecture 1 Under appropriate assumptions the necessary condition for a solution to the design problem
as in eqn (2.13) or (2.14) to exist is that the number of weights must be greater that the of points to be
mapped, that is,

L(p + m)− p > N

Hence, the number of hidden signals

L >
N + p

p + m
(2.15)

For a single output (m = 1) binary mapping when N = 2p−1 eqn (2.15) becomes

L >
2p−1 + p

p + 1
(2.16)

Once the structural parameters p, L, m are known the weight matrices Wh, Wy that satisfy the constraint
equation (2.13), or (2.14) can be selected.
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Example

Consider the XOR function for which
 X

Y

 =


0 1 0 1

0 0 1 1

0 1 1 0

 , p = 3 , N = 2p−1 = 4 (2.17)

From eqn (2.16) we can estimate that

L >
N + p

p + 1
, Let L = 3

The dendritic structure of the resulting two-layer perceptron is depicted in Figure 2–7.

��
��

σ@ @ @ -

��
��

σ@ @ @ -

x1 x2 1

w11 w12 w13

w21 w22 w23

ĥ1

ĥ2

��
��

σ@ @ @ -

�
�

h1 h2 1

v1 v2 v3

-
yŷ

Figure 2–7: A dendritic diagram of a two-layer perceptron which implements the XOR function

A known combination of weights which implements the XOR function specified in eqn (2.17) can be
obtained from the following plots in the input and hidden spaces presented in Figure 2–8.
Equations of the straight lines illustrated in Figure 2–8 and related equations for activation potentials
(“hat” signals) for all individual perceptrons are as follows
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Figure 2–8: A possible configuration of the input and hidden spaces for the XOR perceptron

equations of lines: activation signals:

x1 + x2 = 0.5 =⇒ ĥ1 = x1 + x2 − 0.5

x1 + x2 = 1.5 =⇒ ĥ2 = −x1 − x2 + 1.5

h1 + h2 = 1.5 =⇒ ŷ = h1 + h2 − 1.5

From the above equations the weight matrices can be assembled
as follows

W h =

 1 1 −0.5

−1 −1 1.5

 , W y = v =
[
1 1 −1.5

]
(2.18)

Note that:

 X

H

 =



0 1 0 1

0 0 1 1

0 1 1 1

1 1 1 0


(2.19)
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Constraint Equations for the XOR perceptron

In order to calculate other combinations of weights for the XOR perceptron we can re-write the constraint
equation (2.14) using the structure as in Figure ??. The result is as follows

[
v1 v2

]
· σ


 w11 w12

w21 w22

 ·
 0 1 0 1

0 0 1 1

 ⊕c

 w13

w23


 + v3 =

[
0 1 1 0

]
(2.20)

Eqn (2.20) is equivalent to the following four scalar equations, the total number of weights to be selected
being 9.

v1 · σ(w13) + v2 · σ(w23) + v3 = 0

v1 · σ(w11 + w13) + v2 · σ(w21 + w23) + v3 = 1

v1 · σ(w12 + w13) + v2 · σ(w22 + w23) + v3 = 1

v1 · σ(w11 + w12 + w13) + v2 · σ(w21 + w22 + w23) + v3 = 0

It can easily be verified that the weights specified in eqn (2.18) satisfy the above constraints.
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3 ADALINE — The Adaptive Linear Element

• The Adaline can be thought of as the smallest, linear
building block of the artificial neural networks.

• This element has been extensively used in science,

statistics (in the linear linear regression analysis),

engineering (the adaptive signal processing, control
systems), and many other areas.

In general, the Adaline is used to perform

linear approximation of a “small” segment of a nonlinear
hyper-surface, which is generated by a p–variable
function, y = f (x).

In this case, the bias is usually needed, hence, wp = 1.

linear filtering and prediction of data (signals)

pattern association, that is, generation of m–element
output vectors (using m Adalines) associated with
respective p–element input vectors.

Various representations of the Adaline:

y = w · x

x = [ x1

@

w = [w1

x2

@

w2

. . .

. . .

. . .

xp ]T

@

wp ]

-

-0 ����
+

x1

?

w1

-����
+

x2

?

w2

- · · · -

· · ·
����
+

xp

?

wp

-
y

x1 -sHH
HHH

HHj

w1
x2 -sXXXXXXXz

w2

...
xp

-s����
���*

wp

+��
��

-
y

w- -
x

o
p

y = w · x
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3.1 Linear approximation of a p-variable function

• A function of p variables, y = f (x), can be interpreted as a hyper-surface in a (p + 1)–dimensional
space, [x1, . . . xp, y].

• In this section, we will discuss methods of approximating such a surface by a hyperplane using an
Adaline. It is also known as a linear regression problem: Given

d = f (x), we find a hyperplane y = w · x such that the error ε = |d− y| is small for all x.

• We start with a bit more general problem, namely, approximation of m such functions using m

p-input Adalines.

• Let the functions to be linearly approximated be known at N points, x(n), d(n) being a vector of
values of functions.

• N points (training patterns) can be arranged, as previously, in the following two matrices:

X = [ x(1) . . . x(n) . . . x(N) ] is p×N matrix,

D = [ d(1) . . . d(n) . . . d(N) ] is m×N matrix

• In order to approximate the above function let us consider a p-input m-output Adaline characterised by
an m× p weight matrix, W , each row related to a single neuron.

• For each input vector, x(n), the Adaline calculates the
actual output vector

y(n) = W · x(n) . (3.1)
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• All output vectors can also be arranged in an output matrix:

Y = [ y(1) . . . y(n) . . . y(N) ] is m×N matrix

• The complete set of the output vectors can also be calculated as:

Y = W ·X (3.2)

• Typically, the actual output vector, y(n) differs from the desired output vector, d(n), and the pattern
error:

ε(n) = d(n)− y(n) is a m× 1 vector, (3.3)

each component being equal to:
εj(n) = dj(n)− yj(n) . (3.4)

• The problem of approximation of the surfaces specified by D by the hyper-planes specified by weight
vectors stored in the weight matrix, W , is to select the weights so that the errors are as small as
possible.

• The total measure of the goodness of approximation, or the performance index, can be specified by
the mean-squared error over m neurons and N training vectors:

J(W ) =
1

2mN

N∑
n=1

m∑
j=1

ε2
j(n) (3.5)
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• Defining the total instantaneous error over m neurons as:

E(n) =
1

2

m∑
j=1

ε2
j(n) =

1

2
εT (n) · ε(n) (3.6)

the performance index can be expressed as

J(W ) =
1

2mN

N∑
n=1

E(n) =
1

2mN
eT · e (3.7)

where e is a mN × 1 vector consisting of all errors which can be calculated as:

E = D − Y ; e = E(:)

where ‘:’ is the MATLAB column-wise scan operator.

• The performance index, J(W ), is a non-negative scalar function of (m · p) weights (a quadratic surface
in the weight space).

• To solve the approximation problem, we will determine the weight matrix which minimises the
performance index, that is, the mean-squared error, J(W ).

• For simplicity, solution to the approximation problem will be given for a single-neuron case (single
output), when m = 1. Now, eT = E = D − Y .

• The weight matrix, W , becomes the 1× p vector, w and the mean-squared error, J(w), can now be
calculated in the following way:
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J(w) =
1

2N
(D − Y )(D − Y )T =

1

2N
(D ·DT −D · Y T − Y ·DT + Y · Y T )

where D and Y = w ·X are now 1×N row-matrices.

• If we take into account that the inner product of vectors is commutative, that is, uT · v = vT · u, then
we have

J =
1

2N
(‖D‖2 − 2DY T + Y Y T )

=
1

2N
(‖D‖2 − 2DXTwT + wXXTwT )

• Denote by

q = (D ·XT )/N the 1× p cross-correlation vector, (3.8)

R = (X ·XT )/N the p× p input correlation matrix. (3.9)

• Then the mean-squared error finally becomes

J(w) =
1

2
(‖D‖2/N − 2qwT + wRwT ) (3.10)
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Example

Consider an example of a 2-D performance index when (p = 2) and w = [w1 w2].
Eqn (3.10) is of the following matrix form:

J(w) =
1

2
wRwT − qwT + c

Let

J(w1, w2) = [w1 w2]

 9 4

4 10


 w1

w2

 − [5 4]

 w1

w2

 + 1 (3.11)

We can re-write eqn (3.11) in the following
“scalar” form:

J(w1, w2) = 9w2
1 +8w1w2 +10w2

2−5w1−4w2 +1

The plot of the normalised performance index,
J(w1, w2) has been generated by a MATLAB

script cJ2x.m:

−2

0

2

−2

0

2
0

0.2

0.4

0.6

0.8

1

w1

Performance Index:  J(w1, w2)
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In order to find the optimal weight vector which minimises the mean-squared error, J(w), we calculate the
gradient of J with respect to w:

∇J(w) =
∂J

∂w
=

 ∂J

∂w1
· · · ∂J

∂wp

 =
1

2
∇(‖D‖2/N − 2qwT + wRwT ) = −q + wRT

Taking into account that R = RT (a symmetric matrix), the gradient of the performance index finally
becomes:

∇J(w) = −q + wR (3.12)

The gradient, ∇J(w), becomes zero for:
wR = q (3.13)

This is a very important equation known as the normal or Wiener–Hopf equation.

This is a set of p linear equations for w = [w1 · · · wp].

The solution, if exists, can be easily found, and is equal to:

w = q ·R−1 = q/R = DXT (XXT )−1 (3.14)

Using a concept of the pseudo-inverse of a matrix X defined as:

X+ def
= XT (XXT )−1 (3.15)

the optimal in the least-mean-squared sense weight vector can be also calculated as

w = D ·X+ = D/X (3.16)
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Example: The performance index of eqn (3.11) attains minimum for

w = [w1 w2] =
1

2
[5 4]

 9 4

4 10


−1

= [0.23 0.11]

2

In the multi-neuron case, when D is a m×N matrix, the optimal weight matrix W (which is m× p) can
be calculated in a similar way as:

W = D ·X+ = D/X (3.17)
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• In order to check that the above weight vector really minimises the performance index, we calculate
the second derivative of J which is known as the Hessian matrix:

H(w) =
∂2J

∂w2
=

∂

∂w
(∇J(w)) = R (3.18)

• The second derivative is independent of the weight vector and is equal to the input correlation matrix,
R.

• R, as a product of X and XT , can be proved to be a positive-definite matrix.

• Moreover, if the number of linearly independent input vectors is at least p, then the R matrix is of full
rank.

• This means that the performance index attains minimum for the optimal weight vector, and that the
minimum is unique.

• A matrix A is said to be positive-definite if and only if for all non-zero vectors x

xT · A · x > 0

�����:
�
�
�
�
�
�
�
��

x

Ax

α < 90o

• It can be shown that the eigenvalues of a positive-definite matrix are real and positive.
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Approximation by a plane — MATLAB example (adln1.m)

In this example, we approximate a small section of a nonlinear 2-D surface with a plane which is specified
by a weight vector of a linear neuron.

First, for the 2-D input domain x = [x1, x2] ∈ {−2, 2} we calculate
21 × 21 points of the Gaussian-like function: y = f (x) = x1e

(−x2
1−x2

2)

N = 20; NN = (0:N)/N ; M = (N+1)ˆ2 ;
x1 = 4*NN - 2 ;
[X1 X2] = meshgrid(x1, x1);
y = X1 .* exp(-X1.ˆ2 - X2.ˆ2);
figure(1), clf reset
surf(x1, x1, y), axis(’ij’), hold on

Next, we select a small segment of the surface, for
x1 ∈ {0.4 .. 1}, x2 ∈ {0.6 .. 1.4}, and form the set of
input points (training vectors), X , taken from the points
of the 21 × 21 grid.

The desired output values D are calculated from the
equation of the function being approximated, d = f (x) −2

0

2
−2

−1
0

1
2

−0.5

0

0.5

x
1

A non−linear function

x
2
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We need also the bias input x3 = 1, so that the equation of
the approximating plane and the related Adaline will be: @ @ @

x1 x2 1

w1 w2 w3

y = w1 · x1 + w2 · x2 + w3
-

x1 = 0.6*NN+0.4;
x2 = 0.8*NN+0.6;
[X1 X2] = meshgrid(x1, x2);
d = X1 .* exp(-X1.ˆ2 - X2.ˆ2);
D = d(:)’;
X = [X1(:)’; X2(:)’; ones(1,M)];

The three initial and four last training vectors x(k) = [x1 x2 1]T , and d(n) are of the following form:

X(:, [1:3 (M-3):M]) =
0.40 0.40 0.40 ... 1.00 1.00 1.00 1.00
0.60 0.64 0.68 ... 1.28 1.32 1.36 1.40
1.00 1.00 1.00 ... 1.00 1.00 1.00 1.00

D(:, [1:3 (M-3):M]) =
0.2378 0.2263 0.2147 ... 0.0715 0.0644 0.0579 0.0518

Then we calculate the cross-correlation vector q(n) and the input correlation matrix R.

q = (D*X’)/M = 0.1093 0.1388 0.1555
R = (X*X’)/M = 0.52 0.70 0.70

0.70 1.06 1.00
0.70 1.00 1.00
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The eigenvalues of the input correlation matrix are real and positive which indicates that R is
positive-definite and of full rank:

eig(R) = 0.0175 0.0438 2.5203

w = q/R = 0.0132 -0.2846 0.4309 % THE SOLUTION!

Y = w*X; Y(:, [1:3 438:441]) =
0.2654 0.2540 0.2426 ... 0.0798 0.0684 0.0570 0.0456

err = sum(abs(D-Y)) = 1.54
YY = d ; YY(:) = Y;
surf(x1, x2, YY), hold off

figure(2)
surf(x1, x2, d), axis(’ij’), hold on
surf(x1, x2, YY), hold off
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3.2 Method of steepest descent

• In order to calculate the optimal weights which minimise the approximation error, J(w), we have to

– calculate the correlation matrices, q and R, and

– inverse the autocorrelation matrix, R, as in eqn (3.14).

• The above operations can be computationally intensive for a large number of training patterns, N .

• In addition we might prefer a procedure that finds an optimal weight vector iteratively, in a
pattern-by-pattern fashion as for the perceptron.

• We assume that at each step the weight vector is updated by a small update vector:

w(n + 1) = w(n) + ∆w(n) (3.19)

• We can now estimate how the above change in the weight vector is reflected in change of the value of
the performance (error) function J(w) defined in eqn (3.5). We have

J(w + ∆w) =
1

2
(‖D‖2/N − 2 · q · (w + ∆w)T + (w + ∆w) ·R · (w + ∆w)T )

= J(w) +
1

2
(−2 · q ·∆wT + 2 ·w ·R ·∆wT + ∆w ·R ·∆wT )

= J(w) + (−q + w ·R) ·∆wT +
1

2
∆w ·R ·∆wT )
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Finally, we have

J(w + ∆w) = J(w) +∇J(w) ·∆wT +
1

2
∆w ·R ·∆wT (3.20)

• In an iterative search for the minimum of the performance index we would like its value to decrease at
each step, that is

J(w + ∆w) < J(w) or J(w(n + 1)) < J(w(n))

• If in eqn (3.20) we neglect the second order term, then the above condition is equivalent to:

∆w · ∇J(w) < 0
�������:

Q
Q

Q
Q

Q
Qk

r�����

C
C
C
C

C
C
C
C

∇J
∆w

• This condition means that in order to reduce the value of J we should move in the direction ∆w such
that its projection on ∇J(w) is negative.

• The most negative results is obtained when

∆w = −η∇J(w) = η(q −w ·R) (3.21)

• This is the steepest descent method that states that in order to reduce J in successive steps, the weight
vector should be modified in the direction opposite to the gradient of the error function J .

• η is an important parameter known as the learning gain, and q and R are cross- and input correlation
matrices defined in eqns (3.8), (3.9).
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• The steepest descent learning law of eqn (3.21) is a batch method, that is,

for a complete set of data, N points being stored in X and D,

the cross-correlation vector q and

the input correlation matrix R is calculated and

iterations are performed until ∆w is close to zero.

• When ∆w = 0 , then wR = q , ∇J(w) = 0 =⇒ w minimises J eqn (3.13)

Illustration of the steepest descent method:

• Moving in the direction opposite to the
gradient of the performance index in the
weight space takes us towards the minimum
of error.

• When the weight vector attains the optimal
value for which the gradient is zero (w0 in
the figure), the iterations are stopped.

dJ
dw

dJ
dw

0 w

minJ

w(n+1) w(n)

w = - η

w

J(w)

o

∆
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Optimal learning gain

Optimal/maximum learning gain can be estimated in the following way.

• Using the steepest descent rule of eqn (3.21) the full expression for the weight update becomes:

w(n + 1) = w(n) + η(q −w(n) ·R)

or
w(n + 1) = w(n)(I − η R) + η q (3.22)

where I is an identity matrix of the same size as R.

• This recursive equation describe a linear dynamic system with weights being its state vector.

• It is known that for such a system to be stable, that is, weights to converge to a fixed value, the
eigenvalues of the state matrix (I − η R) must be located inside the unit circle, that is:

|eig(I − η R)| < 1 (3.23)

• If (λi,vi) are an eigenvalue–eigenvector pair, than we have:

(I − η R) · vi = λi · vi

• This can be re-written as:

R · vi =
1− λi

η
vi , or R · vi = λRi vi , where λRi =

1− λi

η

is an eigenvalue of the input correlation matrix R (due to the uniqueness of the eigen-decomposition).
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• The condition (3.23) can now be written in terms of the eigenvalues of the correlation matrix as:

−1 < 1− η λRi < 1 , for all i = 1, . . . , p

Note that eigenvalues of the correlation matrix are real and positive.

• Finally the condition for the maximum stable learning gain can be written in the following simple
form:

ηmx =
2

λmx
(3.24)

where λmx, the largest eigenvalue of the input correlation matrix, represents the maximum curvature of
the quadratic function J and

• the condition (3.24) states that the maximum stable learning gain is inversely proportional to this
curvature.

Pattern learning

• Often we have a situation when the samples of data (x(n), d(n)) arrive one at a time and we would like
to get a weight update specifically for the new data sample.

