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ANFIS : Adap tive-Ne twork-Based Fuzzy 
Inference System 

Jyh-Shing Roger Jang 

Abstract-The architecture and learning procedure underlying 
ANF’IS (adaptive-network-based fuzzy inference system) is pre- 
sented, which is a fuzzy inference system implemented in the 
framework of adaptive networks. By using a hybrid learning 
procedure, the proposed ANFIS can construct an input-output 
mapping based on both human knowledge (in the form of fuzzy 
if-then rules) and stipulated input-output data pairs. In the sim- 
ulation, the ANFIS architecture is employed to model nonlinear 
functions, identify nonlinear components on-linely in a control 
system, and predict a chaotic time series, all yielding remarkable 
results. Comparisons with artificial neural networks and earlier 
work on fuzzy modeling are listed and discussed. Other extensions 
of the proposed ANFIS and promising applications to automatic 
control and signal processing are also suggested. 

I. INTRODUCTION 

YSTEM MODELING based on conventional mathemati- S cal tools (e.g., differential equations) is not well suited for 
dealing with ill-defined and uncertain systems. By contrast, 
a fuzzy inference system employing fuzzy if-then rules can 
model the qualitative aspects of human knowledge and reason- 
ing processes without employing precise quantitative analyses. 
This fuzzy modeling or fuzzy identification, first explored 
systematically by Takagi and Sugeno [54], has found numerous 
practical applications in control [36], [46], prediction and 
inference [16], [17]. However, there are some basic aspects 
of this approach which are in need of better understanding. 
More specifically: 

1) No standard methods exist for transforming human 
knowledge or experience into the rule base and database 
of a fuzzy inference system. 

2) There is a need for effective methods for tuning the 
membership functions (MF’s) so as to minimize the 
output error measure or maximize performance index. 

In this perspective, the aim of this paper is to suggest a novel 
architecture called Adaptive-Network-based Fuzzy Inference 
System, or simply ANFIS, which can serve as a basis for 
constructing a set of fuzzy if-then rules with appropriate 
membership functions to generate the stipulated input-output 
pairs. The next section introduces the basics of fuzzy if- 
then rules and fuzzy inference systems. Section I11 describes 
the structures and learning rules of adaptive networks. By 
embedding the fuzzy inference system into the framework of 
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adaptive networks, we obtain the ANFIS architecture which 
is the backbone of this paper and it is covered in Section IV. 
Application examples such as nonlinear function modeling and 
chaotic time series prediction are given in Section V. Section 
VI concludes this paper by giving important extensions and 
future directions of this work. 

11. FUZZY IF-THEN RULES AND FUZZY INFERENCE SYSTEMS 

A. Fuzzy If-Then Rules 

Fuzzy if-then rules or f u z zy  conditional statements are ex- 
pressions of the form IF A THEN B,  where A and B are labels 
of fuzzy sets [66] characterized by appropriate membership 
functions. Due to their concise form, fuzzy if-then rules are 
often employed to capture the imprecise modes of reasoning 
that play an essential role in the human ability to make 
decisions in an environment of uncertainty and imprecision. 
An example that describes a simple fact is 

If pressure is high, then volume is small 

where pressure and volume are linguistic variables [67], high 
and small are linguistic values or labels that are characterized 
by membership functions. 

Another form of fuzzy if-then rule, proposed by Takagi 
and Sugeno [53], has fuzzy sets involved only in the premise 
part. By using Takagi and Sugeno’s fuzzy if-then rule, we can 
describe the resistant force on a moving object as follows: 

If velocity is high, then force = IC * 
where, again, high in the premise part is a linguistic label 
characterized by an appropriate membership function. How- 
ever, the consequent part is described by a nonfuzzy equation 
of the input variable, velocity. 

Both types of fuzzy if-then rules have been used extensively 
in both modeling and control. Through the use of linguistic 
labels and membership functions, a fuzzy if-then rule can 
easily capture the spirit of a “rule of thumb” used by humans. 
From another angle, due to the qualifiers on the premise parts, 
each fuzzy if-then rule can be viewed as a local description 
of the system under consideration. Fuzzy if-then rules form a 
core part of the fuzzy inference system to be introduced below. 

A. F u z y  Inference Systems 

Fuzzy inference systems are also known as fuzzy-rule-based 
systems, fuzzy models, fuzzy associative memories (FAM), or 
fuzzy controllers when used as controllers. Basically a fuzzy 
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Fig. 1. Fuzzy inference system. 

inference system is composed of five functional blocks (see 
Fig. 1): 

a rule base containing a number of fuzzy if-then rules; 
a database which defines the membership functions of 

a decision-making unit which performs the inference 

a fuzzijication interface which transforms the crisp inputs 

a defuzzification interface which transform the fuzzy 

Usually, the rule base and the database are jointly referred to 
as the knowledge base. 

The steps of fuzzy reasoning (inference operations upon 
fuzzy if-then rules) performed by fuzzy inference systems are: 

the fuzzy sets used in the fuzzy rules; 

operations on the rules; 

into degrees of match with linguistic values; 

results of the inference into a crisp output. 

Compare the input variables with the membership func- 
tions on the premise part to obtain the membership 
values (or compatibility measures) of each linguistic 
label. (This step is often called fuzzification ). 
Combine (through a specific T-norm operator, usually 
multiplication or min.) the membership values on the 
premise part to get firing strength (weight) of each rule. 
Generate the qualified consequent (either fuzzy or crisp) 
of each rule depending on the firing strength. 
Aggregate the qualified consequents to produce a crisp 
output. (This step is called defuzzification.) 

Several types of fuzzy reasoning [23], [24] have been 
proposed in the literature. Depending on the types of fuzzy 
reasoning and fuzzy if-then rules employed, most fuzzy in- 
ference 

Type 1 : 
2): 

I Type 2: 

Type 3: 

systems can be classified into three types (see Fig. 

The overall output is the weighted average of each 
rule’s crisp output induced by the rule’s firing strength 
(the product or minimum of the degrees of match with 
the premise part) and output membership functions. 
The output membership functions used in this scheme 
must be monotonic functions [ S I .  
The overall fuzzy output is derived by applying 
“ m a ”  operation to the qualified fuzzy outputs (each 
of which is equal to the minimum of firing strength 
and the output membership function of each rule). 
Various schemes have been proposed to choose the 
final crisp output based on the overall fuzzy output; 
some of them are centroid of area, bisector of area, 
mean of maxima, maximum criterion, etc [23], [24]. 
Takagi and Sugeno’s fuzzy if-then rules are used [53]. 
The output of each rule is a linear combination of 

input variables plus a constant term, and the final 
output is the weighted average of each rule’s output. 

Fig. 2 utilizes a two-rule two-input fuzzy inference system 
to show different types of fuzzy rules and fuzzy reasoning 
mentioned above. Be aware that most of the differences come 
from the specification of the consequent part (monotonically 
non-decreasing or bell-shaped membership functions, or crisp 
function) and thus the defuzzification schemes (weighted av- 
erage, centroid of area, etc) are also different. 

111. ADAPTIVE NETWORKS: ARCHITECTURES 
AND LEARNING ALGORITHMS 

This section introduces the architecture and learning pro- 
cedure of the adaptive network which is in fact a superset 
of all kinds of feedforward neural networks with supervised 
learning capability. An adaptive network, as its name implies, 
is a network structure consisting of nodes and directional links 
through which the nodes are connected. Moreover, part or all 
of the nodes are adaptive, which means their outputs depend 
on the parameter(s) pertaining to these nodes, and the learning 
rule specifies how these parameters should be changed to 
minimize a prescribed error measure. 

The basic learning rule of adaptive networks is based on 
the gradient descent and the chain rule, which was proposed 
by Werbos [61] in the 1970’s. However, due to the state 
of artificial neural network research at that time, Werbos’ 
early work failed to receive the attention it deserved. In the 
following presentation, the derivation is based on the author’s 
work [ll], [lo] which generalizes the formulas in [39]. 

Since the basic learning rule is based the gradient method 
which is notorious for its slowness and tendency to become 
trapped in local minima, here we propose a hybrid learning rule 
which can speed up the learning process substantially. Both the 
batch learning and the pattern learning of the proposed hybrid 
learning rule discussed below. 

A. Architecture and Basic Learning Rule 

An adaptive network (see Fig. 3) is a multilayer feedforward 
network in which each node performs a particular function 
(node function) on incoming signals as well as a set of 
parameters pertaining to this node. The formulas for the node 
functions may vary from node to node, and the choice of each 
node function depends on the overall input-output function 
which the adaptive network is required to carry out. Note 
that the links in an adaptive network only indicate the flow 
direction of signals between nodes; no weights are associated 
with the links. 

To reflect different adaptive capabilities, we use both circle 
and square nodes in an adaptive network. A square node 
(adaptive node) has parameters while a circle node (fixed node) 
has none. The parameter set of an adaptive network is the 
union of the parameter sets of each adaptive node. In order to 
achieve a desired input-output mapping, these parameters are 
updated according to given training data and a gradient-based 
learning procedure described below. 

Suppose that a given adaptive network has L layers and 
the kth layer has #(k) nodes. We can denote the node in the 
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Fig. 2. Commonly used fuzzy if-then rules and fuzzy reasoning mechanisms. 

ith position of the kth layer by (k,& and its node function 
(or node output) by Of. Since a node output depends on its 
incoming signals and its parameter set, we have 

(1) 
ok-1 0; = os(o:-', . . . #(k-l)'% b,  c,. . .) 

where a, b, c, etc., are the parameters pertaining to this node. 
(Note that we use Of as both the node output and node 
function.) 

