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Preface

This book grew out of a set of course notes for a neural networks module given as part of a Masters degree in “Intelligent
Systems”.  The  people  on  this  course  came  from  a  wide  variety  of  intellectual  backgrounds  (from  philosophy,  through
psychology to computer science and engineering) and I knew that I could not count on their being able to come to grips with
the largely technical and mathematical approach which is often used (and in some ways easier to do). As a result I was forced
to  look  carefully  at  the  basic  conceptual  principles  at  work  in  the  subject  and  try  to  recast  these  using  ordinary  language,
drawing on the use of physical metaphors or analogies, and pictorial or graphical representations. I was pleasantly surprised to
find  that,  as  a  result  of  this  process,  my own understanding was  considerably  deepened;  I  had  now to  unravel,  as  it  were,
condensed formal descriptions and say exactly how these were related to the “physical” world of artificial neurons, signals,
computational  processes,  etc.  However,  I  was  acutely  aware  that,  while  a  litany  of  equations  does  not  constitute  a  full
description of fundamental principles, without some mathematics, a purely descriptive account runs the risk of dealing only with
approximations and cannot be sharpened up to give any formulaic prescriptions. Therefore, I introduced what I believed was
just sufficient mathematics to bring the basic ideas into sharp focus.

To allay any residual fears that the reader might have about this, it is useful to distinguish two contexts in which the word
“maths” might be used. The first refers to the use of symbols to stand for quantities and is, in this sense, merely a shorthand.
For  example,  suppose  we  were  to  calculate  the  difference  between  a  target  neural  output  and  its  actual  output  and  then
multiply this difference by a constant learning rate (it is not important that the reader knows what these terms mean just now).
If t stands for the target, y the actual output, and the learning rate is denoted by a (Greek “alpha”) then the output-difference is
just  (t−y)  and  the  verbose  description  of  the  calculation  may  be  reduced  to  α(t−y).  In  this  example  the  symbols  refer  to
numbers but it is quite possible they may refer to other mathematical quantities or objects. The two instances of this used here
are vectors and function gradients. However, both these ideas are described at some length in the main body of the text and
assume no prior knowledge in this respect. In each case, only enough is given for the purpose in hand; other related, technical
material  may  have  been  useful  but  is  not  considered  essential  and  it  is  not  one  of  the  aims  of  this  book  to  double  as  a
mathematics primer.

The other way in which we commonly understand the word “maths” goes one step further and deals with the rules by which
the symbols are manipulated. The only rules used in this book are those of simple arithmetic (in the above example we have a
subtraction and a multiplication). Further, any manipulations (and there aren’t many of them) will be performed step by step.
Much of the traditional “fear of maths” stems, I believe, from the apparent difficulty in inventing the right manipulations to go
from one stage to another; the reader will not, in this book, be called on to do this for him- or herself.

One  of  the  spin-offs  from  having  become  familiar  with  a  certain  amount  of  mathematical  formalism  is  that  it  enables
contact to be made with the rest of the neural network literature. Thus, in the above example, the use of the Greek letter α may
seem gratuitous (why not use a,  the reader asks) but it  turns out that learning rates are often denoted by lower case Greek
letters and a is not an uncommon choice. To help in this respect, Greek symbols will always be accompanied by their name on
first use.

In deciding how to present the material I have started from the bottom up by describing the properties of artificial neurons
(Ch. 2) which are motivated by looking at the nature of their real counterparts. This emphasis on the biology is intrinsically
useful from a computational neuroscience perspective and helps people from all disciplines appreciate exactly how “neural”
(or  not)  are  the  networks  they  intend  to  use.  Chapter  3  moves  to  networks  and  introduces  the  geometric  perspective  on
network function offered by the notion of linear separability in pattern space. There are other viewpoints that might have been
deemed primary (function approximation is  a  favourite  contender)  but  linear  separability  relates  directly to  the function of
single  threshold  logic  units  (TLUs)  and  enables  a  discussion  of  one  of  the  simplest  learning  rules  (the  perceptron  rule)  in
Chapter 4.  The geometric approach also provides a natural vehicle for the introduction of vectors.  The inadequacies of the
perceptron  rule  lead  to  a  discussion  of  gradient  descent  and  the  delta  rule  (Ch.  5)  culminating  in  a  description  of
backpropagation  (Ch.  6).  This  introduces  multilayer  nets  in  full  and  is  the  natural  point  at  which  to  discuss  networks  as
function approximators, feature detection and generalization.



This completes a large section on feedforward nets. Chapter 7 looks at Hopfield nets and introduces the idea of state-space
attractors for associative memory and its accompanying energy metaphor. Chapter 8 is the first of two on self-organization
and  deals  with  simple  competitive  nets,  Kohonen  self-organizing  feature  maps,  linear  vector  quantization  and  principal
component  analysis.  Chapter  9  continues  the  theme  of  self-organization  with  a  discussion  of  adaptive  resonance  theory
(ART). This is a somewhat neglected topic (especially in more introductory texts) because it is often thought to contain rather
difficult material. However, a novel perspective on ART which makes use of a hierarchy of analysis is aimed at helping the
reader  in  understanding  this  worthwhile  area.  Chapter  10  comes  full  circle  and  looks  again  at  alternatives  to  the  artificial
neurons introduced in Chapter 2. It also briefly reviews some other feedforward network types and training algorithms so that
the reader does not come away with the impression that backpropagation has a monopoly here. The final chapter tries to make
sense  of  the  seemingly disparate  collection of  objects  that  populate  the  neural  network universe  by introducing a  series  of
taxonomies for network architectures, neuron types and algorithms. It also places the study of nets in the general context of
that of artificial intelligence and closes with a brief history of its research.

The usual provisos about the range of material covered and introductory texts apply; it is neither possible nor desirable to
be exhaustive in a work of this nature. However, most of the major network types have been dealt with and, while there are a
plethora of training algorithms that might have been included (but weren’t) I believe that an understanding of those presented
here should give the reader a firm foundation for understanding others they may encounter elsewhere. 
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Chapter One
Neural networks—an overview

The term “Neural networks” is a very evocative one. It  suggests machines that are something like brains and is potentially
laden with the science fiction connotations of the Frankenstein mythos. One of the main tasks of this book is to demystify
neural networks and show how, while they indeed have something to do with brains, their study also makes contact with other
branches of science, engineering and mathematics. The aim is to do this in as non-technical a way as possible, although some
mathematical  notation  is  essential  for  specifying  certain  rules,  procedures  and  structures  quantitatively.  Nevertheless,  all
symbols and expressions will be explained as they arise so that, hopefully, these should not get in the way of the essentials:
that is, concepts and ideas that may be described in words.

This chapter is intended for orientation. We attempt to give simple descriptions of what networks are and why we might
study  them.  In  this  way,  we  have  something  in  mind  right  from  the  start,  although  the  whole  of  this  book  is,  of  course,
devoted to answering these questions in full.

1.1
What are neural networks?

Let  us  commence  with  a  provisional  definition  of  what  is  meant  by  a  “neural  network”  and  follow  with  simple,  working
explanations of some of the key terms in the definition.

A neural network is an interconnected assembly of simple processing elements, units or nodes, whose functionality is
loosely based on the animal neuron. The processing ability of the network is stored in the interunit connection strengths,
or weights, obtained by a process of adaptation to, or learning from, a set of training patterns.

To flesh this out a little we first take a quick look at some basic neurobiology. The human brain consists of an estimated 1011

(100 billion) nerve cells or neurons,  a highly stylized example of which is shown in Figure 1.1. Neurons communicate via
electrical  signals  that  are  short-lived  impulses  or  “spikes”  in  the  voltage  of  the  cell  wall  or  membrane.  The  interneuron
connections are mediated by electrochemical junctions called synapses, which are located on branches of the cell referred to
as dendrites.  Each neuron typically receives many thousands of connections from other neurons and is therefore constantly
receiving a multitude of incoming signals, which eventually reach the cell body. Here, they are integrated or summed together

Figure 1.1 Essential components of a neuron shown in stylized form.
 



in some way and, roughly speaking, if the resulting signal exceeds some threshold then the neuron will “fire” or generate a
voltage impulse in response. This is then transmitted to other neurons via a branching fibre known as the axon.

In determining whether an impulse should be produced or not, some incoming signals produce an inhibitory effect and tend
to  prevent  firing,  while  others  are  excitatory  and  promote  impulse  generation.  The  distinctive  processing  ability  of  each
neuron is then supposed to reside in the type—excitatory or inhibitory— and strength of its synaptic connections with other
neurons.

It is this architecture and style of processing that we hope to incorporate in neural networks and, because of the emphasis
on the importance of the interneuron connections, this type of system is sometimes referred to as being connectionist and the
study of  this  general  approach as connectionism.  This  terminology is  often the one encountered for  neural  networks in the
context of psychologically inspired models of human cognitive function. However, we will use it quite generally to refer to
neural networks without reference to any particular field of application.

The  artificial  equivalents  of  biological  neurons  are  the  nodes  or  units  in  our  preliminary  definition  and  a  prototypical
example is shown in Figure 1.2. Synapses are modelled by a single number or weight  so that each input is multiplied by a
weight  before  being  sent  to  the  equivalent  of  the  cell  body.  Here,  the  weighted  signals  are  summed  together  by  simple
arithmetic addition to supply a node activation. In the type of node shown in Figure 1.2—the so-called threshold logic unit
(TLU)—the activation is then compared with a threshold; if the activation exceeds the threshold, the unit produces a high-
valued output (conventionally “1”), otherwise it outputs zero. In the figure, the size of signals is represented by the width of
their  corresponding  arrows,  weights  are  shown  by  multiplication  symbols  in  circles,  and  their  values  are  supposed  to  be
proportional to the symbol’s size; only positive weights have been used. The TLU is the simplest (and historically the earliest
(McCulloch & Pitts 1943)) model of an artificial neuron.

The term “network” will be used to refer to any system of artificial neurons. This may range from something as simple as a
single node to a large collection of nodes in which each one is connected to every other node in the net. One type of network
is shown in Figure 1.3. Each node is now shown by only a circle but weights are implicit on all connections. The nodes are

Figure 1.2 Simple artificial neuron.

Figure 1.3 Simple example of neural network.
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arranged in  a  layered  structure  in  which  each signal  emanates  from an input  and passes  via  two nodes  before  reaching an
output beyond which it is no longer transformed. This feedforward structure is only one of several available and is typically
used to  place an input  pattern into one of  several  classes  according to  the resulting pattern of  outputs.  For  example,  if  the
input consists of an encoding of the patterns of light and dark in an image of handwritten letters, the output layer (topmost in
the figure) may contain 26 nodes—one for each letter of the alphabet—to flag which letter class the input character is from.
This would be done by allocating one output node per class and requiring that only one such node fires whenever a pattern of
the corresponding class is supplied at the input.

So much for the basic structural elements and their operation. Returning to our working definition, notice the emphasis on
learning from experience.  In real  neurons the synaptic  strengths may,  under certain circumstances,  be modified so that  the
behaviour of each neuron can change or adapt to its particular stimulus input. In artificial neurons the equivalent of this is the
modification  of  the  weight  values.  In  terms  of  processing  information,  there  are  no  computer  programs  here  —the
“knowledge” the network has is supposed to be stored in its weights, which evolve by a process of adaptation to stimulus from
a  set  of  pattern  examples.  In  one  training  paradigm  called  supervised  learning,  used  in  conjunction  with  nets  of  the  type
shown in Figure 1.3, an input pattern is presented to the net and its response then compared with a target output. In terms of
our previous letter recognition example, an “A”, say, may be input and the network output compared with the classification
code for A. The difference between the two patterns of output then determines how the weights are altered. Each particular
recipe  for  change  constitutes  a  learning  rule,  details  of  which  form  a  substantial  part  of  subsequent  chapters.  When  the
required weight updates have been made another pattern is presented, the output compared with the target, and new changes
made. This sequence of events is repeated iteratively many times until (hopefully) the network’s behaviour converges so that
its  response to each pattern is  close to the corresponding target.  The process as a whole,  including any ordering of pattern
presentation, criteria for terminating the process, etc., constitutes the training algorithm.

What  happens  if,  after  training,  we  present  the  network  with  a  pattern  it  hasn’t  seen  before?  If  the  net  has  learned  the
underlying  structure  of  the  problem  domain  then  it  should  classify  the  unseen  pattern  correctly  and  the  net  is  said  to
generalize well. If the net does not have this property it is little more than a classification lookup table for the training set and
is of little practical use. Good generalization is therefore one of the key properties of neural networks.

1.2
Why study neural networks?

This question is pertinent here because, depending on one’s motive, the study of connectionism can take place from differing
perspectives. It also helps to know what questions we are trying to answer in order to avoid the kind of religious wars that
sometimes break out when the words “connectionism” or “neural network” are mentioned.

Neural networks are often used for statistical analysis and data modelling, in which their role is perceived as an alternative
to standard nonlinear regression or cluster analysis techniques (Cheng & Titterington 1994). Thus, they are typically used in
problems that may be couched in terms of classification, or forecasting. Some examples include image and speech recognition,
textual  character  recognition,  and  domains  of  human  expertise  such  as  medical  diagnosis,  geological  survey  for  oil,  and
financial market indicator prediction. This type of problem also falls within the domain of classical artificial intelligence (AI)
so  that  engineers  and  computer  scientists  see  neural  nets  as  offering  a  style  of  parallel  distributed  computing,  thereby
providing an  alternative  to  the  conventional  algorithmic  techniques  that  have  dominated  in  machine  intelligence.  This  is  a
theme pursued further in the final chapter but, by way of a brief explanation of this term now, the parallelism refers to the fact
that each node is conceived of as operating independently and concurrently (in parallel with) the others, and the “knowledge”
in the network is distributed over the entire set of weights, rather than focused in a few memory locations as in a conventional
computer. The practitioners in this area do not concern themselves with biological realism and are often motivated by the ease
of implementing solutions in digital hardware or the efficiency and accuracy of particular techniques. Haykin (1994) gives a
comprehensive survey of many neural network techniques from an engineering perspective.

Neuroscientists  and  psychologists  are  interested  in  nets  as  computational  models  of  the  animal  brain  developed  by
abstracting what are believed to be those properties of real nervous tissue that are essential for information processing. The
artificial  neurons that connectionist  models use are often extremely simplified versions of their biological counterparts and
many  neuroscientists  are  sceptical  about  the  ultimate  power  of  these  impoverished  models,  insisting  that  more  detail  is
necessary  to  explain  the  brain’s  function.  Only  time  will  tell  but,  by  drawing  on  knowledge  about  how  real  neurons  are
interconnected as local “circuits”, substantial inroads have been made in modelling brain functionality. A good introduction to
this programme of computational neuroscience is given by Churchland & Sejnowski (1992).

Finally, physicists and mathematicians are drawn to the study of networks from an interest in nonlinear dynamical systems,
statistical mechanics and automata theory.1 It is the job of applied mathematicians to discover and formalize the properties of
new systems using tools previously employed in other areas of science. For example, there are strong links between a certain
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type of net (the Hopfield net—see Ch. 7) and magnetic systems known as spin glasses. The full mathematical apparatus for
exploring these links is developed (alongside a series of concise summaries) by Amit (1989).

All  these  groups  are  asking  different  questions:  neuroscientists  want  to  know  how  animal  brains  work,  engineers  and
computer scientists want to build intelligent machines and mathematicians want to understand the fundamental properties of
networks as  complex systems.  Another  (perhaps the largest)  group of  people are to be found in a  variety of  industrial  and
commercial areas and use neural networks to model and analyze large, poorly understood datasets that arise naturally in their
workplace. It  is therefore important to understand an author’s perspective when reading the literature. Their common focal
point is,  however, neural networks and is potentially the basis for close collaboration. For example, biologists can usefully
learn  from  computer  scientists  what  computations  are  necessary  to  enable  animals  to  solve  particular  problems,  while
engineers can make use of the solutions nature has devised so that they may be applied in an act of “reverse engineering”.

In the next chapter we look more closely at  real neurons and how they may be modelled by their artificial  counterparts.
This approach allows subsequent development to be viewed from both the biological and engineering-oriented viewpoints.

1.3
Summary

Artificial  neural  networks  may  be  thought  of  as  simplified  models  of  the  networks  of  neurons  that  occur  naturally  in  the
animal brain. From the biological viewpoint the essential requirement for a neural network is that it should attempt to capture
what we believe are the essential information processing features of the corresponding “real” network. For an engineer, this
correspondence  is  not  so  important  and  the  network  offers  an  alternative  form  of  parallel  computing  that  might  be  more
appropriate for solving the task in hand.

The simplest artificial  neuron is the threshold logic unit  or TLU. Its basic operation is to perform a weighted sum of its
inputs and then output a “1” if this sum exceeds a threshold, and a “0” otherwise. The TLU is supposed to model the basic
“integrate-and-fire” mechanism of real neurons.

1.4
Notes

1. It is not important that the reader be familiar with these areas. It suffices to understand that neural networks can be placed in relation
to other areas studied by workers in these fields.

4 NEURAL NETWORKS—AN OVERVIEW



Chapter Two
Real and artificial neurons

The building blocks of artificial neural nets are artificial neurons. In this chapter we introduce some simple models for these,
motivated by an attempt to capture the essential information processing ability of real, biological neurons. A description of
this is therefore our starting point and, although our excursion into neurophysiology will be limited, some of the next section
may appear factually rather dense on first contact. The reader is encouraged to review it several times to become familiar with
the  biological  “jargon”  and  may  benefit  by  first  re-reading  the  précis  of  neuron  function  that  was  given  in  the  previous
chapter. In addition, it will help to refer to Figure 2.1 and the glossary at the end of the next section.

2.1
Real neurons: a review

Neurons are not only enormously complex but also vary considerably in the details of their structure and function. We will
therefore  describe  typical  properties  enjoyed  by  a  majority  of  neurons  and  make  the  usual  working  assumption  of
connectionism that these provide for the bulk of their computational ability. Readers interested in finding out more may consult
one of the many texts in neurophysiology; Thompson (1993) provides a good introductory text, while more comprehensive
accounts are given by Kandel et al. (1991) and Kuffler et al. (1984).