• This is know as the pattern learning and two incremental learning law, LMS and RMS are discussed in
subsequent sections.
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3.3 The LMS (Widrow-Hoff) Learning Law

• The Least-Mean-Square (LMS) algorithm also known as the Widrow-Hoff Learning Law, or the
Delta Rule is based on the instantaneous update of the correlation matrices, hence, on the
instantaneous update of the gradient of the mean-squared error.

• To derive the instantaneous update of the gradient vector we will first express the current values of the
correlation matrices in terms of their previous values (at the step n− 1) and the updates at the step n.

• First observe that the current input vector x(n) and the desired output signal d(n) are appended to the
matrices d(n− 1) and X(n− 1) as follows:

d(n) = [d(n− 1) d(n)] , and X(n) = [X(n− 1) x(n)]

• Now using definitions of correlation matrices of eqns (3.8) and (3.9) we can write:

 q(n)

R(n)

 = (

 d(n− 1) d(n)

X(n− 1) x(n)


 XT (n− 1)

xT (n)

)/n = (

 d(n− 1) XT (n− 1) + d(n)xT (n)

X(n− 1) XT (n− 1) + x(n)xT (n)

)/n

= µ

 q(n− 1)

R(n− 1)

 +

 ∆q(n)

∆R(n)

 (3.25)

where µ =
n− 1

n
≈ 1 , and

∆q(n) = (d(n)xT (n))/n and ∆R(n) = (x(n)xT (n))/n (3.26)

are the instantaneous updates of the correlation matrices.
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• The gradient of the mean-squared error at the step n can also be expanded into its previous values and
the current update.

• From eqn (3.12), we have

∇J(n) = −µ(q(n− 1)−w(n)R(n− 1))−∆q(n) + w(n)∆R(n)

or

∇J(n) = ∇Ĵ(n− 1) + ∆∇J(n) , where ∇Ĵ(n− 1) = µ(−q(n− 1) + w(n)R(n− 1))

is the current (step n) estimate of the previous (step n− 1) value of the gradient vector, and the
gradient vector update is:

∆∇J(n) = −∆q(n) + w(n)∆R(n) = −1

n
(d(n)xT (n)−w(n)x(n)xT (n))

= −1

n
(d(n)−w(n)x(n))xT (n) = −1

n
(d(n)− y(n))xT (n) = −1

n
ε(n)xT (n)

• The Least-Mean-Square learning law replaces the gradient of the mean-squared error in eqn (3.21)
with the gradient update and can be written in following form:

w(n + 1) = w(n) + ηn · ε(n) · xT (n) (3.27)

where the output error is
ε(n) = d(n)− y(n)

and the learning gain ηn can be either constant or reducible by the factor 1/n.
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Adaline with its error-correcting learning

a. Block-diagram structure of an ADALINE
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b. Dendritic structure of an ADALINE
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c. Detailed structure of an ith synapse
implementing the LMS learning
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Σ- -vi−1 vi

�
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xi(n)
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*
6wi(n)q

D
6wi(n + 1)

-����
Σ
6∆wi(n)

-����
* � η

6q ε(n)

• The LMS weight update for the ADALINE is:

∆w(n) = η · ε(n) · xT (n)

• The weight update for a single synapse is:

∆wi(n) = η ε(n) xi(n) (3.28)
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Some comments:

• The LMS learning law works because the instantaneous gradient update, ∆∇J(n) points, on average,
in the direction of the gradient, ∇J(n), of the error function J .

• The LMS learning law of eqn (3.27) can be easily expanded into the case of the multi-neuron Adaline,
describes a linear mapping from p-dimensional input space into an m-dimensional output space (m
hyper planes).

Stopping criteria of the learning process:

• If it is possible, the learning process goes through all training examples (an epoch) number of times,
until a stopping criterion is reached.

• The convergence process can be monitored with the plot of the mean-squared error function J(W (n)).

• The popular stopping criteria are:

– the mean-squared error is sufficiently small:

J(W (n)) < ε

– The rate of change of the mean-squared error is sufficiently small:

∂J(W (n))

∂n
< ε
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3.4 A Sequential Regression algorithm

The sequential regression algorithm also known as the recursive least-square (RLS) algorithm is based
on the sequential update of the inverse of the input correlation matrix, R−1(n) for each new input pattern,
x(n).

• Re-call that according to the Wiener–Hopf equation (3.13), the optimal weight vector can be
calculated as

w = q ·R−1 (3.29)

• In the sequential regression algorithm, the inverse of the input correlation matrix, R, is calculated
iteratively as

R−1(n) =
(
X(n) ·XT (n)

)−1
= f

(
R−1(n− 1),x(n)

)
(3.30)

that is, the current value of the inverse, R−1(n) is calculated from the previous value of the inverse,
R−1(n− 1), and the input vector, x(n).

• As a starting point let us rewrite eqn (3.25) and the Wiener–Hopf equation (3.13) in the following
forms:

q(n) = µq(n− 1) + (d(n) · xT (n))/n , where µ =
n− 1

n
≈ 1 (3.31)

q(n) = w(n) ·R(n) , q(n− 1) = w(n− 1) ·R(n− 1) (3.32)
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• Substituting eqns (3.32) into eqn (3.31) we have

w(n) ·R(n) = µw(n− 1) ·R(n− 1) + (d(n) · xT (n))/n (3.33)

• From eqn (3.25), the current value of the input correlation matrix is related to its next value in the
following way:

µR(n− 1) = R(n)− (x(n) · xT (n))/n (3.34)

• Substitution of eqn (3.34) into eqn (3.32) yields:

w(n) ·R(n) = w(n− 1) ·R(n)− (w(n− 1) · x(n) · xT (n))/n + (d(n) · xT (n))/n

• Let us denote the scaled inverse of the input correlation matrix as:

P (n) =
1

n
R−1(n)

• Post-multiplying eqn (3.4) by the inverse, P (n), gives:

w(n) = w(n− 1) + (d(n)−w(n− 1) · x(n)) · xT (n) · P (n) (3.35)

• Denote by
ỹ(n) = w(n− 1) · x(n)

the estimated output signal based on the previous weight vector, w(n), and by

ε(n) = d(n)− ỹ(n) = d(n)−w(n− 1) · x(n) (3.36)
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the error between the desired and estimated output, and by

k(n) = xT (n) · P (n) (3.37)

the update vector known as the Kalman gain.

• Then, from eqns (3.35), (3.36) and (3.37), the sequential weight update can be expressed as

w(n) = w(n− 1) + ε(n) · k(n) (3.38)

• Eqn (3.38) describes the sequential regression algorithms in terms of the output error, ε(n), and the
update vector (Kalman gain), k(n), which involves calculation of the inverse of the input correlation
matrix, P (n).

• In order to derive an iterative expression for this inverse we will need the matrix inversion lemma.

According to this lemma, it is possible to show that if R,A, B are appropriately dimensioned matrices
(i.e., p× p, p×m, m× p, respectively), then

(R + A ·B)−1 = R−1 −R−1 · A · (Im + B ·R−1 · A)−1 ·B ·R−1 (3.39)

• Let us re-write eqn (3.34) as

(n− 1)R(n− 1) = n R(n)− x(n) · xT (n) (3.40)

and apply the matrix inversion lemma to it.
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• The scaled inverse of the input correlation matrix can be now written in the following form:

P (n) = P (n− 1)− r(n)
(
1 + rT (n)x(n)

)−1
rT (n)

or

P (n) = P (n− 1)− r(n) · rT (n)

1 + rT (n) · x(n)
(3.41)

where
r(n) = P (n− 1) · x(n) (3.42)

is the input gain vector similar to the Kalman gain.

• The update vector (Kalman gain) specified in eqn (3.37) can now be expressed as

k(n) = rT (n)− xT (n) · r(n) · rT(n)

1 + rT (n) · x(n)

• or, finally, in the form

k(n) =
rT (n)

1 + rT (n) · x(n)
(3.43)

• Substitution of eqn (3.43) into eqn (3.41) finally yields equation for the iteration step for the inverse of
the input correlation matrix:

P (n) = P (n− 1)− P (n− 1) · x(n) · k(n) (3.44)

A.P. Papliński 3–25
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• This equation can, alernatively, be written in the following form

P (n) = P (n− 1) (Ip − x(n) · k(n)) (3.45)

The Sequential Regression (SR) or Recursive Least-Square (RLS) algorithm — Summary

• It can be shown that using the SR algorithm the final value of the estimated input correlation matrix is

R̂(N) = R(N) +
P−1(0)

N

Therefore, the initial value of the inverse of the input correlation matrix should be large to minimise
the final error.

• Another problem to consider is that in practical applications we would like the algorithm to work
continuously, that is, for large N , but with only the most recent input samples to contribute to the
estimate of the correlation matrix.

• This is achieved by introduction of the “forgetting factor”, λ in estimation of the correlation matrix.
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The practical version of the RLS can be summarised as follows.

Initialisation:

P (1) = R−1(1) to be LARGE, e.g. P (1) = 106Ip

w(1) = small, random

an nth iteration step:

• Calculate the input gain vector (p× 1) as

r(n) = λ−1 P (n− 1) · x(n) (3.46)

where 0 < λ < 1 is the forgetting factor.

• Calculate the Kalman gain vector (1× p)

k(n) =
rT (n)

1 + rT (n) · x(n)
(3.47)

(A single neuron case m = 1 is assumed)

• Calculate the error signal
ε(n) = d(n)−w(n) · x(n) (3.48)
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• Update the weight vector
w(n + 1) = w(n) + ε(n) · k(n) (3.49)

• Calculate the next estimate of the inverse of the input correlation matrix

P (n + 1) = λ−1P (n)− r(n) · k(n) (3.50)

where r(n)k(n) is the outer product (p× p matrix) of the corresponding vectors.

The forgetting factor, λ, de-emphasises contribution to the estimate of the inverse of the input
correlation (covariance) matrix from older input data.

A similar effect could be achieved by a periodic re-initialisation of the P matrix.

Another interpretation

• The RLS algorithm can be also seen as a way of optimal filtering the true signal, d(n), from the output
signal y(n) = w(n) · x(n).

• The error equation (3.48) can be re-written as a measurement equation:

d(n) = w(n) · x(n) + ε(n)

where ε(n) is now the observation noise.

• The filtering procedure described above is known as the Kalman filter, and eqn (3.50) is known as the
Riccatti difference equation.
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3.5 ADALINE as an adaptive linear filter

• Traditional and very important applications of Linear Neural Networks are in the area one-dimensional
adaptive signal processing, digital filtering and time-series prediction.

• A digital filter, such as an Adaline, is an algorithm executed either on a general purpose computer or
specialised Digital Signal Processors (DSPs).

• In real-time signal processing we typically deal with an analog 1-D signal, x(t), generated by some
physical devices, for example, a microphone.

• The analog signal is passed through an Analog-to-Digital converter which does two operations:
samples the analog signal with a given frequency, fs = 1/ts, and converts the samples into b-bit
numbers, x(n)

x(t)
t=n·ts=⇒ x(n)

• Typically, more than one, say p, samples of the signal at each processing step are required.

• These samples are arranged into a p-element vector of input signals, x(n), supplied to a neural
network:

x(n) = [x(n) x(n− 1) . . . x(n− p + 1)]T (3.51)

This vector of the current and past samples of the 1-D signal is created by a tapped delay line as
illustrated below:
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Conversion of a 1-D analog signal into digital
samples supplied to a neural network using an
Analog/Digital converter and a tapped delay line.

Note the difference between: x(t), x(n), and x(n)
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Adaline as an adaptive FIR filter:

• If we connect outputs from the delay elements to the synapses of an Adaline as in the figure below, it
will result in a signal processing structure known as an FIR (Finite-Impulse-Response) pth-order
digital linear filter.

• In time-series processing such a system is called an MA (Moving-Average) model.

a. Detailed dendritic/synaptic structure:
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b. Block-diagram:
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Figure 3–1: Adaline as an adaptive FIR filter

• If, in addition, the desired output signal, d(n), is given, the filter’s weights can be adapted using any
of the previously discussed learning algorithms, so that the filter’s output, y(n) will track the desired
output, d(n).
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3.5.1 Adaptive Prediction with Adaline — Example (adlpr.m)

• In this example an Adaline configured as in Figure 3–1 is used to predict a 1-D signal (time series).

• To predict the next value of the input signal, p samples of it are sent to the Adaline.

• The input signal is also used as the target/desired signal.

• The LMS learning law as in eqn (3.27) is used to adapt the weight vector at each step.

• We start with specification of a sinusoidal signal of frequency 2kHz sampled every 50µsec.

• After 5sec the frequency of the signal quadruples with the sampling time being also reduced to
12.5µsec.

f1 = 2 ; % kHz
ts = 1/(40*f1); % 12.5usec - sampling time,

% fs = 80kHz
N = 100 ; % number of time steps
t1 = (0:N)*4*ts ; % 1st time segment
t2 = (0:2*N)*ts + 4*(N+1)*ts; % 2nd time segment
t = [t1 t2] ; % 0 to 7.5 sec total time
N = size(t, 2) ; % N = 302
xt = [sin(2*pi*f1*t1) sin(2*pi*2*f1*t2)];
plot(t, xt), grid on,
title(’Signal to be predicted’)
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• The 1-D signal (time series) must be converted into a collection of input vectors, x(n), as in eqn (3.51)
and stored in a p×N matrix X:

X =



x(0) x(1) x(2) x(3) x(4) . . .

0 x(0) x(1) x(2) x(3) . . .

0 0 x(0) x(1) x(2) . . .

0 0 0 x(0) x(1) . . .



• It can be observed that the matrix X is a convolution matrix (a Sylvester’s resultant matrix)
associated with a time series, x(t). The relevant MATLAB function is called convmtx.

• Try convmtx(1:8, 5) to clarify the operation.

p = 4 ; % Number of synapses
X = convmtx(xt, p) ; X = X(:, 1:N) ;
d = xt ; % The target signal is equal to the input signal
y = zeros(size(d)) ; % memory allocation for y
eps = zeros(size(d)) ; % memory allocation for eps
eta = 0.4 ; % learning rate/gain
w = rand(1, p) ; % Initialisation of the weight vector
for n = 1:N % LMS learning loop

y(n) = w*X(:,n) ; % predicted output signal
eps(n) = d(n) - y(n) ; % error signal
w = w + eta*eps(n)*X(:,n)’; % weight update

end
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Figure 3–2: The Prediction error

• The resulting weight vectors can be as follows:
Initial weight vector: w = 0.9218 0.7382 0.1763 0.4057

Weight vectors at 5msec: w = 0.7682 0.3797 -0.2394 0.0047

Final weight vector: w = 0.7992 0.3808 -0.1987 -0.0011

• Results vary from run to run not only because of a random initialisation, but because such a simple
signal requires less than four parameter to be correctly predicted.
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3.5.2 Adaptive System Identification

• Consider a discrete-time signal (time series), x(n), which is processed by an unknown
Moving-Average system.

• Such a system is an Adaline with parameters (weights) being a p-element vector b.

• It is assumed that the parameter vector is unknown.

• It is now possible to use another Adaline to observe inputs and outputs from the system and to adapt its
weights using previously discussed learning algorithms so that the weight vector, w, approximates the
unknown parameter vector, b: w(n) −→ b

Block diagram of the adaptive
system identification:

w∆ ε

D p
b

wD

x

Unknown MA Linear System

(n)

y(n)

d(n)x(n)

(n)

p

x
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Example – adsid.m

% Input signal x(t)
f = 0.8 ; % Hz
ts = 0.005; % 5 msec - sampling time
N1 = 800 ; N2 = 400 ; N = N1 + N2 ;
t1 = (0:N1-1)*ts ; % 0 to 4 sec
t2 = (N1:N-1)*ts ; % 4 to 6 sec
t = [t1 t2] ; % 0 to 6 sec
xt = sin(3*t.*sin(2*pi*f*t)) ;

p = 3 ; % Dimensionality of the system
b1 = [ 1 -0.6 0.4]; % unknown system parameters during t1
b2 = [0.9 -0.5 0.7]; % unknown system parameters during t2
% formation of the input matrix X of size p by N
X = convmtx(xt, p) ; X = X(:, 1:N) ;

% The target signal
d = [b1*X(:,1:N1) b2*X(:,N1+1:N)] ;
y = zeros(size(d)) ; % memory allocation for y

eps = zeros(size(d)) ; % memory allocation for eps
eta = 0.2 ; % learning rate/gain
w = 2*(rand(1,p)-0.5); % Initialisation of the weight vector
for n = 1:N % learning loop

y(n) = w*X(:,n) ; % predicted output signal
eps(n) = d(n) - y(n) ; % error signal
w = w + eta*eps(n)*X(:,n)’ ;
if n == N1-1, w1 = w ; end

end

Estimated system parameters:

b1 = 1.0000 -0.6000 0.4000 b2 = 0.9000 -0.5000 0.7000
w1 = 0.9463 -0.5375 0.3908 w2 = 0.8690 -0.4369 0.6677
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3.5.3 Adaptive Noise Cancelation

Consider a system as in Figure 3–3:

p

x(n)

w∆ ε

wD
y(n)

u(n)^

Noise

+
Signal

Signal + Noise d(n)u(n)

x(n)

Filtered signal

estimated noise

v(n)

Noise path
filter, b

D

Figure 3–3: Adaptive Noise Cancelation

• A useful signal, u(n), for example, voice of a pilot of an aircraft, is disturbed by a noise, x(n),
originated for example from an engine.

• The noise is coloured by an unknown FIR filter specified by an unknown vector b before it mixes with
the signal. As a result, the observed signal is equal to:

d(n) = u(n) + v(n)

and the problem is to filter out the noise in order to obtain an estimate û(n) of the original signal u(n).
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Example – adlnc.m

With reference to Figure 3–3 we specified first the useful input signal, u(n) and the noise, x(t).

• The input signal is a sinusoidal signal modulated in frequency and amplitude:

u(t) = (1 + 0.2 sin(ωa)t) · sin(ω · (1 + 0.2 cos(ωmt) · t)

where ω = 2πf is the fundamental signal frequency,
ωm = 2πfm is the frequency of the frequency modulation,
ωa = 2πfa is the frequency of the amplitude modulation, and
t = nts, ts being the sampling time.

f = 4e3 ; % 4kHz signal frequency
fm = 300 ; % 300Hz frequency modulation
fa = 200 ; % 200Hz amplitude modulation
ts = 2e-5 ; % 0.2 msec sampling time
N = 400 ; % number of sampling points
t = (0:N-1)*ts ; % discrete time from 0 to 8 msec
ut=(1+.2*sin(2*pi*fa*t)).*sin(2*pi*f*(1+.2*cos(2*pi*fm*t)).*t);

• The noise x(n) is a triangular signal of frequency fn = 1kHz.