Assuming the given training data set has P entries, we 
can define the error measure (or energy function ) for the 
pth (1 5 p 5 P) entry of training data entry as the sum of 
squared errors: 

m=l 

where Tm,, is the mth component of pth target output vector, 
and O;,+ is the mth component of actual output vector 
produced by the presentation of the pth input vector. Hence 
the overall error measure is E = 

In order to develop a learning procedure that implements 
gradient descent in E over the parameter space, first we have 
to calculate the error rate dE,/dO for pth training data and 
for each node output 0. The error rate for the output node at 
(L,i) can be calculated readily from (2): 

P 
E,. 

(3) 

For the internal node at (k,i), the error rate can be derived 
by the chain rule: 

(4) 

where 1 5 k 5 L - 1. That is, the error rate of an internal node 
can be expressed as a linear combination of the error rates of 
the nodes in the next layer. Therefore for all 1 5 k 5 L and 
1 5 i 5 #(k), we can find dE,/dOt, by (3) and (4). 

v 
Fig. 3. An adaptive network. 

Now if a is a parameter of the given adaptive network, we 
have 

(5) 
8EP dE, dO* 

- c ao.--&' 
da O*ES 

where 5' is the set of nodes whose outputs depend on a. Then 
the derivative of the overall error measure E with respect to 
a is 

Accordingly, the update formula for the generic parameter 
a is 

dE Aa = -q- d a  (7) 

in which 77 is a learning rate which can be further expressed as 
k 

where k is the step size, the length of each gradient transition 
in the parameter space. Usually, we can change the value of 
k to vary the speed of convergence. The heuristic rules for 
changing k are discussed in the Section V where we report 
simulation results. 

Actually, there are two learning paradigms for adaptive 
networks. With the batch learning (or off-line learning), the 
update formula for parameter a is based on (6) and the 
update action takes place only after the whole training data 
set has been presented, i.e., only after each epoch or sweep. 
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Fig. 4. (a) Type-3 fuzzy reasoning. (b) Equivalent ANFIS (type-3 ANFIS). 
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(a) Type-1 fuzzy reasoning. (b) Equivalent ANFIS (type-1 
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(a) Type-1 fuzzy reasoning. (b) Equivalent ANFIS (type-1 

f 

ANFIS). 

On the other hand, if we want the parameters to be updated 
immediately after each input-output pair has been presented, 
then the update formula is based on'(5) and it is referred to 
as the pattern learning (or on-line learning). In the following 
we will derive a faster hybrid learning rule and both of its 
learning paradigms. 

B. Hybrid Learning Rule: Batch (Off-Line) Learning 

Though we can apply the gradient method to identify the 
parameters in an adaptive network, the method is generally 
slow and likely to become trapped in local minima. Here 
we propose a hybrid learning rule [lo] which combines the 
gradient method and the least squares estimate (LSE) to 
identify parameters. 

For simplicity, assume that the adaptive network under 
consideration has only one output 

output = F(T,  S )  (9) 

1 ---- 

&A- 

7 

(b) 

Fig. 6. (a) Two-input type-3 ANFIS with nine rules. (b) Corresponding fuzzy 
subspaces. 

where I' is the set of input variables and S is the set of 
parameters. If there exists a function H such that the composite 
function H o F is linear in some of the elements of S ,  then 
these elements can be identified by the least squares method. 
More formally, if the parameter set S can be decomposed into 
two sets 

s = SI Er3 s 2  (10) 

(where 
the elements of 5'2, then upon applying H to (9), we have 

represents direct sum) such that H o F is linear in 

H (  output) = H o F ( I', S )  (1 1) 

which is linear in the elements of 5'2. Now given values of 
elements of SI, we can plug P training data into (11) and 
obtain a matrix equation: 

A X = B  (12) 

where X is an unknown vector whose elements are parameters 
in 5'1. Let lS2l = M ,  then the dimensions of A,  X and B are 
P x M ,  M x 1 and P x 1, respectively. Since P (number 
of training data pairs) is usually greater than M (number 
of linear parameters), this is an overdetermined problem and 
generally there is no exact solution to (12). Instead, a least 
squares estimate (LSE) of X ,  X * ,  is sought to minimize the 
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squared error / ( A X  - BJI2. This is a standard problem that 
forms the grounds for linear regression, adaptive filtering and 
signal processing. The most well-known formula for X *  uses 
the pseudo-inverse of X :  

x* = ( A ~ A ) - ~ A ~ B  (13) 

where AT is the transpose of A ,  and (ATA)- lAT is the 
pseudo-inverse of A if A T A  is non-singular. While (13) 
is concise in notation, it is expensive in computation when 
dealing with the matrix inverse and, moreover, it becomes ill- 
defined if A T A  is singular. As a result, we employ sequential 
formulas to compute the LSE of X. This sequential method 
of LSE is more efficient (especially when M is small) and 
can be easily modified to an on-line version (see below) for 
systems with changing characteristics. Specifically, let the ith 
row vector of matrix A defined in (12) be a? and the ith 
element of B be bT, then X can be calculated iteratively using 
the sequential formulas widely adopted in the literature [l], 
P I ,  P61, WI: 

where Si is often called the covariance matrix and the least 
squares estimate X *  is equal to X p .  The initial conditions to 
bootstrap (14) are X O  = 0 and SO = 71, where y is a positive 
large number and I is the identity matrix of dimension M x M. 
When dealing with multi-output adaptive networks (output in 
(9) is a column vector), (14) still applies except that bT is the 
ith rows of matrix B. 

Now we can combine the gradient method and the least 
squares estimate to update the parameters in an adaptive 
network. Each epoch of this hybrid learning procedure is 
composed of a forward pass and a backward pass. In the 
forward pass, we supply input data and functional signals go 
forward to calculate each node output until the matrices A 
and B in (12) are obtained, and the parameters in S2 are 
identified by the sequential least squares formulas in (14). 
After identifying parameters in S2,  the functional signals keep 
going forward till the error measure is calculated. In the 
backward pass, the error rates (the derivative of the error 
measure w.r.t. each node output, see (3) and (4)) propagate 
from the output end toward the input end, and the parameters 
in 5’1 are updated by the gradient method in (7). 

For given fixed values of parameters in S I ,  the parameters in 
S2 thus found are guaranteed to be the global optimum point 
in the 5’2 parameter space due to the choice of the squared 
error measure. Not only can this hybrid learning rule decrease 
the dimension of the search space in the gradient method, but, 
in general, it will also cut down substantially the convergence 
time. 

Take for example an one-hidden-layer back-propagation 
neural network with sigmoid activation functions. If this neural 
network has p output units, then the output in (9) is a column 
vector. Let H( . )  be the inverse sigmoid function 

H ( z )  = In( A) 
1 - x  

TABLE I 
Two PASSES IN THE HYBRID LEARNING PROCEDURE FOR ANFIS 

- Forward Pass Backward Pass 
Premise Parameters Fixed Gradient Descent 

Consequent Parameters Least Squares Estimate Fixed 
Signals Node Outouts Error Rates 

then (11) becomes a linear (vector) function such that each el- 
ement of H(outpvt) is a linear combination of the parameters 
(weights and thresholds) pertaining to layer 2. In other words, 

S1 = weights and thresholds of hidden layer 
S2 = weights and thresholds of output layer. 
Therefore we can apply the back-propagation learning rule 

to tune the parameters in the hidden layer, and the parameters 
in the output layer can be identified by the least squares 
method. However, it should be keep in mind that by using 
the least squares method on the data transformed by H(. ) ,  the 
obtained parameters are optimal in terms of the transformed 
squared error measure instead of the original one. Usually 
this will not cause practical problem as long as H ( . )  is 
monotonically increasing. 

C. Hybrid Learning Rule: Pattern (On-Line) Learning 

If the parameters are updated after each data presentation, 
we have the pattern learning or on-line learning paradigm. 
This learning paradigm is vital to the on-line parameter iden- 
tification for systems with changing characteristics. To modify 
the batch learning rule to its on-line version, it is obvious that 
the gradient descent should be based on Ep (see (5)) instead 
of E. Strictly speaking, this is not a truly gradient search 
procedure to minimize E, yet it will approximate to one if 
the learning rate is small. 

For the sequential least squares formulas to account for the 
time-varying characteristics of the incoming data, we need 
to decay the effects of old data pairs as new data pairs 
become available. Again, this problem is well studied in the 
adaptive control and system identification literature and a 
number of solutions are available [7]. One simple method is 
to formulate the squared error measure as a weighted version 
that gives higher weighting factors to more recent data pairs. 
This amounts to the addition of a forgetting factor X to the 
original sequential formula: 

where the value of X is between 0 and 1. The smaller X is, the 
faster the effects of old data decay. But a small X sometimes 
causes numerical unstability and should be avoided. 

IV. ANFIS: ADAPTIW-NETWORK-BASED Fuzzy 
INFERENCE SYSTEM 

The architecture and learning rules of adaptive networks 
have been described in the previous section. Functionally, 
there are almost no constraints on the node functions of 
an adaptive network except piecewise differentiability. Struc- 
turally, the only limitation of network configuration is that 
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it should be of feedforward type. Due to these minimal 
restrictions, the adaptive network’s applications are immediate 
and immense in various areas. In this section, we propose a 
class of adaptive networks which are functionally equivalent to 
fuzzy inference systems. The proposed architecture is referred 
to as ANFIS, standing for adaptive-network-based fuzzy in- 
ference system. We describe how to decompose the parameter 
set in order to apply the hybrid learning rule. Besides, we 
demonstrate how to apply the Stone-Weierstrass theorem to 
ANFIS with simplified fuzzy if-then rules and how the radial 
basis function network relate to this kind of simplified ANFIS. 

A. ANFIS Architecture 

For simplicity, we assume the fuzzy inference system under 
consideration has two inputs x and y and one output z. 
Suppose that the rule base contains two fuzzy if-then rules 
of Takagi and Sugeno’s type [53]. 

Rule I: If x is A1 and y is B1, then fi = p l x  + q1y + rl ,  
Rule 2: If x is A2 and y is B2, then f 2  = p2x + q2y + 7-2. 