A stereotypical neuron is shown in Figure 2.1, which should be compared with the simplified diagram in Figure 1.1. The cell
body or soma contains the usual subcellular components or organelles to be found in most cells throughout the body (nucleus,
mitochondria, Golgi body, etc.) but these are not shown in the diagram. Instead we focus on what differentiates neurons from
other cells allowing the neuron to function as a signal processing device. This ability stems largely from the properties of the
neuron’s  surface  covering  or  membrane,  which  supports  a  wide  variety  of  electrochemical  processes.  Morphologically  the
main difference lies in the set of fibres that emanate from the cell body. One of these fibres—the axon—is responsible for
transmitting signals to other neurons and may therefore be considered the neuron output. All other fibres are dendrites, which
carry signals from other neurons to the cell body, thereby acting as neural inputs. Each neuron has only one axon but can have
many dendrites. The latter often appear to have a highly branched structure and so we talk of dendritic arbors. The axon may,
however, branch into a set of collaterals allowing contact to be made with many other neurons. With respect to a particular
neuron,  other  neurons  that  supply  input  are  said  to  be  afferent,  while  the  given  neuron’s  axonal  output,  regarded  as  a
projection  to  other  cells,  is  referred  to  as  an  efferent.  Afferent  axons  are  said  to  innervate  a  particular  neuron  and  make
contact with dendrites at the junctions called synapses. Here, the extremity of the axon, or axon terminal, comes into close
proximity with a small part of the dendritic surface—the postsynaptic membrane. There is a gap, the synoptic cleft, between
the presynaptic axon terminal membrane and its postsynaptic counterpart, which is of the order of 20 nanometres (2×10−8m)
wide. Only a few synapses are shown in Figure 2.1 for the sake of clarity but the reader should imagine a profusion of these
located over all dendrites and also, possibly, the cell body. The detailed synaptic structure is shown in schematic form as an
inset in the figure.

So  much  for  neural  structure;  how  does  it  support  signal  processing?  At  equilibrium,  the  neural  membrane  works  to
maintain an electrical imbalance of negatively and positively charged ions. These are atoms or molecules that have a surfeit or
deficit  of  electrons,  where  each  of  the  latter  carries  a  single  negative  charge.  The  net  result  is  that  there  is  a  potential
difference across the membrane with the inside being negatively polarized by approximately 70mV1 with respect to the outside.
Thus, if we could imagine applying a voltmeter to the membrane it would read 70mV, with the inside being more negative
than the outside. The main point here is that a neural membrane can support electrical signals if its state of polarization or
membrane potential is dynamically changed. To see this, consider the case of signal propagation along an axon as shown in
Figure 2.2. Signals that are propagated along axons, or action potentials, all have the same characteristic shape, resembling sharp
pulse-like  spikes.  Each  graph  shows  a  snapshot  of  the  membrane  potential  along  a  segment  of  axon  that  is  currently
transmitting a single action potential, and the lower panel shows the situation at some later time with respect to the upper one.
The ionic mechanisms at work to produce this process were first worked out by Hodgkin & Huxley (1952). It relies  on the
interplay between each of the ionic currents across the membrane and its mathematical description is complex. The details do



not concern us here, but this example serves to illustrate the kind of simplification we will use when we model using artificial
neurons;  real  axons  are  subject  to  complex,  nonlinear  dynamics  but  will  be  modelled  as  a  passive  output  “wire”.  Many
neurons have their axons sheathed in a fatty substance known as myelin, which serves to enable the more rapid conduction of
action  potentials.  It  is  punctuated  at  approximately  1  mm intervals  by  small  unmyelinated  segments  (nodes  of  Ranvier  in
Fig. 2.1), which act rather like “repeater stations” along a telephone cable.

We are now able to consider the passage of signals through a single neuron, starting with an action potential reaching an
afferent axon terminal. These contain a chemical substance or neurotransmitter held within a large number of small vesicles
(literally “little spheres”). On receipt of an action potential the vesicles migrate to the presynaptic membrane and release their
neurotransmitter  across  the  synaptic  cleft.  The  transmitter  then  binds  chemically  with  receptor  sites  at  the  postsynaptic
membrane. This initiates an electrochemical process that changes the polarization state of the membrane local to the synapse.
This postsynaptic potential (PSP) can serve either to depolarize the membrane from its negative resting state towards 0 volts,
or  to  hyperpolarize  the  membrane  to  an  even  greater  negative  potential.  As  we  shall  see,  neural  signal  production  is
encouraged by depolarization, so that PSPs which are positive are excitatory PSPs (EPSPs) while those which hyperpolarize
the  membrane  are  inhibitory  (IPSPs).  While  action  potentials  all  have  the  same  characteristic  signal  profile  and  the  same
maximum value, PSPs can take on a continuous range of values depending on the efficiency of the synapse in utilizing the
chemical  transmitter  to  produce  an  electrical  signal.  The  PSP  spreads  out  from  the  synapse,  travels  along  its  associated
dendrite  towards  the  cell  body and eventually  reaches  the  axon hillock—the initial  segment  of  the  axon where  it  joins  the
soma. Concurrent with this are thousands of other synaptic events distributed over the neuron. These result in a plethora of
PSPs, which are continually arriving at the axon hillock where they are summed together to produce a resultant membrane
potential.

Each contributory PSP at the axon hillock exists for an extended time (order of milliseconds) before it eventually decays so
that, if two PSPs arrive slightly out of synchrony, they may still interact in the summation process. On the other hand, suppose
two synaptic events take place with one close to and another remote from the soma, by virtue of being at the end of a long
dendritic branch. By the time the PSP from the distal (remote) synapse has reached the axon hillock, that originating close to
the soma will have decayed. Thus, although the initiation of PSPs may take place in synchrony, they may not be effective in

Figure 2.1 Biological neuron.
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combining to generate action potentials. It is apparent, therefore, that a neuron sums or integrates its PSPs over both space and
time. Substantial modelling effort—much of it pioneered by Rail (1957, 1959)—has gone into describing the conduction of
PSPs along dendrites and their  subsequent interaction although,  as in the case of  axons,  connectionist  models usually treat
these as passive wires with no temporal characteristics. 

The integrated PSP at the axon hillock will affect its membrane potential and, if this exceeds a certain threshold (typically
about  −50mV),  an  action  potential  is  generated,  which  then  propagates  down  the  axon,  along  any  collaterals,  eventually
reaching axon terminals resulting in a shower of synaptic events at neighbouring neurons “downstream” of our original cell.
In  reality  the  “threshold”  is  an  emergent  or  meta-phenomenon resulting  from the  nonlinear  nature  of  the  Hodgkin-Huxley
dynamics and, under certain conditions, it can be made to change. However, for many purposes it serves as a suitable high-
level  description  of  what  actually  occurs.  After  an  action  potential  has  been  produced,  the  ionic  metabolites  used  in  its
production  have  been  depleted  and  there  is  a  short  refractory  period  during  which,  no  matter  what  value  the  membrane
potential takes, there can be no initiation of another action potential.

It is useful at this stage to summarize what we have learnt so far about the functionality of real neurons with an eye to the
simplification required for modelling their artificial counterparts.

– Signals  are  transmitted  between neurons  by action potentials,  which have a  stereotypical  profile  and display an  “all-or-
nothing” character; there is no such thing as half an action potential.

– When  an  action  potential  impinges  on  a  neuronal  input  (synapse)  the  effect  is  a  PSP,  which  is  variable  or  graded  and
depends on the physicochemical properties of the synapse.

– The PSPs may be excitatory or inhibitory.
– The PSPs are summed together at the axon hillock with the result expressed as its membrane potential.
– If this potential exceeds a threshold an action potential is initiated that proceeds along the axon.

Several things have been deliberately omitted here. First, the effect that synaptic structure can have on the value of the PSP.
Factors that may play a role here include the type and availability of neurotransmitter, the postsynaptic receptors and synaptic
geometry. Secondly, the spatio-temporal interdependencies of PSPs resulting from dendritic geometry whereby, for example,
synapses that are remote from each other may not effectively combine. Finally, we have said nothing about the dynamics of
action-potential generation and propagation. However, our summary will serve as a point of departure for defining the kind of
artificial neurons described in this book. More biologically realistic models rely on solving Hodgkin-Huxley-type dynamics
and modelling dendrites at the electrical circuit level; details of these methods can be found in the review compilation of Koch
& Segev (1989). 

Figure 2.2 Action-potential propagation. 
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2.1.1
Glossary of terms

Those terms in italics may be cross-referenced in this glossary.
action potential The stereotypical voltage spike that constitutes an active output from a neuron. They are propagated along

the axon to other neurons.
afferent With respect to a particular neuron, an axon that impinges on (or innervates) that neuron.
arbor Usually used in the context of a dendritic arbor—the tree-like structure associated with dendritic branching.
axon The fibre that emanates from the neuron cell body or soma and that conducts action potentials to other neurons.
axon hillock The junction of the axon and cell body or soma. The place where action potentials are initiated if the membrane

potential exceeds a threshold.
axon  terminal  An  axon  may  branch  into  several  collaterals,  each  terminating  at  an  axon  terminal,  which  constitutes  the

presynaptic component of a synapse.
chemical binding The process in which a neurotransmitter joins chemically with a receptor site thereby initiating a PSP.
collateral  An axon may divide into many collateral  branches allowing contact  with many other neurons or many contacts

with one neuron.
dendrite One of the branching fibres of a neuron, which convey input information via PSPs.
depolarization The membrane potential of the neuron has a negative resting or equilibrium value. Making this less negative

leads to a depolarization. Sufficient depolarization at the axon hillock will give rise to an action potential.
efferent A neuron sends efferent axon collaterals to other neurons.
EPSP Excitatory Postsynaptic Potential. A PSP that acts to depolarize the neural membrane.
hyperpolarization  The  membrane  potential  of  the  neuron  has  a  negative  resting  or  equilibrium value.  Making  this  more

negative leads to a hyperpolarization and inhibits the action of EPSPs, which are trying to depolarize the membrane.
innervate Neuron A sending signals to neuron B is said to innervate neuron B.
IPSP Inhibitory Postsynaptic Potential. A PSP that acts to hyperpolarize the neural membrane. 
membrane potential The voltage difference at any point across the neural membrane.
neurotransmitter The chemical substance that mediates synaptic activity by propagation across the synaptic cleft.
organelle Subcellular components that partake in metabolism, etc.
postsynaptic membrane That part of a synapse which is located on the dendrite and consists of the dendritic membrane together

with receptor sites.
potential difference The voltage difference across the cell membrane.
presynaptic membrane That part of a synapse which is located on the axon terminal.
PSP Postsynaptic Potential. The change in membrane potential brought about by activity at a synapse.
receptor sites The sites on the postsynaptic membrane to which molecules of neurotransmitter bind. This binding initiates

the generation of a PSP.
refractory period The shortest time interval between two action potentials.
soma The cell body.
synapse The site of physical and signal contact between neurons. On receipt of an action potential at the axon terminal of a

synapse,  neurotransmitter  is  released  into  the  synaptic  cleft  and  propagates  to  the  postsynaptic  membrane.  There  it
undergoes chemical binding with receptors, which, in turn, initiates the production of a postsynaptic potential (PSP).

synaptic cleft The gap between the pre- and postsynaptic membranes across which chemical neurotransmitter is propagated
during synaptic action. vesicles The spherical containers in the axon terminal that contain neurotransmitter. On receipt of
an action potential at the axon terminal, the vesicles release their neurotransmitter into the synaptic cleft.

2.2
Artificial neurons: the TLU

Our task is to try and model some of the ingredients in the list above. Our first attempt will result in the structure described
informally in Section 1.1.

The “all-or-nothing” character of the action potential may be characterized by using a two-valued signal. Such signals are
often referred to as binary or Boolean2 and conventionally take the values “0” and “1”. Thus, if we have a node receiving n
input signals x1, x2,…, xn, then these may only take on the values “0” or “1”. In line with the remarks of the previous chapter,
the modulatory effect of each synapse is encapsulated by simply multiplying the incoming signal with a weight value, where
excitatory and inhibitory actions are modelled using positive and negative values respectively. We therefore have n weights
w1, w2,…, wn and form the n products w1x1, w2x2,…, wnxn. Each product is now the analogue of a PSP and may be negative or
positive, depending on the sign of the weight. They should now be combined in a process which is supposed to emulate that
taking place at the axon hillock. This will be done by simply adding them together to produce the activation a (corresponding
to the axon-hillock membrane potential) so that

(2.1)
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As  an  example,  consider  a  five-input  unit  with  weights  (0.5,  1.0,  −1.0,  −0.5,  1.2),  that  is  w1=0.5,  w2=1.0,…,  w5=1.2,  and
suppose this is presented with inputs (1, 1, 1, 0, 0) so that x1=1, x2=1,…, x5=0. Using (2.1) the activation is given by

To emulate the generation of action potentials we need a threshold value θ (Greek theta) such that, if the activation exceeds (or
is equal to) θ then the node outputs a “1” (action potential), and if it is less than θ then it emits a “0”. This may be represented
graphically as shown in Figure 2.3 where the output has been designated the symbol y. This relation is sometimes called a step
function or hard-limiter for obvious reasons. In our example, suppose that θ=0.2; then, since a>0.2 (recall a=0.5) the node’s
output  y  is  1.  The  entire  node  structure  is  shown  in  Figure  2.4  where  the  weights  have  been  depicted  by  encircled
multiplication signs. Unlike Figure 1.1, however, no effort has been made to show the size of the weights or signals. This type
of artificial neuron is known as a threshold logic unit (TLU) and was originally proposed by McCulloch and Pitts (McCulloch
& Pitts 1943).

It is more convenient to represent the TLU functionality in a symbolic rather than a graphical form. We already have one form
for the activation as supplied by (2.1). However, this may be written more compactly using a notation that makes use of the
way  we  have  written  the  weights  and  inputs.  First,  a  word  on   the  notation  is  relevant  here.  The  small  numbers  used  in
denoting the inputs and weights are referred to as subscripts. If we had written the numbers near the top (e.g. x1) they would
have  been  superscripts  and,  quite  generally,  they  are  called  indices  irrespective  of  their  position.  By  writing  the  index
symbolically (rather than numerically) we can refer to quantities generically so that xi, for example, denotes the generic or ith
input where it  is  assumed that i  can be any integer between 1 and n.  Similar remarks apply to the weights wi.  Using these
ideas it is possible to represent (2.1) in a more compact form

(2.2)

where Σ (upper case Greek sigma) denotes summation. The expressions above and below Σ denote the upper and lower limits
of  the  summation  and  tell  us  that  the  index  i  runs  from 1  to  n.  Sometimes  the  limits  are  omitted  because  they  have  been
defined elsewhere and we simply indicate the summation index (in this case i) by writing it below the Σ.

Figure 2.3 Activation-output threshold relation in graphical form. 

Figure 2.4 TLU.
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The threshold relation for obtaining the output y may be written

(2.3)

Notice  that  there  is  no  mention  of  time  in  the  TLU;  the  unit  responds  instantaneously  to  its  input  whereas  real  neurons
integrate  over  time  as  well  as  space.  The  dendrites  are  represented  (if  one  can  call  it  a  representation)  by  the  passive
connecting links between the weights and the summing operation. Action-potential generation is simply represented by the
threshold function.

2.3
Resilience to noise and hardware failure

Even with this simple neuron model we can illustrate two of the general properties of neural networks. Consider a two-input
TLU with weights (0, 1) and threshold 0.5. Its response to all four possible input sets is shown in Table 2.1.

Table 2.1 TLU with weights (0, 1) and threshold 0.5.

x1 x2 Activation Output

0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 1

Now suppose that our hardware which implements the TLU is faulty so that the weights are not held at their true values and
are encoded instead as (0.2, 0.8). The revised TLU functionality is given in Table 2.2. Notice that, although the activation has
changed, the output is the same as that for the original TLU. This is because changes in the activation, as long as they don’t
cross the threshold, produce no change in output. Thus, the threshold function doesn’t care whether the activation is just below
θ or is very much less than θ; it still outputs a 0. Similarly, it doesn’t matter by how much the activation exceeds θ, the TLU
always supplies a 1 as output.

Table 2.2 TLU with weights (0.2, 0.8) and threshold 0.5.

x1 x2 Activation Output

0 0 0 0
0 1 0.8 1
1 0 0.2 0
1 1 1 1

This behaviour is characteristic of nonlinear systems. In a linear system, the output is proportionally related to the input:
small/large  changes  in  the  input  always  produce  corresponding  small/large  changes  in  the  output.  On  the  other  hand,
nonlinear  relations  do  not  obey  a  proportionality  restraint  so  the  magnitude  of  the  change  in  output  does  not  necessarily
reflect that of the input. Thus, in our TLU example, the activation can change from 0 to 0.2 (a difference of 0.2) and make no
difference to the output. If,  however, it  were to change from 0.49 to 0.51 (a difference of 0.02) the output would suddenly
alter from 0 to 1.

We conclude from all this that TLUs are robust in the presence of hardware failure; if our hardware breaks down “slightly”
the TLU may still function perfectly well as a result of its nonlinear functionality.

Table 2.3 TLU with degraded signal input.

x1 x2 Activation Output

0.2 0.2 0.2 0
0.2 0.8 0.8 1
0.8 0.2 0.2 0
0.8 0.8 0.8 1

Suppose now that, instead of the weights being altered, the input signals have become degraded in some way, due to noise
or  a  partial  power  loss,  for  example,  so  that  what  was  previously  “1”  is  now  denoted  by  0.8,  and  “0”  becomes  0.2.  The
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resulting TLU function is  shown in  Table  2.3.  Once again the resulting TLU function is  the  same and a  similar  reasoning
applies that involves the nonlinearity implied by the threshold. The conclusion is that the TLU is robust in the presence of
noisy or corrupted signal inputs. The reader is invited to examine the case where both weights and signals have been degraded
in the way indicated here. Of course, if we increase the amount by which the weights or signals have been changed too much,
the  TLU  will  eventually  respond  incorrectly.  In  a  large  network,  as  the  degree  of  hardware  and/or  signal  degradation
increases,  the  number  of  TLU  units  giving  incorrect  results  will  gradually  increase  too.  This  process  is  called  “graceful
degradation” and should be compared with what happens in conventional computers where alteration to one component or
loss of signal strength along one circuit board track can result in complete failure of the machine.