• This noise is coloured by a linear FIR filter (an Adaline with fixed weights specified by a vector b).

• The resulting signal, v(n), is added to the input noise signal, x(t) to form the corrupted signal, d(n)

— see Figure 3–4
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fn = 1e3 ;
xt = sawtooth(2*pi*1e3*t, 0.7); % the noise
b = [1 -0.6 -0.3] ; % noise path filter
vt = filter(b, 1, xt); % coloured noise
dt = ut + vt ; % corrupted input signal

0 2 4 6 8

−1

−0.5

0

0.5

1

Input  u(t)  and noisy input signal  d(t)

0 2 4 6 8
−1

−0.5

0

0.5

1
Noise  x(t)  and coloured noise  v(t)

time −− msec

Figure 3–4: Input signal, u(t), the corrupted-by-noise input signal, d(t), noise, x(t), and the coloured noise, v(t)

• It is assumed that the parameters of the noise colouring filter, b are unknown.

• The idea of noise cancellation is to estimate parameters of this noise colouring filter, thus to estimate
the noise which corrupts the the input signal.

• This noise estimate, y(n) ≈ v(n), is available at the output of the Adaline.
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• The difference between the corrupted signal, d(n), and the noise estimate, y(n) is the estimate of the
original clean input signal:

û(n) = ε(n) = d(n)− y(n) ≈ u(n)

p = 4 ; % dimensionality of the input space
% formation of the input matrix X of size p by N
X = convmtx(xt, p) ; X = X(:, 1:N) ;
y = zeros(1,N) ; % memory allocation for y
eps = zeros(1,N) ; % memory allocation for uh = eps
eta = 0.03 ; % learning rate/gain
w = 2*(rand(1,p)-0.5); % weight vector initialisation

• Note that the number of synapses in the adaptive Adaline, p = 4, is different that the order of the noise
colouring filter, which is assumed to be unknown.

• Selection of the learning rate, η is very critical to good convergence of the LMS algorithm.

• In order to improve results, the learning loop which goes through all signal samples is repeated four
time with diminishing values of the learning gain. Such a repetition is, of course, not possible for the
real-time learning.

for c = 1:4
for n = 1:N % learning loop

y(n) = w*X(:,n) ; % predicted output signal
eps(n) = dt(n) - y(n) ; % error signal
w = w + eta*eps(n)*X(:,n)’ ;
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end
eta = 0.8*eta ;

end
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Figure 3–5: Input signal, u(t), the estimated input signal, û(t), and the estimation error, u(t)− û(t),

• It can be noticed that the estimation error at each step is small, less that 4% of the signal amplitude.
The resulting weight vector

w = 0.7933 -0.0646 -0.7231 0.0714

is similar to the parameters of the noise colouring filter, b.
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4 Feedforward Multilayer Neural Networks — part I

• Feedforward multilayer neural networks (introduced in sec. 1.7) with supervised error correcting
learning are used to approximate (synthesise) a non-linear input-output mapping from a set of
training patterns.

Consider the following mapping f (X)

from a p-dimensional domain X into an
m-dimensional output space D:

R
p

F(W, X)

Y

D

X

f(X) R
m

Figure 4–1: Mapping from a p-dimensional domain into an m-dimensional output space

• A function: f : X → D , or d = f (x) ; x ∈ X ⊂ Rp , d ∈ D ⊂ Rm

is assumed to be unknown, but it is specified by a set of training examples, {X ;D}.

• This function is approximated by a fixed, parameterised function (a neural network)

F : Rp ×RM → Rm , or y = F (W,x); x ∈ Rp, d ∈ Rm, W ∈ RM

• Approximation is performed in such a way that some performance index, J , typically a function of
errors between D and Y ,

J = J(W, ‖D − Y ‖) is minimised.
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Basic types of NETWORKS for APPROXIMATION:

• Linear Networks — Adaline
F (W,x) = W · x

• “Classical” approximation schemes. Consider a set of suitable basis functions {φ}ni=1 then

F (W,x) =
n∑
i=1
wiφi(x)

Popular examples: power series, trigonometric series, splines, Radial Basis Functions.
The Radial Basis Functions guarantee, under certain conditions, an optimal solution of the
approximation problem.

• A special case: Gaussian Radial Basis Functions:

φi(x) = exp

−1

2
(x− ti)

TΣ−1
i (x− ti)

 where ti and Σi are the centre and covariance matrix of
the i-th RBF representing adjustible parameters
(weights) of the network.

• Multilayer Perceptrons — Feedforward neural networks
Each layer of the network is characterised by its matrix of parameters, and the network performs
composition of nonlinear operations as follows:

F (W,x) = σ(W1 · . . . σ(Wl · x) . . .)

A feedforward neural network with two layers (one hidden and one output) is very commonly used to
approximate unknown mappings.
If the output layer is linear, such a network may have a structure similar to an RBF network.
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4.1 Multilayer perceptrons (MLPs)

• Multilayer perceptrons are commonly used to approximate complex nonlinear mappings.

• In general, it is possible to show that two layers are sufficient to approximate any nonlinear function.

• Therefore, we restrict our considerations to such two-layer networks.

• The structure of the decoding part of the two-layer back-propagation network is presented in
Figure (4–2).

W h ��
��
ψ W y ��

��
σ-

x
o
p

-
u
o
L

-
h
o
L

-
v
o
m

-
y

o
m︸ ︷︷ ︸

Hidden layer
︸ ︷︷ ︸

Output layer

Figure 4–2: A block-diagram of a single-hidden-layer feedforward neural network

• The structure of each layer has been discussed in sec. 1.6.

• Nonlinear functions used in the hidden layer and in the output layer can be different.

• The output function can be linear.

• There are two weight matrices: an L× p matrix W h in the hidden layer, and an m× L matrix W y

in the output layer.
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• The working of the network can be described in the following way:

u(n) = W h · x(n) ; h(n) = ψ(u(n)) — hidden signals ;

v(n) = W y · h(n) ; y(n) = σ(v(n)) — output signals .

or simply as

y(n) = σ
(
W y ·ψ(W h · x(n))

)
(4.1)

• Typically, sigmoidal functions (hyperbolic tangents) are used, but other choices are also possible.

• The important condition from the point of view of the learning law is for the function to be
differentiable.

• Typical non-linear functions and their derivatives used in multi-layer perceptrons:

Sigmoidal unipolar:

y = σ(v) =
1

1 + e−βv
=

1

2
(tanh(βv/2)− 1)

y
1

0

v

The derivative of the unipolar sigmoidal function:

y′ =
dσ

dv
= β

e−βv

(1 + e−βv)2
= β y(1− y)
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Sigmoidal bipolar:

σ(v) = tanh(βv)

y
1

0
-1

v

The derivative of the bipolar sigmoidal function:

y′ =
dσ

dv
=

4βe2βv

(e2βv + 1)2
= β(1− y2)

Note that

• Derivatives of the sigmoidal functions are always non-negative.

• Derivatives can be calculated directly from output signals using simple arithmetic operations.

• In saturation, for big values of the activation potential, v, derivatives are close to zero.

• Derivatives of used in the error-correction learning law.
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Comments on multi-layer linear networks

Multi-layer feedforward linear neural networks can be always replaced by an equivalent single-layer
network. Consider a linear network consisting of two layers:

- W hx op - W yho
L

-
y

om

The hidden and output signals in the network can be calculated as follows:

h = W h · x , y = W y · h

After substitution we have:

y = W y ·W h · x = W · x

where

W = W y ·W h

which is equivalent to a single-layer network described by the weight matrix, W :

- W
x op -

y
om
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4.2 Detailed structure of a Two-Layer Perceptron — the most commonly used feedforward neural network

Signal-flow diagram:
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Ĵ

�
��

,
,

,
,

,,

-wh
ji

@
@R

l
l

l
l

ll
























�

"
"

"
""

�
��3

XXXXXXXXz

wh
Lp

W h
t

t

t

...

...

-��
��
σ -

-��
��
σ -

-��
��
σ -

u1

uj

uL

h1

hj

hL t

t

t

...

...

wy
11hhhXXzl

l
l

l
ll

@
@R

T
T
T
T
T
T
T
T
T
J

JĴ
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Figure 4–3: Various representations of a Two-Layer Perceptron
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4.3 Example of function approximation with a two-layer perceptron

Consider a single-variable function approximated
by the following two-layer perceptron:

y
h1

h2

h3
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w3

w11

w22w21
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w12
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σ
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Function approximation with a two−layer perceptron
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The neural net generates the following function:

y = w · h = w · tanh

Wh ·
 x

1


 = w1 · h1 + w2 · h2 + w3 · h3

= w1 · tanh(w11 · x + w12) + w2 · tanh(w21 · x + w22) + w3 · tanh(w31 · x + w32)

= 0.5 · tanh(2x− 1) + 0.1 · tanh(3x− 4)− 0.3 · tanh(0.75x− 2)
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4.4 Structure of a Gaussian Radial Basis Functions (RBF) Neural Network

An RBF neural network is similar to a two-layer perceptron with the linear output layer:

'
&

$
%

6 6
� �p p× p

-

'
&

$
%

6 6
� �p p× p

- exp(−1

2
(x− t1)

TΣ−1
1 (x− t1)

t1 Σ1

w1

exp(−1

2
(x− t2)

TΣ−1
2 (x− t2)

t2 Σ2

w2

...'
&

$
%

6 6

exp(−1

2
(x− tL)TΣ−1

L (x− tL)

tL ΣL

wL

� �p p× p

-

x

�p
-
y Let us consider a single output case, that is,

approximation of a single function of p variables:

y = F (x; t1, . . . , tL,Σ1, . . . ,ΣL,w)

=
L∑
l=1
wl · exp(−1

2
(x− tl)

TΣ−1
l (x− tl)

where

tl, p-element vectors, are the centers of the
Gaussian functions, and

Σl, p× p covariance matrices, specified a shape of
the Gaussian functions

All parameters: (t1, . . . , tL,Σ1, . . . ,ΣL,w) are
adjusted during learning procedure.

When the covariance matrix is diagonal, the axes of the Gaussian shape are aligned with the coordinate
system axes.
If, in addition, all diagonal elements are identical, the Gaussian function is symmetrical in all directions.
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4.5 Example of function approximation with a Gaussian RBF network

Consider a single-variable function approximated
by the following Gaussian RBF network:
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The neural net generates the following function:

y = w · h = w1 · h1 + w2 · h2 + w3 · h3

= w1 · exp(−1

2

x− t1
σ1

2

) + w2 · exp(−1

2

x− t2
σ2

2

) + w3 · exp(−1

2

x− t3
σ3

2

)
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4.6 Error-Correcting Learning Algorithms for Feedforward Neural Networks

Error-correcting learning algorithms are supervised training
algorithms that modify the parameters of the network in such a way to
minimise that error between the desired and actual outputs.

The vector w represents all the adjustable parameters of the network.
ε

w  w = w  +

x; wF( )=y
x y

d
∆

• Training data consists of N p-dimensional vectors x(n), and N m-dimensional desired output
vectors, d(n), that are organized in two matrices:

X = [ x(1) . . . x(n) . . . x(N) ] is p×N matrix,
D = [ d(1) . . . d(n) . . . d(N) ] is m×N matrix

• For each input vector, x(n), the network calculates the actual output vector, y(n), as

y(n) = F (x(n);w(n))

• The output vector is compared with the desired output d(n) and the error is calculated:

ε(n) = [ε1(n) . . . εm(n)]T = d(n)− y(n) is an m× 1 vector, (4.2)

• In a pattern training algorithm, at each step the weight vector is updated

w(n + 1) = w(n) + ∆w(n)

so that the total error is minimised.
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• More specifically, we try to minimise a performance index, typically the mean-squared error (mse),
J(w), specified as an averaged sum of instantaneous squared errors at the network output:

J(w) =
1

mN

N∑
n=1

E(w(n)) (4.3)

where the total instantaneous squared error (tise) at the step n, E(w(n)), is defined as

E(w(n)) =
1

2

m∑
k=1

ε2
k(n) =

1

2
εT (n) · ε(n) (4.4)

and ε is an m× 1 vector of instantaneous errors as in eqn (4.2).

• To consider possible minimization algorithm we can expand J(w) into the Taylor power series:

J(w(n + 1)) = J(w + ∆w) = J(w) + ∆w · ∇J(w) +
1

2
∆w · ∇2J(w) ·∆wT + · · ·

= J(w) + ∆w · g(w) +
1

2
∆w ·H(w) ·∆wT + · · · (4.5)

(n) has been omitted for brevity.

where: ∇J(w) = g is the gradient vector of the performance index,

∇2J(w) = H is the Hessian matrix (matrix of second derivatives).
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• As for the Adaline, we infer that in order for the performance index to be reduced, that is

J(w + ∆w) < J(w)

the following condition must be satisfied:

∆w · ∇J(w) < 0

where the higher order terms in the expansion (4.5) have been ignored.

• This condition describes the steepest descent method in which the weight vector is modified in the
direction opposite to the gradient vector:

∆w = −η∇J(w) (4.6)

• However, the gradient of the total error is equal to the sum of its components:

∇J(w) =
1

mN

N∑
n=1

∇E(w(n)) (4.7)

• Therefore, in the pattern training, at each step the weight vector can be modified in the direction
opposite to the gradient of the total instantaneous squared error:

∆w(n) = −η∇E(w(n)) (4.8)
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• The gradient of the total instantaneous squared error (tise) is a K-component vector, where K is
the total number of weights, of all partial derivatives of E(w) with respect to w:

∇E(w) =
∂E

∂w
=

 ∂E
∂w1

· · · ∂E
∂wK


(n) has been omitted for brevity.

• Using eqns (4.4) and (4.2) we have

∇E(w) =
∂E

∂w
= εT · ∂ε

∂w
= −εT · ∂y

∂w
(4.9)

where
∂y

∂w
=

 ∂yj∂wk


m×K

is a m×K matrix of all derivatives
∂yj
∂wk

(Jacobian matrix).

• Details of calculations of the gradient of the total instantaneous squared error (gradient of tise), in
particular the Jacobian matrix will be different for a specific type of neural nets, that is, for a specific
mapping function

y = F (x;w)
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4.7 Steepest Descent Backpropagation Learning Algorithm for a Multi-Layer Perceptron

• The steepest descent backpropagation learning algorithm is the simplest error-correcting
algorithms for a multi-layer perceptron.

• For simplicity we will derive it for a two-layer perceptron as in Figure 4–3 where the vector of output
signals is calculated as:

y = σ(v) ; v = W y · h ; h = ψ(W h · x) (4.10)

• We start with re-shaping two weight matrices into one weight vector of the following structure:

w = scan(W h,W y) = [wh
11 . . . w

h
1p . . . w

h
Lp︸ ︷︷ ︸

hidden weights

|wy
11 . . . w

y
1L . . . w

y
mL︸ ︷︷ ︸

output weights
] =

[
wh wy

]

The size of wh is L · p and wy is m · L, total number of weights being equal to K = L(p +m).

• Now, the gradient of tise has components associated with the hidden layer weights, W h, and the
output layer weights, W y, which are arranged in the following way:

∇E(w) =

 ∂E
∂wh

∂E

∂wy

 =

 ∂E
∂wh

11

· · · ∂E
∂wh

ji

· · · ∂E
∂wh

Lp

∂E

∂wy
11

· · · ∂E
∂wy

kj

· · · ∂E

∂wy
mL



• Using eqns (4.9) and (4.10) the gradient of tise can be further expressed as:

∇E(w) =
∂E

∂w
= −εT · ∂y

∂w
= −εT · ∂y

∂v
· ∂v
∂w

(the chain rule) (4.11)
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4.7.1 Output layer

• The vector of the output signals is calculated as:

-h
o
L
W y -v

o
m ��

��
σ -

y = σ(v) ; v = W y · h
vk = wy

k · h
o
m

?

r
–

����
+ � d

o
m

�ε o
m

• The first Jacobian matrix of eqn (4.11) can be evaluated as follows:

∂y

∂v
= diag(σ′) = diag(

 ∂y1

∂v1
· · · ∂ym

∂vm

) (4.12)

which is a diagonal matrix of derivatives of the activation function σ′k =
∂yk
∂vk

.

• The products of errors εk and derivatives of the activation function, σ′k are known as the delta errors:

δT = εT · diag(σ′) =
[
ε1 · σ′1 · · · εm · σ′m

]
(4.13)

is a vector of delta errors.

• Substituting eqns (4.13) and (4.12) into eqn (4.11) the gradient of tise can be expressed as:

∇E(w) =
∂E

∂w
= −δT · ∂v

∂w
(4.14)
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• Now we will separately calculate the output and hidden sections of the gradient of tise, namely,
∂E

∂wh
and

∂E

∂wy

• From eqn. (4.14) the output section of the gradient can be written as:
∂E

∂wy
= −δT · ∂v

∂wy
(4.15)

• In order to evaluate the Jacobian
∂v

∂wy
note first that

since v = W y · h than
∂v

∂W y
= hT

• Therefore, after scanning W y row-wise into wy we have

∂v

∂wy
=


hT 0 0

0 . . . 0

0 0 hT

 = I ⊗ hT (4.16)

where ⊗ denotes the Kronecker product and I is an m×m identity matrix.