Then the type-3 fuzzy reasoning is illustrated in Fig. 4(a), 
and the corresponding equivalent ANFIS architecture (fype-3 
ANFIS) is shown in Fig. 4(b). The node functions in the same 
layer are of the same function family as described below: 
Layer 1: Every node i in this layer is a square node with a 

node function 

where x is the input to node i ,  and A, is the linguistic 
label (small , large, etc.) associated with this node 
function. In other words, 0; is the membership 
function of A, and it specifies the degree to which 
the given x satisfies the quantifier Ai. Usually we 
choose ( x )  to be bell-shaped with maximum 
equal to 1 and minimum equal to 0, such as 

(18) 
1 

P A  = 

or 

where { a i ,  b;, c i }  is the parameter set. As the 
values of these parameters change, the bell-shaped 
functions vary accordingly, thus exhibiting various 
forms of membership functions on linguistic label 
Ai. In fact, any continuous and piecewise differen- 
tiable functions, such as commonly used trapezoidal 
or triangular-shaped membership functions, are also 
qualified candidates for node functions in this layer. 
Parameters in this layer are referred to as premise 
parameters. 

Layer 2: Every node in this layer is a circle node labeled Tz 
which multiplies the incoming signals and sends the 
product out. For instance, 

Each node output represents the firing strength of a 
rule. (In fact, other T-norm operators that perform 
generalized AND can be used as the node function 
in this layer.) 

Layer 3: Every node in this layer is a circle node labeled 
N. The ith node calculates the ratio of the ith 
rule’s firing strength to the sum of all rules’ firing 
strengths: 

For convenience, outputs of this layer will be called 
called normalized firing strengths. 

Layer 4: Every node i in this layer is a square node with a 
node function 

Layer 5: 

0: = Vifi = mi(pix + qiy + T i )  (22) 

where Uri is the output of layer 3, and {pi, q;, ri}  
is the parameter set. Parameters in this layer will be 
referred to as consequent parameters. 
The single node in this layer is a circle node labeled 
C that computes the overall output as the summation 
of all incoming signals, i.e., 

(23) 
Thus we have constructed an adaptive network which is 

functionally equivalent to a type-3 fuzzy inference system. 
For type-1 fuzzy inference systems, the extension is quite 
straightforward and the type-1 ANFIS is shown in Fig. 5 
where the output of each rule is induced jointly by the output 
membership funcion and the firing strength. For type-2 fuzzy 
inference systems, if we replace the centroid defuzzification 
operator with a discrete version which calculates the ap- 
proximate centroid of area, then type-3 ANFIS can still be 
constructed accordingly. However, it will be more complicated 
than its type-3 and type-1 versions and thus not worth the 
efforts to do so. 

Fig. 6 shows a 2-input, type-3 ANFIS with nine rules. Three 
membership functions are associated with each input, so the 
input space is partitioned into nine fuzzy subspaces, each of 
which is governed by a fuzzy if-then rules. The premise part 
of a rule delineates a fuzzy subspace, while the consequent 
part specifies the output within this fuzzy subspace. 

B. Hybrid Learning Algorithm 

From the proposed type-3 ANFIS architecture (see Fig. 4), 
it is observed that given the values of premise parameters, the 
overall output can be expressed as a linear combinations of the 
consequent parameters. More precisely, the output f in Fig. 
4 can be rewritten as 
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Fig. 7. Piecewise linear approximation of membership functions on the con- 
sequent part of type-1 ANFIS. 
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Fig. 8. A typical initial membership function setting in our simulation. (The 

which is linear in the consequent parameters (PI, 41, T I ,  pa,  
q2 and ~ 2 ) .  As a result, we have 

S = set of total parameters 
SI = set of premise parameters 
Sa = set of consequent parameters 

in (10); H ( - )  and F(., -) are the identity function and the func- 
tion of the fuzzy inference system, respectively. Therefore the 
hybrid learning algorithm developed in the previous chapter 
can be applied directly. More specifically, in the forward pass 
of the hybrid learning algorithm, functional signals go forward 
till layer 4 and the consequent parameters are identified by the 
least squares estimate. In the backward pass, the error rates 
propagate backward and the premise parameters are updated 
by the gradient descent. Table I summarizes the activities in 
each pass. 

As mentioned earlier, the consequent parameters thus identi- 
fied are optimal (in the consequent parameter space) under the 
condition that the premise parameters are fixed. Accordingly 
the hybrid approach is much faster than the strict gradient 
descent and it is worthwhile to look for the possibility of 
decomposing the parameter set in the manner of (10). For 
type-1 M I S ,  this can be achieved if the membership function 
on the consequent part of each rule is replaced by a piecewise 
linear approximation with two consequent parameters (see Fig. 
7). In this case, again, the consequent parameters constitute set 
S2 and the hybrid learning rule can be employed directly. 

However, it should be noted that the computation complex- 
ity of the least squares estimate is higher than that of the 
gradient descent. In fact, there are four methods to update 
the parameters, as listed below according to their computation 
complexities: 

1) Gradient Descent Only : All parameters are updated by 
the gradient descent. 

2) Gradient Descent and One Pass of LSE: The LSE is 
applied only once at the very beginning to get the 

t 
MF 

Fig. 9. Physical meanings of the parameters in the bell membership function 
f l A ( 2 )  = + - c / a ) 2 1 b ) .  

error 
measure 

1: lnctwsa step ske amr 4 downs (pdnl A) 

rule 2: decreese step slze after 2 combinatlons 

of 1 up and 1 down (polnt B) 

S p b S  

Fig. 10. 'Iko heuristic rules for updating step size I C .  

50 100 150 

cpocas 
Fig. 11. RMSE curves for the quick-propagation neural networks and the 

ANFIS. 

initial values of the consequent parameters and then the 
gradient descent takes over to update all parameters. 

3) Gradient descent and LSE : This is the proposed hybrid 
learning rule. 

4) Sequential (Approximate) LSE Only: The ANFIS is lin- 
earized w.r.t. the premise parameters and the extended 
Kalman filter algorithm is employed to update all pa- 
rameters. This has been proposed in the neural network 
literature [41]-[ 431. 

The choice of above methods should be based on the trade-off 
between computation complexity and resulting performance. 
Our simulations presented in the next section are performed 



672 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAY/JUNE 1993 

I 

-..- 
I " ' .  .. ... , ._ ,_ 

(c) ( 4  

Fig. 12. Training data (a) and reconstructed surfaces at @) 0.5, (c) 99.5, and 249.5 (d) epochs. (Example 1). 
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@) 

Fig. 13. Initial and final membership functions of example 1. (a) Initial MF's on z. @) Initial MF's on y. (c) Final MF's on z. 
(d) Final MF's on y. 

by the third method. Note that the consequent parameters can 
also be updated by the Widrow-Hoff LMS algorithm [63], 
as reported in [44]. The Widrow-Hoff algorithm requires less 
computation and favors parallel hardware implementation, but 
it converges relatively slowly when compared to the least 
square estimate. 

As pointed out by one of the reviewers, the learning 
mechanisms should not be applied to the determination of 
membership functions since they convey linguistic and sub- 
jective description of ill-defined concepts. We think this is a 
case-by-case situation and the decision should be left to the 
users. In principle, if the size of available input-output data 
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predicted 
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Fig. 14. The ANFIS architecture for example 2. (The connections from in- 
puts to layer 4 are not shown.) 

set is large enough, then the fine-tuning of the membership 
functions are applicable (or even necessary) since the human- 
determined membership functions are subject to the differences 
from person to person and from time to time; therefore they 
are rarely optimal in terms of reproducing desired outputs. 
However, if the data set is too small, then it probably does not 
contain enough information of the system under consideration. 
In this situation, the the human-determined membership func- 
tions represent important knowledge obtained through human 
experts’ experiences and it might not be reflected in the data 
set; therefore the membership functions should be kept fixed 
throughout the learning process. 

Interestingly enough, if the membership functions are fixed 
and only the consequent part is adjusted, the ANFIS can 
be viewed as a functional-link network [19], [34] where the 
“enhanced representation” of the input variables are achieved 
by the membership functions. This “enhanced representation” 
which takes advantage of human knowledge are apparently 
more insight-revealing than the functional expansion and the 
tensor (outerproduct) models [34]. By fine-tuning the mem- 
bership functions, we actually make this “enhanced represen- 
tation” also adaptive. 

Because the update formulas of the premise and consequent 
parameters are decoupled in the hybrid learning rule (see Table 
I), further speedup of learning is possible by using other ver- 
sions of the gradient method on the premise parameters, such 
as conjugate gradient descent, second-order back-propagation 
[35], quick-propagation [5], nonlinear optimization [58] and 
many others. 

C. Fuzzy Inference Systems with Simplified Fuzzy If-Then Rules 

Though the reasoning mechanisms (see Fig. 2) introduced 
earlier are commonly used in the literature, each of them 
has inherent drawbacks. For type-1 reasoning (see Fig. 2 or 
5), the membership functions on the consequence part are 
restricted to monotonic functions which are not compatible 
with linguistic terms such as “medium” whose membership 
function should be bell-shaped. For type-2 reasoning (see 
Fig. 2), the defuzzification process is time-consuming and 
systematic fine-tuning of the parameters are not easy. For type- 
3 reasoning (see Fig. 2 or 4), it is just hard to assign any 
appropriate linguistic terms to the consequence part which is 
a nonfuzzy function of the input variables. To cope with these 
disadvantages, simplified fuzzy if-then rules of the following 
form are introduced: 

If x is big and y is small, then z is d. 
where d is a crisp value. Due to the fact that the output 
z is described by a crisp value (or equivalently, a singular 
membership function), this class of simplified fuzzy if-then 
rules can employ all three types of reasoning mechanisms. 
More specifically, the consequent part of this simplified fuzzy 
if-then rule is represented by a step function (centered at 
z = d) in type 1, a singular membership function (at z = d) in 
type 2, and a constant output function in type 3, respectively. 
Thus the three reasoning mechanisms are unified under this 
simplified fuzzy if-then rules. 

