
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993 b65

ANFIS : Adap tive-Ne twork-Based Fuzzy
Inference System

Jyh-Shing Roger Jang

Abstract-The architecture and learning procedure underlying
ANF’IS (adaptive-network-based fuzzy inference system) is pre-
sented, which is a fuzzy inference system implemented in the
framework of adaptive networks. By using a hybrid learning
procedure, the proposed ANFIS can construct an input-output
mapping based on both human knowledge (in the form of fuzzy
if-then rules) and stipulated input-output data pairs. In the sim-
ulation, the ANFIS architecture is employed to model nonlinear
functions, identify nonlinear components on-linely in a control
system, and predict a chaotic time series, all yielding remarkable
results. Comparisons with artificial neural networks and earlier
work on fuzzy modeling are listed and discussed. Other extensions
of the proposed ANFIS and promising applications to automatic
control and signal processing are also suggested.

I. INTRODUCTION

YSTEM MODELING based on conventional mathemati- S cal tools (e.g., differential equations) is not well suited for
dealing with ill-defined and uncertain systems. By contrast,
a fuzzy inference system employing fuzzy if-then rules can
model the qualitative aspects of human knowledge and reason-
ing processes without employing precise quantitative analyses.
This fuzzy modeling or fuzzy identification, first explored
systematically by Takagi and Sugeno [54], has found numerous
practical applications in control [36], [46], prediction and
inference [16], [17]. However, there are some basic aspects
of this approach which are in need of better understanding.
More specifically:

1) No standard methods exist for transforming human
knowledge or experience into the rule base and database
of a fuzzy inference system.

2) There is a need for effective methods for tuning the
membership functions (MF’s) so as to minimize the
output error measure or maximize performance index.

In this perspective, the aim of this paper is to suggest a novel
architecture called Adaptive-Network-based Fuzzy Inference
System, or simply ANFIS, which can serve as a basis for
constructing a set of fuzzy if-then rules with appropriate
membership functions to generate the stipulated input-output
pairs. The next section introduces the basics of fuzzy if-
then rules and fuzzy inference systems. Section I11 describes
the structures and learning rules of adaptive networks. By
embedding the fuzzy inference system into the framework of

Manuscript received July 30, 1991; revised October 27, 1992. This work
was supported in part by NASA Grant NCC 2-275, in part by MICRO Grant
92-180, and in part by EPRI Agreement RP 8010-34.

The author is with the Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA 94720

IEEE Log Number 9207521.

adaptive networks, we obtain the ANFIS architecture which
is the backbone of this paper and it is covered in Section IV.
Application examples such as nonlinear function modeling and
chaotic time series prediction are given in Section V. Section
VI concludes this paper by giving important extensions and
future directions of this work.

11. FUZZY IF-THEN RULES AND FUZZY INFERENCE SYSTEMS

A. Fuzzy If-Then Rules

Fuzzy if-then rules or f u z zy conditional statements are ex-
pressions of the form IF A THEN B, where A and B are labels
of fuzzy sets [66] characterized by appropriate membership
functions. Due to their concise form, fuzzy if-then rules are
often employed to capture the imprecise modes of reasoning
that play an essential role in the human ability to make
decisions in an environment of uncertainty and imprecision.
An example that describes a simple fact is

If pressure is high, then volume is small

where pressure and volume are linguistic variables [67], high
and small are linguistic values or labels that are characterized
by membership functions.

Another form of fuzzy if-then rule, proposed by Takagi
and Sugeno [53], has fuzzy sets involved only in the premise
part. By using Takagi and Sugeno’s fuzzy if-then rule, we can
describe the resistant force on a moving object as follows:

If velocity is high, then force = IC *
where, again, high in the premise part is a linguistic label
characterized by an appropriate membership function. How-
ever, the consequent part is described by a nonfuzzy equation
of the input variable, velocity.

Both types of fuzzy if-then rules have been used extensively
in both modeling and control. Through the use of linguistic
labels and membership functions, a fuzzy if-then rule can
easily capture the spirit of a “rule of thumb” used by humans.
From another angle, due to the qualifiers on the premise parts,
each fuzzy if-then rule can be viewed as a local description
of the system under consideration. Fuzzy if-then rules form a
core part of the fuzzy inference system to be introduced below.

A. F u z y Inference Systems

Fuzzy inference systems are also known as fuzzy-rule-based
systems, fuzzy models, fuzzy associative memories (FAM), or
fuzzy controllers when used as controllers. Basically a fuzzy

0018-9472/93$03.00 0 1993 IEEE

666 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993

knowed@3b.r,
input output

Fig. 1. Fuzzy inference system.

inference system is composed of five functional blocks (see
Fig. 1):

a rule base containing a number of fuzzy if-then rules;
a database which defines the membership functions of

a decision-making unit which performs the inference

a fuzzijication interface which transforms the crisp inputs

a defuzzification interface which transform the fuzzy

Usually, the rule base and the database are jointly referred to
as the knowledge base.

The steps of fuzzy reasoning (inference operations upon
fuzzy if-then rules) performed by fuzzy inference systems are:

the fuzzy sets used in the fuzzy rules;

operations on the rules;

into degrees of match with linguistic values;

results of the inference into a crisp output.

Compare the input variables with the membership func-
tions on the premise part to obtain the membership
values (or compatibility measures) of each linguistic
label. (This step is often called fuzzification).
Combine (through a specific T-norm operator, usually
multiplication or min.) the membership values on the
premise part to get firing strength (weight) of each rule.
Generate the qualified consequent (either fuzzy or crisp)
of each rule depending on the firing strength.
Aggregate the qualified consequents to produce a crisp
output. (This step is called defuzzification.)

Several types of fuzzy reasoning [23], [24] have been
proposed in the literature. Depending on the types of fuzzy
reasoning and fuzzy if-then rules employed, most fuzzy in-
ference

Type 1 :
2):

I Type 2:

Type 3:

systems can be classified into three types (see Fig.

The overall output is the weighted average of each
rule’s crisp output induced by the rule’s firing strength
(the product or minimum of the degrees of match with
the premise part) and output membership functions.
The output membership functions used in this scheme
must be monotonic functions [S I .
The overall fuzzy output is derived by applying
“ m a ” operation to the qualified fuzzy outputs (each
of which is equal to the minimum of firing strength
and the output membership function of each rule).
Various schemes have been proposed to choose the
final crisp output based on the overall fuzzy output;
some of them are centroid of area, bisector of area,
mean of maxima, maximum criterion, etc [23], [24].
Takagi and Sugeno’s fuzzy if-then rules are used [53].
The output of each rule is a linear combination of

input variables plus a constant term, and the final
output is the weighted average of each rule’s output.

Fig. 2 utilizes a two-rule two-input fuzzy inference system
to show different types of fuzzy rules and fuzzy reasoning
mentioned above. Be aware that most of the differences come
from the specification of the consequent part (monotonically
non-decreasing or bell-shaped membership functions, or crisp
function) and thus the defuzzification schemes (weighted av-
erage, centroid of area, etc) are also different.

111. ADAPTIVE NETWORKS: ARCHITECTURES
AND LEARNING ALGORITHMS

This section introduces the architecture and learning pro-
cedure of the adaptive network which is in fact a superset
of all kinds of feedforward neural networks with supervised
learning capability. An adaptive network, as its name implies,
is a network structure consisting of nodes and directional links
through which the nodes are connected. Moreover, part or all
of the nodes are adaptive, which means their outputs depend
on the parameter(s) pertaining to these nodes, and the learning
rule specifies how these parameters should be changed to
minimize a prescribed error measure.

The basic learning rule of adaptive networks is based on
the gradient descent and the chain rule, which was proposed
by Werbos [61] in the 1970’s. However, due to the state
of artificial neural network research at that time, Werbos’
early work failed to receive the attention it deserved. In the
following presentation, the derivation is based on the author’s
work [ll], [lo] which generalizes the formulas in [39].

Since the basic learning rule is based the gradient method
which is notorious for its slowness and tendency to become
trapped in local minima, here we propose a hybrid learning rule
which can speed up the learning process substantially. Both the
batch learning and the pattern learning of the proposed hybrid
learning rule discussed below.

A. Architecture and Basic Learning Rule

An adaptive network (see Fig. 3) is a multilayer feedforward
network in which each node performs a particular function
(node function) on incoming signals as well as a set of
parameters pertaining to this node. The formulas for the node
functions may vary from node to node, and the choice of each
node function depends on the overall input-output function
which the adaptive network is required to carry out. Note
that the links in an adaptive network only indicate the flow
direction of signals between nodes; no weights are associated
with the links.

To reflect different adaptive capabilities, we use both circle
and square nodes in an adaptive network. A square node
(adaptive node) has parameters while a circle node (fixed node)
has none. The parameter set of an adaptive network is the
union of the parameter sets of each adaptive node. In order to
achieve a desired input-output mapping, these parameters are
updated according to given training data and a gradient-based
learning procedure described below.

Suppose that a given adaptive network has L layers and
the kth layer has #(k) nodes. We can denote the node in the

JANG: ANFIS-ADAPTIVE-NETWORK-BASED FUZZY INTERENCE SYSTEM

~

667

z2=px+qy+r

I z z

t

h-JdOr-4

Fig. 2. Commonly used fuzzy if-then rules and fuzzy reasoning mechanisms.

ith position of the kth layer by (k,& and its node function
(or node output) by Of. Since a node output depends on its
incoming signals and its parameter set, we have

(1)
ok-1 0; = os(o:-', . . . #(k-l)'% b, c,. . .)

where a, b, c, etc., are the parameters pertaining to this node.
(Note that we use Of as both the node output and node
function.)