• Combining eqns (4.15) and (4.16), we finally have:
∂E

∂wy
= −δT · (I ⊗ hT ) or

∂E

∂W y
= −δ · hT (4.17)

• Hence, if we reshape the weight vector wy back into a weight matrix W y, the gradient of the total
instantaneous squared error can be expressed as an outer product of δ and h vectors.
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Neuro-Fuzzy Comp. — Ch. 4 June 1, 2005

• Using eqn (4.8), the steepest descent pattern training algorithm for minimisation of the performance
index with respect to the output weight matrix

∆W y(n) = −ηy
∂E(n)

∂W y(n)
= ηy · δ(n) · hT (n) ; W y(n + 1) = W y(n) + ∆W y(n) (4.18)

• In the batch training mode the gradient of the total performance index, J(W h,W y), related to the
output weight matrix, W y, can be obtained by summing the gradients of the total instantaneous
squared errors:

∂J

∂W y
=

1

mN

N∑
n=1

∂E(n)

∂W y(n)
= − 1

mN

N∑
n=1
δ(n) · hT (n) (4.19)

• If we take into account that the sum of outer products can
be replaced by a product of matrices collecting the
contributing vectors, then the gradient can be written as:

∂J

∂W y
= − 1

mN
S ·HT (4.20)

where S is the m×N matrix of output delta errors: S = [δ(1) . . . δ(N)] (4.21)

and H is the L×N matrix of the hidden signals: H = ψ(W h ·X)

• Therefore, in the batch training LMS algorithm, the weight update after k-th epoch can be written as:

∆W y(k) = −ηy
∂J

∂W y
= ηy · S(k) ·HT (k) ; W y(k + 1) = W y(k) + ∆W y(k) (4.22)
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4.7.2 Hidden layer

• As for the output layer we start with eqn (4.14) which for the hidden weight can be re-written in a form
analogous to eqn (4.15) and then, using a chain rule of differentiation, we can write:

∂E

∂wh
= −δT · ∂v

∂wh
= −δT · ∂v

∂h
· ∂h
∂wh

(4.23)

• Since v = W y · h we have
∂v

∂h
= W y and we can define the backpropagated error as:

εh = (W y)T · δ (4.24)

• The gradient of tise with respect to hidden weights can be now written as:

-

x
o
p W h -

u = W h · x
o
L ��

��
ψ -

h = ψ(u)
o
L

�
εh

o
L

∂E

∂wh
= −(εh)T · ∂h

∂wh
= −(εh)T · ∂h

∂u
· ∂u
∂wh

(4.25)

which is structurally identical to eqn (4.9), w, ε and y being replaced by wh, εh and h, respectively.

• Following eqn (4.13) we can define the backpropagated delta errors:

(δh)T = (εh)T · ∂h
∂u

= (εh)T · diag(ψ′) =
[
εh1 · ψ′1 · · · εhL · ψ′L

]
; ψ′j =

∂hj
∂uj

(4.26)
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• Now, the gradient of tise can be expressed in a form analogous to eqn (4.15):

∂E

∂wh
= −(δh)T · ∂v

∂wh
(4.27)

• Finally we have:
∂E

∂wh
= −(δh)T · (I ⊗ xT ) or

∂E

∂W h
= −δh · xT (4.28)

• Hence, if we reshape the weight vector wh back into a weight matrix W h, the gradient of the total
instantaneous squared error can be expressed as an outer product of δh and x vectors.

• Therefore, for the pattern training algorithm, the update of the hidden weight matrix for the n–the
training pattern now becomes:

∆W h(n) = −ηh
∂E(n)

∂W h(n)
= ηh · δh(n) · xT (n) ; W h(n + 1) = W h(n) + ∆W h(n) (4.29)

It is interesting to note that the weight update rule is identical in its form for both the output and
hidden layers.
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• For the batch training, the gradient of the total performance index, J(W h,W y), related to the hidden
weight matrix, W h, can be obtained by summing the instantaneous gradients:

∂J

∂W h
=

1

mN

N∑
n=1

∂E(n)

∂W h(n)
= − 1

mN

N∑
n=1
δh(n) · xT (n) (4.30)

• If we take into account that the sum of outer products can be replaced by a product of matrices
collecting the contributing vectors, then we finally have

∂J

∂W y
= − 1

mN
Sh ·XT (4.31)

where Sh is the L×N matrix of hidden delta errors: Sh =
[
δh(1) . . . δh(N)

]
(4.32)

and X is the p×N matrix of the input signals.

• In the batch training steepest descent algorithm, the weight update after k-th epoch can be written as:

∆W h(k) = −ηh
∂J

∂W h
= ηh · Sh(k) ·XT ; W h(k + 1) = W h(k) + ∆W h(k) (4.33)
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4.7.3 Alternative derivation

• The basic signal flow referred to in the above calculations is as follows:

��
��
σ -@ @ @· · · · · ·

-

x1 xi xp

wh
ji

uj

x h

h1

hj

hL

...

...

h1 hj hL

��
��
σ -@ @ @· · · · · ·

-

��
��
σ -@ @ @· · · · · ·

-

��
��
σ -@ @ @· · · · · ·

-

wy
kj

v

v1

vk

vp

...

...

ε
y

y1

yk

ymq
�

−1
�

q
�

−1
�

q
�

−1
�

d

d1

dk

dm

ε1

εk

εm

• Good to remember

E =
1

2

m∑
k=1

ε2
k , εk = dk − yk

yk = σ(wy
k · h) = σ(

L∑
j=1

wy
kj · hj)

hj = σ(wh
j · x) = σ(

p∑
i=1
wy
ji · xi)
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The gradient component related to a
synaptic weight wy

kj for the n–th
training vector can be calculated as
follows:

where the delta error, δk, is the output
error, εk, modified with the derivative of
the activation function, σ′k.

∂E(n)

∂wy
kj

= −εk
∂yk
∂wy

kj

E = 1
2(. . . + ε2

k + . . .) , yk = σ(vk)

= −εk
∂yk
∂vk

∂vk
∂wy

kj

vk = W y
k: · h = . . . + wy

kjhj + . . .

= −εk · σ′k · hj σ′k =
∂yk
∂vk

= −δk · hj δk = εk · σ′k

Alternatively, the gradient components related to
the complete weight vector, W y

k: of the kth output
neuron can be calculated as:

In the above expression, each component of the
gradient is a function of the delta error for the
k–th output, δk, and respective output signal from
the hidden layer, hT = [h1 . . . hL].

∂E(n)

∂W y
k:

= −εk
∂yk
∂W y

k:

yk = σ(vk)

= −εk
∂yk
∂vk

∂vk
∂W y

k:

vk = W y
k: · h

= −εk · σ′k · hT

= −δk · hT
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Finally, the gradient components related to the
complete weight matrix of the output layer, W y,
can be collected in an m× L matrix, as follows:

where

and ‘�’ denotes an ‘element-by-element’
multiplication, and
the hidden signals are calculated as follows:

∂E(n)

∂W y
= −δ(n) · hT (n) (4.34)

δ =


δ1
...
δm

 =


ε1 · σ′1...
εm · σ′m

 = ε� σ′ , (4.35)

h(n) = ψ(W h(n) · x(n))

• Gradient components related to the weight matrix of the hidden layer:

∂E(n)

∂wh
ji

= −
m∑
k=1

εk
∂yk
∂wh

ji

yk = σ(vk)

= −
m∑
k=1

εk
∂yk
∂vk

∂vk
∂wh

ji

vk = . . . + wy
kjhj + . . .

= −(
m∑
k=1

δk w
y
kj)

∂hj
∂wh

ji

δk = εk · σ′k

= −W yT
:j δ

∂hj
∂wh

ji

W yT
:j δ = δTW y

:j =
m∑
k=1

δk w
y
kj = εhj
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• Note, that the j–th column of the output weight matrix, W y
:j, is used to modify the delta errors to create

the equivalent hidden layer errors, known as back-propagated errors which are specified as
follows:

εhj = W yT
:j · δ , for j = 1, . . . , L

• Using the back-propagated error, we can now repeat the steps performed for the output layer, with εhj
and hj replacing εk and yk, respectively.

∂E(n)

∂wh
ji

= − εhj
∂hj
∂wh

ji

hj = ψ(uj) , uj = W h
j: · x

= − εhj · ψ′j · xi ψ′j =
∂ψj
∂uj

= − δhj · xi δhj = εhj · ψ′j

where the back-propagated error has been used to generate the delta-error for the hidden layer, δhj .

• All gradient components related to the hidden weight matrix, W h, can now be calculated in a way
similar to that for the output layer as in eqn (4.34):

∂E(n)

∂W h
= − δh · xT , where δh =


εh1 · ψ′1...
εhL · ψ′L

 = εh �ψ′ and εh = W yT · δ (4.36)
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4.7.4 The structure of the two-layer back-propagation network with learning

The structure of the decoding and
encoding parts of the two-layer
back-propagation network:

L L

L

m m

L

m

m.L

p

L.p

x

W h

u
ψ

εh �ψ′

−
dσ

dv
Σ

v
σ

εσ′

d

y = σ(v)

dψ

du

ψ′

ε� σ′

ε

δh

W y
εh

ηhδ
h xT

δ
∆W h ∆W y

h = ψ(u)

ηyδ hT

• Note the decoding and encoding parts, and the blocks which calculate derivatives, delta signals and the
weight update signals.

• The process of computing the signals (pattern mode) during each time step consists of the:

forward pass in which the signals of the decoding part are determined starting from x, through u,h,
ψ′, v to y and σ′.

backward pass in which the signals of the learning part are determined starting from d, through ε, δ,
∆W y, εh, δh and ∆W h.

• From Figure 4.7.4 and the relevant equations note that, in general, the weight update is proportional to
the synaptic input signals (x, or h) and the delta signals (δh, or δ).

• The delta signals, in turn, are proportional to the derivatives the activation functions, ψ′, or σ′.
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Comments on Learning Algorithms for Multi-Layer Perceptrons.

• The process of training a neural network is monitored by observing the value of the performance
index, J(W (n)), typically the mean-squared error as defined in eqns (4.3) and (4.4).

• In order to reduce the value of this error function, it is typically necessary to go through the set of
training patterns (epochs) a number of times as discussed in page 3–21.

• There are two basic modes of updating weights:

– the pattern mode in which weights are updated after the presentation of a single training pattern,

– the batch mode in which weights are updated after each epoch.

• For the basic steepest descent backpropagation algorithm the relevant equations are:

pattern mode

W y(n + 1) = W y(n) + ηy · δ(n) · hT (n)

W h(n + 1) = W h(n) + ηh · δh(n) · xT (n)

where n is the pattern index.

batch mode

W y(k + 1) = W y(k) + ηy · S(k) ·HT (k)

W h(k + 1) = W h(k) + ηh · Sh(k) ·XT

where k is the epoch counter. Definitions of the other variable have been already given.
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• Weight Initialisation
The weight are initialised in one of the following ways:

– using prior information if available. The Nguyen-Widrow algorithm presented in sec. 5.4 is a good
example of such initialisation.

– to small uniformly distributed random numbers.

Incorrectly initialised weights cause that the activation potentials may become large which saturates
the neurons. In saturation, derivatives σ′ = 0 and no learning takes place.

A good initialisation can significantly speed up the learning process.

• Randomisation
For the pattern training it might be a good practice to randomise the order of presentation of training
examples between epochs.

• Validation
In order to validate the process of learning the available data is randomly partitioned into a training
set which is used for training, and a test set which is used for validation of the obtained data model.
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4.8 Example of function approximation (fap2D.m)

In this MATLAB example we approximate two functions of two variables,

y = f(x) , or y1 = f1(x1, x2) , y2 = f2(x1, x2)

using a two-layer perceptron,

y = σ(W y · σ(W h · x))

The weights of the perceptron, W h,W y, are trained using the basic back-propagation algorithm in a
batch mode as discussed in the previous section.
Specification of the the neural network (fap2Di.m):

p = 3 ; % Number of inputs plus the bias input
L = 12; % Number of hidden signals (with bias)
m = 2 ; % Number of outputs

- W h W y-��
��

- -��
��

-σ σ
x u h v y
o o o o o
3 12 12 2 2

��
��
σ -@ @ @ -

��
��
σ -@ @ @ -

��
��
σ -@ @ @ -

... ...

x1 x2 x3 = 1

W h

u1

u2

u11

h1

h2

...
h11

h–bus

h1 h2
. . . h12 = 1

-��
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Two functions to be approximated by the two-layer perceptron are as follows:

y1 = x1e
−ρ2 , y2 =

sin 2ρ2

4ρ2
, where ρ2 = x2

1 + x2
2

The domain of the function is a square x1, x2 ∈ [−2, 2).
In order to form the training set the functions are sampled on a regular 16×16 grid. The relevant MATLAB

code to form the matrices X and D follows:

na = 16; N = naˆ2; nn = 0:na-1; % Number of training cases

Specification of the domain of functions:

X1 = nn*4/na-2; % na points from -2 step (4/na)=.25 to (2 - 4/na)=1.75
[X1 X2] = meshgrid(X1); % coordinates of the grid vertices X1 and X2 are na by na
R=(X1.ˆ2+X2.ˆ2+1e-5); % R (rhoˆ2) is a matrix of squares of

distances of the grid vertices from the origin.
D1 = X1.*exp(-R); D = (D1(:))’;

% D1 is na by na, D is 1 by N
D2 = 0.25*sin(2*R)./R ; D = [D ; (D2(:))’];

% D2 is na by na, D is a 2 by N matrix of 2-D target vectors

The domain sampling points are as follows:

X1=-2.00 -1.75 ... 1.50 1.75 X2=-2.00 -2.00 ... -2.00 -2.00
-2.00 -1.75 ... 1.50 1.75 -1.75 -1.75 ... -1.75 -1.75

. . . . . . . . . . . .
-2.00 -1.75 ... 1.50 1.75 1.50 1.50 ... 1.50 1.50
-2.00 -1.75 ... 1.50 1.75 1.75 1.75 ... 1.75 1.75
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Scanning X1 and X2 column-wise and appending the bias inputs, we obtain the input matrix X which
is p×N :
X = [X1(:)’; X2(:)’;ones(1,N)];

The training exemplars are as follows:

X = -2.0000 -2.0000 ... 1.7500 1.7500
-2.0000 -1.7500 ... 1.5000 1.7500
1.0000 1.0000 ... 1.0000 1.0000

D = -0.0007 -0.0017 ... 0.0086 0.0038
-0.0090 0.0354 ... -0.0439 -0.0127

The functions to be approximated are plotted side-by-side,
which distorts the domain which in reality is the same for
both functions, namely, x1, x2 ∈ [−2, 2).

surfc([X1-2 X1+2], [X2 X2], [D1 D2])
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Random initialization of the weight matrices:
Wh = randn(L,p)/p; % the hidden-layer weight matrix W h is L× p

Wy = randn(m,L)/L; % the output-layer weight matrix W y is m× L

C = 200; % maximum number of training epochs
J = zeros(m,C); % Memory allocation for the error function
eta = [0.003 0.1]; % Training gains

for c = 1:C % The main loop (fap2D.m)
The forward pass:

H = ones(L-1,N)./(1+exp(-Wh*X)); % Hidden signals (L-1 by N)
Hp = H.*(1-H); % Derivatives of hidden signals
H = [H ; ones(1,N)]; % bias signal appended
Y = tanh(Wy*H); % Output signals (m by N)

Yp = 1 - Y.ˆ2; % Derivatives of output signals

The backward pass:

Ey = D - Y; % The output errors (m by K)
JJ = (sum((Ey.*Ey)’))’; % The total error after one epoch

% the performance function m by 1
delY = Ey.*Yp; % Output delta signal (m by K)
dWy = delY*H’; % Update of the output matrix dWy is L by m
Eh = Wy(:,1:L-1)’*delY % The back-propagated hidden error Eh is L-1 by N
delH = Eh.*Hp ; % Hidden delta signals (L-1 by N)
dWh = delH*X’; % Update of the hidden matrix dWh is L-1 by p

Wy = Wy+etay*dWy; Wh = Wh+etah*dWh; % The batch update of the weights
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Two 2-D approximated functions are plotted after each epoch.

D1(:)=Y(1,:)’; D2(:)=Y(2,:)’;
surfc([X1-2 X1+2], [X2 X2], [D1 D2]) J(:,c) = JJ ;

end % of the epoch loop

Approximation after 1000 epochs:
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From this example you will note that the backpropagation algorithm is

• painfully slow

• sensitive to the weight initialization

• sensitive to the training gains.

We will address these problems in the subsequent sections.

It is good to know that the best training algorithm can be two orders of magnitude faster that a basic
backpropagation algorithm.
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5 Feedforward Multilayer Neural Networks — part II

In this section we first consider selected applications of the multi-layer perceptrons.

5.1 Image Coding using Multi-layer Perceptrons

• In this example we study an application of a two-layer feed-forward neural network (perceptron) in
image coding.

The general concept is as follows:

• A two-layer perceptron is trained using a representative set of images,F .

W h σ

�
�-

F → X
op

-
H → F c

o
L

W y σ

�
� -

Y → F r

om

• Once the training is completed, appropriate hidden,W h and output,W y weights are available.

• An image, F , can now be encoded into an imageF c, represented by the hidden signals.

• If L < p an image compression occurs.

• The encoded (compressed) image,F c, represented by the hidden signals can now be reconstructed
using the output layer of the perceptron asF r.
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Training procedure:

• Training is conducted for a representative class of images using the back-propagation algorithm.

• Assume that an image,F , used in training is of sizeR× C and consists ofr × c blocks.

• Convert a block matrixF into a matrixX of sizep×N containing training vectors,x(n), formed
from image blocks. Note that

p = r · c , and p ·N = R · C
C

R

F N
X

p
r

c
(n)x

• As atarget data use theinput data, that is:

D = X

Use the followingMATLAB function to perform this

conversion:X = blkM2vc(F, [r c]);

function vc = blkM2vc(M, blkS)
[rr cc] = size(M) ;
r = blkS(1) ; c = blkS(2) ;
if (rem(rr, r) ˜= 0) | (rem(cc, c) ˜= 0)

error(’blocks do not fit into matrix’)
end
nr = rr/r ; nc = cc/c ; rc = r * c ;
vc = zeros(rc, nr * nc);
for ii = 0:nr-1

vc(:,(1:nc)+ii * nc)=reshape(M((1:r)+ii * r,:),rc,nc);
end

• Train the network until the mean squared error,J , is sufficiently small. The matricesW h and W y

will be subsequently used in the image encoding and decoding steps.
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Image encoding:

• An image, F , is divided into r × c blocks of pixels. Each block is then scanned to form an input
vector x(n) of size p = r × c.