Most of all, with this simplified fuzzy if-then rule, it is 
possible to prove that under certain circumstance, the resulting 
fuzzy inference system has unlimited approximation power to 
match any nonlinear functions arbitrarily well on a compact 
set. We will proceed this in a descriptive way by applying the 
Stone-Weierstrass theorem [ 181, [38] stated below. 

Theorem I: Let domain D be a compact space of N 
dimensions, and let 3 be a set of continuous real-valued 
functions on D, satisfying the following criteria: 

1) Identity Function: The constant f ( E )  = 1 is in 3. 
2) Separability: For any two points XI  # 2 2  in D, there is 

an f in 3 such that f(q) # f (x2) .  
3) Algebraic Closure: If f and g are any two functions 

in 3, then fg and af + bg are in F for any two real 
numbers a and b. 

Then 3 is dense in C(D) ,  the set of continuous real-valued 
functions on D. In other words, for any e > 0, and any 
function g in C(D) ,  there is a function f in 3 such that 
Ig(x)  - f(x)l < e for all E E D. 

In application of fuzzy inference systems, the domain in 
which we operate is almost always closed and bounded and 
therefore it is compact. For the first and second criteria, it is 
trivial to find simplified fuzzy inference systems that satisfy 
them. Now all we need to do is examine the algebraic closure 
under addition and multip!ication. Suppose we have two fuzzy 
inference systems S and S; each has two rules and the output 
of each system can be expressed as 

(25) 
W l f l +  w2f2 s :  z =  

w1+ w 2  

&f l+  7212f2 3 ;  z ” =  
7211 + 7212 

where fl, f2, f1 and f2 are constant output of each rule. Then 
az + bz” and zz” can be calculated as follows: 

W l f l +  w2f2 + bGIJ’ + w 2 j 2  uz + bz” = a 
w1+ w 2  7211 + 6 2  

zz“ = W l W I J l +  W l G 2 f l j 2  + W2721lf2fl+ w27212f2f2 

w17211+ w 1 6 2  + w27211+ w 2 G 2  
(27) 
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Fig. 15. Example 2. (a) Membership functions before learning. @ H d )  Membership functions after learning. (a) Initial MF’s 
on z, y, and z. (b) Final MF’s on z. (c) Final MF’s on y. (d) Final MF’S on z. 
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(a) (b) 

Fig. 16. Error curves of example 2: (a) Nine training error curves for nine initial step size from 0.01 (solid line) 
to 0.09. (b) training (solid line) and checking (dashed line) error curves with initial step size equal to 0.1. 

which are of the same form as (25) and (26). Apparently 
the ANFIS architectures that compute az + bi? and ZZ are 

membership functions is invariant under multiplication. This 
is loosely true if the class of membership functions is the set of 
all bell-shaped functions, since the multiplication of two bell- 
shaped function is almost always still bell-shaped. Another 
more tightly defined class of membership functions satisfying 
this criteria, as pointed out by Wang [56], [57], is the scaled 

Gaussian membership function: 

(28) 
of the same class of S and S if and only if the class of X - G  2 

C L A , ( X )  = aiexd-(-) ai I 

Therefore by choosing an appropriate class of membership 
functions, we can conclude that the ANFIS with simplified 
fuzzy if-then rules satisfy the criteria of the Stone-Weierstrass 
theorem. Consequently, for any given 6 > 0, and any real- 

_. 
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TABLE I1 
EXAMPLE 2: COMPARISONS WITH EARLIER WORK 

Model APEt,, (%) APEchk (%) Parameter Number Training Set Size Checking Set Size 
ANFIS 0.043 1.066 50 216 125 

GMDH model 4.7 5.7 - 20 20 
Fuzzy model 1 1.5 2.1 22 20 20 
Fuzzy model 2 0.59 3.4 32 20 20 

TABLE I11 
EXAMPLE 3: COMPARISON WITH NN IDENTIFIER 

Method Parameter Number Time Steps of Adaptation 
NN 261 50 OOO 

ANFIS 35 250 

valued function g, there is a fuzzy inference system S such 
that lg(d) - S(d)‘)( < E for all d in the underlying compact set. 
Moreover, since the simplified ANFIS is a proper subset of all 
three types of ANFIS in Fig. 2, we can draw the conclusion 
that all the three types of ANFIS have unlimited approximation 
power to match any given data set. However, caution has to be 
taken in accepting this claim since there is no mention about 
how to construct the ANFIS according to the given data set. 
That is why learning plays a role in this context. 

Another interesting aspect of the simplified ANFIS ar- 
chitecture is its functional equivalence to the radial basis 
function network (RBFN). This functional equivalence is 
established when the Gaussian membership function is used 
in the simplified ANFIS. A detailed treatment can be found in 
[13]. This functional equivalence provides us with a shortcut 
for better understanding of ANFIS and RBFN and advances in 
either literatures apply to both directly. For instance, the hybrid 
learning rule of ANFIS can be apply to RBFN directly and, 
vice versa, the approaches used to identify RBFN parameters, 
such as clustering preprocess [29], [30], orthogonal least 
squares learning [3], generalization properties [2], sequential 
adaptation [15], among others [14], [31], are all applicable 
techniques for ANFIS. 

V. &PLICATION EWPLES 

This section presents the simulation results of the proposed 
type-3 ANFIS with both batch (off-line) and pattern (on- 
line) learning. In the first two examples, ANFIS is used to 
model highly nonlinear functions and the results are compared 
with neural network approach and earlier work. In the third 
example, ANFIS is used as an identifier to identify a nonlinear 
component on-linely in a discrete control system. Lastly, we 
use ANFIS to predict a chaotic time series and compare the 
results with various statistical and connectionist approaches. 

A. Practical Considerations 

In a conventional fuzzy inference system, the number of 
rules is decided by an expert who is familiar with the system to 
be modeled. In our simulation, however, no expert is available 
and the number of membership functions (MF’s) assigned to 

0.5 

0 

-0.5 

~~ 

0 100 m 300 400 500 600 700 
time index (k) 

(c) 

Fig. 17. Example 3. (a) u(k) .  (a) f(u(k)) and F(u(k ) ) .  (b) Plant output 
and model output. (c) Plant output and model output. 

each input variable is chosen empirically, i.e., by examining 
the desired input-output data andlor by trial and error. This sit- 
uation is much the same as that of neural networks; there are no 
simple ways to determine in advance the minimal number of 
hidden nodes necessary to achieve a desired performance level. 

After the number of MF’s associated with each inputs are 
fixed, the initial values of premise parameters are set in such a 
way that the MF’s are equally spaced along the operating range 
of each input variable. Moreover, they satisfy E-completeness 
[23], [24] with E = 0.5, which means that given a value x 
of one of the inputs in the operating range, we can always 
find a linguistic label A such that p ~ ( x )  2 E .  In this manner, 
the fuzzy inference system can provide smooth transition and 
sufficient overlapping from one linguistic label to another. 
Though we did not attempt to keep the €-completeness during 



616 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAY/JUNE 1993 

” 
-1 -0.5 0 0.5 1 

1 

0.8 

0.6 

0.4 

0.2 

0 
.1 -0.5 0 0.5 1 

U U 

f(u) and F(u) 1 

-1’ I I 
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 

U U 

Fig. 18. Example 3: batch learning with five MF’s. 

the learning in our simulation, it can be easily achieved by 
using the constrained gradient method [65]. Fig. 8 shows a 
typical initial MF setting when the number of MF is 4 and the 
operating range is [0,12]. Note that throughout the simulation 
examples presented below, all the membership functions used 
are the generalized bell function defined in (18): 

which contains three fitting parameters a, b and c. Each of 
these parameters has a physical meaning: c determines the 
center of the corresponding membership function; a is the 
half width; and b (together with a) controls the slopes at the 
crossover points (where MF value is 0.5). Fig. 9 shows these 
concepts. 

We mentioned that the step size k in (8) may influence 
the speed of convergence. It is observed that if k is small, the 
gradient method will closely approximate the gradient path, but 
convergence will be slow since the gradient must be calculated 
many times. On the other hand, if k is large, convergence will 
initially be very fast, but the algorithm will oscillate about the 
optimum. Based on these observations, we update k according 
to the following two heuristic rules (see Fig. 10): 

1) If the error measure undergoes four consecutive reduc- 
tions, increase k by 10%. 

2) If the error measure undergoes two consecutive combi- 
nations of one increase and one reduction, decrease IC 
by 10%. 

Though the numbers lo%, 4 and 2 are chosen more or less 
arbitrarily, the results shown in our simulation appear to 
be satisfactory. Furthermore, due to this dynamical update 
strategy, the initial value of k is usually not critical as long 
as it is not too big. 

B. Simulation Results 

Example l a o d e l i n g  a Two-Input Nonlinear Function: In 
this example, we consider using ANFIS to model a nonlinear 
sinc equation 

sin(x) sin(y) 
X Y 

z = sinc(z,y) = - x -. 

From the grid points of the range [-lo, 101 x [-lo, 101 within 
the input space of the above equation, 121 training data pairs 
were obtained first. The ANFIS used here contains 16 rules, 
with four membership functions being assigned to each input 
variable and the total number of fitting parameters is 72 which 
are composed of 24 premise parameters and 48 consequent 
parameters. (We also tried ANFIS with 4 rules and 9 rules, but 
obviously they are too simple to describe the highly nonlinear 
sinc function.) 