2.4
Non-binary signal communication

The signals dealt with so far (for both real and artificial neurons) have taken on only two values. In the case of real neurons
these are the action-potential spiking voltage and the axon-membrane resting potential. For the TLUs they were conveniently
labelled “1” and “0” respectively. Real neurons, however, are believed to encode their signal values in the patterns of action-
potential firing rather than simply by the presence or absence of a single such pulse. Many characteristic patterns are observed
(Conners & Gutnick 1990) of which two common examples are shown in Figure 2.5.

Part  (a)  shows  a  continuous  stream  of  action-potential  spikes  while  (b)  shows  a  pattern  in  which  a  series  of  pulses  is
followed  by  a  quiescent  period,  with  this  sequence  repeating  itself  indefinitely.  A  continuous  stream  as  in  (a)  can  be
characterized by the frequency of occurrence of action potential in pulses per second and it is tempting to suppose that this is,
in fact, the code being signalled by the neuron. This was convincingly demonstrated by Hartline (1934, 1940) for the optic
neurons of the Horseshoe crab Limulus in which he showed that the rate of firing increased with the visual stimulus intensity.
Although many neural codes are available (Bullock et al. 1977) the frequency code appears to be used in many instances.

If f is the frequency of neural firing then we know that f is bounded below by zero and above by some maximum value fmax,
which  is  governed  by  the  duration  of  the  interspike  refractory  period.  There  are  now  two  ways  we  can  code  for  f  in  our
artificial neurons. First, we may simply extend the signal representation to a continuous range and directly represent f as our
unit output. Such signals can certainly be handled at the input of the TLU, as we remarked in examining the effects of signal
degradation. However, the use of a step function at the output limits the signals to be binary so that, when TLUs are connected
in networks (and they are working properly),  there is no possibility of continuously graded signals occurring. This may be
overcome by “softening” the step function to a continuous “squashing” function so that the output y depends smoothly on the
activation a. One convenient form for this is the logistic sigmoid (or sometimes simply “sigmoid”) shown in Figure 2.6.

As a tends to large positive values the sigmoid tends to 1 but never actually reaches this value. Similarly it approaches—
but never quite reaches—0 as a tends to large negative values. It is of no importance that the upper bound is not fmax, since we
can simply multiply the sigmoid’s value by fmax if we wish to interpret y as a real firing rate. The sigmoid is symmetric about
the y-axis value of 0.5; the corresponding value of the activation may be thought of as a reinterpretation of the threshold and
is denoted by θ. The sigmoid function is conventionally designated by the Greek lower case sigma, σ, and finds mathematical
expression according to the relation

(2.4)

where  e≈2.7183 is  a  mathematical  constant3,  which,  like  π,  has  an  infinite  decimal  expansion.  The  quantity  ρ  (Greek  rho)
determines  the  shape  of  the  function,  large  values  making  the  curve  flatter  while  small  values  make  the  curve  rise  more
steeply. In many texts, this parameter is omitted so that it is implicitly assigned the value 1. By making ρ progressively smaller
we obtain functions that look ever closer to the hard-limiter used in the TLU so that the output function of the latter can be
thought of as a special case. The reference to θ as a threshold then becomes more plausible as it takes on the role of the same
parameter in the TLU.

Figure 2.5 Neural firing patterns.
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Artificial  neurons  or  units  that  use  the  sigmoidal  output  relation  are  referred  to  as  being  of  the  semilinear  type.  The
activation is still given by Equation (2.2) but now the output is given by (2.4). They form the bedrock of much work in neural
nets since the smooth output function facilitates their mathematical description. The term “semilinear” comes from the fact
that we may approximate the sigmoid by a continuous, piecewise-linear function, as shown in Figure 2.7. Over a significant
region of interest, at intermediate values of the activation, the output function is a linear relation with non-zero slope.

As an alternative to using continuous or analogue signal values, we may emulate the real neuron and encode a signal as the
frequency of the occurrence of a “1” in a pulse stream as shown in Figure 2.8.

Time  is  divided  into  discrete  “slots”  and  each  slot  is  filled  with  either  a  0  (no  pulse)  or  a  1  (pulse).  The  unit  output  is
formed in exactly the same way as before but, instead of sending the value of the sigmoid function directly, we interpret it as
the probability of emitting a pulse or “1”. Processes that are governed by probabilistic laws are referred to as stochastic  so
that these nodes might be dubbed stochastic semilinear units, and they produce signals quite close in general appearance to
those of real neurons. How are units downstream that receive these signals supposed to interpret their inputs? They must now
integrate over some number, N, of time slots. Thus, suppose that the afferent node is generating pulses with probability y. The
expected  value  of  the  number  of  pulses  over  this  time  is  yN  but,  in  general,  the  number  actually  produced,  N1,  will  not
necessarily be equal to this. The best estimate a node receiving these signals can make is the fraction, N1/N, of 1s during its
integration time. The situation is like that in a coin tossing experiment. The underlying probability of obtaining a “head” is 0.
5, but in any particular sequence of tosses the number of heads Nh is not necessarily one-half of the total. As the number N of
tosses increases, however, the fraction Nh/N will eventually approach 0.5.

2.5
Introducing time

Although  time  reared  its  head  in  the  last  section,  it  appeared  by  the  back  door,  as  it  were,  and  was  not  intrinsic  to  the
dynamics of the unit—we could choose not to integrate, or, equivalently, set N=1. The way to model the temporal summation
of PSPs at the axon hillock is to use the rate of change of the activation as the fundamental defining quantity, rather than the
activation  itself.  A  full  treatment  requires  the  use  of  a  branch  of  mathematics  known  as  the  calculus  but  the  resulting
behaviour may be described in a reasonably straightforward way. We shall, however, adopt the calculus notation dx/dt, for the
rate of change of a quantity x. It cannot be overemphasized that this is to be read as a single symbolic entity, “dx/dt”, and not

Figure 2.6 Example of squashing function—the sigmoid.

Figure 2.7 Piecewise-linear approximation of sigmoid.

Figure 2.8 Stream of output pulses from a stochastic node.
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as  dx  divided  by  dt.  To  avoid  confusion  with  the  previous  notation  it  is  necessary  to  introduce  another  symbol  for  the
weighted sum of inputs, so we define

(2.5)

The rate of change of the activation, da/dt, is then defined by

(2.6)

where α (alpha) and β (beta) are positive constants. The first term gives rise to activation decay, while the second represents
the  input  from the  other  units.  As  usual  the  output  y  is  given  by  the  sigmoid  of  the  activation,  y=σ(a).  A  unit  like  this  is
sometimes known as a leaky integrator for reasons that will become apparent shortly.

There is an exact physical analogue for the leaky integrator with which we are all familiar. Consider a tank of water that
has a narrow outlet near the base and that is also being fed by hose or tap as shown in Figure 2.9 (we might think of a bathtub,
with a smaller drainage hole than is usual). Let the rate at which the water is flowing through the hose be s litres per minute
and let the depth of water be a. If the outlet were plugged, the rate of change of water level would be proportional to s, or da/dt=βs
where β is a constant. Now suppose there is no inflow, but the outlet is working. The rate at which water leaves is directly
proportional to the water pressure at the outlet, which is, in turn, proportional to the depth of water α in the tank. Thus, the
rate of water emission may be written as αa litres per minute where α is some constant. The water level is now decreasing so
that its rate of change is now negative and we have da/dt=−αa. If both hose and outlet are functioning then da/dt is the sum of
contributions  from  both,  and  its  governing  equation  is  just  the  same  as  that  for  the  neural  activation  in  (2.6).  During  the
subsequent discussion it might be worth while referring back to this analogy if the reader has any doubts about what is taking
place.  

Returning to the neural model, the activation can be negative or positive (whereas the water level is always positive in the
tank). Thus, on putting s=0, so that the unit has no external input, there are two cases:

(a) a>0. Then da/dt<0. That is, the rate of change is negative, signifying a decrease of a with time.
(b) a<0. Then da/dt>0. That is, the rate of change is positive, signifying an increase of a with time.

These  are  illustrated  in  Figure  2.10,  in  which  the  left  and  right  sides  correspond  to  cases  (a)  and  (b)  respectively  In  both
instances the activity gradually approaches its resting value of zero. It is this decay process that leads to the “leaky” part of the
unit’s name. In a TLU or semilinear node, if we withdraw input, the activity immediately becomes zero. In the new model,
however, the unit has a kind of short-term memory of its previous input before it was withdrawn. Thus, if this was negative,
the  activation  remains  negative  for  a  while  afterwards,  with  a  corresponding  condition  holding  for  recently  withdrawn
positive input. 

Suppose  now  that  we  start  with  activation  zero  and  no  input,  and  supply  a  constant  input  s=1  for  a  time  t  before
withdrawing it again. The activation resulting from this is shown in Figure 2.11. The activation starts to increase but does so
rather sluggishly. After s is taken down to zero, a decays in the way described above. If s had been maintained long enough,

Figure 2.9 Water tank analogy for leaky integrators. 

Figure 2.10 Activation decay in leaky integrator.

REAL NEURONS: A REVIEW 13



then a would have eventually reached a constant value. To see what this is we put da/dt=0, since this is a statement of there
being no rate of change of a, and a is constant at some equilibrium value aeqm. Putting da/dt=0 in (2.6) gives

(2.7)

that is, a constant fraction of s. If α=β then aeqm=s. The speed at which a can respond to an input change may be characterized
by the time taken to reach some fraction of aeqm (0.75aeqm, say) and is called the rise-time. 

Suppose now that a further input pulse is presented soon after the first has been withdrawn. The new behaviour is shown in
Figure 2.12. Now the activation starts to pick up again as the second input signal is delivered and, since a has not had time to
decay to its resting value in the interim, the peak value obtained this time is larger than before. Thus the two signals interact with
each other and there is temporal summation or integration (the “integrator” part of the unit’s name). In a TLU, the activation
would, of course, just be equal to s. The value of the constants α and β govern the decay rate and rise-time respectively and, as
they are increased, the decay rate increases and the rise-time falls. Keeping α=β and letting both become very large therefore
allows a  to  rise  and fall  very  quickly  and to  reach  equilibrium at  s.  As  these  constants  are  increased  further,  the  resulting
behaviour of a becomes indistinguishable from that of a TLU, which can therefore be thought of as a special case of the leaky
integrator with very large constants α, β (and, of course, very steep sigmoid).

Leaky  integrators  find  their  main  application  in  self-organizing  nets  (Ch.  8).  They  have  been  studied  extensively  by
Stephen Grossberg who provides a review in Grossberg (1988). What Grossberg calls the “additive STM model” is essentially
the  same  as  that  developed  here,  but  he  also  goes  on  to  describe  another—the  “shunting  STM”  neuron—which  is  rather
different.

This completes our first foray into the realm of artificial neurons. It is adequate for most of the material in the rest of this
book but, to round out the story, Chapter 10 introduces some alternative structures.  

2.6
Summary

The  function  of  real  neurons  is  extremely  complex.  However,  the  essential  information  processing  attributes  may  be
summarized as follows. A neuron receives input signals from many other (afferent) neurons. Each such signal is modulated
(by the synaptic mechanism) from the voltage spike of an action potential into a continuously variable (graded) postsynaptic
potential (PSP).  PSPs are integrated by the dendritic arbors over both space (many synaptic inputs) and time (PSPs do not
decay to zero instantaneously). PSPs may be excitatory or inhibitory and their integrated result is a change in the membrane
potential  at  the  axon hillock,  which may serve to  depolarize  (excite  or  activate)  or  hyperpolarize  (inhibit)  the  neuron.  The
dynamics of the membrane under these changes are complex but may be described in many instances by supposing that there
is a membrane-potential threshold, beyond which an action potential is generated and below which no such event takes place.
The train of action potentials constitutes the neural “output”. They travel away from the cell body along the axon until they
reach axon terminals (at  synapses) upon which the cycle of events is  initiated once again. Information is encoded in many
ways in neurons but a common method is to make use of the frequency or rate of production of action potentials.

Figure 2.11 Input pulse to leaky integrator.

Figure 2.12 Leaky-integrator activation (solid line) for two square input pulses (dashed line). 
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The  integration  of  signals  over  space  may  be  modelled  using  a  linear  weighted  sum  of  inputs.  Synaptic  action  is  then
supposed  to  be  equivalent  to  multiplication  by  a  weight.  The  TLU  models  the  action  potential  by  a  simple  threshold
mechanism  that  allows  two  signal  levels  (0  or  1).  The  rate  of  firing  may  be  represented  directly  in  a  semilinear  node  by
allowing a continuous-valued output or (in the stochastic variant) by using this value as a probability for the production of
signal pulses. Integration over time is catered for in the leaky-integrator model. All artificial neurons show robust behaviour
under degradation of input signals and hardware failure.

2.7
Notes

1. The millivolt (mV) is one-thousandth of a volt.
2. After George Boole who developed a formal logic with two values denoting “True” and “False”.
3. Scientific calculators should have this as one of their special purpose buttons. 
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Chapter Three
TLUs, linear separability and vectors

The  simplest  artificial  neuron  presented  in  the  last  chapter  was  the  threshold  logic  unit  or  TLU.  In  this  chapter  we  shall
discuss a geometric context for describing the functionality of TLUs and their networks that has quite general relevance for
the study of all neural networks. In the process it will be necessary to introduce some mathematical concepts about vectors.
These are also of general importance and so their properties are described in some detail. Readers already familiar with this
material may still wish to skim Section 3.2 to become acquainted with our notation.

3.1
Geometric interpretation of TLU action

In  summary,  a  TLU  separates  its  input  patterns  into  two  categories  according  to  its  binary  response  (“0”  or  “1”)  to  each
pattern.  These  categories  may  be  thought  of  as  regions  in  a  multidimensional  space  that  are  separated  by  the  higher
dimensional equivalent of a straight line or plane.

These  ideas  are  now  introduced  step  by  step  and  in  a  way  that  should  help  put  to  rest  any  concerns  about  “higher
dimensionality” and “multidimensional spaces”.

3.1.1
Pattern classification and input space

Consider  a  two-input  TLU with  weights  w1=1,  w2=1 and threshold  1.5,  as  shown in  Figure  3.1.  The responses  to  the  four
possible Boolean inputs are shown in Table 3.1. The TLU may be thought of as classifying its input patterns into two groups:
those that give output “1” and those that give output “0”. Each input pattern has two components, x1, x2. We may therefore
represent these patterns in a two-dimensional space as shown in Figure 3.2.

Each pattern determines a point in this so-called pattern space by using its 

Table 3.1 Functionality of two-input TLU example.

x1 x2 Activation Output

0 0 0 0
0 1 1 0
1 0 1 0
1 1 2 1

Figure 3.1 Two-input TLU.



component values as space co-ordinates—just as grid references can locate points in physical space on a normal geographical
map. In general, for n inputs, the pattern space will be n dimensional. Clearly, for n>3 the pattern space cannot be drawn or
represented in physical space. This is not a problem. The key is that all relationships between patterns can be expressed either
geometrically, as in Figure 3.2, or algebraically using the notion of vectors. We can then gain insight into pattern relationships
in two dimensions (2D),  reformulate  this  in  vector  form and then simply carry over  the results  to  higher  dimensions.  This
process will become clearer after it has been put to use later. All the necessary tools for using vectors are introduced in this
chapter; their appreciation will significantly increase any understanding of neural nets.

We now develop further the geometric representation of our two-input TLU.

3.1.2
The linear separation of classes

Since the critical condition for classification occurs when the activation equals the threshold, we will examine the geometric
implication of this. For two inputs, equating θ and a gives

(3.1)
Subtracting w1x1 from both sides

(3.2)
and dividing both sides by w2 gives

(3.3)

This is of the general form
(3.4)

where  a  and  b  are  constants.  This  equation  describes  a  straight  line  with  slope  a  and  intercept  b  on  the  x2  axis.  This  is
illustrated in Figure 3.3 where the graph of the equation y=ax+b has been plotted for two sets of values of a, b. In each case
the slope is given by the change Δy that occurs in y when a positive change Δx is made in x (“Δ” is Greek upper case delta and
usually signifies a change in a  quantity). As an example, in motoring, to describe a hill as having a “one-in-ten” slope implies
you have to travel 10 metres to go up 1 metre and the hill therefore has a slope of magnitude 1/10. In the notation introduced
here, there is a Δx of 10 associated with a Δy of 1. In the left hand part of the figure, y is increasing with x. Therefore, Δy>0
when a positive change Δx is made, and so the slope a is positive. The right hand part of the figure shows y decreasing with x
so that Δy<0 when x is increased, resulting in a negative slope.

Figure 3.2 Two-input patterns in pattern space.

Figure 3.3 Straight line graphs. 
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For the TLU example, inserting the values of w1, w2, θ in (3.3) we obtain a=−1, b=1.5 as shown in Figure 3.4, which also
shows the output of the TLU for each pattern. The two classes of TLU output are separated by the line produced in this way
so that the 1s (there is only one of them) and 0s lie on opposite sides of the line; we therefore talk of this as the decision line.
Clearly, it is always possible to partition the two classes in 2D by drawing some kind of line—the point here is that the line is
a straight one having no kinks or bends.  It  turns out that  this is  not just  a fortuitous result  made possible by our choice of
weights and threshold. It holds true for any two-input TLU. This distinction is clearer in 3D where, quite generally, we can
define a decision surface that may have to be highly convoluted but a TLU will necessarily be associated with a flat decision
plane. 

Further, it is possible to generalize this result (in its algebraic form) to TLUs with an arbitrary number, n say, of inputs; that
is, it is always possible to separate the two output classes of a TLU by the n-dimensional equivalent of a straight line in 2D or,
in 3D, a plane. In n dimensions this is referred to as the decision hyperplane. (The “hyper-” is sometimes dropped even when
n>3). Because TLUs are intimately related to linear relations like (3.3) (and their generalization) we say that TLUs are linear
classifiers and that their patterns are linearly separable. The converse of our result is also true: any binary classification that
cannot be realized by a linear decision surface cannot be realized by a TLU.