The image to be encoded is now represented by anN × p matrixX, each column storing a block of
pixels.

x(n)

r
c

ϕW L Lp = r c

(n)h

n
F

H
L

R

C N

Original Image

Encoded Image

h

Figure 5–1:A hidden layer in image encoding

• Assume that the hidden layer of the neural network consists ofL neurons each withp synapses, and
that it is characterised by the appropriately selected weight matrixW h.

• The encoding procedure can be described as follows:

F −→ X , H = σ(W h ·X) −→ F c

where F c represented byH is an encoded image.
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Image reconstruction:

• Assume that the output layer consists ofm = p = r × c neurons, each withL synapses.

Let W y be an appropriately selected output weight matrix.

• The decoding procedure can be described as follows:

Y = σ(W y ·H) , Y −→ F r

• Re-assemble the output signals intop = r × c image blocks to obtain a re-constructed image,F r.

r
c

ϕW
(n)

H
L

N

Encoded Image

(n)h
y

L p = r cp

y

n
F

R

C

Reconstructed Image

Figure 5–2:the outpur layer in image reconstruction

• The quality of image coding is typically assessed by the Signal-to-Noise Ratio (SNR) defined as

SNR = 10 log
∑
i,j(Fi,j)

2

∑
i,j(F r

i,j − Fi,j)2
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• The conversion of the vectors of the reconstructed image stored in thep×N matrix Y into blocks of
the reconstructed image,F r, can be performed using the followingMATLAB function:

Fr = vc2blkM(Y, r, R);

function M = vc2blkM(vc, r, rM)
%vc2blkM Reshaping a matrix vc of rc by 1 vectors into a
% block-matrix M of rM by cM size
% Each rc-element column of vc is converted into a r by c
% block of a matrix M and placed as a block-row element
[rc nb] = size(vc) ; pxls = rc * nb ;
if ( (rem(pxls, rM) ˜= 0) | (rem(rM, r) ˜= 0) )

error(’incorrect number of rows of the matrix’)
end
cM = pxls/rM ;
if ( (rem(rc, r) ˜= 0) | (rem(nb * r, rM) ˜= 0) )

error(’incorrect block size’)
end
c = rc/r ;
xM = zeros(r, nb * c);
xM(:) = vc ;
nrb = rM/r ;
M = zeros(rM, cM);
for ii = 0:nrb-1

M((1:r)+ii * r, :) = xM(:, (1:cM)+ii * cM) ;
end
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5.2 Paint-Quality Inspection Adapted from (Freeman and Skapura, 1991)

• Visual inspection of painted surfaces, such as automobile body panels, is a very time-consuming and
labor-intensive process.

• To reduce the amount of time required to perform this inspection, one of the major U.S. automobile
manufacturers reflects a laser beam off the painted panel and on to a projection screen.

• Since the light source is a coherent beam, the amount of scatter observed in the reflected image of the
laser provides an indication of the quality of the paint finish on the car.

Reflection of a laser beam off
painted sheet-metal surfaces:

top — a poor-quality paint finish:
reflection is relatively difused.

bottom — a better-quality paint
finish: reflection is very close to
uniform throughout its image.
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• A neural network, a two-layer perceptron in this case, is used to capture the expertise of the human
inspectors scoring the paint quality from observation of the reflected laser images.

• The block-diagram of the Automatic Paint QA
System:

• Images of the reflected laser beam are recorded by a
camera and an associated frame grabber. Each image
contains 400-by-75 8-bit pixels.

• To keep the size of the network needed to solve the
problem manageable, we elected to take 10
sub-images from the snapshot, each sub-image
consisting of a 30-by-30-pixel square centered on a
region of the image with the brightest intensity.

x (n) h (n) y(n)

30x30 sub−images

selection
sub−images

Frame grabber
Camera &

Neural Network

User Interface

900+1 m = 1
Wh σ

50+1
Wy

score

• These 8-bit pixels are input to the neural network. In addition there is one biasing input, therefore,
p = 901.

• The hidden layer consists ofL = 50 neurons, hence the hidden-matrix,W h is 900× 50, and there are
900 × 50 = 45000 synapses in the hidden layer. A unipolar sigmoidal function is used.

• A single output signal from the network represents anumerical scorein the range of 1 through 20 (a 1
represented the best possible paint finish; a 20 represented the worst).

• The output layer islinear and the output matrixW y has a size51× 1 (there is a biasing input to the
output layer).
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• Once the network was constructed (and trained), 10 sub-images were taken from the snapshot using
two different sampling techniques.

• In the first test, the samples were selected randomly from the image (in the sense that their position on
the beam image was random).

• In the second test, 10 sequential samples were taken, so as to ensure that the entire beam was
examined.

• In both cases, the input sample was propagated through the trained MLP, and the score produced as
output by the network was averaged across the 10 trials.

• The average score, as well as the range of scores produced, were then provided to the user for
comparison and interpretation.
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Training the Paint QA Network

• At the time of the development of this application, (1988) this network was significantly larger than
any other network we had yet trained.

• The network is relatively big: 901 inputs, 51 hidden neurons, 1 output. Total number of trainable
weights (synapses) is 45 101.

• The number of training patterns with which we had to work was a function of the number of control
paint panels to which we had access (18), as well as of the number of sample images we needed from
each panel to acquire a relatively complete training set (approximately 6600 images per panel).

• During training, the samples were presented to the network randomly to ensure that no single paint
panel dominated the training.

• From these numbers, we can see that there was a great deal of computer time consumed during the
training process.

• For example, one training epoch required the computer to perform approximately 13.5 million weight
updates, which translates into roughly 360,000 floating-point operations (FLOPS) per pattern (2
FLOPS per connection during forward propagation, 6 FLOPS during error propagation), or 108
million FLOPS per epoch.

• However, once the network was trained, decoding is very fast and can be efficiently used in
manufacturing.
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5.3 NETtalk
Sejnowski and Rosenberg, 1987

• The NETtalk project aimed at training a network to pronounce English text.

• The conceptual structure of the network is as follows:

T h i s i s t h e i n p u t
↓

Neural Network
↓
\s\ phoneme code

• A character from a text and its three proceeding and three following characters are entered into a
neural network which generates a phoneme code for the central character.

• The phoneme code can be sent to a speech generator giving the pronunciation of the central letter from
the input window.

5–10



Neuro-Fuzzy Comp. — Ch. 5 March 24, 2005

Network structure

• There are 29 English letters (including punctuation) and each letter is coded in a 1-of-29 code.
Therefore, there arep = 7× 29 = 203 binary inputs to the network.

• Similarly, there are 26 different phonemes, hence, the network has 26 binary outputs.

• In addition, 80 hidden neurons are employed.

7x29

text
σ

80
σ

m = 26

phoneme
Wh Wy

Training

• During training, the desired data were supplied by a commercially available DEC-talk, which is based
on hand-coded linguistic rules.

• The network was trained on 1024 words, obtaining intelligible speech after 10 training epochs and
95% accuracy after 50 epochs.
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5.4 Efficient initialization of the learning algorithms

• The simplest initialization of the weights is based on assigning them a “small” random values.

• This is not always a good solution because the activation potentials can be big enough to drive the
activation functions into saturation.

• In saturation, the derivatives of the activation functions are zero, hence no weight update will take
place.

• Efficient initialization can speed up the convergence process of the learning algorithms significantly,
even by the order of magnitude.

• A popular initialization algorithm developed by Nguyen and Widrow and used in the MATLAB Neural
Network Toolbox is presented below.

• Let us consider for simplicity asingle layerof m neurons withp synapses, each including the bias.
Then for jth neuron we have

yj = σ(vj) , where vj = wj · x , xp = 1

• For an activation functionσ(v) we can specify itsactive region v̄ = [vmin vmax] outside which the
function is consider to be in saturation.

• For example, for the hyperbolic tangent we can assume the active region as:

v̄ = [−2 + 2] , then tanh(v) ∈ [−0.96 0.96]
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• In addition we need to specify the range of input signals,

x̄i = [xi,min xi,max] for i = 1 . . . p− 1

Unified range:

Assume first that the range of input signals and non-saturating activation potential is[−1 + 1].

• The initial weight vectors will now have evenly distributed magnitudes and random directions:

For p = 2 (single input plus bias) the weights are initialised in the following way:

• generatem random numbersaj ∈ (−1, +1) for j = 1, . . . ,m

• Set up weights as follow
W (j, 1) = 0.7

aj
|aj|

, W (:, 2) = 0
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For p > 2 the weight initialisation is as follows

• Specify the magnitude of the weight vectors as

W̄ = 0.7m
1

p−1

• generatem random unity vectors,aj, that is, generate anm×(p− 1) array A of random numbers,
aji ∈ (−1, +1) and normalise it in rows:

aj =
A(j, :)

‖A(j, :)‖

• Set up weights as follow

W (j, 1 : p− 1) = W̄ · aj for j = 1, . . . ,m

and the bias weights

W (j, p) = sgn(W (j, 1)) · W̄ · βj for βj = −1 :
2

m−1
: 1

• Finally, the weights are linearly rescaled to account for different range of activation potentials an input
signals.

• Details can be found in the MATLAB script,nwini.m.
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function w = nwini(xr, m, vr)
%
% nwini Calculates Nugyen-Widrow initial conditions.
% adapted from NNet toolbox 8 Axril 1999
% xr - p-1 by 2 matrix of [xmin xmax]
% assumes that the bias is added
% m - Number of neurons.
% vr - Active region of the transfer function
% vr = [Vmin Vmax].
% e.g. vr = [-2 -2] for tansig , [-4 4] for logsig
% w is m by p

r = size(xr,1); p = r+1 ;

% Null case
if (r == 0) | (m == 0)

w = zeros(s,p) ;
return

end

% Remove constant inputs that provide no useful info
R = r;
ind = find(xr(:,1) ˜= xr(:,2));
r = length(ind);
xr = xr(ind,:);

% Nguyen-Widrow Method
% Assume inputs and activation potentials range in [-1 1].
% Weights
wMag = 0.7 * mˆ(1/r); % weight vectors magnitude
% weight vectors directions: wDir are row unity vectors
a = 2* rand(m,r)-1 ;
if r == 1
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b = ones./abs(a);
else

b=sqrt(ones./(sum((a. * a)’)))’;
end
wDir=b(:,ones(1,r)). * a;
w = wMag* wDir;
% Biases
if (m==1)

wb = 0;
else

wb = wMag* [2 * (0:m-2)/(m-1)-1 1]’. * sign(w(:,1));
end

% Conversion of activation potentials of [-1 1] to [Nmin Nmax]
a1 = 0.5 * (vr(2)-vr(1));
a2 = 0.5 * (vr(2)+vr(1));
w = a1* w;
wb = a1* wb+a2;

% Conversion of inputs of xr to [-1 1]
a1 = 2./(xr(:,2)-xr(:,1));
a2 = 1-xr(:,2). * a1;

ap = a1’;
wb = w* a2+wb;
w = w.* ap(ones(1,m),:);

% Replace constant inputs
ww = w; w = zeros(m,R);
w(:,ind) = ww;
% combine with biasing weights
w = [w wb] ;
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5.5 Why backpropagation is slow

• The basic pattern-based back-propagation learning law is a gradient-descent algorithm based on the
estimation of the gradient of the instantaneous sum-squared error for each layer:

∆W (n) = −η · ∇WE(n) = η · δ(n) · xT (n) (5.1)

Such an algorithm is slow for a few reasons:

• It uses an instantaneous sum-squared errorE(W,n) to minimise the mean squared error,J(W ), over
the training epoch.

• The gradient of the instantaneous sum-squared error is not a good estimate of the gradient of the mean
squared error.

• Therefore, satisfactory minimisation of this error typically requires many repetitions of the training
epochs.

• It is a first-order minimisation algorithm which is based on the first-order derivatives (a gradient).
Faster algorithms utilise also the second derivatives (the Hessian matrix)

• The error back propagation, which is conceptually very interesting, serialises computations on the
layer by layer basis.

A general problem is that the mean squared error,J(W ), is a relatively complex surface in the weight
space, possibly with many local minima, flat sections, narrow irregular valleys, and saddle points,
therefore, it is difficult to navigate directly to its minimum.
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5.6 Examples of error surfaces

• Consider the following function of two
weights,J(w1, w2) representing a
possible mean-squared error together
with its contour map.

• Note the local and global minima, and
a saddle point.

• Consider the importance of the proper
initialisation to be able to reach the
global minimum.
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• Complexity of the error surface is the main reason that behaviour of a simple steepest descend
minimisation algorithm can be very complex often with oscillations around a local minimum.
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• In order to gain more insight into
the shape of the error surfaces let
us consider a simple two-layer
network approximating a
single-variable function similar
to that considered in sec. 4.3

+1

h1

h2

w1

w2

w3

w11

w22w21

w12

W h

σ

σ

+1

y
σ

w

x

y(n) = σ(wy ·

 σ(W h ·
 x(n)

1

 )

1

 )

• For a specific set of parameters:

W h =

 1 −2

0.5 −5

 and wy =
[
2 −1 1

]

the network approximate the following function:
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An approximated function

x
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Wh =  
  1  −2
0.5  −5

wy =  2  −1   1

• In order to obtain the error surface, we will varyw = [W h wy] and calculateJ(w) for the selected
inputsX.

• The error functionJ(w) is an 8-dimensional object, hence difficult to visualise.

Therefore we will vary only a pair of selected weights at a time.
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Note that the surfaces are very far away from and ideal second order paraboloidal shapes.
Finding the minimum is very sensitive to the initial position, learning gain and the direction of movement.
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5.7 Illustration of sensitivity to a learning rate
Figures 9.1, 9.2, 9.3, 12.6, 12.7 12.8 from: M.T. Hagan, H. Demuth, M. Beale,Neural Network Design, PWS Publishing, 1996

• For an Adaline, when the error surface is paraboloidal, the maximum stable learning gain can be
evaluated from eqn (3.24) and is inversely proportional to the largest eigenvalue of the input
correlation matrix,R.

• As an illustration we consider the case whenηmx = 0.04 and observe the learning trajectory on the
error surface for a linear case:

η = 0.01 η = 0.035 η = 0.039 η = 0.041
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• Examples of learning trajectories for the steepest descent backpropagation algorithm in the batch
mode. Plots on the right shows the error versus the iteration number.

Trajectory for the learning gain
too large
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5.8 Heuristic Improvements to the Back-Propagation Algorithm

• The first group of consider to the basic back-propagation algorithms based on heuristic methods.

• These methods do not directly address the inherent weaknesses of the back-propagation algorithm, but
aim at improvement of the behaviour of the algorithm by making modifications to its form or
parameters.

5.8.1 The momentum term

• One of the simple method to avoid an error trajectory in the
weight space being oscillatory is to add to the weight update a
momentum term.

• Such a term is proportional to the weight update at the previous
step.

∆W (n) = η · δ(n) · xT (n) + α ·∆W (n− 1) , 0 < α < 1 (5.2)

where α is a momentum term parameter.

• Such modification to the steepest descend learning law acts as a
low-pass filter smoothing the error trajectory.

• As a result it is possible to apply higher learning rate,η.
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5.8.2 Adaptive learning rate

• One of the ways of increasing the convergence speed, that is, to move faster downhill to the minimum
of the mean-squared error,J(W ), is to vary adaptively the learning rate parameter,η.

• A typical strategy is based on monitoring the rate of change of the mean-squared error and can be
described as follows:

• If J is decreasing consistently, that is,∇J is negative
for a prescribed number of steps, then the learning rate is
increased linearly:

η(n + 1) = η(n) + a , a > 0 (5.3)

• If the error has increased,(∇J > 0), the learning rate is
exponentially reduced:

η(n + 1) = b · η(n) , 0 < b < 1 (5.4)

• In general, increasing the value of the learning rate the
learning tends to become unstable which is indicated be
an increase in the value of the error function.

• Therefore it is important to quickly reduceη.
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Advanced methods of optimisation

• Optimization or minimisation of a function of many variables (multi-variable function),J(w), has
been researched since the XVII century and its principles were formulated by such mathematicians as
Kepler, Fermat, Newton, Leibnitz, Gauss.

• In general the problem is to find an optimal learning gain and the optimal search direction that takes
into account the shape of the error function, that is its curvature.

5.9 Line search minimisation procedures

• Gradient descent minimization procedures are based on updating the weight
vector

w(n+1) = w(n) + η p(n) (5.5)

whereη is the learning gain and the vectorp(n) describes the direction of
modification of the weight vector.

• The vectorp is typically equal to the negative gradient of the error function

p(n) = −g(n) , where g(n) = ∇J(w(n))
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• Note that the next value of weight vector,w(n + 1), is obtained from the current value of weight
vector, w, by moving it along the direction of a vector,p.
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• We can now find an optimal value ofη for which the performance index

J(w(n+1)) = J(w + η p) (5.6)

is minimised.

• The optimalη is typically found through a search procedure along the directionp (line optimization)

• In order to find some properties of the line optimization we calculate the partial derivative ofJ with
respect toη:

∂J(w(n+1))

∂η
=
∂J(w(n+1))

∂w(n+1)

∂w(n+1)

∂η
=
∂J(w(n+1))

∂w(n+1)
η pT = η∇J(w(n+1)) · pT (5.7)

• For the optimal value ofη, this derivative needs to be zero and we have the following relationship

∇J(w(n+1)) · pT = g(n+1) · pT = 0 (5.8)

• It states that the next estimate of the gradient,g(n+1) = ∇J(w(n+1)), is to be orthogonal to the
current search direction,p for the optimal value ofη
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This means, in particular, that

• if we combine theline minimisation technique with thesteepest
descentalgorithm when we move in the direction opposite to the
gradient,p = −g,

• then we will be descending along the zig-zag line, each segment
being orthogonal to the next one.