Assuming the given training data set has P entries, we
can define the error measure (or energy function) for the
pth (1 5 p 5 P) entry of training data entry as the sum of
squared errors:

m=l

where Tm,, is the mth component of pth target output vector,
and O;,+ is the mth component of actual output vector
produced by the presentation of the pth input vector. Hence
the overall error measure is E =

In order to develop a learning procedure that implements
gradient descent in E over the parameter space, first we have
to calculate the error rate dE,/dO for pth training data and
for each node output 0. The error rate for the output node at
(L,i) can be calculated readily from (2):

P
E,.

(3)

For the internal node at (k,i), the error rate can be derived
by the chain rule:

(4)

where 1 5 k 5 L - 1. That is, the error rate of an internal node
can be expressed as a linear combination of the error rates of
the nodes in the next layer. Therefore for all 1 5 k 5 L and
1 5 i 5 #(k), we can find dE,/dOt, by (3) and (4).

v
Fig. 3. An adaptive network.

Now if a is a parameter of the given adaptive network, we
have

(5)
8EP dE, dO*

- c ao.--&'
da O*ES

where 5' is the set of nodes whose outputs depend on a. Then
the derivative of the overall error measure E with respect to
a is

Accordingly, the update formula for the generic parameter
a is

dE Aa = -q- d a (7)

in which 77 is a learning rate which can be further expressed as
k

where k is the step size, the length of each gradient transition
in the parameter space. Usually, we can change the value of
k to vary the speed of convergence. The heuristic rules for
changing k are discussed in the Section V where we report
simulation results.

Actually, there are two learning paradigms for adaptive
networks. With the batch learning (or off-line learning), the
update formula for parameter a is based on (6) and the
update action takes place only after the whole training data
set has been presented, i.e., only after each epoch or sweep.

668 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993

X

f

Y

(b)

Fig. 4. (a) Type-3 fuzzy reasoning. (b) Equivalent ANFIS (type-3 ANFIS).

Fig. 5.

X

Y

(b)

(a) Type-1 fuzzy reasoning. (b) Equivalent ANFIS (type-1

(b)

(a) Type-1 fuzzy reasoning. (b) Equivalent ANFIS (type-1

f

ANFIS).

On the other hand, if we want the parameters to be updated
immediately after each input-output pair has been presented,
then the update formula is based on'(5) and it is referred to
as the pattern learning (or on-line learning). In the following
we will derive a faster hybrid learning rule and both of its
learning paradigms.

B. Hybrid Learning Rule: Batch (Off-Line) Learning

Though we can apply the gradient method to identify the
parameters in an adaptive network, the method is generally
slow and likely to become trapped in local minima. Here
we propose a hybrid learning rule [lo] which combines the
gradient method and the least squares estimate (LSE) to
identify parameters.

For simplicity, assume that the adaptive network under
consideration has only one output

output = F(T, S) (9)

1 ----

&A-

7

(b)

Fig. 6. (a) Two-input type-3 ANFIS with nine rules. (b) Corresponding fuzzy
subspaces.

where I' is the set of input variables and S is the set of
parameters. If there exists a function H such that the composite
function H o F is linear in some of the elements of S , then
these elements can be identified by the least squares method.
More formally, if the parameter set S can be decomposed into
two sets

s = SI Er3 s 2 (10)

(where
the elements of 5'2, then upon applying H to (9), we have

represents direct sum) such that H o F is linear in

H (output) = H o F (I', S) (1 1)

which is linear in the elements of 5'2. Now given values of
elements of SI, we can plug P training data into (11) and
obtain a matrix equation:

A X = B (12)

where X is an unknown vector whose elements are parameters
in 5'1. Let lS2l = M , then the dimensions of A, X and B are
P x M , M x 1 and P x 1, respectively. Since P (number
of training data pairs) is usually greater than M (number
of linear parameters), this is an overdetermined problem and
generally there is no exact solution to (12). Instead, a least
squares estimate (LSE) of X , X * , is sought to minimize the

JANG: MIS-ADAPTIVE-NETWORK-BASED FUZZY INTERENCE SYSTEM 669

squared error / (A X - BJI2. This is a standard problem that
forms the grounds for linear regression, adaptive filtering and
signal processing. The most well-known formula for X * uses
the pseudo-inverse of X :

x* = (A ~ A) - ~ A ~ B (13)

where AT is the transpose of A , and (ATA)- lAT is the
pseudo-inverse of A if A T A is non-singular. While (13)
is concise in notation, it is expensive in computation when
dealing with the matrix inverse and, moreover, it becomes ill-
defined if A T A is singular. As a result, we employ sequential
formulas to compute the LSE of X. This sequential method
of LSE is more efficient (especially when M is small) and
can be easily modified to an on-line version (see below) for
systems with changing characteristics. Specifically, let the ith
row vector of matrix A defined in (12) be a? and the ith
element of B be bT, then X can be calculated iteratively using
the sequential formulas widely adopted in the literature [l],
P I , P61, WI:

where Si is often called the covariance matrix and the least
squares estimate X * is equal to X p . The initial conditions to
bootstrap (14) are X O = 0 and SO = 71, where y is a positive
large number and I is the identity matrix of dimension M x M.
When dealing with multi-output adaptive networks (output in
(9) is a column vector), (14) still applies except that bT is the
ith rows of matrix B.

Now we can combine the gradient method and the least
squares estimate to update the parameters in an adaptive
network. Each epoch of this hybrid learning procedure is
composed of a forward pass and a backward pass. In the
forward pass, we supply input data and functional signals go
forward to calculate each node output until the matrices A
and B in (12) are obtained, and the parameters in S2 are
identified by the sequential least squares formulas in (14).
After identifying parameters in S2, the functional signals keep
going forward till the error measure is calculated. In the
backward pass, the error rates (the derivative of the error
measure w.r.t. each node output, see (3) and (4)) propagate
from the output end toward the input end, and the parameters
in 5’1 are updated by the gradient method in (7).

For given fixed values of parameters in S I , the parameters in
S2 thus found are guaranteed to be the global optimum point
in the 5’2 parameter space due to the choice of the squared
error measure. Not only can this hybrid learning rule decrease
the dimension of the search space in the gradient method, but,
in general, it will also cut down substantially the convergence
time.

Take for example an one-hidden-layer back-propagation
neural network with sigmoid activation functions. If this neural
network has p output units, then the output in (9) is a column
vector. Let H(.) be the inverse sigmoid function

H (z) = In(A)
1 - x

TABLE I
Two PASSES IN THE HYBRID LEARNING PROCEDURE FOR ANFIS

- Forward Pass Backward Pass
Premise Parameters Fixed Gradient Descent

Consequent Parameters Least Squares Estimate Fixed
Signals Node Outouts Error Rates

then (11) becomes a linear (vector) function such that each el-
ement of H(outpvt) is a linear combination of the parameters
(weights and thresholds) pertaining to layer 2. In other words,

S1 = weights and thresholds of hidden layer
S2 = weights and thresholds of output layer.
Therefore we can apply the back-propagation learning rule

to tune the parameters in the hidden layer, and the parameters
in the output layer can be identified by the least squares
method. However, it should be keep in mind that by using
the least squares method on the data transformed by H(.) , the
obtained parameters are optimal in terms of the transformed
squared error measure instead of the original one. Usually
this will not cause practical problem as long as H (.) is
monotonically increasing.

C. Hybrid Learning Rule: Pattern (On-Line) Learning

If the parameters are updated after each data presentation,
we have the pattern learning or on-line learning paradigm.
This learning paradigm is vital to the on-line parameter iden-
tification for systems with changing characteristics. To modify
the batch learning rule to its on-line version, it is obvious that
the gradient descent should be based on Ep (see (5)) instead
of E. Strictly speaking, this is not a truly gradient search
procedure to minimize E, yet it will approximate to one if
the learning rate is small.

For the sequential least squares formulas to account for the
time-varying characteristics of the incoming data, we need
to decay the effects of old data pairs as new data pairs
become available. Again, this problem is well studied in the
adaptive control and system identification literature and a
number of solutions are available [7]. One simple method is
to formulate the squared error measure as a weighted version
that gives higher weighting factors to more recent data pairs.
This amounts to the addition of a forgetting factor X to the
original sequential formula:

where the value of X is between 0 and 1. The smaller X is, the
faster the effects of old data decay. But a small X sometimes
causes numerical unstability and should be avoided.

IV. ANFIS: ADAPTIW-NETWORK-BASED Fuzzy
INFERENCE SYSTEM

The architecture and learning rules of adaptive networks
have been described in the previous section. Functionally,
there are almost no constraints on the node functions of
an adaptive network except piecewise differentiability. Struc-
turally, the only limitation of network configuration is that

670 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993

it should be of feedforward type. Due to these minimal
restrictions, the adaptive network’s applications are immediate
and immense in various areas. In this section, we propose a
class of adaptive networks which are functionally equivalent to
fuzzy inference systems. The proposed architecture is referred
to as ANFIS, standing for adaptive-network-based fuzzy in-
ference system. We describe how to decompose the parameter
set in order to apply the hybrid learning rule. Besides, we
demonstrate how to apply the Stone-Weierstrass theorem to
ANFIS with simplified fuzzy if-then rules and how the radial
basis function network relate to this kind of simplified ANFIS.

A. ANFIS Architecture

For simplicity, we assume the fuzzy inference system under
consideration has two inputs x and y and one output z.
Suppose that the rule base contains two fuzzy if-then rules
of Takagi and Sugeno’s type [53].

Rule I: If x is A1 and y is B1, then fi = p l x + q1y + rl ,
Rule 2: If x is A2 and y is B2, then f 2 = p2x + q2y + 7-2.