We now try to demonstrate these results using the machinery of vectors. These ideas will also have general applicability in
our discussion of nets throughout. 

3.2
Vectors

Vectors are usually introduced as representations of quantities that have magnitude and direction. For example, the velocity of
the wind is defined by its speed and direction. On paper we may draw an arrow whose direction is the same as that of the
wind and whose length is proportional to its speed. Such a representation is the basis for some of the displays on televised
weather  reports,  and  we can  immediately  see  when there  will  be  high  winds,  as  these  are  associated  with  large  arrows.  A
single vector is illustrated in Figure 3.5, which illustrates some notation. 

Vectors  are  usually  denoted  in  printed  text  by  bold  face  letters  (e.g.  v),  but  in  writing  them by  hand  we  can’t  use  bold
characters  and  so  make  use  of  an  underline  as  in  v.  The  magnitude  (or  length)  of  v  will  be  denoted  by  ||v||  but  is  also
sometimes denoted by the same letter in italic face (e.g. v). In accordance with our geometric ideas a vector is now defined by
the  pair  of  numbers  (||v||,  θ)  where  θ  is  the  angle  the  vector  makes  with  some  reference  direction.  Vectors  are  to  be
distinguished from simple numbers or scalars, which have a value but no direction.

In  order  to  generalize  to  higher  dimensions,  and  to  relate  vectors  to  the  ideas  of  pattern  space,  it  is  more  convenient  to
describe vectors with respect to a rectangular or cartesian co-ordinate system like the one used for the TLU example in 2D.
That is, we give the projected lengths of the vector onto two perpendicular axes as shown in Figure 3.6.

The vector is  now described by the pair  of  numbers v1,  v2.  These numbers are its  components  in the chosen co-ordinate
system. Since they completely determine the vector we may think of the vector itself as a pair of component values and write
v=(v1,  v2).  The  vector  is  now an ordered  list  of  numbers.  Note  that  the  ordering  is  important,  since  (1,  3)  is  in  a  different

Figure 3.4 Decision line in two-input example.

Figure 3.5 A vector.
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direction from (3, 1). It is this algebraic definition that immediately generalizes to more than 2D. An n-dimensional vector is
simply an ordered list of n numbers, v=(v1, v2,…, vn). They become of interest when rules are defined for combining them and
multiplying them by numbers or scalars (see below). To motivate the following technical material, we note that there are two
vectors  of  immediate  concern  to  us—the  weight  vector  (w1,  w2,…,  wn)  and  the  input  vector  (x1,  x2,…,  xn)  for  artificial
neurons. 

3.2.1
Vector addition and scalar multiplication

Multiplying a vector by a number (scalar) k simply changes the length of the vector by this factor so that if k=2, say, then we
obtain a vector of twice the length. Multiplying by a negative number results in a reversal of vector direction and a change in
length required by the number’s magnitude—see Figure 3.7. In component terms, if a vector in 2D, v=(v1, v2), is multiplied by
k, then the result1 v′ has components (kv1, kv2). This can be seen in the right hand side of Figure 3.7 where the original vector
v is shown stippled. Generalizing to n dimensions we define vector multiplication by kv=(kv1, kv2,…, kvn).

Geometrically, two vectors may be added in 2D by simply appending one to  the end of the other as shown in Figure 3.8.
Notice that a vector may be drawn anywhere in the space as long as its magnitude and direction are preserved. In terms of the
components,  if  w=u+v,  then  w1=u1+v1,  w2=u2+v2.  This  lends  itself  to  generalization  in  n  dimensions  in  a  straightforward
way. Thus, if u, v are now vectors in n dimensions with sum w, w=(u1+v1, u2+v2,…, un+vn). Note that u+v=v+u.

Vector subtraction is defined via a combination of addition and scalar multiplication so that we interpret u−v as u+(−1)v,
giving the addition of u and a reversed copy of v (see Fig. 3.9). The left hand side of the figure shows the original vectors u
and  v.  The  construction  for  subtraction  is  shown  in  the  centre  and  the  right  hand  side  shows  how,  by  making  use  of  the
symmetry of the situation, the resulting vector w may be drawn as straddling u and v themselves.  

3.2.2
The length of a vector

For our prototype in 2D, the length of a vector is just its geometrical length in the plane. In terms of its components, this is
given by applying Pythagoras’s theorem to the triangle shown in Figure 3.10, so that

Figure 3.6 Vector components.

Figure 3.7 Scalar multiplication of a vector. 
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(3.5)

In n dimensions, the length is defined by the natural extension of this, so that

(3.6)

where the exponent of  outside the square brackets is a convenient way of denoting the operation of square root. 

3.2.3
Comparing vectors—the inner product

In several situations in our study of networks it will be useful to have some measure of how well aligned two vectors are—that
is,  to know whether they point  in the same or opposite directions.  The vector inner product  allows us to do just  this.  This
section relies on the trigonometric function known as the cosine and so, for those readers who may not be familiar with this, it
is described in an appendix. 

Figure 3.8 Vector addition.

Figure 3.9 Vector subtraction. 

Figure 3.10 Obtaining the length of a vector.
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Inner product—geometric form

Suppose two vectors v and w are separated by an angle ø. Define the inner product v·w of the two vectors by the product of
their lengths and the cosine of ø; that is,

(3.7)
This is pronounced “v dot w” and is also known as the scalar product since its result is a number (rather than another vector).
Note that v·w=w·v.

What is the significance of this definition? Essentially (as promised) it tells us something about the way two vectors are
aligned with each other, which follows from the properties of the cosine function. To see this, fix w but allow v to vary its
direction (but not its lengths) as shown in Figure 3.11. Then, if  the lengths are fixed, v·w  can only depend on cosø.  When
0<ø<90°, the cosine is positive and so too, therefore, is the inner product. However, as the angle approaches 90°, the cosine
diminishes and eventually reaches zero. The inner product follows in sympathy with this and, when the two vectors are at right
angles they are said to be orthogonal with v·w=0. Thus, if the vectors are well aligned or point in roughly the same direction,
the inner product is close to its largest positive value of ||v|| ||w||. As they move apart (in the angular sense) their inner product
decreases until it is zero when they are orthogonal. As ø becomes greater than 90°, the cosine becomes progressively more
negative until it reaches −1. Thus, ||v|| ||w|| also behaves in this way until, when ø=180°, it takes on its largest negative value
of −||v|| ||w||. Thus, if the vectors are pointing in roughly opposite directions, they will have a relatively large negative inner
product. 

Note that we only need to think of angles in the range 0<ø<180° because a value of ø between 180° and 360° is equivalent
to an angle given by 360−ø.

Inner product—algebraic form

Consider the vectors v=(1, 1) and w=(0, 2) shown in Figure 3.12 where the angle between them is 45°. An inset in the figure
shows a right-angled triangle with its other angles equal to 45°. The hypotenuse, h,  has been calculated from Pythagoras’s
theorem to be  and, from the definition of the cosine (A.1), it can then be seen that . To find the
inner product of the two vectors in Figure 3.12, we note that  so that . We now
introduce an equivalent, algebraic definition of the inner product that lends itself to generalization in n dimensions.

Figure 3.11 Inner product examples.

Figure 3.12 Vectors at 45°.
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Consider the quantity v ○ w defined in 2D by
(3.8)

The form on the right hand side should be familiar—substituting x for v we have the activation of a two-input TLU. In the
example above, substituting the component values gives v ○ w=2 which is the same as v·w. The equivalence of what we have
called v ○ w and the geometrically defined inner product is not a chance occurrence resulting from the particular choice of
numbers in our example. It is a general result (Rumelhart et al. 1986b) (which will not be proved here) and it means that we may
write v·w=v1w1+v2w2 for any vectors v, w in 2D. The form in (3.8) immediately lends itself to generalization in n dimensions
so that we define the dot product of two n-dimensional vectors v, w as

(3.9)

We shall interpret the value obtained in this way just as we did in 2D. Thus, if it is positive then the two vectors are, in some
sense, roughly “lined up” with each other, if it is negative then they are “pointing away from” each other and, if it is zero, the
vectors are at “right angles”. No attempt should be made to visualize this in n dimensions; rather, think of its analogue in 2D
as a schematic or cartoon representation of what is happening. The situation is a little like using pictures in 2D to represent
scenes  in  3D—the  picture  is  not  identical  to  the  objects  it  depicts  in  3D,  but  it  may help  us  think  about  their  geometrical
properties.

Finally, what happens if v=w? Then we have

(3.10)

so that the square length of vector is the same as the inner product of the vector with itself.

Vector projection

There  is  one  final  concept  that  we will  find  useful.  Consider  the  two vectors  v,  w  in  Figure  3.13  and  suppose  we ask  the
question—how much of v lies in the direction of w? Formally, if we drop a perpendicular from v onto w what is the length of
the line segment along w produced in this way? This segment is called the projection vw of v onto w and, using the definition
of cosine, we have vw=||v||cosø. We can reformulate this, using the inner product, in a way suitable for generalization. Thus,
we write

(3.11)

3.3
TLUs and linear separability revisited

Our discussion of vectors was motivated by the desire to prove that the connection between TLUs and linear separability is a
universal one, independent of the dimensionality of the pattern space. We are now in a position to show this, drawing on the
ideas developed in the previous section. Using the definition of the inner product (3.9) the activation a of an n-input TLU may
now be expressed as

(3.12)
The vector equivalent to (3.1) now becomes

(3.13)

Figure 3.13 Vector projections.
 

22 TLUS, LINEAR SEPARABILITY AND VECTORS



As in the example in 2D, we expect deviations either side of those x that satisfy this relation to result in different output for
the TLU. We now formalize what is meant by “either side” a little more carefully. Our strategy is to examine the case in 2D
geometrically to gain insight and then, by describing it algebraically, to generalize to n dimensions.

In general, for an arbitrary x, the projection of x onto w is given by

(3.14)

If, however, we impose the constraint implied by (3.13), we have

(3.15)

So, assuming w and θ are constant, the projection xw is constant and, in 2D, x must actually lie along the perpendicular to the
weight vector, shown as a dashed line in Figure 3.14. Therefore, in 2D, the relation w·x=θ defines a straight line. However,
since we have used algebraic expressions that are valid in n dimensions throughout, we can generalize and use this to define
the n-dimensional equivalent  of a straight line—a hyperplane—which is perpendicular to the weight vector w. When x lies on
the hyperplane, w·x=θ, and the TLU output rule states that y=1; it remains to see what happens on each side of the line.

Suppose first that xw>θ/||w||; then the projection is longer than that in Figure 3.14 and x must lie in region A (shown by the
shading). Comparison of (3.14) and (3.15) shows that, in this case, w·x>θ, and so y=1. Conversely, if xw<θ/||w||, the projection
is shorter than that in Figure 3.14 and x must lie in region B. The implication is now that w·x<θ, and so y=0. The diagram can
only show part  of  each region and it  should be understood that  they are,  in  fact,  of  infinite  extent  so that  any point  in  the
pattern space is either in A or B. Again these results are quite general and are independent of the number n of TLU inputs.

To summarize: we have proved two things:

(a) The relation w·x=θ  defines a hyperplane (n-dimensional  “straight  line”) in pattern space which is  perpendicular  to the
weight vector. That is, any vector wholly within this plane is orthogonal to w.

(b) On one side of this hyperplane are all the patterns that get classified by the TLU as a “1”, while those that get classified
as a “0” lie on the other side of the hyperplane.

To  recap  on  some  points  originally  made  in  Section  3.1.2,  the  hyperplane  is  the  decision  surface  for  the  TLU.  Since  this
surface  is  the  n-dimensional  version  of  a  straight  line  the  TLU  is  a  linear  classifier.  If  patterns  cannot  be  separated  by  a
hyperplane then they cannot be classified with a TLU.

One assumption has been made throughout the above that should now be made explicit. Thus, Figure 3.14 shows a positive
projection xw, which implies a positive threshold. For a negative threshold θ, the projection constraint (3.15) now implies that
xw<0, since ||w|| is always positive. Therefore w·x<0 for  those x that lie on the decision line and they must point away from w
as shown in the left half of Figure 3.15. A typical instance of the use of a negative threshold is shown in the right hand part of
the figure. Notice that the weight vector always points towards the region of 1s, which is consistent with the TLU rule: w·x>0
implies y=1.

3.4
Summary

The function of a TLU may be represented geometrically in a pattern space. In this space, the TLU separates its inputs into
two classes (depending on the output “1” or “0”), which may be separated by a hyperplane (the n-dimensional equivalent of a

Figure 3.14 Projection of x as decision line. 
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straight line in 1D or a plane in 2D). The formal description of neuron behaviour in pattern space is greatly facilitated by the
use of vectors, which may be thought of as the generalization of directed arrows in 2D or 3D. A key concept is that of the dot
product w·x of two vectors w and x. If the lengths of the two vectors are held fixed, then the dot product tells us something
about the “angle” between the vectors. Vector pairs that are roughly aligned with each other have a positive inner product, if
they  point  away  from each  other  the  inner  product  is  negative,  and  if  they  are  at  right  angles  (orthogonal)  it  is  zero.  The
significance of all this is that the activation of a TLU is given by the dot product of the weight and input vectors, a=w·x, so
that it makes sense to talk about a neuron computing their relative alignment. Our first application of this was to prove the
linear separability of TLU classes. However, the geometric view (and the dot product interpretation of activation) will, quite
generally, prove invaluable in gaining insight into network function.

3.5
Notes

1. The small dash symbol is pronounced “prime” so one reads v′ as “v-prime”. 

Figure 3.15 Projection with negative threshold. 
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Chapter Four
Training TLUs: the perceptron rule

4.1
Training networks

This chapter introduces the concept of training a network to perform a given task. Some of the ideas discussed here will have
general applicability, but most of the time refer to the specifics of TLUs and a particular method for training them. In order
for a TLU to perform a given classification it must have the desired decision surface. Since this is determined by the weight
vector and threshold, it is necessary to adjust these to bring about the required functionality. In general terms, adjusting the
weights  and  thresholds  in  a  network  is  usually  done  via  an  iterative  process  of  repeated  presentation  of  examples  of  the
required task. At each presentation, small changes are made to weights and thresholds to bring them more in line with their desired
values. This process is known as training the net, and the set of examples as the training set. From the network’s viewpoint it
undergoes a process of learning, or adapting to, the training set, and the prescription for how to change the weights at each
step is the learning rule. In one type of training (alluded to in Ch. 1) the net is presented with a set of input patterns or vectors
{xi} and, for each one, a corresponding desired output vector or target {ti}. Thus, the net is supposed to respond with tk, given
input xk for every k. This process is referred to as supervised training (or learning) because the network is told or supervised
at each step as to what it is expected to do.

We will focus our attention in this chapter on training TLUs and a related node, the perceptron, using supervised learning.
We will consider a single node in isolation at first so that the training set consists of a set of pairs {v, t}, where v is an input
vector and t is the target class or output (“1” or “0”) that v belongs to.

4.2
Training the threshold as a weight

In order to place the adaptation of the threshold on the same footing as the weights, there is a mathematical trick we can play
to make it look like a weight. Thus, we normally write w·x≥θ as the condition for output of a “1”. Subtracting θ from both
sides gives w·x−θ≥0 and making the minus sign explicit  results  in  the form w·x+(−1)θ≥0.  Therefore,  we may think of  the
threshold  as  an  extra  weight  that  is  driven  by  an  input  constantly  tied  to  the  value  −1.  This  leads  to  the  negative  of  the
threshold being referred to sometimes as the bias. The weight vector, which was initially of dimension n for an n-input unit,
now becomes the (n+1)-dimensional vector w1, w2,…, wn, θ. We shall call this the augmented weight vector, in contexts where
confusion  might  arise,  although  this  terminology  is  by  no  means  standard.  Then  for  all  TLUs  we  may  express  the  node
function as follows1:

(4.1)

Putting  w·x=0 now defines  the  decision  hyperplane,  which,  according  to  the  discussion  in  Chapter  3,  is  orthogonal  to  the
(augmented) weight vector. The zero-threshold condition in the augmented space means that the hyperplane passes through the
origin, since this is the only way that allows w·x=0. We now illustrate how this modification of pattern space works with an
example in 2D, but it is quite possible to skip straight to Section 4.3 without any loss of continuity.

Consider  the  two-input  TLU  that  outputs  a  “1”  with  input  (1,  1)  and  a  “0”  for  all  other  inputs  so  that  a  suitable  (non-
augmented) weight  vector  is  (1/2,  1/2)  with threshold 3/4.  This  is  shown in Figure 4.1 where the decision line and weight
vector  have  been  shown quantitatively.  That  the  decision  line  goes  through  the  points  x1=(1/2,  1)  and  x2=(1,  1/2)  may  be
easily verified since according to (3.8) w·x1=w·x2=3/4=θ. For the augmented pattern space we have to go to 3D as shown in
Figure 4.2. The previous two components x1, x2 are now drawn in the horizontal plane while a third component x3 has been
introduced, which is  shown as the vertical  axis.  All  the patterns to the TLU now have the form (x1,  x2,  −1) since the third
input is tied to the constant value of −1. The augmented weight vector now has a third component equal to the threshold  and



is perpendicular to a decision plane that passes through the origin. The old decision line in 2D is formed by the intersection of
the decision plane and the plane containing the patterns.

4.3
Adjusting the weight vector

We now suppose we are to train a single TLU with augmented weight vector w using the training set consisting of pairs like v,
t. The TLU may have any number of inputs but we will represent what is happening in pattern space in a schematic way using
cartoon diagrams in 2D.

Suppose we present an input vector v to the TLU with desired response or target t=1 and, with the current weight vector, it
produces an output of y=0. The TLU has misclassified and we must make some adjustment to the weights. To produce a “0”
the activation must have been negative when it should have been positive—see (4.1). Thus, the dot product w·v was negative
and the two vectors were pointing away from each other as shown on the left hand side of Figure 4.3.

In order to correct the situation we need to rotate w so that it points more in the direction of v. At the same time, we don’t
want to make too drastic a change as this might upset previous learning. We can achieve both goals by adding a fraction of v
to w to produce a new weight vector w′, that is

(4.2)
where 0<α<1, which is shown schematically on the right hand side of Figure 4.3.