• In order to smooth the descend direction, the steepest-descent technique is replaced with the conjugate
gradient algorithm.
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5.10 Conjugate Gradient Algorithm

• The conjugate gradient algorithms also involved the line optimisation with respect toη, but

• in order to avoid the zig-zag movement through the error surface, the next search direction,p(n+1),
instead of being exactly orthogonal to the gradient, tries to maintain the current search direction,p(n),
namely

p(n + 1) = −g(n) + β(n)p(n) (5.9)

where scalarβ(n) is selected in such a way that

• the directionsp(n + 1) and p(n) areconjugate with respect to the Hessian matrix, ∇2J(w) = H

(the matrix of all second derivatives ofJ), that is,

p(n + 1) ·H · pT (n) = 0 (5.10)

• In practice, the Hessian matrix is not being calculated and the following three approximate choices of
β(n) are the most commonly used
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• Hestenes-Steifel formula

β(n) =
(g(n) − g(n− 1)) · gT (n)

(g(n) − g(n− 1)) · pT (n− 1)
(5.11)

• Fletcher-Reeves formula

β(n) =
g(n) · gT (n)

g(n− 1) · gT (n− 1)
(5.12)

• Polak-Ribíere formula

β(n) =
(g(n) − g(n− 1)) · gT (n)

g(n− 1) · gT (n− 1)
(5.13)

In summary, the conjugate gradient involves:

• initial search direction,p(0) = −g(0),

• line minimisation with respect ofη,

• calculation of the next search direction as in eqn
(5.9), and

• β from one of the above formulae.
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5.11 Newton’s Methods

• In Newton’s methods minimisation is based on utilisation of not only thefirst derivatives (the
gradient) of the error function, but also itssecond derivatives(Hessian matrix).

• Consider the Taylor series expansion of the performance index as in eqn (4.5) which can be re-written
as

J(w(n+1)) = J(w) + ∆w · ∇J +
1

2
∆w ·H ·∆wT + · · ·

• To minimiseJ(w(n+1)) we calculate the gradient and equate it to zero

∇J(w(n+1)) = ∇J + ∆w ·H + · · · = 0

• Neglecting the higher order expansion terms, we have the following fundamental for Newton’s
methods equation:

∆w = −∇J ·H−1 (5.14)

• This equation says that a more accurate weight update is the direction opposite to the gradient vector
modified (rotated) by the inverse of the Hessian matrix of the performance indexJ .

• The Hessian matrix provides additional information about the shape of the performance index surface
in the neighbourhood ofw(n).
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• The Newton’s methods are typically faster than conjugate gradient algorithms.

• However, they require computations of the inverse of the Hessian matrix which are relatively complex.

• Many specific algorithms originate from the Newton’s method, the fastest and most popular being the
Levenberg-Marquardt algorithm , which originate from the Gauss-Newton method.

• The Newton’s methods use the batch training mode, rather then the pattern mode which is based on
derivatives of instantaneous errors.
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5.12 Gauss-Newton method

In the Gauss-Newton method theHessian matrix is approximated by a product of theJacobian matrix.

In order to explain details of the method let us repeat the standard assumption:

• all weights have been arranged in one row vector

w = [w1 . . . wj . . . wK ]

• all (instantaneous) errors form a column vector

ε(w(n)) = d(n) − y(n) = [ε1 . . . εk . . . εm]T

• the instantaneous performance indexE(w(n)) is a sum of squares of errors

E(w(n)) =
1

2

m∑
k=1

ε2
k(n) =

1

2
ε(n) · εT (n)

(for brevity, arguments likew andn are often omitted)

• The total performance index (mean squared error)

F (w) =
1

M

N∑
n=1

E(w(n))

whereM = mN . The symbolF is used in place ofJ to avoid confusion with the Jacobian matrix.
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• We consider first derivatives of instantaneous errors. Thejth element of the instantaneous gradient
vector can now be expressed as

[∇E(w(n))]j =
∂E(w(n))

∂wj
=

m∑
i=1
εk(w)

∂εi(w)

∂wj
= εT (w)

∂ε1(w)

∂wj
. . .

∂εm(w)

∂wj


T

• This expression can be generalised into a matrix form for the gradient:

∇E(w(n)) = εT (w(n))J (w(n)) (5.15)

where

J (w(n)) =



∂ε1(w)

∂w1
. . .

∂ε1(w)

∂wK... ...
∂εm(w)

∂w1
. . .

∂εm(w)

∂wK


(5.16)

is them×K matrix of first derivatives known as theJacobianmatrix.

• In order to find the Hessian matrix of the instantenous performance index we differentiate eqn (5.15):

∇2E(w(n)) =
∂(εT (w)J (w))

∂w
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• Let us calculate first, for simplicity, thek, j element of the Hessian matrix

[∇2E(w(n))]k,j =
∂2E(w)

∂wk∂wj
=

m∑
i=1

 ∂εi
∂wk

∂εi
∂wj

+ εi
∂2εi

∂wk∂wj



=

 ∂ε1

∂wk
. . .

∂εm
∂wk





∂ε1

∂wj
...

∂εm
∂wj


+ εT

∂2εi
∂wk∂wj

• Generalizing the above expression into a matrix form, we obtain:

∇2E(w) = J T (w)J (w) + εT (w)R(w) (5.17)

where

R(w) =


∂2εi

∂wk∂wj


it the matrix of all second derivatives of errors.

• If we neglect the term

εT (w)R(w)

due to the fact that errors are small, then we obtain the Gauss-Newton method.
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• In this method the Hessian matrix is approximated as:

H(w(n)) = ∇2E(w(n)) ≈ J T (w(n))J (w(n))

and the weight update equation (5.14) becomes:

∆w(n) = −∇E(n)H−1(n) = −εT (n)J (n)
(
J T (n)J (n)

)−1
(5.18)

• For simplicity, we have considered the pattern update, however, in the following section we consider a
modification of the Gauss-Newton algorithm in which the batch update of weights is employed.
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5.13 Levenberg-Marquardt algorithm

5.13.1 The algorithm

• One problem with the Gauss-Newton method is that the approximated Hessian matrix may not be
invertible.

• To overcome this problem in theLevenberg-Marquardt algorithm a small constantµ is added such
that

H(w) ≈ JT (w)J(w) + µI

where H(w) and J(w) are thebatch Hessian and Jacobian matrices, respectively,I is the
identity matrix andµ is a small constant.

• The gradient of the batch performance index,F (w), can be calculated as

∇F (w) =
N∑
n=1

∇E(w(n)) =
N∑
n=1
εT (w(n)) · J (w(n)) = eT (w)J(w)

where

eT = scan(D − Y ) = [εT (1) . . . εT (N)]

is the vector of all instantaneous errors.
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• The batch Jacobian matrix,J(w), is a block-column matrix consisting of the instantaneous Jacobian
matrices,J (n)

J(w) =


J (1)

...
J (N)


• As a result, the batch weight update is as in eqn (5.19):

∆w = −∇F ·H−1 = −eT (w)J(w)
(
JT (w)J(w) + µI

)−1
(5.19)

5.13.2 Calculation of the Jacobian matrix

• Calculation of the Jacobian matrix is similar to calculation of the gradient of the performance index.

• The main difference is that in the case of the gradient we differentiate the sum of squared errors,
whereas in the case of the Jacobian we differentiate errors themselves, see eqn (5.16).

• Following the derivation of the basic backpropagation algorithm we consider atwo-layer perceptron
with two weight matrices,W h,W y. The weight vectorw is formed by scanning these matrices in
rows, so that we have:

w = scan(W h,W y) = [wh
11 . . . w

h
1p . . . w

h
Lp|w

y
11 . . . w

y
1L . . . w

y
mL]

The length ofw is K = L(p +m).
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• The instantaneous Jacobian matrix,J (n), is m×K, one column per weight, and can be partitioned
into two blocks related to the hidden and output weights, respectively:

J (n) = [J h(n) J y(n)]

5.13.3 Output layer

• The output Jacobian matrixJ y(n) is m×mL, wherem is the number of output neurons andL is
the number of hidden signals,hj, as in Figure 4–3.

• The elements ofJ y(n) are the first derivatives
∂εi
∂wy

kj

of errors εi(n) with respect to weightswy
kj.

We have

εi(n) = di(n) − yi(n) , yi(n) = σ(vi(n)) , vi(n) = W y
i: · h(n)

• Now, an element of the output Jacobian matrix can be calculate in the following way

∂εi
∂wy

kj

=


0 if i 6= k (error is local to thekth neuron)

− ∂yk
∂wy

kj

if i = k

• Hence, the output Jacobian matrix has a block-diagonal structure.
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• Subsequently, we have

∂yk
∂wy

kj

=
∂yk
∂vk

∂vk
∂wy

kj

= σ′k · hj , where σ′k =
∂yk
∂vk

which can be generalised to the matrix of non-zero blocks ofJ y as

Pk: =
∂εk
∂W y

k:

= −σ′k · hT , P =
∂εk
∂W y

= −σ′ · hT

• Rows of the matrixP form the diagonal blocks of the JacobianJ y.

• More formally, we can write

J y = −diag(σ′) ⊗ hT (5.20)

where ⊗ denotes the Kronecker product.

5.13.4 Hidden layer

• The hidden Jacobian matrixJ h(n) is m×mp, wherem is the number of output neurons andp is
the number of input signals,xi(n).

• An element of the hidden Jacobian matrix can be calculate in the following way

∂εk
∂wh

ji

= − ∂yk
∂wy

ji

= −∂yk
∂vk

∂vk
∂wh

ji

= −σ′k
∂vk
∂wh

ji
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• If we take into account that

vk = W y
k: · h = · · · + wy

kj · hj + · · ·

and
hj = ψ(W h

j: · x) = ψ(· · · + wh
ji · xi + · · ·)

• then we can arrive at the final form for a single element of the hidden Jacobian matrix:

[J h]k,ji =
∂εk
∂wh

ji

= −σ′k · w
y
kj ·

∂hj
∂wh

ji

= −σ′k · w
y
kj · ψ′

j · xi (5.21)

• A 1× p block of the hidden Jacobian matrix can be expressed as follows

[J h]k,j: = −skj · xT , where skj = σ′k · w
y
kj · ψ′

j

and finally, we have

J h = −Sh ⊗ xT , where Sh = diag(σ′) ·W y · diag(ψ′) (5.22)
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The complete algorithm — general description

The complete Levenberg-Marquardt algorithm can be described as follows:

1. For the input matrix,X, calculate the matrices of:

• hidden signals,H,

• output signals,Y ,

• related derivatives,Ψ′, and Φ′,

• errors,D − Y , and e.

2. Calculate instantaneous Jacobian matrices,J h and J y as in eqns (5.22) and (5.20), and arrange
them in the batch JacobianJ.

3. Calculate the weight update,∆w, according to eqn (5.22) for a selected value ofµ.

4. Calculate the batch performance index,F (w + ∆w), and compare it with the previous value,F (w).

If F (w + ∆w) > F (w), reduce the value of the parameterµ and recalculate∆w (step 3), until
F (w + ∆w) > F (w) is reduced.

5. Repeat calculations from step 1 for the updated weights,w = w + ∆w.
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5.13.5 Some computational details

JTJ:

• The size ofJ is M ×K = mN × L(p +m), that is, (size of the data set)×(set of the weight set)
which might be prohibitively large for a big data set.

• In order to reduce the size of the intermediate data, we can proceed in the following way:

JTJ = [J T (1) . . .J T (N)]


J (1)

...
J (N)

 =
N∑
n=1

J T (n)J (n)

• The size of the matrix to be inverted,(JTJ + µI) is K ×K.

eTJ:

• Similarly, we can calculate the above
gradient as

∇F = eTJ =
N∑
n=1
εT (n)J (n)

• In this way, we need not store the complete
batch Jacobian,J.

LMbp trajectory
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5.14 Speed comparison

Some of the functions available for the batch training inNeural Network Toolbox are listed in the
following table together with a relative time to reach convergence.

Function Algorithm Relative time

LM trainlm Levenberg-Marquardt 1.00
BFG trainbfg BFGS Quasi-Newton 4.58
RP trainrp Resilient Backpropagation 4.97
SCG trainscg Scaled Conjugate Gradient 5.34
CGB traincgb Conjugate Gradient with Powell/Beale Restarts 5.80
CGF traincgf Fletcher-Powell Conjugate Gradient 6.89
CGP traincgp Polak-Ribíere Conjugate Gradient 7.23
OSS trainoss One-Step Secant 8.46
GDX traingdx Variable Learning Rate Backpropagation 24.29
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6 Self-Organizing Neural Networks

6.1 Supervised and Unsupervised Learning

• Learning algorithms which were considered for a single perceptron, linear adaline, and multilayer
perceptron belong to the class of supervised learning algorithms.

• In this case the training data is divided into input signals, x(n), and target signals, d(n).

• A typical learning algorithm is driven by error signals ε(n) which are the differences between the
actual network output, y(n), and the desire (or target) output for a given input.

• For a pattern learning, we can express the weight update
in the following general form

∆w(n) = L(w(n),x(n), ε(n))

where L represents a learning algorithm.

• If we say that a neural network can describe a model of
data, then a multilayer perceptron describes the data in a
form of a curve, or surface or hypersurface which
approximates a functional relationship between x(n),
and d(n). 0 1 2 3 4 5 6 7 8 9
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Self-organizing neural networks — Unsupervised Learning

• Self-organising neural networks employ unsupervised learning laws and discover characteristic
features in input data without using a target or desired output.

• Information about the characteristic features of input data is created during the learning process and
stored in the synaptic weights.

• Output signals describe relationship between the current input signals and the weight vectors.

• Two basic groups of unsupervised learning algorithms and related self-organizing neural networks,
namely:

– (Generalised) Hebbian Learning

– Competitive Learning

can be distinguished by the type of characteristic features that they “discover” from the input data,
namely, “shape” of data and constellation of clusters of points.
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Generalised Hebbian Learning

• Generalised Hebbian Learning extracts from data a set of principal directions along which data is
organised in a p-dimensional space.

• Each direction is represent by a relevant weight vector. The number of those principal directions is, at
most, equal to the dimensionality of the input space p.

• In an illustrative example presented in Figure 6–1 the two-dimensional data is organised along two
principal directions, w1 and w2.
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Figure 6–1: A 2-D pattern with principal directions
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Competitive Learning

• Competitive Learning extracts from data a set of centers of data clusters.

• Each center point is stored as a weight vector. It is obvious that the number of clusters is independent
of dimensionality of the input space.
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Figure 6–2: Example of two-dimensional data organised in three clusters. Claster centres are represented by three weight vectors.

• An important extension of a basic competitive learning is known as feature maps. A feature map is
obtained by adding some form of topological organization to neurons.
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6.2 Hebbian learning

6.2.1 Basic structure of Hebbian learning neural networks

-x r \
p

�
��

��

\
m

σ -r y = σ(Wx)

- �

Decoding part
Encoding part

W ��
��

Learning
Law

Figure 6–3: A block-diagram of a basic Hebbian learning neural network consisting of a single layer decoding part and a learning
(encoding) part

• The decoding layer contains a single weight matrix W which is m× p.
Each row weight vector is associated with one neuron.

• The decoding layer is often linear, which further simplifies the network structure.
The complexity of the network comes from the structure of the learning law employed.

• Note the absence of the target value in the encoding/learning part (un-supervised learning).

• The basic idea behind a Hebbian learning law is to
make the update of a synaptic weight proportional
to both input and output signals:

wji(n + 1) = f (wji(n), yj(n), xi(n))

= wji(n) + ηyj(n)xi(n) (6.1)

• These two signals, yj and xi are locally available at the ji synapse, therefore, this type of a learning
law is termed as a local learning law.
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The concept of the local learning law is illustrated in Figure 6–4.
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Figure 6–4: A neural network with a local learning law circuitry.

It may be observed that the neuron output signal, yj, is available locally at the synapse through the
additional feedback connection. This feedback is essential to the learning process.
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• The basic Hebbian learning law in the form as in eqn (6.1) cannot be used because it is
fundamentally unstable, that is, weights reveal an unlimited grow during the learning process.

• It is relatively simple to show that if a stable solution to the learning law (6.1) exists it must be zero.

• Assuming for simplicity linear neurons and re-writing eqn (6.1) in a matrix form gives:

W(n + 1) = W(n) + ηy(n)xT (n) = W(n) + ηW(n)x(n)xT (n)

• Application of the expectation operator, E[·], to both sides yields

E[W] = E[W] + ηE[W]E[xxT ]

• Hence, the steady-state value of the weight matrix, W̄ = E[W], must satisfy the following equation

W̄R = 0

where

R = E[xxT ] ≈ 1

N
XXT

is the input correlation matrix.

• The input correlation matrix is non-singular, therefore, the only possible steady-state value of the
weight matrix is W̄ = 0.
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6.2.2 Stable Hebbian learning

In order to stabilize a Hebbian learning law two basic steps are required

• Assuming that x is a p-dimensional random vector representing the input data, it is required that its
mean to be zero:

E[x] = 0

In practical calculations with MATLAB, when input vectors are collected in the p×N input matrix
X , the non-zero mean is removed from the input data in the following way:

mX=mean(X,2) ; X=X-mX(:,ones(1,N));

Note that if the mean is zero correlation matrix is identical to the covariance matrix.

• The basic Hebbian learning law is to be modified in such a way that the magnitude (lenght) of weight
vectors should tend to unity.

Assuming for simplicity a single neuron network, it can be achieve by the following normalization:

w ⇐ w + ηyxT ; w ⇐ w/||w|| (6.2)

where the vector magnitude is calculated in the usual way as:

||w|| =

√√√√√ p∑
i=1

w2
i , also ||w||2 = wwT

A.P. Papliński 6–8
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• Normalization as in eqn (6.2) is computationally relatively complex, therefore, we can use the
following simplification based on the Taylor series expansion.

1

||w + ηyxT ||
=

1√
(w + ηyxT )(w + ηyxT )T

=
1√

wwT + 2ηywx + η2y2xTx

• If we assume that the previous weight vector was normalised, that is,

wwT = ||w||2 = 1

and that η � 1 is small so that η2 is negligible, then we can further write:

w + ηyxT

||w + ηyxT ||
≈ w + ηyxT

√
1 + 2ηywx

≈ (w + ηyxT )(1− ηywx)

≈ w + ηyxT − ηy2w − η2y2xT ≈ w + ηy(xT − yw)

• It can be proved that if we update weights according to the last equation, that is,

w(n + 1) = w(n) + ηy(n)(xT (n)− y(n)w(n)) (6.3)

then the magnitude of the weight vector will be close to unity, ||w|| → 1.

