
I 

..j 1 1 1 -1- 
1 ..j -.a - .a  .a 

T =  1 -..j ..j -.a .a 
1 -.j -..j .3 ..j 1 -1 ..j .j .3 ..j- 

- - -  
- -  
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(14) . 

T,, . i = 1.. . . .3. j = i .  f .  . . 3 .  A possible solution, obtained using 
the network described in [5], is: 

Functional Equivalence Between Radial Basis Function 
Networks and Fuzzy Inference Systems 

IV. CONCLUSIONS 

The concept of binary-valued invariant set has been introduced 
for continuous-time feedback neural networks with sigmoidal units, 
including, as a particular case, the Hopfield model. Using this concept, 
a theoretical result has been proved which extends to this class of 
networks a well known property of discrete-time networks with two- 
state neurons. This result can be exploited to develop a synthesis 
method based on techniques to solve linear inequalities. The synthesis 
method has been outlined, in the case of symmetric interconnections, 
and clarified using a five-neuron example. 
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J.-S. Roger Jang and C.-T. Sun 

Abstract-This letter shows that under some minor restrictions, the 
functional behavior of radial basis function networks (RBFN’s) and fuzzy 
inference systems are actually equivalent. This functional equivalence en- 
ables us to apply what has been discovered (learning rule, representational 
power, etc.) for one of the models to the other, and vice versa. It is of 
interest to observe that two models stemming from different origins turn 
out to be functional equivalent. 

I. INTRODUCTION 

This paper demonstrates the functional equivalence between radial 
basis function networks (RBFN’s) and a simplified class of fuzzy 
inference systems. Though these two models are motivated from 
different origins (RBFN’s from physiology and fuzzy inference 
systems from cognitive science), they share common characteristics 
not only in their operations on data, but also in their learning 
process to achieve desired mappings. We show that under some minor 
restrictions, they are functionally equivalent; the learning algorithms 
and the theorem on representational power for one model can be 
applied to the other, and vice versa. 

11. RADIAL BASIS FUNCTION NETWORKS 

The locally-tuned and overlapping receptive field is a well-known 
structure that has been studied in regions of cerebral cortex, the 
visual cortex, etc. Based on the biological receptive fields, Moody and 
Darken [6], [7] proposed a network structure, RBFN, that employs 
local receptive fields to perform function mappings. Fig. 1 shows the 
schematic diagram of an RBFN with five receptive field units; the 
output of cth receptive field unit (or hidden unit) is 

u ’ ~  = R,(.it)=R,(ll.ir-f<II/.~). i - 1 . 2  :... H (1)  

where .ir is an -\--dimensional input vector, (< is a vector with the 
same dimension as .?, H is the number of receptive field units, and 
R,( . ) is the Ith receptive field response with a single maximum at 
the origin. Typically, R,( . ) is chosen as a Gaussian function 

Thus the radial basis function computed by the ith hidden units is 
maximum when the input vector .F is near the center (< of that unit. 

The output of an RBFN can be computed in two ways. For the 
simpler one, as shown in Fig. 1, the output is the weighted sum of 
the function value associated with each receptive field: 

(3) 
I =  I , = I  

where j ,  is the function value, or strength, of ith receptive field. With 
the addition of lateral connections (not shown in Fig. 1) between the 
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receptive field units 
1 

’f 

Fig. 1. An RBFN. 

receptive field units, the network can produce the normalized response 
function as the weighted average of the strengths [ 6 ] :  

(4) 

To minimize the square errors between desired output and model 
output, several learning algorithms have been proposed to identify 
the parameters (6. cz. and f,) of an RBFN. Moody et al .  [ 6 ]  use 
a self-organizing techniques to find the centers ((;I ) and widths [ (r2 ) 
of the receptive fields, and then employ the supervised Adaline or 
LMS learning rule to identify f, . On the other hand, Chen et al. [ 11 
apply orthogonal least squares learning algorithm to determine those 
parameters. 

111. FUZZY IF-THEN RULES AND FUZZY INFERENCE SYSTEMS 

An example of Fuzzy if then rules (or fuzzy  conditional statement) 
is 

If press t rrr  i s  h i y h . t h p n  tw l t rme i s  .smu// 

where pressure and volume are linguistic variables [13], high and 
small are linguistic values (or linguistic labels) characterized by 
appropriate membership functions. Another type of fuzzy if-then rule, 
proposed by Takagi and Sugeno [ lo], has fuzzy sets involved only in 
the premise part. For instance, the dependency of that air resistance 
(force) on the speed of a moving object can be described as 

If i ,rlocity i s  h i y h . f h ~ n  f o r m  = I ;  * ( t~c~ loc i f y ) ’ .  

where high is the only linguistic label here, and the consequent part 
is described by a nonfuzzy equations of the input variable, velocity. 