Suppose now, instead, that misclassification takes place with the target t=0 but y=1. This means the activation was positive
when it should have been negative as shown on the left in Figure 4.4. We now need to rotate w away from v, which may be
effected by subtracting a fraction of v from w, that is

(4.3)
as indicated on the left of the figure.

Figure 4.1 Two-dimensional TLU example. 

Figure 4.2 Two-dimensional example in augmented pattern space.
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Both (4.2) and (4.3) may be combined as a single rule in the following way:
(4.4)

This may be written in terms of the change in the weight vector Δw=w′−w as follows:
(4.5)

or in terms of the components
(4.6)

where wn+1=θ and vn+1=−1 always. The parameter α is called the learning rate because it governs how big the changes to the
weights are and, hence, how fast the learning takes place. All the forms (4.4, 4.5, 4.6) are equivalent and define the perceptron
training rule. It is called this rather than the TLU rule because, historically, it was first used with a modification of the TLU
known as the perceptron, described in Section 4.4. The learning rule can be incorporated into the overall scheme of iterative
training as follows.

repeat
for each training vector pair (v, t)
evaluate the output y when v is input to the TLU
if y ≠ t then
form a new weight vector w′ according to (4.4)
else
do nothing
end if
end for
until y = t for all vectors

The procedure in its entirety constitutes the perceptron learning algorithm. There is one important assumption here that has
not,  as  yet,  been  made  explicit:  the  algorithm  will  generate  a  valid  weight  vector  for  the  problem  in  hand,  if  one  exists.
Indeed, it can be shown that this is the case and its statement constitutes the perceptron convergence theorem:

If two classes of vectors X, Y are linearly separable, then application of the perceptron training algorithm will eventually
result in a weight vector w0 such that w0 defines a TLU whose decision hyperplane separates X and Y.

Since the algorithm specifies that we make no change to w  if it  correctly classifies its input, the convergence theorem also
implies  that,  once  w0  has  been found,  it  remains  stable  and no further  changes  are  made to  the  weights.  The  convergence
theorem was first proved by Rosenblatt (1962), while more recent versions may be found in Haykin (1994) and Minsky &
Papert (1969).

One  final  point  concerns  the  uniqueness  of  the  solution.  Suppose  w0  is  a  valid  solution  to  the  problem  so  that  w0·x=0
defines a solution hyperplane. Multiplying both sides of this by a constant k preserves the equality and therefore defines the
same hyperplane. We may absorb k into the weight vector so that, letting w′0=kw0, we have w′0·x=kw0·x=0. Thus, if w0 is a
solution, then so too is kw0 for any k and this entire family of vectors defines the same solution hyperplane.

Figure 4.3 TLU misclassification 1–0.

Figure 4.4 TLU misclassification 0–1. 
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We now look at an example of the training algorithm in use with a two-input TLU whose initial weights are 0, 0.4, and
whose initial threshold is 0.3. It has to learn the function illustrated in Figure 4.1; that is, all inputs produce 0 except for the
vector (1, 1). The learning rate is 0.25. Using the above algorithm, it is possible to calculate the sequence of events that takes
place on presentation of all four training vectors as shown in Table 4.1.

Table 4.1 Training with the perception rule on a two-input example.

w1 w2 θ x1 x2 a y t α(t−y) δw1 δw2 δθ

0.0 0.4 0.3 0 0 0 0 0 0 0 0 0
0.0 0.4 0.3 0 1 0.4 1 0 −0.25 0 −0.25 0.25
0.0 0.15 0.55 1 0 0 0 0 0 0 0 0
0.0 0.15 0.55 1 1 0.15 0 1 0.25 0.25 0.25 −0.25

Each row shows the quantities required for a single vector presentation. The columns labelled w1, w2, θ show the weights
and threshold just prior to the application of the vector with components in columns x1, x2. The columns marked a and y show
the activation and output resulting from input vector (x1,  x2).  The target  t  appears in the next column and takes part  in the
calculation  of  the  quantity  α(t−y),  which  is  used  in  the  training  rule.  If  this  is  non-zero  then  changes  are  effected  in  the
weights δw1, δw2, and threshold δθ. Notice that the lower case version of delta, δ, may also be used to signify a change in a quantity
as well as its upper case counterpart, Δ. These changes should then be added to the original values in the first three columns to
obtain the new values of the weights and threshold that appear in the next row. Thus, in order to find the weight after all four
vectors have been presented, the weight changes in the last row should be added to the weights in the fourth row to give w1=0.
25, w2=0.4, θ=0.3.

4.4
The perception

This is an enhancement of the TLU introduced by Rosenblatt (Rosenblatt 1962) and is shown in Figure 4.5. It consists of a
TLU whose inputs come from a set of preprocessing association units or simply A-units. The input pattern is supposed to be
Boolean, that is a set of 1s and 0s, and the A-units can be assigned any arbitrary Boolean functionality but are fixed—they do
not learn. The depiction of the input pattern as a grid carries the suggestion that the input may be derived from a visual image,
which is the subject of Section 4.6. The rest of the node functions just like a TLU and may therefore be trained in exactly the
same way. The TLU may be thought of as a special case of the perception with a trivial set of A-units, each consisting of a
single direct connection to one of the inputs. Indeed, sometimes the term “perceptron” is used to mean what we have defined
as a TLU. However, whereas a perceptron always performs a linear separation with respect to the output of its A-units, its
function of the input space may not be linearly separable if the A-units are non-trivial. 

Figure 4.5 The perception.
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4.5
Multiple nodes and layers

4.5.1
Single-layer nets

Using the perception training algorithm, we are now in a position to use a single perception or TLU to classify two linearly
separable classes A and B. Although the patterns may have many inputs, we may illustrate the pattern space in a schematic or
cartoon  way  as  shown  in  Figure  4.6.  Thus  the  two  axes  are  not  labelled,  since  they  do  not  correspond  to  specific  vector
components, but are merely indicative that we are thinking of the vectors in their pattern space.

It is possible, however, to train multiple nodes on the input space to achieve a set of linearly separable dichotomies of the
type shown in Figure 4.6. This might  occur, for example, if we wish to classify handwritten alphabetic characters where 26
dichotomies are required, each one separating one letter class from the rest of the alphabet—“A”s from non-” A”s, “B”s from
non-”B”s, etc. The entire collection of nodes forms a single-layer net as shown in Figure 4.7. Of course, whether each of the
above dichotomies is linearly separable is another question. If they are, then the perceptron rule may be applied successfully
to each node individually.

4.5.2
Nonlinearly separable classes

Suppose now that there are four classes A, B, C, D  and that they are separable by two planes in pattern space as shown in
Figure 4.8. Once again, this diagram is a schematic representation of a high-dimensional space. It would be futile trying to use
a single-layer net to separate these classes since class A, for example, is not linearly separable from the others taken together.
However, although the problem (identifying the four classes A, B, C, D) is not linearly separable, it is possible to solve it by
“chopping” the pattern space into linearly separable regions and looking for particular combinations of overlap within these
regions.  The initial process of pattern space division may be accomplished with a first layer of TLUs and the combinations
evaluated by a subsequent layer. This strategy is now explained in detail.

We start by noting that, although no single class (such as A, for example) is linearly separable from the others, the higher
order class consisting of A and B together is linearly separable from that consisting of C and D together. To facilitate talking
about these classes, let AB be the class consisting of all patterns that are in A or B. Similarly, let CD be the class containing all
patterns in C or D, etc. Then our observation is that AB and CD are linearly separable as are AD and BC.

We may now train two units U1, U2 with outputs y1, y2 to perform these two dichotomies as shown in Table 4.2.

Table 4.2 y1, y2 outputs.

Class y1 Class y2

AB 1 AD 1
CD 0 BC 0

Suppose now a member of the original class A is input to each of U1, U2. From the table, this results in outputs y1=y2=1.
Conversely,  suppose  an  unknown  vector  x  is  input  and  both  outputs  are  1.  As  far  as  U1  is  concerned  x  is  in  AB,  and  U2
classifies it as in AD. The only way it can be in both is if it is in A. We conclude therefore that y1=1 and y2=1 if, and only if,

Figure 4.6 Classification of two classes A, B. 
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the input vector x is in A. Proceeding with the other three possibilities, we obtain a unique code, in terms of y1, y2, for each of
the classes, as shown in Table 4.3.

Table 4.3 y1, y2 codes.

y1 y2 Class

0 0 C
0 1 D
1 0 B
1 1 A

These  codes  may  now  be  decoded  by  a  set  of  four  two-input  TLUs,  each  connected  to  both  U1  and  U2  as  shown  in
Figure 4.9. Thus, to signal class A we construct a two-input TLU that has output “1” for input (1, 1) and output “0” for all
other inputs. To signal class B the TLU must output “1” only when presented with (1, 0), and so on for C and D. These input-
output relations are certainly linearly separable since they each consist, in pattern space, of a line that “cuts away” one of the
corners of the square (refer back to Fig. 3.4 for an example that corresponds to the A-class node). Notice that only one of the
four TLU output units is “on” (output “1”) at any one time so that the classification is signalled in an unambiguous way.

Figure 4.7 Single-layer net.

Figure 4.8 Pattern space for classification of four classes A, B, C, D. 

Figure 4.9 Two-layer net for four-class classification
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Two  important  points  need  to  be  made  here.  First,  the  output  units  were  not  trained;  each  one  has  been  assigned  the
appropriate weights by inspection of their pattern space. Secondly, if we had chosen to use the groupings AC or DB then we
would have failed, since neither of these can take part in a linearly separable dichotomy. There were therefore two pieces of
information required in order to train the two units.

(a) The four classes may be separated by two hyperplanes.
(b) AB was linearly separable from CD and AD was linearly separable from BC.

It would be more satisfactory if we could dispense with (b) and train the entire two-layer architecture in Figure 4.9 as a whole
ab initio. The less information we have to supply ourselves, the more useful a network is going to be. In order to do this, it is
necessary  to  introduce  a  new  training  algorithm  based  on  a  different  approach,  which  obviates  the  need  to  have  prior
knowledge of the pattern space.

Incidentally, there is sometimes disagreement in the literature as to whether the network in Figure 4.9 is a two- or three-
layer  net.  Most  authors  (as  I  do)  would  call  it  a  two-layer  net  because  there  are  two  layers  of  artificial  neurons,  which  is
equivalent  to  saying  there  are  two  layers  of  weights.  Some  authors,  however,  consider  the  first  layer  of  input  distribution
points as units in their own right, but since they have no functionality it does not seem appropriate to place them on the same
footing as the TLU nodes. 

4.6
Some practical matters

We  have  spoken  rather  glibly  so  far  about  training  sets  without  saying  how  they  may  originate  in  real  applications.  The
training  algorithm  has  also  been  introduced  in  the  abstract  with  little  heed  being  paid  to  how  it,  and  the  network,  are
implemented. This is a suitable point to take time out from the theoretical development and address these issues.

4.6.1
Making training sets

We will make this concrete by way of an example which assumes a network that is being used to classify visual images. The
sequence of events for making a single training pattern in this case is shown in Figure 4.10. 

Part (a) shows the original scene in monochrome. Colour information adds another level of complexity and the image shown
here was, in fact, obtained by first converting from a colour picture. Our goal is somehow to represent this image in a way
suitable for input to a TLU or perceptron. The first step is shown in part (b) in which the image has been divided into a series
of small squares in a grid-like fashion. Within each square, the luminance intensity is averaged to produce a single grey level.
Thus,  if  a  square is  located in a  region that  is  mainly dark,  it  will  contain a  uniform dark grey,  whereas squares in lighter
regions will contain uniform areas of pale grey. Each square is called a pixel and may now be assigned a number, based on the
darkness or lightness of its grey content. One popular scheme divides or quantizes the grey-scale into 256 discrete levels and
assigns 0 to black and 255 to white. In making the assignment of scale values to pixels, we have to take the value closest to
the pixel’s grey level. This will result in small quantization errors, which will not be too large, however, if there are enough
levels to choose from.

Figure 4.10 Making training sets from images.
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If  we  know  how  many  pixels  there  are  along  each  side  of  the  picture  the  rows  (or  columns)  of  the  grid  may  now  be
concatenated to obtain a vector of numbers. This is adequate as it stands for input to a TLU, which does not necessarily need
Boolean vectors, but is not suitable for the perceptron. To convert to a Boolean vector we must use only two values of grey, which
may be taken to be black and white. This conversion is accomplished by thresholding at some given grey level. For example,
if we set the threshold at 50 per cent and are using the 0–255 labelling scheme, all pixels with values between 0 and 127 will
be assigned the value 0 (white), while all those between 128 and 255 will be given the label 1 (black). This has been done in
part (c) of the figure, which shows the binarized version of the image with threshold 50 per cent. The rows (or columns) may
now be concatenated to produce a Boolean vector suitable for use as input to the perceptron. Another way of thinking of the
binarized image is that it  is a direct result of grey-level quantization but with only two (instead of 256) grey levels.  Image
vectors like those in Figure 4.10b, c may be stored for later use in computer memory or framestore, or on disk in a file.

Before leaving our example, we can use it to help illustrate a typical task that our network may be expected to perform. In
Figure  4.10d  is  shown  a  copy  of  the  original  binarized  image  of  part  (c)  but  with  some  of  the  pixels  having  their  values
inverted. This may have occurred, for example, because the image became corrupted by noise when it was transmitted from a
source to a destination machine. Alternatively, we might imagine a more structured alteration in which, for example, the child
has  moved slightly  or  has  changed facial  expression.  We would  expect  a  well-trained network to  be  able  to  classify  these
slightly altered images along with the original, which is what we mean by its ability to generalize from the training set.

4.6.2
Real and virtual networks

When we build a neural network do we go to our local electronic hardware store, buy components and then assemble them?
The answer, in most cases, is “no”. Usually we simulate the network on a conventional computer such as a PC or workstation.
What is simulation? The entries in Table 4.1 could have been filled out by pencil and paper calculation, by using a spreadsheet,
or  by  writing  a  special  purpose  computer  program.  All  these  are  examples  of  simulations  of  the  TLU,  although  the  first
method is rather slow and is not advised for general use. In the parlance of computer science, when the net is being simulated
on a general purpose computer, it is said to exist as a virtual machine (Tanenbaum 1990). The term “virtual reality” has been
appropriated for describing simulations of spatial environments—however, the virtual machines came first.

Instead of writing a computer program from scratch, one alternative is to use a general purpose neural network simulator
that allows network types and algorithms to be chosen from a set of predetermined options. It is also often the case that they
include a set of visualization tools that allow one to monitor the behaviour of the net as it adapts to the training set. This can
be extremely important in understanding the development and behaviour of the network; a machine in which the information
is  distributed  in  a  set  of  weights  can  be  hard  to  understand.  Examples  of  this  type  of  simulator  are  available  both
commercially and as freely distributed software that may be downloaded via an Internet link. For a survey, see Murre (1995).

Large neural networks can often require many thousands of iterations of their training algorithm to converge on a solution,
so that simulation can take a long time. The option, wherever possible, should be to use the most powerful computer available
and to limit the network to a size commensurate with the available computing resources. For example, in deciding how large
each pixel  should be in Figure 4.10,  we have to be careful  that  the resulting vector is  not  so large that  there are too many
weights to deal with in a reasonable time at each iteration of the learning algorithm.

In Chapter 1, one of the features of networks that was alluded to was their ability to compute in parallel. That is, each node
may be regarded as a processor that operates independently of, and concurrently with, the others. Clearly, in simulation as a
virtual machine, networks cannot operate like this.  The computation being performed by any node has to take place to the
exclusion of the others and each one must be updated in some predefined sequence. In order to take advantage of the latent
parallelism, the network must be realized as a physical machine with separate hardware units for each node and, in doing this,
there  are  two  aspects  that  need  attention.  First,  there  needs  to  be  special  purpose  circuitry  for  implementing  the  node
functionality, which includes, for example, multiplying weights by inputs, summing these together and a nonlinearity output
function. Secondly, there needs to be hardware to execute the learning algorithm. This is usually harder to achieve and many
early  physical  network  implementations  dealt  only  with  node  functionality.  However,  it  is  the  learning  that  is  computer
intensive and so attention has now shifted to the inclusion of special purpose learning hardware.

Distinction should also be made between network hardware accelerators and truly parallel machines. In the former, special
circuitry is devoted to executing the node function but only one copy exists so that, although there may be a significant speed-
up, the network is still operating as a virtual machine in some way. Intermediate structures are also possible in which there
may  be  several  node  hardware  units,  allowing  for  some  parallelism,  but  not  sufficient  for  an  entire  network.  Another
possibility is to make use of a general purpose parallel computer, in which case the node functionality and training may be
shared out amongst individual processors. Some accounts of special purpose chips for neural networks may be found in two
special issues of the IEEE Transactions on Neural Nets (Sánchez-Sinencio & Newcomb 1992a, b). 
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4.7
Summary

By building on the insights gained using the geometric approach introduced in the last chapter, we have demonstrated how
TLU-like  nodes  (including  perceptrons)  can  adapt  their  weights  (or  learn)  to  classify  linearly  separable  problems.  The
resulting  learning  rule  is  incorporated  into  a  training  algorithm  that  iteratively  presents  vectors  to  the  net  and  makes  the
required changes. The threshold may be adapted on the same basis using a simple trick that makes it appear like a weight. We
have seen how nonlinearly separable problems may be solved in principle using a two-layer net, but the method outlined so far
relies heavily on prior knowledge and the hand crafting of weights. More satisfactory schemes are the subject of subsequent
chapters. Finally, the general idea of a “training vector” was made more concrete with reference to an example in vision, and
issues concerning the implementation of networks in software and hardware were discussed.