Fig. 11 shows the RMSE (root mean squared error) curves 
for both the 2-18-1 neural network and the ANFIS. Each 
curve is the average of ten runs: for the neural network, this 
ten runs were started from 10 different set of initial random 
weights; for the ANFIS, 10 different initial step size (= 
0.01,0.02, . . . , 0.10) were used. The neural network, contain- 

- 
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Fig. 19. Example 3: Batch leaming with four MF’s. 

ing 73 fitting parameters (connection weights and thresholds), 
was trained with quick propagation [5] which is considered one 
of the best learning algorithms for connectionist models. Fig. 
11 demonstrate how ANFIS can effectively model a highly 
nonlinear surface as compared to neural networks. However, 
this comparison cannot taken to be universal since we did not 
attempt an exhaustive search to find the optimal settings for 
the quick-propagation learning rule of the neural networks. 

The training data and reconstructed surfaces at different 
epoch numbers are shown in Fig. 12. (Since the error measure 
is always computed after the forward pass is over, the epoch 
numbers shown in Fig. 12 always end with “0.5.”) Note 
that the reconstructed surface after 0.5 epoch is due to the 
identification of consequent parameters only and it already 
looks similar to the training data surface. 

Fig. 13 lists the initial and final membership functions. It 
is interesting to observe that the sharp changes of the training 
data surface around the origin is accounted for by the moving 
of the membership functions toward the origin. Theoretically, 
the final MF’s on both x and y should be symmetric with 
respect to the origin. However, they are not symmetric due 
to the computer truncation errors and the approximate initial 
conditions for bootstrapping the calculation of the sequential 
least squares estimate in [14]. 

Example 2 4 o d e l i n g  a Three-Input Nonlinear Function: 
The training data in this example are obtained from 

output = (1 + 20 .5  + y-1 + + 5 ) 2 ,  (31) 

which was also used by Takagi et al. [52], Sugeno et al. 
[47] and Kondo [20] to verify their approaches. The ANFIS 
(see Fig. 14) used here contains 8 rules, with 2 membership 
functions being assigned to each input variable. 216 training 
data and 125 checking data were sampled uniformly from the 
input ranges [1,6] x [1,6] x [1,6] and [1.5,5.5] x [1.5,5.5] x 
[1.5,5.5], respectively. The training data was used for the 
training of ANFIS, while the checking data was used for 
verifying the identified ANFIS only. To allow comparison, 
we use the same performance index adopted in [47, 201: 

A P E  = average percentage error 

where P is the number of data pairs; T( i )  and O(i)  are ith 
desired output and calculated output, respectively. 

Fig. 15 illustrates the membership functions before and after 
training, The training error curves with different initial step 
sizes (from 0.01 to 0.09) are shown in Fig. 16(a), which 
demonstrates that the initial step size is not too critical on 
the final performance as long as it is not too big. Fig. 16(b) 
is the training and checking error curves with initial step 
size equal to 0.1. After 199.5 epochs, the final results are 
APE,,,  = 0.043% and APE,hk = 1.066%, which is listed 
in Table I1 along with other earlier work [47], [20]. Since 
each simulation cited here was performed under different 
assumptions and with different training and checking data sets, 
we cannot make conclusive comments here. 
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Fig. 20. Example 3: Batch learning with three MF’s. 

Example 3 4 n - l i n e  Identification in Control Systems: Here 
we repeat the simulation example 1 of [32] where a 1-20-10-1 
neural network is employed to identify a nonlinear component 
in a control system, except that we use ANFIS to replace the 
neural network. The plant under consideration is governed by 
the following difference equation: 

y ( k  + 1) = 0.3y(k) + 0.6y(k - 1) + f(u(k)), (33) 

where y(k) and u ( k )  are the output and input, respectively, at 
time index k ,  and the unknown function f(.) has the form 

f(u) = 0.6sin(ru) + 0.3sin(3ru) + 0.1 sin(57ru). (34) 

In order to identify the plant, a series-parallel model governed 
by the difference equation 

$ ( k  + 1) = 0.3$(k) + 0.6$(k - 1) + F(u(k) )  (35) 

was used where F ( - )  is the function implemented by ANFIS 
and its parameters are updated at each time index. Here the 
ANFIS has 7 membership functions on its input (thus 7 rules, 
and 35 fitting parameters) and the pattern (on-line) learning 
paradigm was adopted with a learning rate 77 = 0.1 and a 
forgetting factor X = 0.99. The input to the plant and the 
model was a sinusoid u(k )  = sin(2rk/250) and the adaptation 
started at k = 1 and stopped at k = 250. As shown in Fig. 17, 
the output of the model follows the output of the plant almost 
immediately even after the adaptation stopped at k = 250 and 
the u ( k )  is changed to 0.5 sin(2rk/250) + 0.5 sin(2rk/25) 
after k = 500. As a comparison, the neural network in 

[32] fails to follow the plant when the adaptation stopped at 
k = 500 and the identification procedure had to continue for 
50,000 time steps using a random input. Table I11 summarizes 
the comparison. 

In the above, the MF number is determined by trial and 
errors. If the MF number is below 7 then the model output will 
not follow the plant output satisfactorily after 250 adaptations. 
But can we decrease the parameter numbers by using batch 
learning which is supposed to be more effective? Fig. 18, 19 
and 20 show the results after 49.5 epochs of batch learning 
when the MF numbers are 5, 4 and 3, respectively. As can 
be seen, the ANFIS is a good model even when the MF is as 
small as 3. However, as the MF number is getting smaller, the 
correlation between F(u)  and each rule’s output is getting less 
obvious in the sense that it is harder to sketch F(u)  from each 
rule’s consequent part. In other words, when the parameter 
number is reduced mildly, usually the ANFIS can still do the 
job but at the cost of sacrificing its semantics in terms of the 
local-description nature of fuzzy if-then rules; it is less of a 
structured knowledge representation and more of a black-box 
model (like neural networks). 

Example 4-Predicting Chaotic Dynamics: Example 1-3 
show that the ANFIS can be used to model highly nonlinear 
functions effectively. In this example, we will demonstrate 
how the proposed ANFIS can be employed to predict future 
values of a chaotic time series. The performance obtained in 
this example will be compared with the results of a cascade- 
correlation neural network approach reported in [37] and a 
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Fig. 21. Membership functions of example 4. (a) Before learning. (b) After 

learning. 

simple conventional statistical approach, the auto-regressive 
(AR) model. 

The time series used in our simulation is generated by the 
chaotic Mackey-Glass differential delay equation [27] defined 
below: 

0.2X(t - T )  X(t) = - O.lz(t). 
1 + x y t  - T )  

The prediction of future values of this time series is a bench- 
mark problem which has been considered by a number of 
connectionist researchers (Lapedes and Farber [22], Moody 
[30], [28], Jones et al. [14], Crower [37] and Sanger [40]). 

The goal of the task is to use known values of the time 
series up to the point x = t to predict the value at some 
point in the future x = t + P. The standard method for this 
type of prediction is to create a mapping from D points of 
the time series spaced A apart, that is, (x(t  - (D - l)A), 
..., x(t  - A), x(t)) ,  to a predicted future value x ( t  + P). 
To allow comparison with earlier work (Lapedes and Farber 
[22], Moody [30, 281, Crower [37]), the values D = 4 and 
A = P = 6 were used. All other simulation settings in this 
example were purposedly arranged to be as close as possible 
to those reported in [37]. 
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Fig. 22. Example 3. (a) Mackey-Glass time series from t = 124 to 1123 
and six-step ahead prediction (which is indistinguishable from the time series 
here). @) Prediction error. 

To obtain the time series value at each integer point, we 
applied the fourth-order Runge-Kutta method to find the 
numerical solution to (36). The time step used in the method 
is 0.1, initial condition x(0)  = 1.2, T = 17, and x ( t )  is thus 
derived for 0 5 t 5 2000. (We assume x ( t )  = 0 for t < 0 in 
the integration.) From the Mackey-Glass time series z( t ) ,  we 
extracted 1000 input-output data pairs of the following format: 

[ ~ ( t  - 18), ~ ( t  - 12), ~ ( t  - 6), ~ ( t ) ;  z( t  + 6 ) ] ,  (37) 

where t = 118 to 1117. The first 500 pairs (training data 
set) was used for training the ANFIS while the remaining 500 
pairs (checking data set) were used for validating the identified 
model. The number of membership functions assigned to each 
input of the ANFIS was arbitrarily set to 2, so the rule number 
is 16. Fig. 21(a) is the initial membership functions for each 
input variable. The ANFIS used here contains a total of 104 
fitting parameters, of which 24 are premise parameters and 80 
are consequent parameters 

After 499.5 epochs, we had RMSE,,, = 0.0016 and 
RMSE,hk = 0.0015, which are much better when compared 
with other approaches explained below. The resulting 16 fuzzy 
if-then rules are listed in the Appendix. The desired and 
predicted values for both training data and checking data are 
essentially the same in Fig. 22(a); their differences (see Fig. 
22(b)) can only be seen on a finer scale. Fig. 21(b) is the 
final membership functions; Fig. 23 shows the RMSE curves 
which indicate most of the learning was done in the first 
100 epochs. It is quite unusual to observe the phenomenon 
that RMSE,,, < RMSE,hk during the training process. 
Considering both the RMSE's are very small, we conclude 
that: 1) the ANFIS has captured the essential components 
of the underlying dynamics; 2) the training data contains the 
effects of the initial conditions (remember that we set x( t )  = 0 
for t 5 0 in the integration) which might not be easily 
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Fig. 23; Training and checking RMSE curves for ANFIS modeling. 

accounted for by the essential components identified by the 

As a comparison, we performed the same prediction by 
using the auto-regressive (AR) model with the same number 
of parameters: 

ANFIS. 1.5 

1 

0.5 
z(t + 6) = uo + a l z ( t )  + ~ 2 ~ ( t  - 6) 

1200 1400 1600 
rime (ac.) +... + alojz(t - 102 * 6) (38) 

where there are 104 fitting parameters U k ,  k = 0 to 103. 
From t = 712 to 1711, we extracted 1000 data pairs, of 
which the first 500 were used to identify ak and the remaining 
were used for checking. The results obtained through the 
standard least squares estimate are RMSEt,., = 0.005 and 
RMSE,hk = 0.078 which is much worse than those of 
ANFIS. Fig. 24 shows the predicted values and the prediction 
errors. Obviously, the over-parameterization of the AR model 
causes over-fitting in the training data and large errors in 
the checking data. To search for the best AR model in 
terms of generalization capability, we tried out different AR 
models with parameter number being varied from 2 to 104; 
Fig. 25 shows the results where the AR model with the 
best generalization capability is obtained when the parameter 
number is 45. Based on this best AR model, we repeat the 
generalization test and Fig. 26 shows the results where there 
is no over-fitting at the price of larger training errors. 