Fuzzy inference systems are also known as fuzzy  rule based systems, 
fuzzy  models, fuzzy associative memories, or fuzzy  controllers when 
used as controllers. A fuzzy inference system is composed of a set 
of fuzzy if-then rules, a database containing membership functions of 
linguistic labels, and an inference mechanism called fuzzy  reasoning. 
Suppose we have a rule base consisting of two fuzzy if-then rules of 
Takagi and Sugeno’s type: 

Rule 1 : If SI is -41 and .r% is B I .  then  f l  = ~ I I . ~ I  + b ~ . r - ,  + C I .  

Rule 2 : If X I  is -42 and .r2 is L I Z .  then fz = rcz.rl + 0 2 . r . ~  + ca. 

then the fuzzy reasoning mechanism can be illustrated in Fig. 2(a) 
where the firing strength (or weight) of ith rule is obtained as the 
2’-norm (usually min. or multiplication operator) of the membership 
values on the premise part 

( 5 )  

Note that the overall output can be chosen either as the weighted 
sum of each rule’s output [9], [2] 

R 

( 6 )  f(?) = t l ~ z f ,  

Z=l 

or more conventionally, as the weighted average [lo] (as shown in 
Fig. 2 (a)) 

where R is the number of fuzzy if-then rules. 
Fuzzy modeling concerns the identification of the structure (number 

of rules, partition pattern, etc.) and parameters of fuzzy inference 
systems. Various methodologies of fuzzy modeling have been pro- 
posed in the past years. Takagi et al. [ l l ]  and Sugeno et al .  [8] 
employ nonlinear programming and heuristic search to identify both 
the structure and parameters. Hariawa et al .  [2] and Takagi et 
al .  [9] introduce feedfonvard neural networks into fuzzy inference 
systems and solve the parameter identification problems through 
neural network’s learning algorithm. Jang [4], [ 5 ] ,  [3] propose a 
more direct method which transforms the fuzzy inference system 
into a functional equivalent adaptive network (Fig. 2 (b)) and then 
employ both the back-propagation-type gradient descent to update 
premise parameters (which determine the shapes and positions of 
membership functions) and the least square method to identify 
consequent parameters (which specify the output of each rule). In 
the proposed adaptive network shown in Fig. 2 (b), there is no 
weight associated with each link and nodes in different layer can have 
different functions corresponding to each steps in the fuzzy reasoning 
mechanism. More specifically, layer 1 calculates membership values, 
layer 2 perform T-norm operator, layer 3 computes normalized 
weights, layer 4 derives the product of each rule’s output and 
corresponding normalized weight, and layer 5 sums its inputs as the 
overall output. For a more in-depth coverage, see [3]-[5]. 

Iv. FUNCTIONAL EQUIVALENCE AND ITS IMPLICATION 

From (3), (4), ( 6 ) ,  and (7), it is obvious that the functional 
equivalence between an RBFN and a fuzzy inference system can 
be established if the following is true. 

1) The number of receptive field units is equal to the number of 
fuzzy if-then rules. 

2)  The output of each fuzzy if-then rule is composed of a constant. 
(Namely, n l .  h l .  u2, and b2 are zeros in Fig. 2 (a).) 

3) The membership functions within each rule are chosen as 
Gaussian functions with the same variance. 

4) The T-norm operator used to compute each rule’s firing strength 
is multiplication. 

5 )  Both the RBFN and the fuzzy inference system under con- 
sideration use the same method (i.e., either weighted average or 
weighted sum) to derive their overall outputs. 

Under these conditions, the membership functions of linguistic 
labels .41 and B1 in Fig. 2 (a) can be expressed as 

Hence the firing strength (or weight) of rule 1 (the output of the first 
node in layer 2) is 

(9) 
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f I = afipbfific, 

f 2  = a9/ebs2+c2 

% f l +  w2f2 

= WFf 1 + wtf2 

f = w, + w2 

layer 1 layer 4 

4 layer2 layer3 
L-L I I 

5. 
x,x2 layer5 

( b) 
Fig. 2. (a) fuzzy reasoning; (b) adaptive network representation. 

where cy = ( C A ~ , C B ~ ) ,  the center of the corresponding receptive 
field. The same argument applies to w2. Therefore under the above 
constraints, the output of Fig. 2(a) or (b) is exactly the same as 
an RBFN (with two receptive field units) where the receptive field 
units and output units are functionally equivalent to the cascades 
of layer 1 , 2  and layer 3,4,5, respectively, in Fig. 2. Without the 
above constraints, RBFN’s are only a special case of fuzzy inference 
systems. 

Because of the functional equivalence shown above, we can apply 
what is known about one model to the other, and vice versa. In 
other words, we can apply the learning rules of RBFN’s mentioned 
in Section I1 to fuzzy inference systems, and the learning rules of 
fuzzy inference systems in Section I11 can also be utilized to find 
the structure (i.e., number of receptive field units) and parameters of 
RBFN’s. Moreover, recently Wang [12] proved that a fuzzy inference 
system with membership functions of scaled Gaussian functions 

(x - c)2 
pa(z)  = IC * exp [-,I-] 

is actually a universal approximator that can approximate any nonlin- 
ear input-output data arbitrarily well on a compact set. This argument 
can be readily applied to RBFN’s if the receptive field response in 
(2) is also scaled by a constant. 