Then the type-3 fuzzy reasoning is illustrated in Fig. 4(a),
and the corresponding equivalent ANFIS architecture (fype-3
ANFIS) is shown in Fig. 4(b). The node functions in the same
layer are of the same function family as described below:
Layer 1: Every node i in this layer is a square node with a

node function

where x is the input to node i , and A, is the linguistic
label (small , large, etc.) associated with this node
function. In other words, 0; is the membership
function of A, and it specifies the degree to which
the given x satisfies the quantifier Ai. Usually we
choose (x) to be bell-shaped with maximum
equal to 1 and minimum equal to 0, such as

(18)
1

P A =

or

where { a i , b;, c i } is the parameter set. As the
values of these parameters change, the bell-shaped
functions vary accordingly, thus exhibiting various
forms of membership functions on linguistic label
Ai. In fact, any continuous and piecewise differen-
tiable functions, such as commonly used trapezoidal
or triangular-shaped membership functions, are also
qualified candidates for node functions in this layer.
Parameters in this layer are referred to as premise
parameters.

Layer 2: Every node in this layer is a circle node labeled Tz
which multiplies the incoming signals and sends the
product out. For instance,

Each node output represents the firing strength of a
rule. (In fact, other T-norm operators that perform
generalized AND can be used as the node function
in this layer.)

Layer 3: Every node in this layer is a circle node labeled
N. The ith node calculates the ratio of the ith
rule’s firing strength to the sum of all rules’ firing
strengths:

For convenience, outputs of this layer will be called
called normalized firing strengths.

Layer 4: Every node i in this layer is a square node with a
node function

Layer 5:

0: = Vifi = mi(pix + qiy + T i) (22)

where Uri is the output of layer 3, and {pi, q;, ri}
is the parameter set. Parameters in this layer will be
referred to as consequent parameters.
The single node in this layer is a circle node labeled
C that computes the overall output as the summation
of all incoming signals, i.e.,

(23)
Thus we have constructed an adaptive network which is

functionally equivalent to a type-3 fuzzy inference system.
For type-1 fuzzy inference systems, the extension is quite
straightforward and the type-1 ANFIS is shown in Fig. 5
where the output of each rule is induced jointly by the output
membership funcion and the firing strength. For type-2 fuzzy
inference systems, if we replace the centroid defuzzification
operator with a discrete version which calculates the ap-
proximate centroid of area, then type-3 ANFIS can still be
constructed accordingly. However, it will be more complicated
than its type-3 and type-1 versions and thus not worth the
efforts to do so.

Fig. 6 shows a 2-input, type-3 ANFIS with nine rules. Three
membership functions are associated with each input, so the
input space is partitioned into nine fuzzy subspaces, each of
which is governed by a fuzzy if-then rules. The premise part
of a rule delineates a fuzzy subspace, while the consequent
part specifies the output within this fuzzy subspace.

B. Hybrid Learning Algorithm

From the proposed type-3 ANFIS architecture (see Fig. 4),
it is observed that given the values of premise parameters, the
overall output can be expressed as a linear combinations of the
consequent parameters. More precisely, the output f in Fig.
4 can be rewritten as

JANG. ANFIS-ADAPTIVE-NETWORK-BASED FUZZY INTERENCE SYSTEM 671

A

output p q output

Fig. 7. Piecewise linear approximation of membership functions on the con-
sequent part of type-1 ANFIS.

2 4 6 8 10 12
input variables

operating range is assumed to be [0,12].)

"0

Fig. 8. A typical initial membership function setting in our simulation. (The

which is linear in the consequent parameters (PI, 41, T I , pa,
q2 and ~ 2) . As a result, we have

S = set of total parameters
SI = set of premise parameters
Sa = set of consequent parameters

in (10); H (-) and F(., -) are the identity function and the func-
tion of the fuzzy inference system, respectively. Therefore the
hybrid learning algorithm developed in the previous chapter
can be applied directly. More specifically, in the forward pass
of the hybrid learning algorithm, functional signals go forward
till layer 4 and the consequent parameters are identified by the
least squares estimate. In the backward pass, the error rates
propagate backward and the premise parameters are updated
by the gradient descent. Table I summarizes the activities in
each pass.

As mentioned earlier, the consequent parameters thus identi-
fied are optimal (in the consequent parameter space) under the
condition that the premise parameters are fixed. Accordingly
the hybrid approach is much faster than the strict gradient
descent and it is worthwhile to look for the possibility of
decomposing the parameter set in the manner of (10). For
type-1 M I S , this can be achieved if the membership function
on the consequent part of each rule is replaced by a piecewise
linear approximation with two consequent parameters (see Fig.
7). In this case, again, the consequent parameters constitute set
S2 and the hybrid learning rule can be employed directly.

However, it should be noted that the computation complex-
ity of the least squares estimate is higher than that of the
gradient descent. In fact, there are four methods to update
the parameters, as listed below according to their computation
complexities:

1) Gradient Descent Only : All parameters are updated by
the gradient descent.

2) Gradient Descent and One Pass of LSE: The LSE is
applied only once at the very beginning to get the

t
MF

Fig. 9. Physical meanings of the parameters in the bell membership function
f l A (2) = + - c / a) 2 1 b) .

error
measure

1: lnctwsa step ske amr 4 downs (pdnl A)

rule 2: decreese step slze after 2 combinatlons

of 1 up and 1 down (polnt B)

S p b S

Fig. 10. 'Iko heuristic rules for updating step size I C .

50 100 150

cpocas
Fig. 11. RMSE curves for the quick-propagation neural networks and the

ANFIS.

initial values of the consequent parameters and then the
gradient descent takes over to update all parameters.

3) Gradient descent and LSE : This is the proposed hybrid
learning rule.

4) Sequential (Approximate) LSE Only: The ANFIS is lin-
earized w.r.t. the premise parameters and the extended
Kalman filter algorithm is employed to update all pa-
rameters. This has been proposed in the neural network
literature [41]-[431.

The choice of above methods should be based on the trade-off
between computation complexity and resulting performance.
Our simulations presented in the next section are performed

672 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAY/JUNE 1993

I

-..-
I " ' , ._ ,_

(c) (4

Fig. 12. Training data (a) and reconstructed surfaces at @) 0.5, (c) 99.5, and 249.5 (d) epochs. (Example 1).

Y
@)

Fig. 13. Initial and final membership functions of example 1. (a) Initial MF's on z. @) Initial MF's on y. (c) Final MF's on z.
(d) Final MF's on y.

by the third method. Note that the consequent parameters can
also be updated by the Widrow-Hoff LMS algorithm [63],
as reported in [44]. The Widrow-Hoff algorithm requires less
computation and favors parallel hardware implementation, but
it converges relatively slowly when compared to the least
square estimate.

As pointed out by one of the reviewers, the learning
mechanisms should not be applied to the determination of
membership functions since they convey linguistic and sub-
jective description of ill-defined concepts. We think this is a
case-by-case situation and the decision should be left to the
users. In principle, if the size of available input-output data

JANG ANFIS-ADA€TVE-NETWORK-BASED FUZZY INTERENCE SYSTEM 613

predicted
output

Fig. 14. The ANFIS architecture for example 2. (The connections from in-
puts to layer 4 are not shown.)

set is large enough, then the fine-tuning of the membership
functions are applicable (or even necessary) since the human-
determined membership functions are subject to the differences
from person to person and from time to time; therefore they
are rarely optimal in terms of reproducing desired outputs.
However, if the data set is too small, then it probably does not
contain enough information of the system under consideration.
In this situation, the the human-determined membership func-
tions represent important knowledge obtained through human
experts’ experiences and it might not be reflected in the data
set; therefore the membership functions should be kept fixed
throughout the learning process.

Interestingly enough, if the membership functions are fixed
and only the consequent part is adjusted, the ANFIS can
be viewed as a functional-link network [19], [34] where the
“enhanced representation” of the input variables are achieved
by the membership functions. This “enhanced representation”
which takes advantage of human knowledge are apparently
more insight-revealing than the functional expansion and the
tensor (outerproduct) models [34]. By fine-tuning the mem-
bership functions, we actually make this “enhanced represen-
tation” also adaptive.

Because the update formulas of the premise and consequent
parameters are decoupled in the hybrid learning rule (see Table
I), further speedup of learning is possible by using other ver-
sions of the gradient method on the premise parameters, such
as conjugate gradient descent, second-order back-propagation
[35], quick-propagation [5], nonlinear optimization [58] and
many others.

C. Fuzzy Inference Systems with Simplified Fuzzy If-Then Rules

Though the reasoning mechanisms (see Fig. 2) introduced
earlier are commonly used in the literature, each of them
has inherent drawbacks. For type-1 reasoning (see Fig. 2 or
5), the membership functions on the consequence part are
restricted to monotonic functions which are not compatible
with linguistic terms such as “medium” whose membership
function should be bell-shaped. For type-2 reasoning (see
Fig. 2), the defuzzification process is time-consuming and
systematic fine-tuning of the parameters are not easy. For type-
3 reasoning (see Fig. 2 or 4), it is just hard to assign any
appropriate linguistic terms to the consequence part which is
a nonfuzzy function of the input variables. To cope with these
disadvantages, simplified fuzzy if-then rules of the following
form are introduced:

If x is big and y is small, then z is d.
where d is a crisp value. Due to the fact that the output
z is described by a crisp value (or equivalently, a singular
membership function), this class of simplified fuzzy if-then
rules can employ all three types of reasoning mechanisms.
More specifically, the consequent part of this simplified fuzzy
if-then rule is represented by a step function (centered at
z = d) in type 1, a singular membership function (at z = d) in
type 2, and a constant output function in type 3, respectively.
Thus the three reasoning mechanisms are unified under this
simplified fuzzy if-then rules.