It goes without saying that the nonlinear ANFIS outperforms 
the linear AR model. However, it should be noted that the 
identification of the AR model took only a few seconds, while 
the ANFIS simulation took about 1.5 h on a HP Apollo 700 

rime (sec.) 

@) 

Fig. 24. (a) Mackey-Glass time series (solid line) from t = 718 to 1717 
and six-step ahead prediction (dashed line) by AR model with parameter = 
104. (b) Prediction errors. 

Series workstation. (We did not pay special attention on the 
optimization of the codes, though.) 

Table IV lists other methods' generalization capabilities 
which are measured by using each method to predict 500 
points immediately following the training set. Here the non- 
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Fig. 25. Training (solid line) and checking (dashed line) errors of AR models 
with different parameter numbers. 

TABLE V 
GENERALIZATION RESULT COMPARISONS~ 

Method Training Non-Dimensional 
Cases- Error Index 

ANFIS 500 0.036 
AR Model 500 0.39 

Cascaded-Correlation NN 500 0.32 
Back-Prop NN 500 0.05 

Sixth-Order Polynomial 500 0.85 
Linear Predictive Method 2000 0.60 

LRF 500 0.1 M . 2 5  
LRF 10 000 0.025-0.05 
MRH 500 0.05 
MRH 10 OOO 0.02 

Generalization result comparisons for P = 84 (the lint six rows) 
and 85 (the last four rows). Results for the first six methods are 
generated by iterating the solution at P = 6. Results for localized 
receptive fields (LRF) are multiresolution hierarchies (MRH) are for 
networks trained for P = 85. (The last eight rows are from [37].) 
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Fig. 26. Example 3. (a) Mackey-Glass time series (solid line) from t = 364 
to 1363 and six-step ahead prediction (dashed line) by the best AR model 
(parameter number = 45). (h) Prediction errors. 

-0.021 

TABLE IV 
GENERALIZATION RESULT COMPARISONS FOR P = 6a 

Method Training Cases Non-Dimensional Error 
Index 

ANFIS 500 0.007 
AR Model 500 0.19 

Cascaded-Correlation NN 500 0.06 

Sixth-order Polynomial 500 0.04 
Linear Predictive Method 2000 0.55 

Back-Prop NN 500 0.02 

dimensional error index (NDEI) [22], 1371 is defined as the 
root mean square error divided by the standard deviation of 
the target series. (Note that the average relative variance used 
in [59, 601 is equal to the square of NDEI.) The remarkable 
generalization capability of the ANFIS, we believe, comes 
from the following facts: 

1) The ANFIS can achieve a highly nonlinear mapping as 
shown in Example 1, 2 and 3, therefore it is superior to 
common linear methods in reproducing nonlinear time 
series. 

I I  I 
200 400 600 800 lo00 1200 

timc 

@) 

Fig. 27. Generalization test of ANFIS for P = 84. (a) Desired (solid) and 
predicted (dashed) time series of ANFIS when P = 84. @) Prediction errors. 

2) The ANFIS used here has 104 adjustable parameters, 
much less than those of the cascade-correlation NN (693, 
the median size) and back-prop NN (about 540) listed 
in Table IV. 

3) Though without apriori knowledge, the initial parameter 
settings of ANFIS are intuitively reasonable and it leads 
to fast learning that captures the underlying dynamics. 

Table V lists the results of the more challenging generaliza- 
tion test when P = 84 (the first six rows) and P = 85 (the 
last four rows). The results of the first six rows were obtained 
by iterating the prediction of P = 6 till P = 84. ANFIS 
still outperforms these statistical and connectionist approaches 
unless a substantially large amount of training data (Le., the 
last row of Table V) were used instead. Fig. 27 illustrates the 
generalization test for the A N m S  where the first 500 points 
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’ If z ( t  - 18) is SMALL1 and z(t - 12) is SMALL2 and z(t  - 6 )  i s  SMALL3 and z ( t )  i s  SMALL4, then z(t + 6 )  = C; .2? 
If z(t  - 18) is SMALL1 and z(t - 12) is SMALL2 and z(t - 6 )  is SMALL3 and z ( t )  i s  LARGE4, then x ( t  + 6 )  = C; . J? 
If z ( t  - 18) is SMALL1 and z(t  - 12) i s  SMALL2 and z(t - 6 )  i s  LARGE3 and x ( t )  i s  SMALL4, then x(t + 6 )  = Z3 . { 
If z(t  - 18) i s  SMALL1 and z( t  - 12) is SMALL2 and x ( t  - 6 )  i s  LARGE3 and x ( t )  is LARGE4, then z( t  + 6 )  = Z4 . X, 
If z(t  - 18) i s  SMALL1 and z ( t  - 12) is LARGE, and z( t  - 6 )  is SMALL3 and x ( t )  is SMALL4, then z ( t  + 6 )  = C; .< 
If z ( t  - 18) is SMALL1 and z(t - 1 2 )  is LARGE2 and z ( t  - 6 )  is  SMALL3 and z ( t )  is LARGE4, then z( t  + 6 )  = Z,j E 
If z(t  - 18) i s  SMALL1 and z(t - 12) is LARGE2 and z( t  - 6 )  is LARGE3 and x ( t )  i s  SMALL4, then z( t  + 6 )  = C; . E 
If z(t  - 18) is SMALL1 and z( t  - 12) is LARGE2 and z ( t  - 6 )  is LARGE3 and x ( t )  i s  LARGE4, then z(t + 6 )  = & . X, 
If z(t  - 18) is LARGE1 and z(t  - 12) is SMALL2 and z(t  - 6 )  is SMALL3 and z ( t )  i s  SMALL4, then z( t  + 6 )  = Zg . X, 
If z(t - 18) is LARGEi and z ( t  - 12) is SMALL2 and z(t  - 6 )  is SMALL3 and z ( t )  i s  LARGE4, then x ( t  + 6 )  = C;O . X 
If z(t - 18) i s  LARGE1 and z(t  - 12) i s  SMALL2 and z ( t  - 6 )  i s  LARGE3 and z ( t )  is SMALL4, then z(t  + 6 )  = &I .J? 
If z(t - 18) is LARGEi and z ( t  - 12) i s  SMALL2 and z(t  - 6 )  i s  LARGE3 and z ( t )  i s  LARGE4, then z(t  + 6 )  = Z12 * { 
If z ( t  - 18) i s  LARGE1 and z(t - 1 2 )  is LARGE2 and z(t  - 6 )  is SMALL3 and z ( t )  i s  SMALL4, then z( t  + 6 )  = Z13 .< 
If z(t  - 18) i s  LARGE1 and z(t  - 12) is LARGE2 and z(t - 6 )  i s  SMALL3 and z ( t )  is LARGE4, then x(t + 6 )  = Z 1 4 . 5  
I f  x(t - 18) is LARGE1 and x( t  - 12) is LARGE2 and x(t - 6 )  is  LARGE3 and x ( t )  is SMALL4, then x(t + 6 )  = ZIS X 
If z(t - 18) is LARGE1 and z(t  - 12) is LARGE2 and z ( t  - 6 )  is LARGE3 and z ( t )  is LARGE4, then x ( t  + 6 )  = Z16 .2? 

Fig. 28. 

were used for the desired outputs while the last 500 are the 
predicted outputs for P = 84. 

VI. CONCLUSION 

A. Summary and Extensions of Current Work 

We have described the architecture of adaptive-network- 
based fuzzy inference systems (ANFIS) with type-1 and type- 
3 reasoning mechanisms. By employing a hybrid learning 
procedure, the proposed architecture can refine fuzzy if-then 
rules obtained from human experts to describe the input-output 
behavior of a complex system. However, if human expertise 
is not available, we can still set up intuitively reasonable 
initial membership functions and start the learning process to 
generate a set of fuzzy if-then rules to approximate a desired 
data set, as shown in the simulation examples of nonlinear 
function modeling and chaotic time series prediction. 

Due to the high flexibility of adaptive networks, the ANFIS 
can have a number of variants from what we have pro- 
posed here. For instance, the membership functions can be 
changed to L-R representation [4] which could be asymmetric, 
Furthermore, we can replace II nodes in layer 2 with the 
parameterized T-norm [4] and let the learning rule to decide the 
best T-norm operator for a specific application. By employing 
the adaptive network as a common framework, we have 
also proposed other adaptive fuzzy models tailored for data 
classification [49], [50] and feature extraction [51] purposes. 

Another important issue in the training of ANFIS is how 
to preserve the human-plausible features such as bell-shaped 
membership functions, €-completeness [23], [24] or sufficient 
overlapping between adjacent membership functions, minimal 
uncertainty, etc. Though we did not pursue along this direction 
in this paper, mostly it can be achieved by maintaining certain 
constraints and/or modifying the original error measure as 
explained below. 