V. CONCLUDING REMARKS 

In this letter, we briefly introduce the structure and learning rules 
of RBFN’s and fuzzy inference systems. Some minor restrictions 
that renders the functional equivalence of these two models are 
also discussed. Due to the equivalence of these models, it becomes 
straightforward to apply one model’s learning rules to the other, and 
vice versa. Furthermore, we can claim both models are universal ap- 
proximators if the receptive field responses and membership functions 
are chosen as a scaled version of Gaussian functions. It is of interest to 
observe that these two models, though derived from different origins 

and each with different interpretations on its process of data, turn out 
to be functionally equivalent. 
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Efficient Implementation of the 
Boltzmann Machine Algorithm 

A. DeGloria, P. Faraboschi, and M. Olivieri 

Abstract- The availability of efficient software implementations of 
neural network algorithms is a key task in the development phase to 
evaluate the network results in real cases. In this letter we address 
the problem of optimizing the sequential algorithm for the Boltzmann 
Machine (BM). We present a solution which is based on the locality 
properties of the algorithm and enables a very efficient computation 
of the cost difference between two configurations. Since the algorithm 
performance depends on the number of accepted state transitions in 
the annealing process, we formulate a theoretical procedure to estimate 
the acceptance probability of a state transition. In addition, we provide 
experimental data on a well-known optimization problem (TSP) to have 
a numerical verification of the theory, and to show that the proposed 
solution obtains a speedup between 3 and 4 in comparison with the 
traditional algorithm. 

I. INTRODUCTION 

The Boltzmann Machine (BM) is an interesting neural network 
which can be used in the fields of combinatorial optimization prob- 
lems [ l ] ,  [2], [ lo],  knowledge representation and learning [8]. Rigor- 
ous mathematical foundations show convergence properties that can 
be analyzed by using techniques derived from physics [3]. 

The huge runtime requirements of the BM have limited its appli- 
cations in real cases. Long simulation runtime is mainly due to the 
annealing task performed by the network, whose basic operation is 
the computation of the cost difference between two configurations. 

Although parallel hardware approaches [4], [7] are the best solu- 
tion for practical applications, efficient implementations of the BM 
algorithm on conventional workstations are undoubtedly very useful. 
When approaching a new problem, there is always an algorithm 
development stage to verify the validity of the BM technique and 
to tune the methods for weight computation. In this context, a 
fast sequential BM implementation becomes a primary subject of 
investigation, and solutions which introduce improvements in the 
BM algorithm without violating the BM theory can be significantly 
interesting. 

In this letter, we analyze the problem of accelerating the BM 
algorithm on conventional hardware, and we show a technique to 
restructure the algorithm which reaches a speedup around three 
with respect to standard implementations. This is possible by means 
of the introduction of a different method to compute the cost 
difference between two configurations based on locality properties 
of the neurons. 
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After a brief presentation of the BM model and the standard algo- 
rithm, we show the proposed implementation of the BM, an analytical 
estimation of the expected performance, and some experimental 
results on the Traveling Salesman Problem (TSP). 

11. THE FORMAL MODEL OF THE BM 

For reader’s convenience, we present an outline of the formal 
model of the BM, following [3] with minor modifications. 

A BM consists of a number -Y of logical neurons, that can be 
represented by an undirected graph composed of vertices connected 
by edges. A number is associated with each vertex, denoting the state 
of the corresponding logical neuron, i.e., 0 or 1, corresponding to 
“or or “on 9 )  , respectively. A configuration k of the BM is uniquely 
defined by the states of all individual vertices. The state of the ith 
vertex in configuration k is denoted by S,‘”. 

An edge between vertices i and j defined to be activated in a 
given configuration k if s~~)s;‘)  = 1. 
A weight (it;,, ) is associated with each edge, determining the 
strength of the connection between the vertices. 
A consensus function ( CI, ) of a configuration k measures the 
desirability of all the activated edges in the configuration, and 
can be defined as: 

From a given configuration k ,  a neighboring configuration k ,  can be 
obtained by changing the state of the vertex i ,  so that: 

The corresponding difference in the consensus Ackkt = C k ,  - Ch 
is given by: 

where 

(3) 

(4) 
1 J J f l  

is the so-called “local field” of neuron / and W,, is the bias of neuron 

The difference of consensus ACA h ,  is completely determined by 
the states of the neurons j connected to 7 and by their corresponding 
weights, so that it can be computed locally, thus allowing a parallel 
execution [7]. 

The probability to accept a transition ( k .  k z )  with cost A C ‘ h  h ,  is 
given by: 

1 .  

1 + e - T  

where T is a cooling parameter, real and positive, whose initial value 
TO is initialized on the basis of the E,, lW8Jl [l], and TJ+l = 3.T,, 
3 < 1 and /3 “close” to 1. The decrement rule for calculating the next 
value of the cooling parameter T3+1 is applied each time the unit has 
completed a number li of trials. 

The annealing process begins with T = To and several (Ii) 
consecutive trials of transitions ( k .  k ,  ) are randomly tossed according 
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