Most of all, with this simplified fuzzy if-then rule, it is
possible to prove that under certain circumstance, the resulting
fuzzy inference system has unlimited approximation power to
match any nonlinear functions arbitrarily well on a compact
set. We will proceed this in a descriptive way by applying the
Stone-Weierstrass theorem [181, [38] stated below.

Theorem I: Let domain D be a compact space of N
dimensions, and let 3 be a set of continuous real-valued
functions on D, satisfying the following criteria:

1) Identity Function: The constant f (E) = 1 is in 3.
2) Separability: For any two points XI # 2 2 in D, there is

an f in 3 such that f(q) # f (x2) .
3) Algebraic Closure: If f and g are any two functions

in 3, then fg and af + bg are in F for any two real
numbers a and b.

Then 3 is dense in C(D) , the set of continuous real-valued
functions on D. In other words, for any e > 0, and any
function g in C(D) , there is a function f in 3 such that
Ig(x) - f(x)l < e for all E E D.

In application of fuzzy inference systems, the domain in
which we operate is almost always closed and bounded and
therefore it is compact. For the first and second criteria, it is
trivial to find simplified fuzzy inference systems that satisfy
them. Now all we need to do is examine the algebraic closure
under addition and multip!ication. Suppose we have two fuzzy
inference systems S and S; each has two rules and the output
of each system can be expressed as

(25)
W l f l + w2f2 s : z =

w1+ w 2

&f l+ 7212f2 3 ; z ” =
7211 + 7212

where fl, f2, f1 and f2 are constant output of each rule. Then
az + bz” and zz” can be calculated as follows:

W l f l + w2f2 + bGIJ’ + w 2 j 2 uz + bz” = a
w1+ w 2 7211 + 6 2

zz“ = W l W I J l + W l G 2 f l j 2 + W2721lf2fl+ w27212f2f2

w17211+ w 1 6 2 + w27211+ w 2 G 2
(27)

614 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. U , NO. 3, MAY/JUNE 1993

x,yandz

(4

X

(b)

Fig. 15. Example 2. (a) Membership functions before learning. @ H d) Membership functions after learning. (a) Initial MF’s
on z, y, and z. (b) Final MF’s on z. (c) Final MF’s on y. (d) Final MF’S on z.

epoch epoch
(a) (b)

Fig. 16. Error curves of example 2: (a) Nine training error curves for nine initial step size from 0.01 (solid line)
to 0.09. (b) training (solid line) and checking (dashed line) error curves with initial step size equal to 0.1.

which are of the same form as (25) and (26). Apparently
the ANFIS architectures that compute az + bi? and ZZ are

membership functions is invariant under multiplication. This
is loosely true if the class of membership functions is the set of
all bell-shaped functions, since the multiplication of two bell-
shaped function is almost always still bell-shaped. Another
more tightly defined class of membership functions satisfying
this criteria, as pointed out by Wang [56], [57], is the scaled

Gaussian membership function:

(28)
of the same class of S and S if and only if the class of X - G 2

C L A , (X) = aiexd-(-) ai I

Therefore by choosing an appropriate class of membership
functions, we can conclude that the ANFIS with simplified
fuzzy if-then rules satisfy the criteria of the Stone-Weierstrass
theorem. Consequently, for any given 6 > 0, and any real-

_.

JANG. ANFISADAPTIVE-NETWORK-BASED FUZZY INTERENCE SYSTEM 675

TABLE I1
EXAMPLE 2: COMPARISONS WITH EARLIER WORK

Model APEt,, (%) APEchk (%) Parameter Number Training Set Size Checking Set Size
ANFIS 0.043 1.066 50 216 125

GMDH model 4.7 5.7 - 20 20
Fuzzy model 1 1.5 2.1 22 20 20
Fuzzy model 2 0.59 3.4 32 20 20

TABLE I11
EXAMPLE 3: COMPARISON WITH NN IDENTIFIER

Method Parameter Number Time Steps of Adaptation
NN 261 50 OOO

ANFIS 35 250

valued function g, there is a fuzzy inference system S such
that lg(d) - S(d)‘)(< E for all d in the underlying compact set.
Moreover, since the simplified ANFIS is a proper subset of all
three types of ANFIS in Fig. 2, we can draw the conclusion
that all the three types of ANFIS have unlimited approximation
power to match any given data set. However, caution has to be
taken in accepting this claim since there is no mention about
how to construct the ANFIS according to the given data set.
That is why learning plays a role in this context.

Another interesting aspect of the simplified ANFIS ar-
chitecture is its functional equivalence to the radial basis
function network (RBFN). This functional equivalence is
established when the Gaussian membership function is used
in the simplified ANFIS. A detailed treatment can be found in
[13]. This functional equivalence provides us with a shortcut
for better understanding of ANFIS and RBFN and advances in
either literatures apply to both directly. For instance, the hybrid
learning rule of ANFIS can be apply to RBFN directly and,
vice versa, the approaches used to identify RBFN parameters,
such as clustering preprocess [29], [30], orthogonal least
squares learning [3], generalization properties [2], sequential
adaptation [15], among others [14], [31], are all applicable
techniques for ANFIS.

V. &PLICATION EWPLES

This section presents the simulation results of the proposed
type-3 ANFIS with both batch (off-line) and pattern (on-
line) learning. In the first two examples, ANFIS is used to
model highly nonlinear functions and the results are compared
with neural network approach and earlier work. In the third
example, ANFIS is used as an identifier to identify a nonlinear
component on-linely in a discrete control system. Lastly, we
use ANFIS to predict a chaotic time series and compare the
results with various statistical and connectionist approaches.

A. Practical Considerations

In a conventional fuzzy inference system, the number of
rules is decided by an expert who is familiar with the system to
be modeled. In our simulation, however, no expert is available
and the number of membership functions (MF’s) assigned to

0.5

0

-0.5

~~

0 100 m 300 400 500 600 700
time index (k)

(c)

Fig. 17. Example 3. (a) u(k) . (a) f(u(k)) and F(u(k)) . (b) Plant output
and model output. (c) Plant output and model output.

each input variable is chosen empirically, i.e., by examining
the desired input-output data andlor by trial and error. This sit-
uation is much the same as that of neural networks; there are no
simple ways to determine in advance the minimal number of
hidden nodes necessary to achieve a desired performance level.

After the number of MF’s associated with each inputs are
fixed, the initial values of premise parameters are set in such a
way that the MF’s are equally spaced along the operating range
of each input variable. Moreover, they satisfy E-completeness
[23], [24] with E = 0.5, which means that given a value x
of one of the inputs in the operating range, we can always
find a linguistic label A such that p ~ (x) 2 E . In this manner,
the fuzzy inference system can provide smooth transition and
sufficient overlapping from one linguistic label to another.
Though we did not attempt to keep the €-completeness during

616 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAY/JUNE 1993

”
-1 -0.5 0 0.5 1

1

0.8

0.6

0.4

0.2

0
.1 -0.5 0 0.5 1

U U

f(u) and F(u) 1

-1’ I I
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

U U

Fig. 18. Example 3: batch learning with five MF’s.

the learning in our simulation, it can be easily achieved by
using the constrained gradient method [65]. Fig. 8 shows a
typical initial MF setting when the number of MF is 4 and the
operating range is [0,12]. Note that throughout the simulation
examples presented below, all the membership functions used
are the generalized bell function defined in (18):

which contains three fitting parameters a, b and c. Each of
these parameters has a physical meaning: c determines the
center of the corresponding membership function; a is the
half width; and b (together with a) controls the slopes at the
crossover points (where MF value is 0.5). Fig. 9 shows these
concepts.

We mentioned that the step size k in (8) may influence
the speed of convergence. It is observed that if k is small, the
gradient method will closely approximate the gradient path, but
convergence will be slow since the gradient must be calculated
many times. On the other hand, if k is large, convergence will
initially be very fast, but the algorithm will oscillate about the
optimum. Based on these observations, we update k according
to the following two heuristic rules (see Fig. 10):

1) If the error measure undergoes four consecutive reduc-
tions, increase k by 10%.

2) If the error measure undergoes two consecutive combi-
nations of one increase and one reduction, decrease IC
by 10%.

Though the numbers lo%, 4 and 2 are chosen more or less
arbitrarily, the results shown in our simulation appear to
be satisfactory. Furthermore, due to this dynamical update
strategy, the initial value of k is usually not critical as long
as it is not too big.

B. Simulation Results

Example l a o d e l i n g a Two-Input Nonlinear Function: In
this example, we consider using ANFIS to model a nonlinear
sinc equation

sin(x) sin(y)
X Y

z = sinc(z,y) = - x -.

From the grid points of the range [-lo, 101 x [-lo, 101 within
the input space of the above equation, 121 training data pairs
were obtained first. The ANFIS used here contains 16 rules,
with four membership functions being assigned to each input
variable and the total number of fitting parameters is 72 which
are composed of 24 premise parameters and 48 consequent
parameters. (We also tried ANFIS with 4 rules and 9 rules, but
obviously they are too simple to describe the highly nonlinear
sinc function.)