To keep bell-shaped membership functions, we need the 
membership functions to be bell-shaped regardless of the 

parameter values. In particular, (18) and (19) become up- 
side-down bell-shaped if b; < 0; one easy way to correct 
this is to replace bi with b: in both equations. 
The c-completeness can be maintained by the constrained 
gradient descent [65]. For instance, suppose that c = 
0.5 and the adjacent membership functions are of 
the form of (18) with parameter sets {a i ,  b i , c i }  and 
{ai+l ,  bi+l, c;+1}. Then the c-completeness is satisfied 
if ci + ai = ci+l - ai+l and this can be ensured 
throughout the training if the constrained gradient descent 
is employed. 
Minimal uncertainty refers to the situation that within 
most region of the input space, there should be a dom- 
inant fuzzy if-then rule to account for the final output, 
instead of multiple rules with similar firing strengths. This 
minimizes the uncertainty and make the rule set more 
informative. One way to do this is to use a modified error 
measure 

P 

E’ = E + ,6z[-?oi x Zn(Gi)] (39) 
i=l  

where E is the original squared error; ,6 is a weighting 
constant; P is the size of training data set; ?oi is the 
normalized firing strength of the ith rule (see (21)) 
and cL1[-?oi x ln(Gi)] is the information entropy. 
Since this modified error measure is not based on data 
fitting along, the ANFIS thus trained can also have 
a potentially better generalization capability. (However, 
due to this new error measure, the training should be 
based on the gradient descent alone.) The improvement 
of generalization by using an error measure based on both 
data fitting and weight elimination has been reported in 
the neural network literature [59], [60]. 

In this paper, we assume the structure of the ANFIS is fixed 
and the parameter identification is solved through the hybrid 
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APPENDIX 

As suggested by one of the reviewers, to give the readers 
a concrete idea of the resulting fuzzy inference systems, it 
would be better to list the fuzzy if-then rules explicitly. 
Here we list the final 16 fuzzy if-then rules in example 4, 
which predicts the Mackey-Glass chaotic time series. Suppose 
that the ith input variable is assigned two linguistic values 
S M A L L ,  and LARGE,,  then the fuzzy if-then rules a_fter 
training can be expressed as shown in Fig. 28, where X = 
[x ( t  - 18), x ( t  - 12), x ( t  - 6), x ( t ) ,  11 and & is the ith row of 
the following consequent parameter matrix C: 

TABLE VI 
Table of premise parameters in example 4. 

A  a b C 

S M A L L 1  0.1790 2.0456 0.4798 
LARGE1 0.1584 2.0103 1.4975 
S M A L L 2  0.2410 1.9533 0.2960 
LARGE2 0.2923 1.9178 1.7824 
S M A L L 3  0.3798 2.1490 0.6599 
LARGE3 0.4884 1.8967 1.6465 
S M A L L 4  0.2815 2.0170 0.3341 
LARGE4 0.1616 2.0165 1.4727 

learning rule. However, to make the whole approach more 
complete, the structure identification [47], [48] (which con- 
cerns with the selection of an appropriate input-space partition 
style and the number of membership functions on each input, 
etc.) is equally important to the successful applications of 
ANFIS. Effective partition of the input space can decrease the 
rule number and thus increase the speed in both learning and 
application phases. Advances on neural networks’ structure 
identification [6], [25] can shed some lights on this aspect. 

B. Applications to Automatic Control and Signal Processing 

Fuzzy control is by far the most successful applications 
of the fuzzy set theory and fuzzy inference systems. Due to 
the adaptive capability of ANFIS, its applications to adaptive 
control and learning control are immediate. Most of all, it 
can replace almost any neural networks in control systems to 
serve the same purposes. For instance, Narendra’s pioneering 
work of using neural networks in adaptive control [32] can 
be all achieved similarly by ANFIS. Moreover, four of the 
generic designs (i.e., supervised control, direct inverse control, 
neural adaptive control and back-propagation of utility) of 
neural networks in control, as proposed by Werbos [9], [62], 
are also directly applicable schemes for ANFIS. Particularly 
we have employed a similar method of the back-propagation 
through time [33] or unfolding in time to achieve a self-learning 
fuzzy controller with four rules that can balance an inverted 
pendulum in an near-optimal manner [12]. It is expected that 
the advances of neural network techniques in control can 
promote those of ANFIS as well, and vice versa. 

The active role of neural networks in signal processing [64], 
[21] also suggests similar applications of ANFIS. The non- 
linearity and structured knowledge representation of ANFIS 
are the primary advantages over classical linear approaches 
in adaptive filtering [8] and adaptive signal processing [63], 
such as identification, inverse modeling, predictive coding, 
adaptive channel equalization, adaptive interference (noise or 
echo) canceling, etc. 
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c= 

- 0.2167 
0.2141 

-0.0683 
-0.2616 
-0.3293 
2.5820 
0.8797 

-0.8417 
-0.6422 
1.5534 

-0.6864 
-0.3190 
-0.3200 
4.0220 
0.3338 

-0.5572 

0.7233 
0.5704 
0.0022 
0.9190 

-0.8943 
-2.3109 
- 0.9407 
- 1.5394 
- 0.4384 
-0.0542 
-2.2435 
-1.3160 
-0.4654 
-3.8886 
-0.3306 
0.9190 

-0.0365 
- 0.4826 
0.6495 

1.4290 
3.7925 
2.2487 

0.9792 

0.1585 
0.9689 
0.4880 
1.0547 

- 2.9931 

- 1.5329 

-4.7256 

- 0.596 1 
-0.8745 

0.5433 
1.2452 
2.7320 
1.9467 

-1.6550 
-5.8068 
0.7759 
2.2834 

0.7244 
0.5304 
1.4887 

-0.3993 

-0.0559 
-0.7427 
1.1220 
2.1899 

0.0276 
- 0.3778 
-2.2916 
1.6555 
2.3735 
4.0478 

-2.0714 
2.4140 
1.5593 
2.7350 
3.5411 
0.7079 
0.9622 

0.3529 
-0.4464 

-0.9497 
(41 

The linguistic labels SMALLi and LARGEi (i=l to 4) 
are defined by the bell membership function (with different 
parameters a, b and c): 

These membership functions are shown in Fig. 21. Table VI 
lists the linguistic labels and the corresponding consequent 
parameters in (42). 

REFERENCES 

[ l ]  K. J. Astrom and B. Wittenmark, Computer Controller Systems: Theory 
and Design. Prentice-Hall, 1984. 

[2] S. M. Botros and C. G. Atkeson, “Generalization properties of radial 
basis functions,” in Advances in Neural Information Processing Systems 
III, D. S .  Touretzky, Ed. San Mateo, C A  Morgan Kaufmann, 1991, 

[3] S. Cben, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares 
learning algorithm for radial basis function networks,” IEEE Trans. 
NeuralNetworks, vol. 2, no. 2, pp. 302-309, Mar. 1991. 

[4] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applica- 
tions. New York: Academic, 1980. 

[5] S. E. Fahlman, “Faster-learning variations on back-propagation: an 
empirical study,” in Proc. 1988 Connectionist Models Summer School, 
D. Touretzky, G. Hinton, and T. Sejnowski, Eds., Camegie Mellon 
Univ., 1988, pp. 38-51. 

[6] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning ar- 
chitecture,” in Advances in Neural Information Processing Systems II, 
D. S .  Touretzky, G. Hinton, and T. Sejnowski, Eds. San Mateo, C A  
Morgan Kaufmann, 1990. 

[7] G. C. Goodwin and K. S. Sin. Adaptive Filtering Prediction and Control. 
Englewood Cliffs, NJ: Prentice-Hall, 1984. 

[8] S. S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice 
Hall, second ed., 1991. 

pp. 707-713. 



684 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993 

[9] W. T. Miller 111, R. S. Sutton, and P. J. Werbos, Eds., Neural Networks 
for Control. Cambridge, MA: MIT Press, 1990. 

[lo] J.-S. Roger Jang, “Fuzzy modeling using generalized neural networks 
and Kalman filter algorithm,” in Proc. Ninth Nat. Conj Artificial Intell. 

[ l l ]  -, “Rule extraction using generalized neural networks,” in Proc. 
4th IFSA World Congress, July 1991. 

[12] -, “Self-learning fuzzy controller based on temporal back- 
propagation,” IEEE Trans. Neural Networks, Sept. 1992. 

[13] J.-S. Roger Jang and C.-T. Sun, “Functional equivalence between radial 
basis function networks and fuzzy inference systems,” IEEE Trans. 
Neural Networks, vol. 4, pp. 156-159, Jan. 1993. 

[14] R. D. Jones, Y. C. Lee, C. W. Barnes, G. W. Flake, K. Lee, and P. S. 
Lewis, “Function approximation and time series prediction with neural 
networks,” in Proc. IEEE In?. Joint Con$ Neural Networks, 1990, pp. 
1-649-665. 

[15] V. Kadirkamanathan, M. Niranjan, and F. Fallside, “Sequential adap- 
tation of radial basis function neural networks,” in Advances in Neural 
Information Processing Systems Il l ,  D. S .  Touretzky, Ed. San Mateo, 
C A  Morgan Kaufmann, 1991, pp. 721-727.. 

[16] A. Kandel. Fuzzy Expert Systems. Reading, M A  Addison-Wesley, 
1988. 

[17] A. Kandel, Fuuy Expert Systems. Boca Raton, F L  CRC Press, 1992. 
[18] L. V. Kantorovich and G. P. Akilov, FunctionalAnalysis, second edition. 

Oxford, U K  Pergamon, 1982. 
[19] M. S. Klassen and Y.-H. Pao. “Characteristics of the functional-link 

net: A higher order delta rule net,” In ZEEE Proc. Int. Conj Neural 
Networks, San Diego, June 1988. 

[20] T. Kondo, “Revised GMDH algorithm estimating degree of the complete 
polynomial,” Trans. SOC. Instrument and Contr. Engineers, vol. 22, no. 
9, pp. 928-934, 1986 (in Japanese). 