4.8
Notes

1. The symbol ⇒ is read as “implies”. 

ADJUSTING THE WEIGHT VECTOR 33



Chapter Five
The delta rule

At the end of the last chapter we set out a programme that aimed to train all the weights in multilayer nets with no a priori
knowledge of the training set and no hand crafting of the weights required. It turns out that the perceptron rule is not suitable
for generalization in this way so that we have to resort to other techniques. An alternative approach, available in a supervised
context, is based on defining a measure of the difference between the actual network output and target vector. This difference
is then treated as an error to be minimized by adjusting the weights. Thus, the object is to find the minimum of the sum of
errors over the training set where this error sum is considered to be a function of (depends on) the weights of the network.
This paradigm is a powerful one and, after introducing some basic principles and their application to single-layer nets in this
chapter, its generalization to multilayer nets is discussed in Chapter 6.

5.1
Finding the minimum of a function: gradient descent

Consider a quantity y that depends on a single variable x—we say that y is a function of x and write y=y(x). Suppose now that
we wish to find the value x0 for which y  is a minimum (so that y(x0)≤y(x)  for all x) as shown in Figure 5.1. Let x* be our
current best estimate for x0; then one sensible thing to do in order to obtain a better estimate is to change x so as to follow the
function “downhill”  as it were. Thus, if increasing x (starting at x*) implies a decrease in y then we make a small positive
change, Δx>0, to our estimate x*.  On the other hand, if decreasing x  results in decreasing y  then we must make a negative
change,  Δx<0. The knowledge used to make these decisions is  contained in the slope  of  the function at  x*;  if  increasing x
increases y, the slope is positive, otherwise it is negative.

We met  the  concept  of  slope  in  Section  3.1.2  in  connection  with  straight  lines.  The  extension  to  general  functions  of  a
single  variable  is  straightforward,  as  shown in  Figure  5.2.  The  slope  at  any  point  x  is  just  the  slope  of  a  straight  line,  the
tangent, which just grazes the curve at that point. There are two ways to find the slope. First, we may draw the function on
graph paper, draw the tangent at the required point, complete the triangle as shown in the figure and measure the sides Δx and
Δy. It is possible, however, to calculate the slope from y(x) using a branch of mathematics known as the differential calculus.
It is not part of our brief to demonstrate or use any of the techniques of the calculus but it is possible to understand what is
being computed, and where some of its notation comes from.

Figure 5.3 shows a closeup of the region around point P in Figure 5.2. The slope at P has been constructed in the usual way
but, this time, the change Δx used to construct the base of the triangle is supposed to be very small. If δy is  the change in the
value  of  the  function  y  due  to  Δx  then,  if  the  changes  are  small  enough,  δy  is  approximately  equal  to  Δy.  We  write  this
symbolically as δy≈Δy.

Now, dividing Δy by Δx and then multiplying by Δx leaves Δy unchanged. Thus we may write

(5.1)

Figure 5.1 Function minimization. 



This apparently pointless manipulation is,  in fact,  rather useful,  for the fraction on the the right hand side is just the slope.
Further since δy≈Δy we can now write

(5.2)
We now introduce a rather more compact and suggestive notation for the slope and write

(5.3)

We have already come across this kind of symbol used to denote the “rate of change” of a quantity. Informally, the ideas of
“rate of change” and “slope” have a similar meaning since if a function is rapidly changing it has a large slope, while if it is
slowly  varying  its  slope  is  small.  This  equivalence  in  ordinary  language  is  mirrored  in  the  use  of  the  same  mathematical
object to mean both things. It should once again be emphasized that dy/dx should be read as a single symbol—although its
form should not now be so obscure since it stands for something that may be expressed as a ratio. The key point here is that
there are techniques for calculating dy/dx, given the form of y(x), so that we no longer have to resort to graphical methods. By
way of terminology dy/dx is also known as the differential or derivative of y with respect to x.

Suppose we can evaluate the slope or derivative of y and put

(5.4)

where α>0 and is small enough to ensure δy≈Δy; then, substituting this in (5.3),

(5.5)

Since taking the square of anything gives a positive value the −α term on the right hand side of (5.5) ensures that it is always
negative and so δy<0; that is, we have “travelled down” the curve towards the minimal point as required. If we keep repeating
steps  like  (5.5)  iteratively,  then we should approach the  value x0  associated with  the  function minimum. This  technique is
called, not surprisingly, gradient descent and its effectiveness hinges, of course, on the ability to calculate, or make estimates
of, the quantities like dy/dx.

Figure 5.2 Slope of y(x).

Figure 5.3 Small changes used in computing the slope of y(x). 
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We have only spoken so far of functions of one variable. If, however, y is a function of more than one variable, say y=y(x1,
x2, …, xn), it makes sense to talk about the slope of the function, or its rate of change, with respect to each of these variables
independently. A simple example in 2D is provided by considering a valley in mountainous terrain in which the height above
sea level is a function that depends on two map grid co-ordinates x1 and x2. If x1, say, happens to be parallel to a contour line
at  some  point  then  the  slope  in  this  direction  is  zero;  by  walking  in  this  direction  we  just  follow  the  side  of  the  valley.
However, the slope in the other direction (specified by x2) may be quite steep as it points to the valley floor (or the top of the
valley face). The slope or derivative of a function y with respect to the variable xi is written ∂y/∂xi and is known as the partial
derivative.  Just  as  for  the  ordinary  derivatives  like  dy/dx,  these  should  be  read  as  a  single  symbolic  entity  standing  for
something like “slope of y when xi alone is varied”. The equivalent of (5.4) is then

(5.6)

There is an equation like this for each variable and all of them must be used to ensure that δy<0 and there is gradient descent.
We now apply gradient descent to the minimization of a network error function.

5.2
Gradient descent on an error

Consider,  for  simplicity,  a  “network” consisting of  a  single  TLU. We assume a  supervised regime so that,  for  every input
pattern p in the training set, there is a corresponding target tp. The behaviour of the network is completely characterized by the
augmented  weight  vector  w,  so  that  any  function  E,  which  expresses  the  discrepancy  between  desired  and  actual  network
output,  may  be  considered  a  function  of  the  weights,  E=E(w1,  w2,…,  wn+1).  The  optimal  weight  vector  is  then  found  by
minimizing this function by gradient descent as shown schematically in Figure 5.4. By applying (5.6) in this case we obtain

(5.7)

It remains now to define a suitable error E. One way to proceed is to assign equal importance to the error for each pattern so
that, if ep is the error for training pattern p, the total error E is just the average or mean over all patterns

(5.8)

where there are N patterns in the training set. Clearly, just as for E, any ep will also be completely determined by the weights.
As a first attempt to define ep we might simply use the difference, ep=tp−yp, where yp is the TLU output in response to p. This
definition falls within the general remit since yp, and hence ep, may be written as a function of the weights. 

The problem here, however, is that the error is then smaller for the combination tp=0, yp=1, than it is for tp=1, yp=0, whereas
both are as “wrong” as each other. The way around this is to work with the purely positive quantity obtained by squaring the
difference, so an improvement is

(5.9)
There remains, however, a more subtle problem. In applying gradient descent, it is assumed that the function to be minimized
depends on its variables in a smooth, continuous fashion. In the present context, we require ep to be a smooth function of the
weights wi. To see how ep depends on the weights, it is necessary to substitute for the output yp in terms of the weights and
inputs. This occurs in two stages. First, the activation ap is simply the weighted sum of inputs, which is certainly smooth and
continuous. Secondly, however, the output depends on ap via the discontinuous step function. This weak link in the chain of

Figure 5.4 Gradient descent for a network.
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dependencies  therefore  prevents  ep,  in  its  current  form,  from  being  a  suitable  candidate  for  gradient  descent.  One  way  to
remedy the situation is simply to remove this part of the causal chain so that the error is defined with respect to the activation

(5.10)
We must be careful now how we define the targets. So far they have been referenced to the unit output, which is either 1 or 0.
It is necessary, however, in using (5.10), to reference them to the activation. Recall that, when using the augmented weight
vector, the output changes as the activation changes sign; a≥0⇒y=1. Therefore, as long as the activation takes on the correct
sign, the target output is guaranteed and we are free to choose two arbitrary numbers, one positive and one negative, as the
activation targets. It is often conventional, however, to use 1 and −1, which is the choice adopted here. One last finesse that is
usually added to the expression for the error is a factor of 1/2 and has to do with the simplification of the resulting slopes or
derivatives. Thus our final form for ep looks like

(5.11)

The full error E is then given by substituting this in (5.8).

5.3
The delta rule

Since  E  depends  on  all  the  patterns,  the  same  can  be  said  for  its  derivatives,  so  that  the  whole  training  set  needs  to  be
presented  in  order  to  evaluate  the  gradients  .  This  batch  training  results  in  true  gradient  descent  but  is  rather
computationally intensive. It  can be avoided by adapting the weights based on the gradients found on presentation of each
pattern  individually.  That  is,  we present  the  net  with  a  pattern  p,  evaluate   and  use  this  as  an  estimate  of  the  true
gradient . Using (5.11) and expressing ap in terms of the weights wi and inputs , it can be shown that

(5.12)

where is the ith component of pattern p. Although a proof of this will not be given here, it is possible to make this result
plausible in the following way. First, the gradient must depend in some way on the discrepancy (tp−ap); the larger this is, the
larger we expect the gradient to be and, if this difference is zero, then the gradient should also be zero, since then we have
found the minimum value of ep and are at the bottom of the curve in the error function. Secondly, the gradient must depend on
the input  for, if this is zero, then the ith input is making no contribution to the activation for the pth pattern and cannot
affect  the  error—no  matter  how  wi  changes  it  makes  no  difference  to  ep.  Conversely,  if   is  large  then  the  ith  input  is
correspondingly sensitive to the value of wi.

Using the gradient estimate of (5.12) in (5.7) we obtain the new learning rule
(5.13)

The resulting training now works in a so-called pattern training regime in which weight changes are made after each vector
presentation.  Because  we  are  using  estimates  for  the  true  gradient,  the  progress  in  the  minimization  of  E  is  noisy  so  that
weight changes are sometimes made which effect an increase in E. On average, however, the result is a systematic decrease in
the error—a phenomenon that is explored further in Section 5.4.

Training  based  on  (5.13)  was  first  proposed  by  Widrow  &  Hoff  (1960),  who  used  it  to  train  nodes  called  ADALINEs
(ADAptive LINear Elements), which were identical to TLUs except that they used input and output signals of 1, −1 instead of
1, 0. The training rule in (5.13) was therefore originally known as the Widrow-Hoff rule. More recently it is more commonly
known as the delta rule (or δ-rule) and the term (tp−ap) is referred to as “the δ” (since this involves a difference). The original
reference for the delta rule (Widrow & Hoff 1960) is a very brief summary by a third party reporting on a conference meeting
and is  largely  of  historical  interest.  More  complete  accounts  are  available  in  Widrow et  al.  (1987)  and Widrow & Stearns
(1985).

To see the significance of using the signal labels ±1 (read “plus or minus 1”) in ADALINEs, consider what happens when,
in the normal Boolean representation, =0. Then, from (5.13), the change in the weight is zero. The use of −1 instead of 0
enforces a weight change, so that inputs like this influence the learning process on the same basis as those with value 1. This
symmetric representation will crop up again in Chapter 7.

It  can  be  shown  (Widrow  &  Stearns  1985)  that  if  the  learning  rate  α  is  sufficiently  small,  then  the  delta  rule  leads  to
convergent  solutions;  that  is,  the  weight  vector  approaches  the  vector  w0  for  which  the  error  is  a  minimum,  and  E  itself
approaches a constant value. Of course, a solution will not exist if the problem is not linearly separable, in which case w0 is
the best the TLU can do and some patterns will be incorrectly classified. This is one way in which the delta and perceptron
rules differ. If a solution doesn’t exist then, under the perceptron rule, the weights will continually be altered by significant
amounts so that the weight vector oscillates. On the other hand, the delta rule always converges (with sufficiently small α) to
some weight vector w0 at which the error is a minimum. Further, the perceptron rule engenders no change in the weights if the
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output and target agree and, if a solution exists, there will come a point when no more weight changes are made. The delta
rule, however, will always make some change to the weights, no matter how small. This follows because the target activation
values ±1 will never be attained exactly, so that, even when correct classification has been achieved, the weights will continue
to  adapt,  albeit  at  an  ever  decreasing  rate.  The  training  algorithm which  uses  the  delta  rule  is  similar,  therefore,  to  that  in
Section 4.3 but now there is no option of “do nothing” and the stopping criterion is different.

repeat
for each training vector pair (v, t)
evaluate the activation a when v is input to the TLU
adjust each of the weights according to (5.13)
end for
until the rate of change of the error is sufficiently small

The stopping criterion is not as well defined as it might be and often relies on experience with using the algorithm. More will
be said about this in the next chapter.

An  example  of  using  the  delta  rule  is  provided  by  the  worked  simulation  in  Table  5.1.  Its  layout  and  interpretation  are
similar to those for the example with the perceptron rule (Table 4.1) except that no output needs to be computed 

Table 5.1 Training with the delta rule on a two-input example.

w1 w2 θ x1 x2 a t αδ δw1 δw2 δθ

0.00 0.40 0.30 0 0 −0.30 −1.00 −0.17 −0.00 −0.00 0.17
0.00 0.40 0.48 0 1 −0.08 −1.00 −0.23 −0.00 −0.23 0.23
0.00 0.17 0.71 1 0 −0.71 −1.00 −0.07 −0.07 −0.00 0.07
−0.07 0.17 0.78 1 1 −0.68 1.00 0.42 0.42 0.42 −0.42

here (since we are working with the activation directly) and the key column in determining weight changes is now labelled
αδ. The problem is the same: train a two-input TLU with initial weights (0, 0.4) and threshold 0.3, using a learn rate of 0.25.

Comparison of the delta rule (5.13) and the perception rule (4.6) shows that formally they look very similar. However, the
latter  uses  the  output  for  comparison  with  a  target,  while  the  delta  rule  uses  the  activation.  They were  also  obtained  from
different theoretical starting points. The perceptron rule was derived by a consideration of hyperplane manipulation while the
delta rule is given by gradient descent on the square error.

In  deriving  a  suitable  error  measure  ep  for  the  delta  rule,  our  first  attempt  (5.9)  used  the  TLU output  y.  This  had  to  be
abandoned,  however,  because  of  the  discontinuous  relation  between y  and  the  weights  arising  via  the  step-function  output
law. If this is replaced with a smooth squashing function, then it is possible to reinstate the output in the definition of the error
so that for semilinear units we may use ep=1/2(tp−yp)2. In this case there is an extra term in the delta rule that is the derivative
of the sigmoid dσ(a)/da. It is convenient occasionally to denote derivatives by a dash or prime symbol so putting dσ(a)/da=σ′
(a) we obtain

(5.14)
It is not surprising that the slope of the activation-output function (the sigmoid) crops up here. Any changes in the weights
alter the output (and hence the error) via the activation. The effect of any such changes depends, therefore, on the sensitivity of
the output with respect to the activation. To illustrate this, the sigmoid and its slope are shown in Figure 5.5. Suppose, first,
that the activation is either very large or very small, so that the output is close to 1 or 0 respectively. Here, the graph of the
sigmoid is  quite flat  or,  in other words,  its  gradient σ′(a)  is  very small.  A small  change Δa  in the activation (induced by a
weight change Δwi) will result in a very small change Δy in the output, and a correspondingly small change Δep in the error.
Suppose now that  the  activation is  close to  the threshold θ  at  which the sigmoid takes  the value 0.5.  Here,  the  function is
changing most rapidly—its gradient is maximal. The same change Δa in the activation (induced by the same weight change)
now results in a much larger change in the output Δy, and a correspondingly larger change in the error Δep. Thus the rate of
change, or gradient, of the error with respect to any weight is governed by the slope of the sigmoid. 

So far we have considered training a single node. In the case of a single-layer net with M nodes the error has to be summed
over all nodes

(5.15)
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which is reasonable since each node is acting independently and there are no between-node interactions. In a similar way, the
error gradient for the ith weight of the jth node only involves the error term  for that node. Thus for semilinear nodes
the learning rule is the same as that in (5.14), except for a unit or node index

(5.16)

5.4
Watching the delta rule at work

Consider  a  TLU  with  a  single  input  x  so  that  it  has  two  trainable  parameters,  a  weight  w  and  threshold  θ,  which  are
components of the augmented weight vector w=(w, θ). Suppose the TLU is to learn simply to transmit its Boolean input so
that there are two training patterns (x=0, α=−1), (x=1, α=1). This example can be used to demonstrate some of the properties
of gradient descent with the delta rule, in spite of its apparent triviality, because the error is a function of two variables, E=E
(w, θ), and can be represented in a three-dimensional surface plot as shown in Figure 5.6. Thus, E is the height above a plane
that contains two axes, one each for w and θ. Now let the weights undergo a series of adaptive changes and let w(n) be the
weight vector after the nth update and w(0) the initial vector. Further, let E(n) be the error after the nth update; then we may
plot E(n) as the height above the plane at the point w(n).  

Suppose we now perform a true gradient descent using batch training by evaluating the gradient of E  over both training
patterns. Starting with w(0)= (−4, 1) and using a learning rate a of 0.25, we obtain the series E(n), w(n) shown by the dots in
Figure 5.7a. The error surface has been shown as a contour map this time, but has the same profile as that in Figure 5.6. The
larger dot indicates the location of w(0) and successive weight vectors are joined by line segments. There is a steady decrease
in the error so that E(n+1)<E(n) for all n and the direction of descent is down the steepest trajectory, as indicated by the inter-
weight lines being perpendicular to the contours. Notice that, as the surface becomes shallower, the size of the change in the
weight vector becomes smaller since the surface gradient and Δw are directly related under gradient descent training.

Figure  5.7b shows the  same TLU being trained with  the  same value of  α  but,  this  time,  using sequential  pattern  update
under the delta rule. The progress down the error slope is clearly more erratic since we are using an estimate,  for the
error  gradient  based  on  evidence  provided  by  pattern  p  alone.  In  fact,  there  are  as  many  steps  taken  “uphill”  as  there  are
down, although the mean direction is downwards.

Figure 5.5 The sigmoid and its slope.

Figure 5.6 Error surface for example in 1D.
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Increasing the learning rate to 0.6 results in bigger steps being taken at each update (Fig. 5.7c) so that the error decreases,
on average, more rapidly. Increasing α even further to 1.6 results, however, in an unstable situation (Fig. 5.7d) where the steps
are so large that the weight vector roams erratically around the error landscape and there is no convergence towards the valley
floor. The axes for w and θ have had to be rescaled to show all the updates (we have “zoomed out”) and the region of the error
surface shown in the previous diagrams has now receded into the distance.