Fig. 11 shows the RMSE (root mean squared error) curves
for both the 2-18-1 neural network and the ANFIS. Each
curve is the average of ten runs: for the neural network, this
ten runs were started from 10 different set of initial random
weights; for the ANFIS, 10 different initial step size (=
0.01,0.02, . . . , 0.10) were used. The neural network, contain-

-

JANG: ANFIS-ADAPTIVE-NETWORK-BASED FUZZY INTERENCE SYSTEM

d

677

-1 -0.5 0 0.5 1
U

f(u) and F(u) 1

-1
-1 -0.5 0 0.5 1

U

U

-2 i
-1 -0.5 0 0.5 1

U

Fig. 19. Example 3: Batch leaming with four MF’s.

ing 73 fitting parameters (connection weights and thresholds),
was trained with quick propagation [5] which is considered one
of the best learning algorithms for connectionist models. Fig.
11 demonstrate how ANFIS can effectively model a highly
nonlinear surface as compared to neural networks. However,
this comparison cannot taken to be universal since we did not
attempt an exhaustive search to find the optimal settings for
the quick-propagation learning rule of the neural networks.

The training data and reconstructed surfaces at different
epoch numbers are shown in Fig. 12. (Since the error measure
is always computed after the forward pass is over, the epoch
numbers shown in Fig. 12 always end with “0.5.”) Note
that the reconstructed surface after 0.5 epoch is due to the
identification of consequent parameters only and it already
looks similar to the training data surface.

Fig. 13 lists the initial and final membership functions. It
is interesting to observe that the sharp changes of the training
data surface around the origin is accounted for by the moving
of the membership functions toward the origin. Theoretically,
the final MF’s on both x and y should be symmetric with
respect to the origin. However, they are not symmetric due
to the computer truncation errors and the approximate initial
conditions for bootstrapping the calculation of the sequential
least squares estimate in [14].

Example 2 4 o d e l i n g a Three-Input Nonlinear Function:
The training data in this example are obtained from

output = (1 + 20 .5 + y-1 + + 5) 2 , (31)

which was also used by Takagi et al. [52], Sugeno et al.
[47] and Kondo [20] to verify their approaches. The ANFIS
(see Fig. 14) used here contains 8 rules, with 2 membership
functions being assigned to each input variable. 216 training
data and 125 checking data were sampled uniformly from the
input ranges [1,6] x [1,6] x [1,6] and [1.5,5.5] x [1.5,5.5] x
[1.5,5.5], respectively. The training data was used for the
training of ANFIS, while the checking data was used for
verifying the identified ANFIS only. To allow comparison,
we use the same performance index adopted in [47, 201:

A P E = average percentage error

where P is the number of data pairs; T(i) and O(i) are ith
desired output and calculated output, respectively.

Fig. 15 illustrates the membership functions before and after
training, The training error curves with different initial step
sizes (from 0.01 to 0.09) are shown in Fig. 16(a), which
demonstrates that the initial step size is not too critical on
the final performance as long as it is not too big. Fig. 16(b)
is the training and checking error curves with initial step
size equal to 0.1. After 199.5 epochs, the final results are
APE,,, = 0.043% and APE,hk = 1.066%, which is listed
in Table I1 along with other earlier work [47], [20]. Since
each simulation cited here was performed under different
assumptions and with different training and checking data sets,
we cannot make conclusive comments here.

678 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993

initial M F ’ S

\ .

-1 -0.5 0 0.5 1
U

f(u) and F(u) 1

-1‘ I I
-1 -0.5 0 0.5 1

U

U

-1 -0.5 0 0.5 1
U

Fig. 20. Example 3: Batch learning with three MF’s.

Example 3 4 n - l i n e Identification in Control Systems: Here
we repeat the simulation example 1 of [32] where a 1-20-10-1
neural network is employed to identify a nonlinear component
in a control system, except that we use ANFIS to replace the
neural network. The plant under consideration is governed by
the following difference equation:

y (k + 1) = 0.3y(k) + 0.6y(k - 1) + f(u(k)), (33)

where y(k) and u (k) are the output and input, respectively, at
time index k , and the unknown function f(.) has the form

f(u) = 0.6sin(ru) + 0.3sin(3ru) + 0.1 sin(57ru). (34)

In order to identify the plant, a series-parallel model governed
by the difference equation

$ (k + 1) = 0.3$(k) + 0.6$(k - 1) + F(u(k)) (35)

was used where F (-) is the function implemented by ANFIS
and its parameters are updated at each time index. Here the
ANFIS has 7 membership functions on its input (thus 7 rules,
and 35 fitting parameters) and the pattern (on-line) learning
paradigm was adopted with a learning rate 77 = 0.1 and a
forgetting factor X = 0.99. The input to the plant and the
model was a sinusoid u(k) = sin(2rk/250) and the adaptation
started at k = 1 and stopped at k = 250. As shown in Fig. 17,
the output of the model follows the output of the plant almost
immediately even after the adaptation stopped at k = 250 and
the u (k) is changed to 0.5 sin(2rk/250) + 0.5 sin(2rk/25)
after k = 500. As a comparison, the neural network in

[32] fails to follow the plant when the adaptation stopped at
k = 500 and the identification procedure had to continue for
50,000 time steps using a random input. Table I11 summarizes
the comparison.

In the above, the MF number is determined by trial and
errors. If the MF number is below 7 then the model output will
not follow the plant output satisfactorily after 250 adaptations.
But can we decrease the parameter numbers by using batch
learning which is supposed to be more effective? Fig. 18, 19
and 20 show the results after 49.5 epochs of batch learning
when the MF numbers are 5, 4 and 3, respectively. As can
be seen, the ANFIS is a good model even when the MF is as
small as 3. However, as the MF number is getting smaller, the
correlation between F(u) and each rule’s output is getting less
obvious in the sense that it is harder to sketch F(u) from each
rule’s consequent part. In other words, when the parameter
number is reduced mildly, usually the ANFIS can still do the
job but at the cost of sacrificing its semantics in terms of the
local-description nature of fuzzy if-then rules; it is less of a
structured knowledge representation and more of a black-box
model (like neural networks).

Example 4-Predicting Chaotic Dynamics: Example 1-3
show that the ANFIS can be used to model highly nonlinear
functions effectively. In this example, we will demonstrate
how the proposed ANFIS can be employed to predict future
values of a chaotic time series. The performance obtained in
this example will be compared with the results of a cascade-
correlation neural network approach reported in [37] and a

I 1

JANG: ANFIS-ADAPIIVE-NETWORK-BASED FUZZY INTERENCE SYSTEM 679

0 0.5 1 1.5 2
x(t-18), ~(t-12), ~ (t -6) and X(t)

(a)

0.8

0.6

0 A

0.2

0 0.5 1 1.5 2 0 0.5 1 1.5 2

first input, x(t-18) 8econd hpt, x(t-12) o.:m 0.6

0.4 ,

0.2
/.+' oo -----o.5

1 1.5 2

*L X(f-6) fourth input, x(t)

@)
Fig. 21. Membership functions of example 4. (a) Before learning. (b) After

learning.

simple conventional statistical approach, the auto-regressive
(AR) model.

The time series used in our simulation is generated by the
chaotic Mackey-Glass differential delay equation [27] defined
below:

0.2X(t - T) X(t) = - O.lz(t).
1 + x y t - T)

The prediction of future values of this time series is a bench-
mark problem which has been considered by a number of
connectionist researchers (Lapedes and Farber [22], Moody
[30], [28], Jones et al. [14], Crower [37] and Sanger [40]).

The goal of the task is to use known values of the time
series up to the point x = t to predict the value at some
point in the future x = t + P. The standard method for this
type of prediction is to create a mapping from D points of
the time series spaced A apart, that is, (x(t - (D - l)A),
..., x(t - A), x(t)) , to a predicted future value x (t + P).
To allow comparison with earlier work (Lapedes and Farber
[22], Moody [30, 281, Crower [37]), the values D = 4 and
A = P = 6 were used. All other simulation settings in this
example were purposedly arranged to be as close as possible
to those reported in [37].

1.2

1

0.8

0.6

0.4

nai I ,
----I I

0.005

0

-0.005

200 400 600 800 loo0
time

(b)

Fig. 22. Example 3. (a) Mackey-Glass time series from t = 124 to 1123
and six-step ahead prediction (which is indistinguishable from the time series
here). @) Prediction error.

To obtain the time series value at each integer point, we
applied the fourth-order Runge-Kutta method to find the
numerical solution to (36). The time step used in the method
is 0.1, initial condition x(0) = 1.2, T = 17, and x (t) is thus
derived for 0 5 t 5 2000. (We assume x (t) = 0 for t < 0 in
the integration.) From the Mackey-Glass time series z(t) , we
extracted 1000 input-output data pairs of the following format:

[~ (t - 18), ~ (t - 12), ~ (t - 6), ~ (t) ; z(t + 6)] , (37)

where t = 118 to 1117. The first 500 pairs (training data
set) was used for training the ANFIS while the remaining 500
pairs (checking data set) were used for validating the identified
model. The number of membership functions assigned to each
input of the ANFIS was arbitrarily set to 2, so the rule number
is 16. Fig. 21(a) is the initial membership functions for each
input variable. The ANFIS used here contains a total of 104
fitting parameters, of which 24 are premise parameters and 80
are consequent parameters

After 499.5 epochs, we had RMSE,,, = 0.0016 and
RMSE,hk = 0.0015, which are much better when compared
with other approaches explained below. The resulting 16 fuzzy
if-then rules are listed in the Appendix. The desired and
predicted values for both training data and checking data are
essentially the same in Fig. 22(a); their differences (see Fig.
22(b)) can only be seen on a finer scale. Fig. 21(b) is the
final membership functions; Fig. 23 shows the RMSE curves
which indicate most of the learning was done in the first
100 epochs. It is quite unusual to observe the phenomenon
that RMSE,,, < RMSE,hk during the training process.
Considering both the RMSE's are very small, we conclude
that: 1) the ANFIS has captured the essential components
of the underlying dynamics; 2) the training data contains the
effects of the initial conditions (remember that we set x(t) = 0
for t 5 0 in the integration) which might not be easily