[21] B. Kosko, Neural networks for signal processing. Englewood Ciffs, 
NJ: Prentice Hall, 1991. 

[22] A. S. Lapedes and R. Farber, “Nonlinear signal processing using neural 
networks: prediction and system modeling,” Tech. Rep. LA-UR-87- 
2662, Los Alamos Nat. Lab., Los Alamos, NM, 1987. 

[23] C.-C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller-Part 
I,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 404418, 1990. 

[24] -, “Fuzzy logic in control systems: Fuzzy logic controller-Part 
I,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 419435, 1990. 

[25] T.-C. Lee. Structure Level Adaptation for Artificial Neural Networks. 
Boston: Kluwer Academic, 1991. 

[26] L. Ljung, System Identification: Theory for the User. Englewood Cliffs, 
NJ: Prentice-Hall, 1987. 

[27] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological 
control systems,” Science, vol. 197, pp. 287-289, July 1977. 

[28] J. Moody, “Fast learning in multi-resolution hierarchies,” in Advances 
in Neural Information Processing Systems I ,  D. S .  Touretzky, Ed. San 
Mateo, C A  Morgan Kaufman 1989, ch. 1, pp. 29-39. 

[29] J. Moody and C. Darken, “Learning with localized receptive fields,” 
in D. Touretzky, G. Hinton, and T. Sejnowski, Eds., in Proc. 1988 
Connectionist Models Summer School, Carnegie Mellon University, 
Pittsburgh, PA. San Mateo, C A  Morgan Kaufmann Publishers, 1988. 

[30] -, “Fast learning in networks of locally-tuned processing units,” 
Neural Computation, vol. 1, pp. 281-294, 1989. 

[31] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D. M. Hummels, 
“On the training of radial basis function classifiers,” Neural Networks, 
vol. 5 ,  no. 4, pp. 595-603, 1992. 

[32] K. S. Narendra and K. Partbsarathy, “Identification and control of dy- 
namical systems using neural networks,” IEEE Trans. Neural Networks, 
vol 1, no. 1, pp. 4-27, 1990. 

[33] D. H. Nguyen and B. Widrow. Neural networks for self-learning control 
systems. IEEE Contr. Syst. Mag., Apr. 1990, pp. 18-23. 

[34] Y.-H. Pao, Adaptive Pattern Recognition and Neural Networks. Read- 
ing, MA: Addison-Wesley, 1989, ch. 8, pp. 197-222. 

[35] D. B. Parker, “Optimal algorithms for adaptive networks: Second order 
back propagation, second order direct propagation, and second order 
Hebbian learning,” in Proc. IEEE Int. Conf Neural Networks, 1987, pp. 
593-600. 

[36] W. Pedrycz, Fuzzy Control and Fuzzy Systems. New York: Wiley, 
1989. 

[37] R. S. Crowder, “Predicting the Mackey-Glass timeseries with cascade- 
correlation learning,” in Proc. 1990 Connectionist Models Summer 
School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds., Carnegie 
Mellon Univ., 1990, pp. 117-123. 

[38] H. L. Royden, RealAnalysis, second ed.. New York: Macmillan, 1968. 
[39] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal 

representations by error propagation,” in Parallel Distributed Process- 
ing: Explorations in the Microstructure of Cognition, D. E. Rumelhart 

(AAAI-91), July 1991, pp. 762-767. 

and James L. McClelland, Eds., vol. 1, ch. 8, pp. 318-362. Cambridge, 
MA: MIT Press, 1986. 

[40] T. D. Sanger, “A tree-structured adaptive network for function approx- 
imate in high-dimensional spaces,” IEEE Trans. Neural Networks, vol. 
2, no. 2, pp. 285-293, Mar. 1991. 

[41] S. Shah, F. Palmieri, and M. Datum, “Optimal filtering algorithms for 
fast learning in feedforward neural networks,” Neural Networks, vol. 5 ,  
no. 5, pp. 779-787, 1992. 

[42] S. Sbar and F. Palmieri, “MEKA-a fast, local algorithm for training 
feedforward neural networks,” in Proc. Int. Joint Conf Neural Networks, 
pp. 111 4146,  1990. 

[43] S. Singhal and L. Wu, “Training multilayer perceptrons with the ex- 
tended kalman algorithm,” Advances in Neural Information Processing 
Systems-I, in D. S .  Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 
1989, pp. 133-140. 

[44] S. M. Smith and D. J. Comer, “Automated calibration of a fuzzy logic 
controller using a cell state space algorithm,” IEEE Contr. Syst. Mag., 
vol. 11, no. 5, pp. 18-28, Aug. 1991. 

[45] P. Strobach, Linear Prediction Theory: A Mathematical Basis for Adap- 
tive Systems. New York: Springer-Verlag, 1990. 

[46] M. Sugeno, Ed., Industrial Applications of Fuzzy Control. New York: 
Elsevier, 1985. 

[47] M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” 
Fuzzy Sets Syst., vol. 28, pp. 15-33, 1988. 

[48] C.-T. Sun,” Rulebase structure identification in an adaptive network 
based fuzzy inference system,” IEEE Trans. Furzy Syst., accepted for 
publication, 1993. 

[49] C.-T Sun and J.-S. Roger Jang, “Adaptive network based fuzzy classi- 
fication,” in Proc. Japan-USA. Symp. Flexible Automat., July 1992. 

[50] -, “Fuzzy classification based on adaptive networks and genetic 
algorithms,” submitted for publication in ZEEE Trans. Neural Networks, 
1992. 

[51] C.-T Sun, J.-S. Roger Jang, and C.-Y. Fu, “Neural network analysis 
of plasma spectra,” in Proc. Int. Conj Artificial Neural Networks. 
Amsterdam, The Netherlands, 1993. 

[52] H. Takagi and I. Hayashi. ”-driven fuzzy reasoning. Int. J. Approxi- 
mate Reasoning, vol. 5 ,  no. 3, pp. 191-212, 1991. 

[53] T. Takagi and M. Sugeno, “Derivation of fuzzy control rules from 
human operator’s control actions,” in Proc. IFAC Symp. Fuzzy Inform., 
Knowledge Representation and Decision Analysis, July 1983, pp. 55-60. 

[54] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its 
applications to’modeling and control,” IEEE Trans. Syst., Man, Cybern., 
vol. 15, pp. 116132, 1985. 

[55] Y. Tsukamoto, “An approach to fuzzy reasoning method,” in M. M. 
Gupta, R. K. Ragade, and R. R. Yager, Eds., Advances in Fuzzy 
Set Theory and Applications. Amsterdam: North-Holland, 1979, pp. 
137-149. 

[56] L.-X. Wang, “Fuzzy systems are universal approximators,” in Proc. 
IEEE Int. Con$ Fuzzy Systems, San Diego, CA, Mar. 1992. 

[57] L.-X. Wang and J. M. Mendel, “Fuzzy basis function, universal approx- 
imation, and orthogonal least squares learning,” IEEE Trans. Neural 
Networks, vol. 3 no. 5, pp. 807-814, Sept. 1992. 

[58] R. L. Watrous, “Learning algorithms for connectionist network: applied 
gradient methods of nonlinear optimization,” in Proc. IEEE Int. Conj 
Neural Networks, 1991, pp. 619-627. 

[59] A. A. Weigend, D. E. Rumelhart, and B. A. Huberman, “Back- 
propagation, weight-elimination and time series prediction,” in Proc. 
1990 Connectionist Models Summer School, D. Touretzky, G. Hinton, 
and T. Sejnowski, Eds., Carnegie Mellon Univ., 1990, pp. 105-116. 

[60] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization 
by weight-elimination with application to forecasting,” in Advances in 
Neural Information Processing Systems Il l ,  D. S .  Touretzky, Ed. San 
Mateo, CA: Morgan Kaufmann, 1991, pp. 875482. 

[61] P. Werbos, “Beyond regression: New tools for prediction and analysis in 
the behavioral sciences,” Ph.D. dissertation, Harvard Univ., Cambridge, 
MA, 1974. 

[62] - , “An overview of neural networks for control,” IEEE Contr. Syst. 
Mag., vol. 11, no. 1, pp. 40-41, Jan. 1991. 

[63] B. Widrow and D. Steams, Adaptive Signal Processing. Englewood 
Cliffs, NJ: Prentice-Hall, 1985. 

[64] B. Widrow and R. Winter, “Neural nets for adaptive filtering and 
adaptive pattern recognition,” IEEE Computer, pp. 25-39, Mar. 1988. 

[65] D. A. Wismer and R. Chattergy. Introduction To Nonlinear Optimization: 
A Problem Solving Approach. Amsterdam: North-Holland Publishing 
Company, 1978, ch. 6, pp. 139-162. 

[66] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965. 
[67] L. A. Zadeh, “Outline of a new approach to the analysis of complex 

systems and decision processes,” IEEE Trans. Syst., Man, Cybern., vol. 
3, pp. 28-44, Jan. 1973. 



JANG: ANFIS-ADAPTIVE-NETWORK-BASED FUZZY INTERENCE SYSTEM 

Jyh-Shing Roger Jang was born in Taipei, Tai- 
wan in 1962. He received the B.S. degree from 
National Taiwan University in 1984 and the Ph.D. 
degree from the University of Califomia, Berkeley 
in 1992. He is currently a Research Engineer in the 
Department of Electrical Fngineering and Computer 
Sciences at the University of California, Berkeley. 

Since 1988, he has been a Research Assistant in 
the Electronics Research Laboratory at the Univer- 
sity of California, Berkley. He spent the summer of 
1991 and 1992 at the Lawrence Livermore National 

Laboratory, working on spectrum modeling and analysis using neural networks 
and fuzzy logic. His interests lie in the area of neurofuzzy modeling with 
applications to control, signal processing, and pattern classification. 

Mr. Jang is a student member of American Association for Artificial 
Intelligence, and International Neural Networks Society. 

685 