5.5
Summary

This chapter introduced a powerful, general technique for supervised learning in neural networks. It is based on the concept of
minimizing a network error E, defined in terms of the discrepancy between the desired target and network output. Since the
network  is  completely  defined  by  its  weight  set,  the  error  may  be  written  as  a  function  of  the  weights  and  the  problem
couched in terms of attempting to “move downhill” over the error “surface”—considered as a function of the weights—until a
minimum is  reached.  This  movement requires  knowledge of  the gradient  or  slope of  E  and is  therefore known as gradient
descent. An examination of the local behaviour of the function under small changes showed explicitly how to make use of this
information.  The  delta  rule  has  superficial  similarities  with  the  perceptron  rule  but  they  are  obtained  from  quite  different
starting points (vector manipulation versus gradient descent). Technical difficulties with the TLU required that the error be
defined with respect to the node activation using suitably defined (positive and negative) targets. Semilinear nodes allow a
rule to be defined directly using the output but this has to incorporate information about the slope of the output squashing
function. The learning rate must be kept within certain bounds if the network is to be stable under the delta rule. 

Figure 5.7 Training in the example in 1D. 
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Chapter Six
Multilayer nets and backpropagation

Recall that our goal is to train a two-layer net in toto without the awkwardness incurred by having to train the intermediate
layer  separately  and  hand  craft  the  output  layer.  This  approach  also  required  prior  knowledge  about  the  way  the  training
patterns fell  in pattern space.  A training rule was introduced—the delta  rule—which,  it  was claimed, could be generalized
from the single-unit/layer case to multilayer nets. Our approach is to try and understand the principles at work here, rather
than simply use the brute force of the mathematics, and many of the fundamental ideas have already been introduced in the
last chapter. A full derivation may be found, for example, in Haykin (1994). The training algorithm to be developed is called
backpropagation because, as will be shown, it relies on signalling errors backwards (from output to input nodes) through the
net.

6.1
Training rules for multilayer nets

A network that is typical of the kind we are trying to train is shown in Figure 6.1.  It  consists of a set of input distribution
points  (shown  in  black)  and  two  layers  of  semilinear  nodes  shown  as  circles.  The  second,  or  output,  layer  signals  the
network’s response to any input, and may have target vectors ti applied to it in a supervised training regime. The other half,
vi, of the training patterns are applied to the inputs of an intermediate layer of hidden nodes, so called because we do not have
direct access to their outputs for the purposes of training and they must develop their own representation of the input vectors.

The idea is still to perform a gradient descent on the error E considered as a function of the weights, but this time the weights
for two layers of nodes have to be taken into account. The error for nets with semilinear nodes has already been established as
the  sum  of  pattern  errors  ep  defined  via  (5.15).  Further,  we  assume  the  serial,  pattern  mode  of  training  so  that  gradient
estimates based on information available at the presentation of each pattern are used, rather than true gradients available only
in  batch  mode.  It  is  straightforward  to  calculate  the  error  gradients  for  the  output  layer;  we  have  direct  access  to  the
mismatch between target and output and so they have the same form as those given in (5.16) for a single-layer net in the delta
rule. This is repeated here for convenience:

(6.1)
where the unit index j is supposed to refer to one of the output layer nodes. The problem is now to determine the gradients

 for  nodes  (index  k)  in  the  hidden  layer.  It  is  sometimes  called  the  credit  assignment  problem  since  one  way  of
thinking about this  is  to ask the question—how much “blame” or  responsibility should be assigned to the hidden nodes in

Figure 6.1 Two-layer net example.
 



producing the error  at  the output? Clearly,  if  the hidden layer  is  feeding the output  layer  poor  information then the output
nodes can’t sensibly aspire to match the targets.

Our  approach  is  to  examine  (6.1)  and  see  how  this  might  generalize  to  a  similar  expression  for  a  hidden  node.  The
reasoning behind the appearance of each term in (6.1) was given in Section 5.3 and amounted to observing that the sensitivity
of the error to any weight change is  governed by these factors.  Two of these,  the input and sigmoid slope,  are determined
solely  by  the  structure  of  the  node  and,  since  the  hidden  nodes  are  also  semilinear,  these  terms  will  also  appear  in  the
expression  for  the  hidden  unit  error-weight  gradients.  The  remaining  term,  (tp−yp),  which  has  been  designated  the  “δ”,  is
specific to the output nodes and our task is therefore to find the hidden-node equivalent of this quantity.

It is now possible to write the hidden-node learning rule for the kth hidden unit as
(6.2)

where it remains to find the form of δk. The way to do this is to think in terms of the credit assignment problem. Consider the
link between the kth hidden node and the jth output node as shown in Figure 6.2. The effect this node has on the error depends
on two things: first, how much it can influence the output of node j and, via this, how the output of node j affects the error.
The more k can affect j, the greater the effect we expect there to be on the error. However, this will only be significant if j is
having some effect on the error at its output. The contribution that node j makes towards the error is, of course, expressed in
the “δ” for that node δj. The influence that k has on j is given by the weight wjk. The required interaction between these two
factors is captured by combining them multiplicatively as δjwjk. However, the kth node is almost certainly providing input to
(and therefore influencing) many output nodes so that we must sum these products over all j giving the following expression
for δk:

(6.3)

Here, Ik is the set of nodes that take an input from the hidden node k. For example, in a network that is fully connected (from
layer to layer) Ik is the whole of the output layer. Using (6.3) in (6.2) now gives the desired training rule for calculating the
weight changes for the hidden nodes since the δj refer to the output nodes and are known quantities.

The reader should be careful about the definition of the “δ” in the literature. We found it convenient to split off the slope of
the sigmoid σ′(ak),  but it  is usually absorbed into the corresponding δ  term. In this scheme then, for any node k  (hidden or
output) we may write

(6.4)
where for output nodes

(6.5)
and for hidden nodes

(6.6)

In line with convention, this is the usage that will be adopted subsequently. It remains to develop a training algorithm around
the rules we have developed. 

6.2
The backpropagation algorithm

This basic algorithm loop structure is the same as for the perception rule or delta rule

initialize weights
repeat
for each training pattern
train on that pattern

Figure 6.2 Single hidden-output link.
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end for loop
until the error is acceptably low

Algorithm outline

The first step is to initialize the weights to small random values. Criteria that help define “small” have been given by Lee et
al. (1991) and essentially require that no training pattern causes any node to reach an output close to one of its extreme values
(usually 0 or 1). If this does occur then the node is said to have reached premature saturation and may be considered to have
been pretrained to some arbitrary value for that pattern. Such nodes may then have to undergo a process of unlearning before
being retrained to give useful outputs.

One iteration of the for loop results in a single presentation of each pattern in the training set and is sometimes referred to
as an epoch. What constitutes an “acceptably low” error is treated in Section 6.4 but for the moment we expand the main step
of “train on that pattern” into the following steps.

1. Present the pattern at the input layer.
2. Let the hidden units evaluate their output using the pattern.
3. Let the output units evaluate their output using the result in step 2 from the hidden units.
4. Apply the target pattern to the output layer.
5. Calculate the δs on the output nodes.
6. Train each output node using gradient descent (6.4).
7. For each hidden node, calculate its δ according to (6.6).
8. For each hidden node, use the δ found in step 7 to train according to gradient descent (6.2).

The steps 1–3 are collectively known as the forward pass  since information is flowing forward through the network in the
natural sense of the nodes’ input-output relation. Steps 4–8 are collectively known as the backward pass.

Step 7 involves propagating the δs back from the output nodes to the hidden units—hence the name backpropagation. The
backpropagation (BP) algorithm is also known as error backpropagation or back error propagation or the generalized delta
rule. The networks that get trained like this are sometimes known as multilayer perceptrons or MLPs.

6.3
Local versus global minima

In drawing the error-weight relation schematically in Figure 5.4 we made a simplification, which now needs to be addressed.
A more realistic view is taken in Figure 6.3. The error is a more complex function of the weights and it is now possible to
converge on one of several weight vectors. Suppose we start with a weight set for the network corresponding to point P. If we
perform gradient descent, the minimum we encounter is the one at Ml, not that at Mg. Gradient descent is a local algorithm in
that it makes use of information which is immediately available at the current weight vector. As far as the training process is
concerned it  cannot “know” of the existence of a smaller error at Mg  and it  simply proceeds downhill until  it  finds a place
where the error gradient is zero. Ml is called a local minimum and corresponds to a partial solution for the network in response
to the training data. Mg is the global minimum we seek and, unless measures are taken to escape from Ml, the global minimum
will never be reached.

One way of avoiding getting stuck in local minima would be sometimes to allow uphill steps against the gradient. In this
way, it might be possible to jump over intervening bumps between points like Ml and Mg. This is exactly what occurs in the
pattern update regime in which we perform a noisy descent based on approximate gradient estimates (recall Fig. 5.7). This is
therefore  one  advantage  of  the  pattern  update  procedure  over  its  batched  counterpart.  Noise   is  also  introduced  when  the
learning rule is modified to include the so-called momentum term (Sect. 6.5), since this deviates from the exact requirements
of gradient descent.

Another factor that can play a role here is the order of pattern presentation. In pattern update training during a single epoch
it is possible to present vectors in a fixed sequence, or by selecting a random permutation of the pattern set each time; that is,
all vectors are presented once and only once but their order is changed from epoch to epoch in a random way. If the latter
option is chosen, there is a greater diversity of possible paths across the error-weight landscape and so this tends to favour
escape from local minima.

TRAINING RULES FOR MULTILAYER NETS 43



6.4
The stopping criterion

In the algorithm outlined above, what constitutes an acceptably low error? One possible definition for Boolean training sets might
be to accept any error for which all output nodes have responses to all patterns that are closest to the correct Boolean value, as
defined  by  the  target,  since  then,  if  we  were  to  replace  the  sigmoid  with  a  hard-limiting  threshold,  the  correct  Boolean
response would be guaranteed.

Another  definition  might  simply  prescribe  some very  low value  є  (Greek epsilon)  for  the  mean pattern  error  (ep)1.  This
must  be  interpreted  carefully  for  the  following  reason.  Consider  a  net  with  N  output  nodes  and  M  training  patterns  and
suppose a single output node in response to a single training pattern is in error with the delta taking its maximum value of 1.
We then say there is a single bit-error and (ep)=1/MN. Clearly for large values of M and N this becomes insignificant and may
easily satisfy the criterion, while for smaller nets and training sets it may not. However, it may be that we are interested in the
number  of  such  bit-errors  and  should  decrease  є  accordingly  for  the  larger  net.  One  problem with  this  approach  is  that  it
assumes the net can decrease its mean error below the given value of є, which is not necessarily the case if the net does not
have enough resources (nodes and connections) to approximate the required function to the desired degree. This might also
occur if the net becomes trapped in a local minimum but, in any case, we would carry on training to no avail without ever
stopping.

An alternative stopping criterion that is always valid is to halt when the rate of change of the error is sufficiently small.
This is reasonable since, as an error minimum is approached (either local or global), the error surface becomes shallower and
so the change in error at each epoch becomes ever smaller (see Fig. 5.7).

Finally, it is possible to base the termination of training on the network’s ability to generalize, a topic discussed further in
Section 6.10.1. 

6.5
Speeding up learning: the momentum term

The speed of learning is  governed by the learning rate α.  If  this is  increased too much, learning becomes unstable;  the net
oscillates back and forth across the error minimum or may wander aimlessly around the error landscape. This was illustrated
in Section 5.4 for a simple single-node case but the behaviour is quite typical of any gradient descent and so applies equally well
to backpropagation. It is evident, however, that although a small learning rate will guarantee stability it is rather inefficient. If
there is a large part of the error surface that runs consistently downhill then it should be possible to increase the learning rate
here  without  danger  of  instability.  On  the  other  hand,  if  the  net  finds  itself  in  a  region  where  the  error  surface  is  rather
“bumpy”, with many undulations, then we must proceed carefully and make small weight changes.

One attempt to achieve this type of adaptive learning utilizes an additional term in the learning rule. Thus, if Δw(n) is the
nth change in weight w (indices have been dropped for clarity) then

(6.7)
The momentum term λΔw(n−1) is just the momentum constant λ (Greek lambda) multiplied by the previous weight change.
The momentum constant is greater than zero and, to ensure convergence, is also less than 1. By using this relation recursively
it is possible to express Δw(n) as a sum of gradient estimates evaluated at the current and previous training steps. Therefore, if
these estimates are consistently of the same sign over a “run” of updates (we are on a large, uniform slope) then the weight

Figure 6.3 Local and global minima. 
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change will grow larger as previous gradient estimates contribute cumulatively and consistently towards the current update. It
is  in  this  sense  that  the  net  “gathers  momentum”.  However,  if  successive  gradient  estimates  are  of  opposite  sign  (we  are
undulating up and down) then successive changes will tend to cancel each other and the latest update will be smaller than it
would without any momentum term.

6.6
More complex nets

Although the net shown in Figure 6.1 is a typical multilayer perceptron net, it does not exhaust the kind of net we may train
with backpropagation. First, it is possible to have more than one hidden layer as shown in Figure 6.4, which shows a net with
two  hidden  layers.  This  is  trained  in  exactly  the  same  way  with  the  δs  of  each  layer  (apart  from the  output  nodes)  being
expressed in terms of those in the layer above. Thus, the δs for the first hidden layer are expressed in terms of those of the
second hidden layer, which are, in turn, calculated using those of the output nodes. It is quite possible to have more than two
hidden  layers  but  the  training  time  increases  dramatically  as  the  number  of  layers  is  increased  and,  as  discussed  in
Section 6.7, there are good reasons to suppose we don’t ever need more than three layers altogether.

All  the nets exhibited so far have been fully connected layer to layer so that  each node has inputs from all  nodes in the
previous layer. This is not necessarily the case and the speed of learning may be increased if we can restrict the connectivity
in some way, as shown in Figure 6.5 in which each hidden node is connected to only four of the inputs. Connectivity may be
restricted if we have prior knowledge of the problem domain as, for example, in the case of visual tasks. Here, points that are
physically close to each other in the image are often highly correlated and so it makes sense to sample the image locally over
small patches. This is just what is done in the animal visual system in which each neuron in the visual cortex is stimulated by
a small part of the visual stimulus called the neuron’s receptive field (Bruce & Green 1990).

Finally, we have assumed so far that the nets have a layered structure in which any path from input to output has to pass
through the same number of  nodes.  Once again this  is  not  necessary and a  non-layered network is  shown in Figure 6.6 in
which the connections shown by heavier lines bypass the hidden nodes altogether. It is quite possible to train such nets using
backpropagation but most networks tend to be of the layered type.

In spite of the variations just described, all the nets dealt with in this chapter have one thing in common: there are no signal
paths  that  loop back on themselves.  In  other  words,  starting from an input,  say,  signals  are  processed by a  finite  series  of
nodes  (some  of  which  may  be  hidden)  before  contributing  to  a  final  output  response,  and  there  is  no  feedback  loop  from
output to input. Such nets are therefore designated feedforward nets in contrast with feedback or recurrent nets, which allow
signals to propagate around closed paths; more will be said about these in Chapter 7.

Figure 6.4 Network with two hidden layers.
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6.7
The action of well-trained nets

6.7.1
Operation in pattern space

The two-layer net that was partially hand crafted in Section 4.5.2 to solve the fourway classification problem can now be retrained
in toto  using backpropagation. Further, the same problem may be recast to demonstrate the power of our new algorithm to
classify a nonlinearly separable pattern space. Thus, consider the situation in pattern space shown on the left in Figure 6.7.
The  two classes  A  and  B  cannot  be  separated  by  a  single  hyperplane.  In  general  we require  an  arbitrarily  shaped decision
surface and, in this case, it may be approximated by two plane segments. Extending these segments, it can be seen that the
situation is similar to that in Figure 4.8 except the labelling of the patterns is different. The network solution, therefore, again
consists of two hidden nodes h1, h2 (one for each plane) but this time with a single output node that will signal “1” for class A
and “0” for class B.  Of course, the output node can never actually supply these values, but we assume that the weights are
sufficiently large that the sigmoid can operate close to its extremes. The hidden nodes are also assumed to operate close to
saturation. The required output node function y is indicated on the right of the figure. Since it has two inputs its pattern space
may be represented in 2D and, assuming for simplicity perfect Boolean hidden outputs, its inputs will be the corners of the
square. All inputs induce a “1” except for that at the corner (0, 0) and so it is linearly separable. 

Using more hidden nodes it is possible to generate more complex regions in pattern space and, in order to discuss this more
fully, it is useful to invoke a couple of new concepts. A region R in pattern space is said to be connected if, for any two points
P1,  P2  there exists  a  path connecting P1,  P2  that  lies  wholly within R.  Informally,  R  consists  of  a  single unbroken area,  as
shown at the top of Figure 6.8. The areas of pattern space dealt with so far have all been connected. A connected region of
pattern space R is said to be convex if, for all pairs of points P1, P2 in R, the straight line between P1 and P2 lies wholly within
R, as shown in the lower half of Figure 6.8. This is the formalization of the requirement that, in 2D, there are no indentations
in R.

Figure 6.5 Network with non-full connectivity.

Figure 6.6 Non-layered network.
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Now  consider  a  net  with  a  single  output  node  that  signals  whether  we  are  in  some  region  R  of  pattern  space  or  in  the
remainder (or complement) R, where it is assumed that R is the smaller of the two. The situation in Figure 6.7 is typical and
represents a case of a convex, connected R, with R being the part of the space containing class B. In this example, R extends
infinitely  in  pattern  space—  schematically  it  is  unbounded  in  the  bottom  half  of  the  diagram.  Using  a  third  hidden  node,
however, it would be possible to implement the problem shown in Figure 6.9 in which R is still convex and connected, but is
now finite. We may continue adding sides to the region’s circumference in this way by adding more hidden nodes. How far,
then, can we proceed in this way using a single hidden layer? Lippmann (1987) states that,  with this type of network, R  is
necessarily connected and convex.  However,  Wieland & Leighton (1987) have demonstrated the ability of  a  single hidden
layer  to  allow  a  non-convex  decision  region  and  Makhoul  et  al.  (1989)  extended  this  result  to  disconnected  regions.  In
general, therefore, any region R may be picked out using a single hidden layer.  