~

680 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993

x10-3

0 50 100 150 200 250 300 350 400 450 500

epochnumber
Fig. 23; Training and checking RMSE curves for ANFIS modeling.

accounted for by the essential components identified by the

As a comparison, we performed the same prediction by
using the auto-regressive (AR) model with the same number
of parameters:

ANFIS. 1.5

1

0.5
z(t + 6) = uo + a l z (t) + ~ 2 ~ (t - 6)

1200 1400 1600
rime (ac.) +... + alojz(t - 102 * 6) (38)

where there are 104 fitting parameters U k , k = 0 to 103.
From t = 712 to 1711, we extracted 1000 data pairs, of
which the first 500 were used to identify ak and the remaining
were used for checking. The results obtained through the
standard least squares estimate are RMSEt,., = 0.005 and
RMSE,hk = 0.078 which is much worse than those of
ANFIS. Fig. 24 shows the predicted values and the prediction
errors. Obviously, the over-parameterization of the AR model
causes over-fitting in the training data and large errors in
the checking data. To search for the best AR model in
terms of generalization capability, we tried out different AR
models with parameter number being varied from 2 to 104;
Fig. 25 shows the results where the AR model with the
best generalization capability is obtained when the parameter
number is 45. Based on this best AR model, we repeat the
generalization test and Fig. 26 shows the results where there
is no over-fitting at the price of larger training errors.

It goes without saying that the nonlinear ANFIS outperforms
the linear AR model. However, it should be noted that the
identification of the AR model took only a few seconds, while
the ANFIS simulation took about 1.5 h on a HP Apollo 700

rime (sec.)

@)

Fig. 24. (a) Mackey-Glass time series (solid line) from t = 718 to 1717
and six-step ahead prediction (dashed line) by AR model with parameter =
104. (b) Prediction errors.

Series workstation. (We did not pay special attention on the
optimization of the codes, though.)

Table IV lists other methods' generalization capabilities
which are measured by using each method to predict 500
points immediately following the training set. Here the non-

JANG: ANFIS-ADAPnVE-NETWORK-BASED FUZZY INTERENCE SYSTEM 681

harmnp. (solid line) andckckiag NDEI (dashedline) . .

B osh

I
0 m 40 60 80 100 im

Fig. 25. Training (solid line) and checking (dashed line) errors of AR models
with different parameter numbers.

TABLE V
GENERALIZATION RESULT COMPARISONS~

Method Training Non-Dimensional
Cases- Error Index

ANFIS 500 0.036
AR Model 500 0.39

Cascaded-Correlation NN 500 0.32
Back-Prop NN 500 0.05

Sixth-Order Polynomial 500 0.85
Linear Predictive Method 2000 0.60

LRF 500 0.1 M . 2 5
LRF 10 000 0.025-0.05
MRH 500 0.05
MRH 10 OOO 0.02

Generalization result comparisons for P = 84 (the lint six rows)
and 85 (the last four rows). Results for the first six methods are
generated by iterating the solution at P = 6. Results for localized
receptive fields (LRF) are multiresolution hierarchies (MRH) are for
networks trained for P = 85. (The last eight rows are from [37].)

1.2

1

0.8

0.6

400 600 800 lo00 1200
time (sec.) 1.2

(a) 1

0.8

0.6
0.1

0 400 800 lo00 1200
time

(4 -0.1

400 600 800 lo00 1200

time (sec.)
0.02 @>

Fig. 26. Example 3. (a) Mackey-Glass time series (solid line) from t = 364
to 1363 and six-step ahead prediction (dashed line) by the best AR model
(parameter number = 45). (h) Prediction errors.

-0.021

TABLE IV
GENERALIZATION RESULT COMPARISONS FOR P = 6a

Method Training Cases Non-Dimensional Error
Index

ANFIS 500 0.007
AR Model 500 0.19

Cascaded-Correlation NN 500 0.06

Sixth-order Polynomial 500 0.04
Linear Predictive Method 2000 0.55

Back-Prop NN 500 0.02

dimensional error index (NDEI) [22], 1371 is defined as the
root mean square error divided by the standard deviation of
the target series. (Note that the average relative variance used
in [59, 601 is equal to the square of NDEI.) The remarkable
generalization capability of the ANFIS, we believe, comes
from the following facts:

1) The ANFIS can achieve a highly nonlinear mapping as
shown in Example 1, 2 and 3, therefore it is superior to
common linear methods in reproducing nonlinear time
series.

I I I
200 400 600 800 lo00 1200

timc

@)

Fig. 27. Generalization test of ANFIS for P = 84. (a) Desired (solid) and
predicted (dashed) time series of ANFIS when P = 84. @) Prediction errors.

2) The ANFIS used here has 104 adjustable parameters,
much less than those of the cascade-correlation NN (693,
the median size) and back-prop NN (about 540) listed
in Table IV.

3) Though without apriori knowledge, the initial parameter
settings of ANFIS are intuitively reasonable and it leads
to fast learning that captures the underlying dynamics.

Table V lists the results of the more challenging generaliza-
tion test when P = 84 (the first six rows) and P = 85 (the
last four rows). The results of the first six rows were obtained
by iterating the prediction of P = 6 till P = 84. ANFIS
still outperforms these statistical and connectionist approaches
unless a substantially large amount of training data (Le., the
last row of Table V) were used instead. Fig. 27 illustrates the
generalization test for the A N m S where the first 500 points

682 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993

’ If z (t - 18) is SMALL1 and z(t - 12) is SMALL2 and z(t - 6) i s SMALL3 and z (t) i s SMALL4, then z(t + 6) = C; .2?
If z(t - 18) is SMALL1 and z(t - 12) is SMALL2 and z(t - 6) is SMALL3 and z (t) i s LARGE4, then x (t + 6) = C; . J?
If z (t - 18) is SMALL1 and z(t - 12) i s SMALL2 and z(t - 6) i s LARGE3 and x (t) i s SMALL4, then x(t + 6) = Z3 . {
If z(t - 18) i s SMALL1 and z(t - 12) is SMALL2 and x (t - 6) i s LARGE3 and x (t) is LARGE4, then z(t + 6) = Z4 . X,
If z(t - 18) i s SMALL1 and z (t - 12) is LARGE, and z(t - 6) is SMALL3 and x (t) is SMALL4, then z (t + 6) = C; .<
If z (t - 18) is SMALL1 and z(t - 1 2) is LARGE2 and z (t - 6) is SMALL3 and z (t) is LARGE4, then z(t + 6) = Z,j E
If z(t - 18) i s SMALL1 and z(t - 12) is LARGE2 and z(t - 6) is LARGE3 and x (t) i s SMALL4, then z(t + 6) = C; . E
If z(t - 18) is SMALL1 and z(t - 12) is LARGE2 and z (t - 6) is LARGE3 and x (t) i s LARGE4, then z(t + 6) = & . X,
If z(t - 18) is LARGE1 and z(t - 12) is SMALL2 and z(t - 6) is SMALL3 and z (t) i s SMALL4, then z(t + 6) = Zg . X,
If z(t - 18) is LARGEi and z (t - 12) is SMALL2 and z(t - 6) is SMALL3 and z (t) i s LARGE4, then x (t + 6) = C;O . X
If z(t - 18) i s LARGE1 and z(t - 12) i s SMALL2 and z (t - 6) i s LARGE3 and z (t) is SMALL4, then z(t + 6) = &I .J?
If z(t - 18) is LARGEi and z (t - 12) i s SMALL2 and z(t - 6) i s LARGE3 and z (t) i s LARGE4, then z(t + 6) = Z12 * {
If z (t - 18) i s LARGE1 and z(t - 1 2) is LARGE2 and z(t - 6) is SMALL3 and z (t) i s SMALL4, then z(t + 6) = Z13 .<
If z(t - 18) i s LARGE1 and z(t - 12) is LARGE2 and z(t - 6) i s SMALL3 and z (t) is LARGE4, then x(t + 6) = Z 1 4 . 5
I f x(t - 18) is LARGE1 and x(t - 12) is LARGE2 and x(t - 6) is LARGE3 and x (t) is SMALL4, then x(t + 6) = ZIS X
If z(t - 18) is LARGE1 and z(t - 12) is LARGE2 and z (t - 6) is LARGE3 and z (t) is LARGE4, then x (t + 6) = Z16 .2?

Fig. 28.

were used for the desired outputs while the last 500 are the
predicted outputs for P = 84.

VI. CONCLUSION

A. Summary and Extensions of Current Work

We have described the architecture of adaptive-network-
based fuzzy inference systems (ANFIS) with type-1 and type-
3 reasoning mechanisms. By employing a hybrid learning
procedure, the proposed architecture can refine fuzzy if-then
rules obtained from human experts to describe the input-output
behavior of a complex system. However, if human expertise
is not available, we can still set up intuitively reasonable
initial membership functions and start the learning process to
generate a set of fuzzy if-then rules to approximate a desired
data set, as shown in the simulation examples of nonlinear
function modeling and chaotic time series prediction.

Due to the high flexibility of adaptive networks, the ANFIS
can have a number of variants from what we have pro-
posed here. For instance, the membership functions can be
changed to L-R representation [4] which could be asymmetric,
Furthermore, we can replace II nodes in layer 2 with the
parameterized T-norm [4] and let the learning rule to decide the
best T-norm operator for a specific application. By employing
the adaptive network as a common framework, we have
also proposed other adaptive fuzzy models tailored for data
classification [49], [50] and feature extraction [51] purposes.