• This is the form of the weight update used in the Generalised Hebbian Learning (GHL).
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6.2.3 A single neuron case — the Oja’s rule

The unsupervised learning algorithm described in eqn (6.3) for a single neuron case is known as the Oja’s
rule, and can be written in the following form:

∆w = ηy(xT − yw) = ηyx̃T , y = wx = xTwT (6.4)
where the augmented input vector is:

x̃ = x− ywT (6.5)
The negative term brings in the required stabilization of the learning law. To show this we calculate the
projection of the update vector, ∆w onto the current weight vector, w:

∆wwT = xTwT − ywwT = y(1− ||w||2)
Therefore, if the current weight vector is not on the unit circle, the update vector will bring the next weight
vector closer to the the unit circle.
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x: x1 xi xp

x1 xi xpx̃: x̃1 x̃i x̃p

w: w1 wi wp

y = w · x
-

Figure 6–5: Internal structure of a neural network implementing the Oja’s rule (6.4)

Each synapse aggregates the dendritic signal, and, during learning, generates the augmented input signal,
and updates its weight.
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Extraction of the first principal direction

• It is now possible to show that applying the learning law of eqn (6.4), the weight vector w converges
to the eigenvector q1 of the input correlation matrix R associated with the largest eigenvalue λ1

of R.

• The direction of the eigenvector q1 is referred to as the first principal direction.

• The sketch of the proof of the necessary convergence condition is as follows. Substitution of eqn (6.5)
in eqn (6.4) yields:

∆w = η(wxxT −wxxTwTw)

• Applying the statistical expectation operator to both sides gives:

E[∆w] = η(wE[xxT ]−wE[xxT ]wTw) (6.6)

• The terms in eqn (6.6) can be estimated as follows. If we assume that the weight vector converges to a
steady-state value, then the expectation of the weight update vectors is zero, that is, E[∆w] = 0.

• The expectation of outer products of input vectors is the covariance (correlation) matrix:

R = E[xxT ] ≈ 1

N
XXT

• Now, eqn (6.6) can be written as
wR = (wRwT )w (6.7)

• Denote the scalar:
λ1 = wRwT (6.8)
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• Using definition (6.8) we can finally re-write eqn (6.7) in the following form

wR = λ1w (6.9)

• Alternatively, if we assume that
w(n) → ±qT

1 as n →∞ (6.10)

we have from eqn (6.9):
Rq1 = λ1q1 where λ1 = qT

1 Rq1 (6.11)

• Eqn (6.11) specifies a pair: an eigenvector q1 and related eigenvalue λ1 which are characteristic
values of a matrix (R in this case) such that, if R acts on q1 it modifies only the magnitude of the
eigenvector.

• It can be shown that a “well behaving” p× p matrix has exactly p eigenvector-eigenvalue pairs.

• It can also be shown that λ1 defined in eqn (6.8) or (6.11) and obtained using the Oja’s rule is the
largest eigenvalue of the input correlation matrix, R.

• As it is stated in eqn (6.10) the weight vector converges to the eigenvector q1, but the orientation of
these two vectors does not have to be the same.

• Therefore, comparing the weight vector with the eigenvector when monitoring the convergence
process, it is better to use the projection rather than the difference, that is:

|w · q1| → 1 whereas ||w − q1|| → 0 or + 2 (6.12)

• Condition (6.12) can be used to conveniently monitor the convergence process.
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6.3 Self-Organizing Principal Component Analysis

• The single neuron structure can be extended into a p-neuron network, the weight vector associated
with subsequent neurons extracting the subsequent eigenvectors of the input correlation matrix.

• Such a network performs the Principal Component Analysis also known as the Karhunen-Loève
transform.

• The objective of this analysis (transform) is to extract all principal directions characterising input data.

• The learning law involved is known as the Sanger’s rule or Generalized Hebbian Algorithm (GHA).

• The idea behind the generalization of the Oja’s rule neural network is to use in the learning part of
neurons the augmented input vectors as specified by eqn (6.5).

• The weight update in the Sanger’s rule,
that is, the Generalized Hebbian
Algorithm (GHA) can be described in
the following way:

y1 = w1x , x̃1 = x− y1w
T
1 , ∆w1 = ηy1x̃

T
1

y2 = w2x , x̃2 = x̃1 − y2w
T
2 , ∆w2 = ηy2x̃

T
2

· · ·
yj = wjx , x̃j = x̃j−1 − yjw

T
j , ∆wj = ηyjx̃

T
j

· · ·

(6.13)

• The jth neuron of the GHA has
the following structure:
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yj = wjx
-
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Neuro-Fuzzy Comp. — Ch. 6 May 5, 2005

6.3.1 Structure of a single synapse implementing the Generalised Hebbian Learning
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Identify:

• the dendritic activation signal

vj,i = vj,i−1+wji ·xi , (vj,0 = 0 , yj = vj,p)

• the augmented input signal

x̃ji = x̃j−1,i − wji · yj

• the synaptic weight update (learning law)

∆wji(n) = η · yj(n) · x̃ji(n)

wji(n + 1) = wji(n) + ∆wji(n)
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6.3.2 A matrix form of the Generalised Hebbian Learning

• In order to re-write the Generalised Hebbian Learning algorithm in a matrix for, let us first note that
from eqn (6.13), we can write the augmented input signal vectors in the following form:

x̃T
j = xT − [y1 . . . yj]


w1
...

wj

 = xT − [y1 . . . yj 0 . . . 0] W = xT − ỹT
j W (6.14)

where
ỹT

j = [y1 . . . yj 0 . . . 0]

is the output vector y in which the last m− j components are set to zero.

• Subsequently, the weight update for the j neuron specified in eqn (6.13) can be re-written in the
following form

∆wj = η(yjx
T − yjỹ

T
j W )

• Finally, the pattern update of the whole weight matrix in the GHA algorithm can be expressed in the
following compact form:

y = Wx , ∆W = η(yxT − tril(yyT )W ) (6.15)

where tril(·) denotes the lower-triangular matrix with elements above the main diagonal set to zero.
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• The sketch of the prove that the network weight vectors converge to the eigenvalues of the input
correlation matrix is as follows.

• Taking the statistical expectation operator on both sides of the weight update equation (6.15), and
assuming that in the steady-state the updates are zeros, we have

0 = E[WxxT ]− E[tril(WxxTW T )W ]

• This can be re-written as
WR = tril(WR W T )W

or 
w1
...

wp

 R = tril(


w1
...

wp

 R
[
wT

1 . . . wT
p

]
)


w1
...

wp


• The lower-triangular matrix in the right-hand side is of the form:

Λ = tril(WRW T ) =


λ1

{λji}
. . . 0

λp

 , where λji = wjRwT
i

• Therefore we finally have


w1
...

wp

 R =


λ1

{λji}
. . . 0

λp




w1
...

wp

 (6.16)
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or

WR = Λ W (6.17)

• The first row of eqn (6.16), namely,

w1R = λ1w1 , where λ1 = w1RwT
1

is exactly the same as eqn (6.11) from the Oja’s network, the weight vector of the first neuron, w1,
converging to the eigenvector of the input correlation matrix associated with the largest eigenvalue, λ1.

• In order to show that the other weight vectors converge to subsequent eigenvectors it is enough to show
that the off-diagonal coefficients λji = wjRwT

i converge to zero due to orthogonality of the
eigenvectors.
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6.4 Example of image compression using GHA

An image to be compressed is a rr×cc sub-image from ‘gatlin’:

load gatlin
rr = 120 ; cc = 180 ; % numbers of rows and columns of Img
Img = X((1:rr)+20, (1:cc)+20) ;
figure(1), image(Img), colormap(map)

The image is divided into r × c blocks, each nth block being converted into a p = r × c component
vector x(n). These vectors are stored in a p×N matrix X:

r = 4 ; c = 4 ; p = r*c ;
X = blkM2vc(Img, [r c]) ;
[p N] = size(X) ; % X is 16 by 1350 = 120 by 180

The next step is to remove the mean from X , that is, to normalize it. The pattern matrix X is now ready
to be used in the learning algorithm:

Xm = mean(X’)’ ;
X = X - Xm(:, ones(1, N)) ;
X = X/max(max(abs(X))) ;

The internal learning loop goes through all patterns from X (one epoch) updating weights in a ‘pattern
mode’. In order to monitor the convergence process the length of the weight vectors, lw, is calculated. It is
expected that when the weights converge to respective eigenvectors their lengths will be unity. This
condition is checked in the outer loop.
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m = 4 ; % number of neurons
W = 0.6*(rand(m, p)-0.5) ; % weight initialisation
lw = sum((W.ˆ2)’) ; % length of weight vectors
W2 = zeros(N, m) ; % changes to the length of weight vectors
figure(2)
eta = 2e-2 ; % learning gain
er = .05 ; % the length convergence error
ep = 0 ; % number of training epochs
while (sum( abs(1-lw) < er ) < m) & (ep < 16)

[rs rn] = sort(rand(1, N)) ;
for n = 1:N

x = X(:, rn(n)) ; % randomised selection of patterns
y = W*x ;
dW = eta*(y*x’ - tril(y*y’)*W) ;
W = W + dW ;
lw = sum((W.ˆ2)’) ; % length of weight vectors
W2(n, :) = lw ;

end
plot(W2),
ep = ep+1 ;
if ep == 1

plot(W2), axis([0 1400 0 1.1])
title([’lengths of weight vectors during training’])
xlabel(’pattern number’)

end
grid on, drawnow

end
plot(W2), axis([0 1400 0.5 1.1])
title([’lengths of weight vectors after ’,num2str(ep),’epochs’])
xlabel(’pattern number (the last epoch)’), grid on, drawnow
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It the above example, there are m = 4 neurons, that is, the neural network is trained for only m = 4 out
of p = 16 ‘principal directions’, specified by the eigenvectors of the input correlation matrix.

After one pass through the training data only the first weight vector representing the most significant
eigenvector has converged to achieve the unity length as demonstrated in Figure 6–6.

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

lengths of weight vectors during the first epoch

pattern number

Figure 6–6: The length of the weight vectors representing the m most significant principal directions.

After ep = 7 epochs, all m = 4 weight vectors have attained the unity length within the error specified
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by er as presented in Figure 6–7.
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Figure 6–7: The length of the weight vectors representing the m most significant principal directions.

It is possible to observe that during training the weight vectors converge in a serial way, one by one,
starting from the weight vector representing the most significant principal direction.

Next we will check that the weight vectors are really equal to the eigenvectors of the input correlation
matrix, R = X ·X ′. A number of aspects need to be taken into account in this comparison.
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First, the eig function arranges the eigenvectors as the column vectors whereas the weights are row
vectors.
Secondly, the eigenvalues must be sorted in the descending order and the respective eigenvectors must be
re-arranged accordingly.
Thirdly, the orientation of the eigenvectors and the weight vectors might be opposite. This can be done as
follows:
R = (X*X’)/N ; % the autocorrelation matrix
[V D] = eig(R) ;
dd = diag(D)
d = flipud(dd(p-m+1:p, :)) ;
VV = fliplr( V(:, p-m+1:p)) ;
WV = W*VV

Now, d contains m largest eigenvalues, and VV is a p×m matrix of respective eigenvectors of the
input correlation matrix.
In order to verify that the weight matrix has converged to m principal directions we calculate all possible
inner products between all m weight vectors and m eigenvectors. The m×m matrix WV stores these
products. The diagonal terms of this matrix should ideally be equal to ±1, whereas the off-diagonal terms
should be zero. In our example, we have;
WV = W*VV = 1.0004 0.0308 -0.0029 0.0164

0.0059 0.9972 -0.0465 -0.0316
0.0039 -0.0199 -1.0029 -0.0001
-0.0022 0.0353 0.0100 -0.9860

which looks as a sensible approximation.

The next test is to check that the variance of the output signals is equal to the eigenvalues of the input
correlation matrix.
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yy = W*X ; % the output signals m by N
vy = var(yy’)’ ;

[ d vy ]
2.2875 2.2913
0.1575 0.1571
0.1138 0.1147
0.0424 0.0415

Indeed, the approximation seems to be satisfactory.
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In order to obtain the compressed image, the matrix of output vectors Y = yy is transformed first into a
reconstructed input matrix X̂= Xr

X̂ = W ′ · Y (6.18)

The reconstructed input matrix can now be re-arranged into r × c image blocks. This can be done in the
following way:

Xr = W’*yy ;
Imr = vc2blkM(Xr, r, rr) ;
Imr = round(mc*Imr/max(max(Imr))) ;
figure(3), image(Imr), colormap(gray(mc))

The original and compressed images are shown in Figure 6–8.

Figure 6–8: The original and compressed images.
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7 Competitive Neural Networks

The basic competitive neural network consists of two layers of neurons:

• The similarity-measure layer,

• The competitive layer, also known as a “Winner-Takes-All” (WTA) layer

- D(x, W ) - WTA -o o o
x(n) d(n) y(n)

p m m

Learning
Law

Decoding part

Encoding part

@
@

@@I

-

r

�

r

Figure 7–1: The structure of the competitive neural network

The similarity-measure layer contains an m× p weight matrix, W , each row associated with one
neuron.

This layer generates signals d(n) which indicate the similarity between the current input vector x(n) and
each synaptic vector wj(n).

The competitive layer generates m binary signals yj. This signal is asserted “1” for the neuron j-th
winning the competition, which is the one for which the distance signal dj attains minimum.

In other words, yj = 1 indicates that the j-th weight vector, wj(n), is most similar to the current input
vector, x(n).
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7.1 The similarity-Measure Layer

The detailed structure of the similarity-measure layer depends on the specific measure employed.
Let

d = D(x,w)

denote a distance, or similarity measure between two vectors, x and w. The following measures can be
taken into considerations:

• The most obvious similarity measure is the Euclidean norm, that is, the magnitude of the difference
vector, δ,

������������:

�
�

�
�

�
��

HHH
HHHY δ = x−w

w

x

d = ||x−w|| = ||δ|| =
√
δ2
1 + . . . + δ2

p =
√
δT · δ

Such a measure is relatively complex to calculate.

• The square of the Euclidean norm:

d = ||x−w||2 = ||δ||2 =
p∑

j=1
δ2
j = δT · δ

The square root has been eliminated, hence calculations of the similarity measure have been simplified.

• The Manhattan distance, that is, the sum of absolute values of the coordinates of the difference vector

d =
p∑

j=1
|δj| = sum(abs(δ))
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• The projection of x on w. This is the simplest measure of similarity of the normalised vectors:

-�
�
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�
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B
B

B
B

B
B

B
B
BM

w

x δ

α�︸ ︷︷ ︸
d

d =
wT

||w||
· x = ||x|| · cos α

For normalised vectors, when ||w|| = ||x|| = 1

we have
d = cos α ∈ [−1, +1]

and also

if d = +1 then ||δ|| = 0 vectors are identical

if d = 0 then ||δ|| =
√

2 vectors are orthogonal

if d = −1 then ||δ|| = 2 vectors are opposite

In general, we have

||δ||2 = (x−w)T (x−w) = xTx− 2xTw + wTw = ||x||2 + ||w||2 − 2wTx

Hence, for normalised vectors, the projection similarity measure, d, can be expressed as follows

d = wTx = 1− 1

2
||δ||2
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Normalisation of the input vectors can be achieved without any loss of information by adding another
dimension to the input space during preprocessing of the input data.

Assume that (p− 1)-dimensional input vectors, x̂(n), have been already scaled into the [−1, +1] range,
that is,

||x̂(n)|| ≤ 1 ∀(n = 1, . . . , N)

If we add the pth component, xp to x̂, we obtain a p-dimensional vector, x and we can write the
following relationship

||x(n)||2 = ||x̂(n)||2 + x2
p(n)

Now, in order to normalise all p-dimensional vectors, x, the pth components must be calculated as follows

x2
p(n) = 1− ||x̂(n)||2 ∀(n = 1, . . . , N)

This operation is equivalent to the projection of the input data from the (p− 1)-dimensional hyper-plane up
onto the p-dimensional unity hyper-sphere, as illustrated in Figures 7–2 and 7–3.
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Figure 7–2: Normalisation of 1-D input data by projection onto a unity circle
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Figure 7–3: Normalisation of 2-D input data by projection onto a unity sphere
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For the normalised vectors the similarity-measure layer is linear, that is,

d = W · x

The structure of the competitive neural network which employs projections as the similarity measures is
illustrated in Figure 7–4 in the form of a signal-flow block-diagram and the dendritic diagram.
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Figure 7–4: The structure of the similarity-measure layer for the normalised vectors

The greater the signal dj(n) is, the more similar is the jth weight vector, wj to the current input signal
x(n).
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7.2 The Competitive Layer

The competitive layer, also known as the MinNet (MaxNet), or the “Winner-Takes-All” (WTA) network,
generates binary output signals, yj, which, if asserted, point to the winning neuron, that is, the one with
the weight vector being closest to the current input vector:

yj =


1 if j = arg min

k
D(x,wk)

0 otherwise

In other words, the MaxNet (MinNet) determines the largest (smallest) input signal, dj = D(x,wj).

The competitive layer is, in itself, a recurrent neural network with the predetermined and fixed feedback
connection matrix, M . The matrix M has the following structure:

M =



1
. . . −α

−α . . .
1


where α < 1 is a small positive constant. Such a matrix describes a network with a local unity feedback,
and a feedback to other neurons with the connection strength −α.
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The MaxNet network

The MaxNet network is an implementation of the competitive layer described by the following block
diagram

-
d · δ(n)
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6

s(n) s(n + 1)
M

��
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y(n)

Figure 7–5: The block-diagram of the MaxNet network (competitive layer)

The input vector, d, is active only at the initial time, n = 0, which is accomplished by means of the delta
function

δ(n) =

 1 for n = 0 (initial condition)
0 for n 6= 0

The state equation, which describes how the state vector, s(n), evolves with time, can be written in the
following form

s(n + 1) = M · r(n) + d · δ(n)

where, the feedback signals r(n), are formed by clipping out the negative part of the state signals, that is,

rj(n) = max(0, sj(n)) =

 sj(n) for sj(n) ≥ 0

0 for sj(n) < 0
for j = 1, . . . ,m
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Finally, the binary output signals y(n), are formed as follows

yj(n) =

 1 for rj(n) > 0

0 for rj(n) = 0
for j = 1, . . . ,m

Alternatively, we can evaluate the state signals as:

s(1) = d

r(n) = max(0, s(n))

sj(n + 1) = rj(n)− α
∑
k 6=j

rk , for n > 1 and j = 1, . . . ,m

At each step n, signals sj(n + 1) consists of the self-excitatory contribution, rj(n), and a total lateral
inhibitory contribution, α

∑
k 6=j

rk.