Another important issue in the training of ANFIS is how
to preserve the human-plausible features such as bell-shaped
membership functions, €-completeness [23], [24] or sufficient
overlapping between adjacent membership functions, minimal
uncertainty, etc. Though we did not pursue along this direction
in this paper, mostly it can be achieved by maintaining certain
constraints and/or modifying the original error measure as
explained below.

To keep bell-shaped membership functions, we need the
membership functions to be bell-shaped regardless of the

parameter values. In particular, (18) and (19) become up-
side-down bell-shaped if b; < 0; one easy way to correct
this is to replace bi with b: in both equations.
The c-completeness can be maintained by the constrained
gradient descent [65]. For instance, suppose that c =
0.5 and the adjacent membership functions are of
the form of (18) with parameter sets {a i , b i , c i } and
{ai+l , bi+l, c;+1}. Then the c-completeness is satisfied
if ci + ai = ci+l - ai+l and this can be ensured
throughout the training if the constrained gradient descent
is employed.
Minimal uncertainty refers to the situation that within
most region of the input space, there should be a dom-
inant fuzzy if-then rule to account for the final output,
instead of multiple rules with similar firing strengths. This
minimizes the uncertainty and make the rule set more
informative. One way to do this is to use a modified error
measure

P

E’ = E + ,6z[-?oi x Zn(Gi)] (39)
i=l

where E is the original squared error; ,6 is a weighting
constant; P is the size of training data set; ?oi is the
normalized firing strength of the ith rule (see (21))
and cL1[-?oi x ln(Gi)] is the information entropy.
Since this modified error measure is not based on data
fitting along, the ANFIS thus trained can also have
a potentially better generalization capability. (However,
due to this new error measure, the training should be
based on the gradient descent alone.) The improvement
of generalization by using an error measure based on both
data fitting and weight elimination has been reported in
the neural network literature [59], [60].

In this paper, we assume the structure of the ANFIS is fixed
and the parameter identification is solved through the hybrid

JANG: ANFISADAPTIVE-NETWORK-BASED FUZZY INTERENCE SYSTEM 683

APPENDIX

As suggested by one of the reviewers, to give the readers
a concrete idea of the resulting fuzzy inference systems, it
would be better to list the fuzzy if-then rules explicitly.
Here we list the final 16 fuzzy if-then rules in example 4,
which predicts the Mackey-Glass chaotic time series. Suppose
that the ith input variable is assigned two linguistic values
S M A L L , and LARGE,, then the fuzzy if-then rules a_fter
training can be expressed as shown in Fig. 28, where X =
[x (t - 18), x (t - 12), x (t - 6), x (t) , 11 and & is the ith row of
the following consequent parameter matrix C:

TABLE VI
Table of premise parameters in example 4.

A a b C

S M A L L 1 0.1790 2.0456 0.4798
LARGE1 0.1584 2.0103 1.4975
S M A L L 2 0.2410 1.9533 0.2960
LARGE2 0.2923 1.9178 1.7824
S M A L L 3 0.3798 2.1490 0.6599
LARGE3 0.4884 1.8967 1.6465
S M A L L 4 0.2815 2.0170 0.3341
LARGE4 0.1616 2.0165 1.4727

learning rule. However, to make the whole approach more
complete, the structure identification [47], [48] (which con-
cerns with the selection of an appropriate input-space partition
style and the number of membership functions on each input,
etc.) is equally important to the successful applications of
ANFIS. Effective partition of the input space can decrease the
rule number and thus increase the speed in both learning and
application phases. Advances on neural networks’ structure
identification [6], [25] can shed some lights on this aspect.

B. Applications to Automatic Control and Signal Processing

Fuzzy control is by far the most successful applications
of the fuzzy set theory and fuzzy inference systems. Due to
the adaptive capability of ANFIS, its applications to adaptive
control and learning control are immediate. Most of all, it
can replace almost any neural networks in control systems to
serve the same purposes. For instance, Narendra’s pioneering
work of using neural networks in adaptive control [32] can
be all achieved similarly by ANFIS. Moreover, four of the
generic designs (i.e., supervised control, direct inverse control,
neural adaptive control and back-propagation of utility) of
neural networks in control, as proposed by Werbos [9], [62],
are also directly applicable schemes for ANFIS. Particularly
we have employed a similar method of the back-propagation
through time [33] or unfolding in time to achieve a self-learning
fuzzy controller with four rules that can balance an inverted
pendulum in an near-optimal manner [12]. It is expected that
the advances of neural network techniques in control can
promote those of ANFIS as well, and vice versa.

The active role of neural networks in signal processing [64],
[21] also suggests similar applications of ANFIS. The non-
linearity and structured knowledge representation of ANFIS
are the primary advantages over classical linear approaches
in adaptive filtering [8] and adaptive signal processing [63],
such as identification, inverse modeling, predictive coding,
adaptive channel equalization, adaptive interference (noise or
echo) canceling, etc.

ACKNOWLEDGMENT

The author wish to thank the anonymous reviewers for
their valuable comments. The guidance and help of Professor
Lotfi A. Zadeh and other members of the “fuzzy group”
at University of California at Berkeley are also gratefully
acknowledged.

c=

- 0.2167
0.2141

-0.0683
-0.2616
-0.3293
2.5820
0.8797

-0.8417
-0.6422
1.5534

-0.6864
-0.3190
-0.3200
4.0220
0.3338

-0.5572

0.7233
0.5704
0.0022
0.9190

-0.8943
-2.3109
- 0.9407
- 1.5394
- 0.4384
-0.0542
-2.2435
-1.3160
-0.4654
-3.8886
-0.3306
0.9190

-0.0365
- 0.4826
0.6495

1.4290
3.7925
2.2487

0.9792

0.1585
0.9689
0.4880
1.0547

- 2.9931

- 1.5329

-4.7256

- 0.596 1
-0.8745

0.5433
1.2452
2.7320
1.9467

-1.6550
-5.8068
0.7759
2.2834

0.7244
0.5304
1.4887

-0.3993

-0.0559
-0.7427
1.1220
2.1899

0.0276
- 0.3778
-2.2916
1.6555
2.3735
4.0478

-2.0714
2.4140
1.5593
2.7350
3.5411
0.7079
0.9622

0.3529
-0.4464

-0.9497
(41

The linguistic labels SMALLi and LARGEi (i=l to 4)
are defined by the bell membership function (with different
parameters a, b and c):

These membership functions are shown in Fig. 21. Table VI
lists the linguistic labels and the corresponding consequent
parameters in (42).

REFERENCES

[l] K. J. Astrom and B. Wittenmark, Computer Controller Systems: Theory
and Design. Prentice-Hall, 1984.

[2] S. M. Botros and C. G. Atkeson, “Generalization properties of radial
basis functions,” in Advances in Neural Information Processing Systems
III, D. S . Touretzky, Ed. San Mateo, C A Morgan Kaufmann, 1991,

[3] S. Cben, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans.
NeuralNetworks, vol. 2, no. 2, pp. 302-309, Mar. 1991.

[4] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applica-
tions. New York: Academic, 1980.

[5] S. E. Fahlman, “Faster-learning variations on back-propagation: an
empirical study,” in Proc. 1988 Connectionist Models Summer School,
D. Touretzky, G. Hinton, and T. Sejnowski, Eds., Camegie Mellon
Univ., 1988, pp. 38-51.

[6] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning ar-
chitecture,” in Advances in Neural Information Processing Systems II,
D. S . Touretzky, G. Hinton, and T. Sejnowski, Eds. San Mateo, C A
Morgan Kaufmann, 1990.

[7] G. C. Goodwin and K. S. Sin. Adaptive Filtering Prediction and Control.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

[8] S. S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice
Hall, second ed., 1991.

pp. 707-713.

684 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993

[9] W. T. Miller 111, R. S. Sutton, and P. J. Werbos, Eds., Neural Networks
for Control. Cambridge, MA: MIT Press, 1990.

[lo] J.-S. Roger Jang, “Fuzzy modeling using generalized neural networks
and Kalman filter algorithm,” in Proc. Ninth Nat. Conj Artificial Intell.

[l l] -, “Rule extraction using generalized neural networks,” in Proc.
4th IFSA World Congress, July 1991.

[12] -, “Self-learning fuzzy controller based on temporal back-
propagation,” IEEE Trans. Neural Networks, Sept. 1992.

[13] J.-S. Roger Jang and C.-T. Sun, “Functional equivalence between radial
basis function networks and fuzzy inference systems,” IEEE Trans.
Neural Networks, vol. 4, pp. 156-159, Jan. 1993.

[14] R. D. Jones, Y. C. Lee, C. W. Barnes, G. W. Flake, K. Lee, and P. S.
Lewis, “Function approximation and time series prediction with neural
networks,” in Proc. IEEE In?. Joint Con$ Neural Networks, 1990, pp.
1-649-665.

[15] V. Kadirkamanathan, M. Niranjan, and F. Fallside, “Sequential adap-
tation of radial basis function neural networks,” in Advances in Neural
Information Processing Systems Il l , D. S . Touretzky, Ed. San Mateo,
C A Morgan Kaufmann, 1991, pp. 721-727..

[16] A. Kandel. Fuzzy Expert Systems. Reading, M A Addison-Wesley,
1988.

[17] A. Kandel, Fuuy Expert Systems. Boca Raton, F L CRC Press, 1992.
[18] L. V. Kantorovich and G. P. Akilov, FunctionalAnalysis, second edition.

Oxford, U K Pergamon, 1982.
[19] M. S. Klassen and Y.-H. Pao. “Characteristics of the functional-link

net: A higher order delta rule net,” In ZEEE Proc. Int. Conj Neural
Networks, San Diego, June 1988.

[20] T. Kondo, “Revised GMDH algorithm estimating degree of the complete
polynomial,” Trans. SOC. Instrument and Contr. Engineers, vol. 22, no.
9, pp. 928-934, 1986 (in Japanese).

[21] B. Kosko, Neural networks for signal processing. Englewood Ciffs,
NJ: Prentice Hall, 1991.

[22] A. S. Lapedes and R. Farber, “Nonlinear signal processing using neural
networks: prediction and system modeling,” Tech. Rep. LA-UR-87-
2662, Los Alamos Nat. Lab., Los Alamos, NM, 1987.

[23] C.-C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller-Part
I,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 404418, 1990.

[24] -, “Fuzzy logic in control systems: Fuzzy logic controller-Part
I,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 419435, 1990.

[25] T.-C. Lee. Structure Level Adaptation for Artificial Neural Networks.
Boston: Kluwer Academic, 1991.

[26] L. Ljung, System Identification: Theory for the User. Englewood Cliffs,
NJ: Prentice-Hall, 1987.

[27] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, pp. 287-289, July 1977.

[28] J. Moody, “Fast learning in multi-resolution hierarchies,” in Advances
in Neural Information Processing Systems I , D. S . Touretzky, Ed. San
Mateo, C A Morgan Kaufman 1989, ch. 1, pp. 29-39.

[29] J. Moody and C. Darken, “Learning with localized receptive fields,”
in D. Touretzky, G. Hinton, and T. Sejnowski, Eds., in Proc. 1988
Connectionist Models Summer School, Carnegie Mellon University,
Pittsburgh, PA. San Mateo, C A Morgan Kaufmann Publishers, 1988.

[30] -, “Fast learning in networks of locally-tuned processing units,”
Neural Computation, vol. 1, pp. 281-294, 1989.

[31] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M. Hummels,
“On the training of radial basis function classifiers,” Neural Networks,
vol. 5 , no. 4, pp. 595-603, 1992.

[32] K. S. Narendra and K. Partbsarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Trans. Neural Networks,
vol 1, no. 1, pp. 4-27, 1990.

[33] D. H. Nguyen and B. Widrow. Neural networks for self-learning control
systems. IEEE Contr. Syst. Mag., Apr. 1990, pp. 18-23.

[34] Y.-H. Pao, Adaptive Pattern Recognition and Neural Networks. Read-
ing, MA: Addison-Wesley, 1989, ch. 8, pp. 197-222.

[35] D. B. Parker, “Optimal algorithms for adaptive networks: Second order
back propagation, second order direct propagation, and second order
Hebbian learning,” in Proc. IEEE Int. Conf Neural Networks, 1987, pp.
593-600.

[36] W. Pedrycz, Fuzzy Control and Fuzzy Systems. New York: Wiley,
1989.

[37] R. S. Crowder, “Predicting the Mackey-Glass timeseries with cascade-
correlation learning,” in Proc. 1990 Connectionist Models Summer
School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds., Carnegie
Mellon Univ., 1990, pp. 117-123.

[38] H. L. Royden, RealAnalysis, second ed.. New York: Macmillan, 1968.
[39] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, D. E. Rumelhart

(AAAI-91), July 1991, pp. 762-767.

and James L. McClelland, Eds., vol. 1, ch. 8, pp. 318-362. Cambridge,
MA: MIT Press, 1986.

[40] T. D. Sanger, “A tree-structured adaptive network for function approx-
imate in high-dimensional spaces,” IEEE Trans. Neural Networks, vol.
2, no. 2, pp. 285-293, Mar. 1991.

[41] S. Shah, F. Palmieri, and M. Datum, “Optimal filtering algorithms for
fast learning in feedforward neural networks,” Neural Networks, vol. 5 ,
no. 5, pp. 779-787, 1992.

[42] S. Sbar and F. Palmieri, “MEKA-a fast, local algorithm for training
feedforward neural networks,” in Proc. Int. Joint Conf Neural Networks,
pp. 111 4146, 1990.

[43] S. Singhal and L. Wu, “Training multilayer perceptrons with the ex-
tended kalman algorithm,” Advances in Neural Information Processing
Systems-I, in D. S . Touretzky, Ed. San Mateo, CA: Morgan Kaufmann,
1989, pp. 133-140.

[44] S. M. Smith and D. J. Comer, “Automated calibration of a fuzzy logic
controller using a cell state space algorithm,” IEEE Contr. Syst. Mag.,
vol. 11, no. 5, pp. 18-28, Aug. 1991.

[45] P. Strobach, Linear Prediction Theory: A Mathematical Basis for Adap-
tive Systems. New York: Springer-Verlag, 1990.

[46] M. Sugeno, Ed., Industrial Applications of Fuzzy Control. New York:
Elsevier, 1985.

[47] M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,”
Fuzzy Sets Syst., vol. 28, pp. 15-33, 1988.

[48] C.-T. Sun,” Rulebase structure identification in an adaptive network
based fuzzy inference system,” IEEE Trans. Furzy Syst., accepted for
publication, 1993.

[49] C.-T Sun and J.-S. Roger Jang, “Adaptive network based fuzzy classi-
fication,” in Proc. Japan-USA. Symp. Flexible Automat., July 1992.

[50] -, “Fuzzy classification based on adaptive networks and genetic
algorithms,” submitted for publication in ZEEE Trans. Neural Networks,
1992.

[51] C.-T Sun, J.-S. Roger Jang, and C.-Y. Fu, “Neural network analysis
of plasma spectra,” in Proc. Int. Conj Artificial Neural Networks.
Amsterdam, The Netherlands, 1993.

[52] H. Takagi and I. Hayashi. ”-driven fuzzy reasoning. Int. J. Approxi-
mate Reasoning, vol. 5 , no. 3, pp. 191-212, 1991.

[53] T. Takagi and M. Sugeno, “Derivation of fuzzy control rules from
human operator’s control actions,” in Proc. IFAC Symp. Fuzzy Inform.,
Knowledge Representation and Decision Analysis, July 1983, pp. 55-60.

[54] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to’modeling and control,” IEEE Trans. Syst., Man, Cybern.,
vol. 15, pp. 116132, 1985.

[55] Y. Tsukamoto, “An approach to fuzzy reasoning method,” in M. M.
Gupta, R. K. Ragade, and R. R. Yager, Eds., Advances in Fuzzy
Set Theory and Applications. Amsterdam: North-Holland, 1979, pp.
137-149.

[56] L.-X. Wang, “Fuzzy systems are universal approximators,” in Proc.
IEEE Int. Con$ Fuzzy Systems, San Diego, CA, Mar. 1992.

[57] L.-X. Wang and J. M. Mendel, “Fuzzy basis function, universal approx-
imation, and orthogonal least squares learning,” IEEE Trans. Neural
Networks, vol. 3 no. 5, pp. 807-814, Sept. 1992.

[58] R. L. Watrous, “Learning algorithms for connectionist network: applied
gradient methods of nonlinear optimization,” in Proc. IEEE Int. Conj
Neural Networks, 1991, pp. 619-627.

[59] A. A. Weigend, D. E. Rumelhart, and B. A. Huberman, “Back-
propagation, weight-elimination and time series prediction,” in Proc.
1990 Connectionist Models Summer School, D. Touretzky, G. Hinton,
and T. Sejnowski, Eds., Carnegie Mellon Univ., 1990, pp. 105-116.

[60] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization
by weight-elimination with application to forecasting,” in Advances in
Neural Information Processing Systems Il l , D. S . Touretzky, Ed. San
Mateo, CA: Morgan Kaufmann, 1991, pp. 875482.

[61] P. Werbos, “Beyond regression: New tools for prediction and analysis in
the behavioral sciences,” Ph.D. dissertation, Harvard Univ., Cambridge,
MA, 1974.

[62] - , “An overview of neural networks for control,” IEEE Contr. Syst.
Mag., vol. 11, no. 1, pp. 40-41, Jan. 1991.

[63] B. Widrow and D. Steams, Adaptive Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1985.

[64] B. Widrow and R. Winter, “Neural nets for adaptive filtering and
adaptive pattern recognition,” IEEE Computer, pp. 25-39, Mar. 1988.

[65] D. A. Wismer and R. Chattergy. Introduction To Nonlinear Optimization:
A Problem Solving Approach. Amsterdam: North-Holland Publishing
Company, 1978, ch. 6, pp. 139-162.

[66] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.
[67] L. A. Zadeh, “Outline of a new approach to the analysis of complex

systems and decision processes,” IEEE Trans. Syst., Man, Cybern., vol.
3, pp. 28-44, Jan. 1973.

JANG: ANFIS-ADAPTIVE-NETWORK-BASED FUZZY INTERENCE SYSTEM

Jyh-Shing Roger Jang was born in Taipei, Tai-
wan in 1962. He received the B.S. degree from
National Taiwan University in 1984 and the Ph.D.
degree from the University of Califomia, Berkeley
in 1992. He is currently a Research Engineer in the
Department of Electrical Fngineering and Computer
Sciences at the University of California, Berkeley.

Since 1988, he has been a Research Assistant in
the Electronics Research Laboratory at the Univer-
sity of California, Berkley. He spent the summer of
1991 and 1992 at the Lawrence Livermore National

Laboratory, working on spectrum modeling and analysis using neural networks
and fuzzy logic. His interests lie in the area of neurofuzzy modeling with
applications to control, signal processing, and pattern classification.

Mr. Jang is a student member of American Association for Artificial
Intelligence, and International Neural Networks Society.

685