After a certain number of iterations all rk signals but the one associated with the largest input signal, dj,
are zeros.
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Example

Let α = 0.2 and m = 8. The feedback signals r(n) can be calculated as follows:

r(1) − r(2) − r(3) − r(4) − r(5) − r(6)

7.3 6.98 .32 .99 0 ∗ 0 ∗ 0 ∗ 0

4.2 7.60 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0

9.6 6.52 3.08 .44 2.64 .24 2.4 .13 2.27 .04 2.23

.7 8.30 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0

5.5 7.34 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0

2.9 7.86 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0

8.6 6.72 1.88 .68 1.20 .53 .67 .48 .19 .45 0

3.4 7.76 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0

The columns marked ’−’ represent the total inhibitory contribution.
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Dendritic view: Signal-flow view:
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Figure 7–6: The dendritic and the signal-flow views of the competitive layer

Note the unity self-excitatory connections, and the lateral inhibitory connections.
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7.3 Unsupervised Competitive Learning

The objective of the competitive learning is to adaptively quantize the input space, that is, to perform
vector quantization of the input space

It is assumed that the input data is organised in, possibly overlapping, clusters. Each synaptic vector, wj,
should converge to a centroid of a cluster of the input data.
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Figure 7–7: An example of a 2-D pattern with three clusters of data

In other words, the input vectors are categorized into m classes (clusters), each weight vector representing
the center of a cluster.
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It is said that such a set of weight vectors describes vector quantization also known as Voronoi (or
Dirichlet) tessellation of the input space.

2−D Vector Quantisation

Figure 7–8: Example of Voronoi tessellation (vector quantization) of a 2-D space.

The space is partitioned into polyhedral regions with centres represented by weight vectors (dots in
Figure 7–8).
The boundaries of the regions are planes perpendicularly bisecting lines joining pairs of centres (prototype
vectors) of the neighbouring regions.

A very important application of the vector quantization is in data coding/compression. In this context the
set of weights (prototype vectors) is referred to as a codebook.

We can find a set of prototype vectors with competitive learning algorithms.
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A simple competitive learning

A simple competitive learning can be describe as follow:

• Weight vectors are usually initialise with n randomly selected input vectors:

wj(0) = xT (rand(j))

• For each input vector, x(n), determine the winning neuron, j for which its weight vector, wj(n), is
closest to the input vector. For this neuron, yj(n) = 1.

• Adjust the weight vector of the winning neuron, wj(n), in the direction of the input vector, x(n); do
not modify weight vectors of the loosing neurons, that is,

∆wj(n) = η(n)yj(n)(xT (n)−wj(n))
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wj(n)
η(xT −wj(n))

• In order to arrive at a static solution, the learning rate is gradually linearly reduced, for example

η(n) = 0.1(1− n

N
)

A.P. Papliński 7–14
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Example — scripts Cmpti.m, Cmpts.m

In this example we consider vector quantization of the 2-D input space into m = 5 regions specified by m

weight vectors arranged in a 5× 2 weight matrix W .

We start with generation of a 2-D pattern consisting of m clusters of normally distributed points. Weights
are initialised with points from the data matrix X .

% Cmpti.m
% Initialisation of competitive learning
p = 2; m = 5 ; % p inputs, m outputs
clst = randn(p, m); % cluster centroids
Nk = 100; % points per cluster
N = m*Nk ; % total number of points
sprd = 0.2 ; % a relative spread of the Gaussian "blobs"
X = zeros(p,N+m); % X is p by m+N input data matrix
wNk = ones(1, Nk);
for k = 1:m % generation of m Gaussian "blobs"

xc = clst(:,k) ;
X(:,(1+(k-1)*Nk):(k*Nk))=sprd*randn(p,Nk)+xc(:,wNk) ;

end
[xc k] = sort(rand(1,N+m));
X = X(:, k) ; % input data is shuffled randomly
winit = X(:,1:m)’; % Initial values of weights
X = X(:,m+1:N+m); % Data matrix is p by N

In the script implementing a simple competitive learning algorithm we pass once over the data matrix,
aiming at weights to converge to the centres of Gaussian “blobs”.
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% Cmpts.m
W = winit ;
V = zeros(N, m, p); % to store all weights
V(1,:,:) = W ;
wnm = ones(m,1) ;
eta = 0.08 ; % learning gain
deta = 1-1/N ; % learning gain decaying factor
for k = 1:N % main training loop

xn = X(:,k)’ ;
% the current vector is compared to all weight vectors

xmw = xn(wnm,:)-W ;
[win jwin] = min(sum((xmw.ˆ2),2));

% the weights of the winning neurons are update
W(jwin,:) = W(jwin,:) + eta*xmw(jwin,:);
V(k,:,:) = W;

% eta = eta*deta ;
end

plot(X(1,:),X(2,:),’g.’,clst(1,:),clst(2,:),’ro’, ...
winit(:,1),winit(:,2),’bx’ , ...
V(:,:,1), V(:,:,2), ’b’, W(:,1),W(:,2) , ’r*’), grid

In Figure 7–9 there are four examples of data organised in five overlapping clusters. After one training
epoch, the weights converged to centroids of the clusters with varying degree of success.
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Figure 7–9: Simple competitive learning: ‘o’ – centroids of generated clusters, ‘×’ – initial weights, ‘*’ – Final weights
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7.4 Competitive Learning and Vector Quantization

• Competitive learning is used to create a codebook, that is a weight matrix, W , which stores the centers
of data clusters.

For a p-dimensional input space and m-neurons (size of the codebook) the structure of the codebook
(weight matrix, W ) is as follows

cluster
# W 1 · · · p

1 w1 w11 . . . w1p

2 w2 w21 . . . w2p
... ... ... W ...

m wm wm1 . . . wmp

• The codebook (weight matrix) describes the tessellation of the input space known as vector
quantization (VQ). For a 2-D input space the above concepts can be illustrated as in Figure 7–10.

• The codebook is created from a representative set of data using a competitive learning.
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Figure 7–10: Voronoi tessellation (vector quantization) of a 2-D space.

Vector quantization is used in data compression.

Given a codebook, W = [w1; . . . ;w1] the process of data compression can be described as follows:

1. For every input vector, x(n) find the closest codebook entry, that is the weight vector wjn, for which
the distance

|wjn − x(n)|

attains minimum. Then we identify that the input vector, x(n) belongs to the j-th cluster.

2. Replace all input data X = {x(n)}1:N by their corresponding indices J = {jn}1:N .
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Neuro-Fuzzy Comp. — Ch. 7 May 5, 2005

x(n)

jn

N� -

p

6

?

1
6

?

X:

J :

3. Transmit J instead of X . The codebook, W must be made known/transmitted to the receiver.

4. At the receiver, using a codebook, replace every jn with the corresponding wjn which will now
represent x(n). The representation error is:

εn = |wjn − x(n)|

The total squared error is

F =
N∑

n=1
ε2
n

In order to calculate the compression ratio, C, let us assume that

• Weights and input data are represented by B-bit numbers,

• The length of the codebook
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m ≤ 2b

that is, all cluster indices are b-bit numbers

Then,

• the total number of bits to represent the input data, that is, the size of X is

B × p×N

• The size of the compressed data, J , is

b×N

• The size of the codebook, W , is

B × p×m

• The compression ratio is:

C =
BpN

bN + Bpm
≈ Bp

b

For example, for B = 16, p = 12, b = 8

C ≈ 24

A.P. Papliński 7–21
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8 Self-Organizing Feature Maps

Self-Organizing Feature Maps (SOFM or SOM) also known as Kohonen maps or topographic maps were
first introduced by von der Malsburg (1973) and in its present form by Kohonen (1982).

According to Kohonen the idea of feature map formation can be stated as follows:

The spatial location of an output neuron in the topographic map corresponds to a particular
domain, or feature of the input data.

More specifically:

Self-Organizing Feature maps are competitive neural networks in which neurons are organized in
an l-dimensional lattice (grid) representing the feature space

The output lattice characterizes a relative position of neurons with regards to its neighbours, that is their
topological properties rather than exact geometric locations.

In practice, dimensionality of the feature space is often restricted by its its visualisation aspect and
typically is l = 1, 2 or 3.
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Example of a self-organizing feature map in which the input space is 3-dimensional (p = 3) and feature
space is 2-dimensional (l = 2). There are 12 neurons organized on a 3×4 grid, m = [3 4].

similarity−measure

x3
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y3,4
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d6
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d11

d12

x2x1

Winner−Takes−All

W M V

2−D lattice of neurons

Each neuron, yv in the above SOFM is characterized by its position in the lattice specified by a 2-D vector
v = [v1 v2], and by a 3-D weight vector wv = [w1v w2v w3v].

SOFM, as a competitive neural network, consists of a distance-measure layer and a competitive layer which
implements the MinNet algorithm through the lateral inhibitive and local self-excitatory connections.

During the competition phase (the MinNet), the winner is selected from all neurons in the lattice.
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A general structure of a Self-Organizing Feature Map can be presented in the following way:

and can be characterized by the following parameters:

p — dimensionality of the input space
l — dimensionality of the neuronal space
m — the total number of neurons
W — m × p matrix of synaptic weights
V — m × l matrix of topological positions of neurons

In subsequent considerations neurons will be identified either by their index k = 1, . . . ,m, or by their
position vector vk = V (k, :) on the neuronal grid, that is, in the feature space.

It can be observed that a SOM performs mapping from a p-dimensional input space to an l-dimensional
neuronal space.
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8.1 Feature Maps

A Feature Map aka Self-Organizing Map is a plot of synaptic weights in the input space in which
weights of the neighbouring neurons are joined by lines or plane segments (patches).

Example: 2-D input space, 1-D feature space

Consider a SOM neural network with two inputs (p = 2) and m outputs organized in a 1-D feature space:

Neurons are organized along an elastic
string, and

a feature map describes the mapping
from a 2-D input space into a 1-D
neuronal space.

Figure 8–1: A general structure of a (2-D,1-D) SOM and a feature map for a (2-D,1-D) SOM

Note that in the feature map the point representing the weight vector, wk, is joined by line segments with
points representing weights wk−1 and wk+1 an so no because neurons k − 1, k, and k + 1 are located in the
adjacent positions of the 1-D neurona lattice.
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Example: 2-D input space, 2-D feature space

Let us consider a SOFM with two inputs (p = 2) and m neurons arranged in a 2-D lattice as in Figure 8–2.
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Figure 8–2: A general structure of a (2-D,2-D) SOM and an example of a feature map describing mapping from
a 2-D input space into a 2-D neuronal space

Consider a neuron #5 located at the central vertex of the 3×3 neuronal lattice. The neuron has four
neighbours: #4, #6, and #2, #8. Therefore, in the feature maps the nodes w4,w6,w2,w8 will all be joint
with a line to the node w5. In addition, we can map triangular patches as shown in the Figure 8–2.

A.P. Papliński 8–5
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Plotting (2-D,2-D) feature maps with MATLAB

Consider a (2-D,2-D) SOM with p = 2 inputs and
m = 12 organized on a 3 × 4 neuronal lattice:

0 1 2 3 4 5
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1

2

3

4

v
2

v
1

The following MATLAB code can be used to generate an example of the weight and position matrices:

% SOM22.m
% 6 May 2005
% Plotting a 2-D Feature map in a 2-D input space

clear, close all
m = [3 4]; mm = prod(m) ; % p = 2 ;
% formation of the neuronal position matrix
[V2, V1] = meshgrid(1:m(2), 1:m(1)) ;
V = [V1(:), V2(:)] ;
% Example of a weight matrix
% W = V-1.4*rand(mm, 2) ;
W =[0.83 0.91; 0.72 2.01; 0.18 2.39; 2.37 0.06;

1.38 2.18; 1.41 2.82; 2.38 1.27; 2.06 1.77;
2.51 .61; 3.36 0.85; 3.92 2.05; 3.16 2.90 ] ;

[W V]

The resulting W and V matrices can
be as follows:

k W V

1 0.83 0.91 1 1
2 0.72 2.01 2 1
3 0.18 2.39 3 1
4 2.37 0.06 1 2
5 1.38 2.18 2 2
6 1.41 2.82 3 2
7 2.38 1.27 1 3
8 2.06 1.77 2 3
9 2.51 2.61 3 3

10 3.36 0.85 1 4
11 3.92 2.05 2 4
12 3.16 2.90 3 4
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figure(1)
% Plotting a feature map: grid method
FM1 = full(sparse(V(:,1), V(:,2), W(:,1))) ;
FM2 = full(sparse(V(:,1), V(:,2), W(:,2))) ;
FM = FM1+j*FM2;
plot(FM), hold on, plot(FM.’), plot(FM, ’*’), hold off
grid on
% the following section marks coordinates of each neuron
tt = ’w_{11}’ ; tt = tt(ones(mm,1),:) ;
tt(:,4:5) = [num2str(V(:,1),1) num2str(V(:,2),1)] ;
text(W(:,1)+0.05, W(:,2)+0.05, tt) ;
axs = axis ;
text(0.95*axs(2), 0.04*axs(2), ’x_1’);
text(0.04*axs(4), 0.95*axs(4), ’x_2’) ;
% print -f1 -depsc2 hSOM22g

figure(2)
% Plotting a feature map: colur patch method
pcolor(FM1, FM2, (FM1+FM2)) ;
axis([0 4 0 3])
grid on, colormap(hsv)
% the following section marks coordinates of each neuron
tt = ’w_{11}’ ; tt = tt(ones(mm,1),:) ;
tt(:,4:5) = [num2str(V(:,1),1) num2str(V(:,2),1)] ;
text(W(:,1)+0.05, W(:,2)+0.05, tt) ;
axs = axis ;
text(0.95*axs(2), 0.04*axs(2), ’x_1’);
text(0.04*axs(4), 0.95*axs(4), ’x_2’) ;
% print -f2 -depsc2 hSOM22p

The grid line version:
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The colour patches version:

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

w
11

w
21

w
31

w
12

w
22

w
32

w
13

w
23

w
33

w
14

w
24

w
34

x
1

x
2

A.P. Papliński 8–7
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8.2 Learning Algorithm for Self-Organizing Feature Maps

The objective of the learning algorithm for the SOFM neural networks is formation of the feature map
which captures of the essential characteristics of the p-dimensional input data and maps them on the
typically 1-D or 2-D feature space.
The learning algorithm captures two essential aspects of the map formation, namely, competition and
cooperation between neurons of the output lattice.

Competition is implemented as in competitive learning: each input vector x(n) is compared with each
weight vector from the weight matrix W and the position V (k(n), :) of the winning neuron k(n) is
established. For the winning neuron the distance

|xT (n) − W (k(n), :)|

attains minimum.

Cooperation All neurons located in a topological neighbourhood of the winning neurons k(n) will have
their weights updated usually with a strength Λ(j) related to their distance ρ(j) from the winning
neuron,

ρ(j) = |V (j, :) − V (k(n), :)| for j = 1, . . . ,m.

The neighbourhood function, Λ(j), is usually an l-dimensional Gausssian function:

Λ(j) = exp(−ρ2(j)

2σ2
)

where σ2 is the variance parameter specifying the spread of the Gaussian function.
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Example of a 2-D Gaussian neighbourhood function for a 40 × 30 neuronal lattice is given in
Figure 8–3.
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Figure 8–3: 2-D Gaussian neighbourhood function

Feature map formation is critically dependent on the learning parameters, namely, the learning gain, η, and
the spread of the neighbourhood function specified for the Gaussian case by the variance, σ2. In general,
both parameters should be time-varying, but their values are selected experimentally.

Usually, the learning gain should stay close to unity during the ordering phase of the algorithm which
can last for, say, 1000 iteration. After that, during the convergence phase, should be reduced to reach the
value of, say, 0.1.
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The spread of the neighbourhood function should initially include all neurons for any winning neuron and
during the ordering phase should be slowly reduced to eventually include only a few neurons in the
winner’s neighbourhood. During the convergence phase, the neighbourhood function should include only
the winning neuron.

The complete SOFM learning algorithm

The complete algorithm can be described as consisting of the following steps

1. Initialise:

(a) the weight matrix W with a random sample of m input vectors.

(b) the learning gain and the spread of the neighbourhood function.

2. for every input vector, x(n), n = 1, . . . , N :

(a) Determine the winning neuron, k(n), and its position V (k, :) as

k(n) = arg min
j

|xT (n) − W (j, :)|

(b) Calculate the neighbourhood function

Λ(n, j) = exp(−ρ2(j)

2σ2
)

where
ρ(j) = |V (j, :) − V (k(n), :)| for j = 1, . . . ,m.
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(c) Update the weight matrix as

∆W = η(n) · Λ(n) · (xT (n) − W (j, :))

All neurons (unlike in the simple competitive learning) have their weights modified with a strength
proportional to the neighbourhood function and to the distance of their weight vector from the
current input vector (as in competitive learning).

(d) During the ordering phase, shrink the neighbourhood until it includes only one neuron:

σ(n + 1) = σ(n) · δσ

(e) During the convergence phase, “cool down” the learning process by reducing the learning gain:

η(n + 1) = η(n) · δη

8.3 A demo script sofm.m

A MATLAB script, sofm.m, can be used to study the behaviour of the Kohonen learning algorithm which
creates self-organizing feature maps. A process of generation an example of 1-D and 2-D feature maps
using the sofm.m script is illustrated in Figures 8–4 and 8–5, respectively.

The first plot in Figure 8–4 represents a 2-D input space in which a uniformly distributed points form a
letter ‘A’. Subsequent plots illustrate the feature space from its initial to final form which is attained after
one pass through the training data. Neurons are organized in a 1-D lattice, their 2-D weight vectors
forming an elastic string which approximates two dimensional object ‘A’.
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Similarly, the plots in Figure 8–5 represent formation of a 2-D feature map approximating a 2-D triangle
from the input space.
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Figure 8–4: A 1-D Self-Organizing Feature Map
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Figure 8–5: A 2-D Self-Organizing Feature Map
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