Notice that the existence of regions with perfectly sharp boundaries presupposes a threshold function instead of a sigmoid at
the  output.  This  is  not  the  case  with  semilinear  nodes  and  so  the  sharp  boundaries  become  blurred.  These  two  cases  are
illustrated in Figure 6.10, which shows surface plots in pattern space of the output for a TLU and semilinear node. Both units
have weight vector (1/2, 1/2) and threshold 3/4 so that the TLU case is the same as that in Figure 4.1 and shows the sharp
decision line between the “0” and “1” regions. The semilinear node, however, has a smooth sigmoidal rise across the decision
line which now constitutes a contour at a height of 0.5.

Figure 6.7 Two classes nonlinearly separable.

Figure 6.8 Connectedness and convexity.

Figure 6.9 Finite region in pattern space. 
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6.7.2
Networks and function fitting

Up  till  now our  analysis  of  the  way  networks  operate  has  been  exclusively  in  the  geometric  context  of  pattern  space.  An
alternative explanation may be offered that has its basis in thinking of the net as implementing a mathematical function of its
inputs,  and is especially pertinent if  we are dealing with continuous input and output signals (not restricted to the Boolean
values 0, 1). For example, if we wanted to make a forecast pn of a stock value based on k previous values of the price pn−1, pn

−2,…, pn−k, we would want to train a net to discover the functional relation (if any) between these quantities; that is, to discover
the underlying function pn=pn(pn−1, pn−2,…, pn−k).

This way of thinking may be illustrated with the following simple example whose network is shown in Figure 6.11.
There is a single input x and two hidden nodes h1, h2 with weights and thresholds w1=1, θ1=2, w2=1, θ2=−2, respectively.

These provide input for a single output node with weights 5, −5 and threshold 2. The way this network functions is shown in
Figure 6.12. The horizontal axis is the input and the vertical axis the output of the network nodes. Curve 1 shows the output y1
of h1, and curve 2 the negative output −y2 of h2. The activation a of the output node is 5(y1−y2), which is just a scaled copy of
the sum of  the two quantities  represented by these two curves.  The sigmoid of  the output  node will  work to compress the
activation into the interval (0, 1) but its output y (curve 3) will have the same basic shape as a.

Notice  first  that,  for  very  large  positive  and  negative  values  of  x,  the  activation  a  is  almost  constant  and  equal  to  zero,
which means that y will also be approximately constant. At first, as x increases from large negative values, the output y1 of the
first  hidden  node  increases  while  y2  remains  close  to  zero.  Thus,  a  (and  hence  y)  for  the  output  node  also  increase.  As  x
increases still further, however, h2 starts to come into play and it makes its negative contribution to a. This starts to make a
decrease and eventually, when y1 and y2 are almost equal, effectively cancels out the input from h1 making a almost zero.

Moving the thresholds θ1, θ2 apart would make the output “hump” wider, while increasing the weights of the output node
makes it more pronounced. Also, making these weights differ in magnitude would allow the levels either side of  the hump to
be different. We may think of the network’s output y as a function of the input x (we write y=y(x)) and, by suitable choice of
the net parameters, implement any one of a wide range of “single-humped” or unimodal functions. Introducing another hidden
node h3 would enable the appearance of a second hump and so on for further nodes h4, h5…. In this way it is possible to train
networks to solve problems with intricate functional relationships y=y(x).

In  most  cases,  of  course,  the  net  will  have  many  inputs  x1,  x2,…,  xn  and  outputs  y1,  y2,…,  ym,  in  which  case-it  may  be
thought of as implementing m functions of the form yj=yj(x1, x2,…, xn). For n=2 we may represent these relations graphically
as surface plots but their exact visualization becomes impossible for n>3. The best we can hope to do is hold all but two (p
and q, say) of the inputs constant and explore the variation of yj as a function of xp, xq.

Just as, in the geometric setting, it is important to know how complex the decision surface may be for a given number of
hidden layers, it is pertinent to ask in the functional context what class of functions may be implemented in each such case.
This time it can be shown (Funahashi 1989, Hornik et al. 1989) that, using a single hidden layer, it is possible to approximate
any continuous function as closely as we please. This is consistent with the discussion of pattern space analysis in which it
was noted that a single hidden layer is sufficient to encode arbitrary decision surfaces.

Figure 6.10 TLU versus semilinear boundaries.

Figure 6.11 Simple network to illustrate function fitting in 1D.
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6.7.3
Hidden nodes as feature extractors

Consider the four 11-input, single-output training patterns shown in Table 6.1. What are the “features” in this training set? At
first, we might say that vector components like x3 and x6 through to x9 are features since these components always take the
value  “1”.  However,  a  more  meaningful  interpretation  would  be  that  these  are  really  just  “background”  components  since
their value doesn’t change and they tell us nothing about the classification of each vector. Better candidates for features are
components like x1  or x11  in which each value (0 or 1) is correlated with the output (y)  in some way. In the case of x1,  for
example, y=x1 always, so that input x1 is a very informative feature which completely determines the output. Thus a “feature”
in this context is a subset of the input space that helps us to discriminate the patterns by its examination

Table 6.1 Vectors for feature detection.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y

1 1 1 1 1 1 1 1 1 0 0 1
1 1 1 0 0 1 1 1 1 0 0 1
0 0 1 1 1 1 1 1 1 1 1 0
0 0 1 1 0 1 1 1 1 1 1 0 

 without recourse to the entire pattern. This, of itself, is important but there is a further significance in that we can think of
features as containing the essential information content in the pattern set. Of course, in more complex problems, we may need
to combine evidence from several features to be sure about a given pattern classification.

If the vectors in this example were used to train a single semilinear node then we would expect a large positive weight to
develop on input 1 so that it becomes influential in forcing the activation to positive values. On the other hand x11, although
correlated with the output, takes on an opposing value. This is captured by developing a negative weight on input 11 since
then, when x11=1, it will force the output to be zero.

Is it  possible to formalize these ideas mathematically? Suppose we replace each “0” in Table 6.1 with “−1” to give new
components  and output .  Now, for each pattern p  and each component  form . This gives some measure of the
input-output  correlation  since,  if  the  input  and  the  output  are  the  same,  the  expression  is  +1;  if  they  are  different  it  is  −1.
Notice that this property is lost if we use the original Boolean notation (0 instead of −1), for then the product is zero if either
of xi or y is zero, irrespective whether the two are equal or not. Now consider the mean correlation ci on the ith component

(6.8)

Figure 6.12 Functionality of network example in Figure 6.11. 
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For a feature like x1 this evaluates to +1. For a background component, however, it is 0 since there are as many input-output
similarities  (+1s)  as  there  are  differences  (−1s).  For  components  like  x11  that  anti-correlate  with  the  output,  c11=−1.  This,
then, seems to mesh quite nicely with our informal idea of what constitutes a feature.

In Figure 6.13 the correlation coefficients ci are plotted against i and are shown by the lines terminated with small square
symbols. Also plotted are the weights that evolve as a result of training a single semilinear node on the patterns using the delta
rule.  There is a very close match between the weights and the coefficients (or features) so that,  in this sense, the node has
learnt to detect the features in the training set.

Of  particular  interest  is  x4,  which,  for  three  of  the  patterns,  takes  on the  opposite  value to  the  output,  but  for  one is  the
same. This then is an anti-correlated feature but not of the same strength as x11.

6.8
Taking stock

To summarize the power of the tools that have now been developed: we can train a multilayer net to perform categorization of
an arbitrary number of classes and with an arbitrary decision surface. All that is required is that we have a set of inputs and
targets, that we fix the number of hyperplanes (hidden units) that are going to be used, and that we perform gradient descent
on  the  error  with  the  backpropagation  algorithm.  There  are  (as  always),  however,  subtleties  that  emerge  which  make  life
difficult. One of these concerned the presence of local minima but we hope that, by using noisy, pattern-serial training and/or
momentum these may be avoided. Another, more serious problem concerns the number of hidden units used and can result in
inadequate training set generalization. If this occurs then we have lost most of the benefit of the connectionist approach.

6.9
Generalization and overtraining

Consider  the  dichotomy in  pattern  space  shown  schematically  in  Figure  6.14.  The  training  patterns  are  shown  by  circular
symbols and the two classes distinguished by open and filled symbols. In the right hand diagram, there are two line segments
indicating  two  hyperplane  fragments  in  the  decision  surface,  accomplished  using  two  hidden  units.  Two  members  of  the
training set have been misclassified and it may appear at first sight that this net has performed poorly since there will be some
residual error. However, suppose that some previously unseen test patterns are presented, as shown by the square symbols.
The colouring scheme corresponds to that used for the training set so that filled and open squares are from the same classes as
filled  and  open  circles  respectively.  These  have  been  classified  correctly  and  the  net  is  said  to  have  generalized  from the
training data. This would seem to vindicate the choice of a two-segment hyperplane for the decision surface since it may be that
the two misclassified training patterns result from noisy data or outliers. In this case the net has implemented a good model of
the data, which captures the essential characteristics of the data in pattern space.

Consider now the left hand diagram in which there are six line segments associated with the use of six hidden units. The
training  set  is  identical  to  that  used  in  the  previous  example  and  each  one  has  been  successfully  classified,  resulting  in  a
significantly smaller error. However, all four test patterns have been incorrectly classified so that, even though the training
data are all dealt with correctly, there may be many examples, especially those close to the decision boundary from each class
(see below), that are misclassified. The problem here is that the net has too much freedom to choose its decision surface and
has overfitted it to accommodate all the noise and intricacies in the data without regard to the underlying trends.

It is suggested in these diagrams that there is some sense in which input vectors are “close” to one another so that, for example,
the two training patterns that fail to get classified correctly using two hidden units are still, nevertheless, close to the decision
surface. The geometric approach associated with the use of pattern space does indeed imply some measure of distance d(u, v),
between two vectors u, v. We might, for instance, use the length of the vector difference u−v with the length defined via (3.6)
giving

Figure 6.13 Weights and features.
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(6.9)

Of special interest is the case when the patterns are Boolean so that ui, vi are all 0 or 1. Then, if we omit the square root we
obtain a measure known as the Hamming distance h

(6.10)

Since (ui−vi)=±1 or 0 the square term may be replaced with the absolute value of the difference

(6.11)

which is just the number of places where the two vectors differ. For example (1, 1, 0, 0) and (1, 0, 1, 0) are Hamming distance
2 apart because they differ in the second and third places. For Boolean vectors, the network is therefore performing Hamming
distance generalization so that, unless we are very close to the decision surface, vectors that are close to each other tend to be
given the same classification.

It  is  possible  to  describe  generalization  from  the  viewpoint  adopted  in  Section  6.7.2,  which  dealt  with  nets  as  function
approximators. Figure 6.15 shows two examples of the output y of a net as a function of its input x. This is only a schematic
representation since both y and x may be multidimensional. The circles and squares are supposed to represent training and test
data  respectively,  while  the  curves  show the functions  implemented by each network.  On the right  hand side is  a  network
function  that  is  comparatively  simple  and  may  be  realized  with  few  hidden  units  (recall  that  adding  units  allows  more
undulations or “bumps” in the function’s graph). It does not pass exactly through the training data and so there will be some
residual  error.  However,  it  appears  to  have  captured  quite  well  the  underlying  function  from which  the  training  data  were
sampled since the test data are reasonably close to the curve; the net has generalized well.

On the other hand, the left hand figure shows the function realized by a network with more hidden units giving rise to a
correspondingly more complex function. The training data are the same as those used in the previous example but, this time,
the net has learned these patterns with almost no error. However, the test data (squares) are poorly represented because the net
has been given too much freedom to fit a function to the training set. In trying to obtain an ever increasingly accurate fit, the net
has  introduced  spurious  variations  in  the  function  that  have  nothing  to  do  with  the  underlying  input-output  relation  from
which the data were sampled. This is clearly analogous to the situation in pattern space shown in Figure 6.14.

One of the questions that remained unanswered at the end of our development of the backpropagation algorithm was how to
determine  the  number  of  hidden  units  to  use.  At  first,  this  might  not  have  seemed a  problem since  it  appears  that  we  can
always use more hidden units than are strictly necessary; there would simply be redundancy with more than one hidden node
per  hyperplane.  This  is  the  “more  of  a  good thing is  better”  approach.  Unfortunately,  as  we have discovered here,   things
aren’t so easy. Too many hidden nodes can make our net a very good lookup table for the training set at the expense of any
useful generalization. In the next section, techniques are described that attempt to overcome this problem. It turns out that it is
not always necessary to determine an optimum number of hidden nodes and that it is possible to limit the eventual freedom
allowed for the net to establish a decision surface in other ways.

Figure 6.14 Generalization and overtraining in pattern space.

Figure 6.15 Generalization and overtraining in the context of function approximation. 
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6.10
Fostering generalization

6.10.1
Using validation sets

Consider again networks with too many hidden units like those associated with the left hand side of Figures 6.14 and 6.15.
The diagrams show the decision surface and function respectively after exhaustive training, but what form do these take in the
early stages of learning? It is reasonable to suppose that the smoother forms (indicated on the right hand side of the respective
figures) or something like them may be developed as intermediates at this time. If we then curtail the training at a suitable
stage it may be possible to “freeze” the net in a form suitable for generalization.

A  striking  graphical  demonstration  that  this  is  indeed  what  happens  in  pattern  space  was  provided  by  Rosin  &  Fierens
(1995). They trained a net on two classes in a pattern space in 2D (to allow easy visualization), each of which consisted of a
circularly symmetric cluster of dots in the plane. The two classes overlapped and so the error-free decision boundary for the
training set was highly convoluted. However, in terms of the underlying statistical distributions from which the training set
was drawn they should be thought of as being separated optimally by a straight line. On training, a straight line did emerge at
first as the decision boundary but, later, this became highly convoluted and was not a useful reflection of the true situation.

How, then, are we to know when to stop training the net? One approach is to divide the available training data into two
sets: one training set proper T, and one so-called validation set V. The idea is to train the net in the normal way with T but,
every so often, to determine the error with respect to the validation set V. This process is referred to as cross-validation and a
typical  network  behaviour  is  shown  in  Figure  6.16.  One  criterion  for  stopping  training,  therefore,  is  to  do  so  when  the
validation  error  reaches  a  minimum,  for  then  generalization  with  respect  to  the  unseen  patterns  of  V  is  optimal.  Cross-
validation  is  a  technique  borrowed  from regression  analysis  in  statistics  and  has  a  long  history  (Stone  1974).  That  such  a
technique should find its way into the “toolkit” of supervised training in feedforward neural networks should not be surprising
because of the similarities between the two fields. Thus, feedforward nets are performing a smooth function fit to some data, a
process that can be thought of as a kind of nonlinear regression. These similarities are explored further in the review article by
Cheng & Titterington (1994).

6.10.2
Adequate training set size

If, in Figures 6.14 and 6.15, the test data had originally been part of the training set, then they would have forced the network
to  classify  them  properly.  The  problem  in  the  original  nets  is  that  they  were  underconstrained  by  the  training  data.  In
particular, if there are too few patterns near the decision surface then this may be allowed to acquire spurious convolutions. If,
however, pattern space is filled to a sufficient density with training data, there will be no regions of “indecision” so that, given
a  sufficiently  large  training  set  of  size  N,  generalization  can  be  guaranteed.  Such  a  result  has  been  established  for  single
output nets by Baum & Haussler (1989), who showed that the required value of N increased with the number of weights W,
the number of hidden units H and the fraction f of correctly classified training patterns; in this sense W and H are the network
“degrees of freedom”. The only problem here is that, although this result provides theoretical lower bounds on the size of N, it
is often unrealistic to use sets of this size. For example, for a single output net with ten hidden units, each of 30 weights, and
with f=0.01 (1 per cent misclassified in the training set) N  is more than 10.2 million; increasing f  to 0.1 reduces this to 0.8

Figure 6.16 Cross-validation behaviour.
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million  but,  either  way,  these  are  usually  not  realizable  in  practice.  Baum  and  Haussler’s  result  has  subsequently  been
extended and sharpened for a special class of nets with internal symmetries by Shawe-Taylor (1992). 

6.10.3
Net pruning

The last section introduced the idea that poor generalization may result from a large network being underconstrained by the
training set.  The other  side of  this  coin is  that  there  are  too many internal  parameters  (weights)  to  model  the data  that  are
supplied. The number of weights is, of course, partly determined by the number of hidden units and we set out by showing
that  this  must  be  kept  to  a  minimum  for  good  generalization.  However,  rather  than  eliminate  complete  units,  it  may  be
possible  to  place  constraints  on  the  weights  across  the  network  as  a  whole  so  that  some  of  the  network’s  freedom  of
configuration is removed. One way to achieve this is to extend the network error function to incorporate a term that takes on
small values for simple nets and large values for more complex ones. The utility of this hinges, of course, on what we mean
by “complex” and one definition is that nets with many weights close to zero should be favoured in contrast to those with
weights that all take significant numerical values. It transpires that there is a very simple way of enforcing this (Hinton 1987).
Thus, define

(6.12)

where the sum is over all weights in the net, and let Et be the error used so far based on input-output differences (5.15). Now
put E=Et+λEc and perform gradient descent on this total risk E. The new term Ec is a complexity penalty and will favour nets
whose weights are all close to zero. However, the original performance measure Et also has to be small, which is favoured by
nets  with  significantly  large  weights  that  enable  the  training  set  to  be  correctly  classified.  The  value  of  λ  determines  the
relative importance attached to the complexity penalty. With λ=0 we obtain the original backpropagation algorithm while very
large values of λ may force the net to ignore the training data and simply assume small weights throughout. With the right choice
of λ the result is a compromise; those weights that are important for the correct functioning of the net are allowed to grow, while
those that are not important decay to zero, which is exactly what is required. In effect, each very small weight is contributing
nothing and represents a non-connection; it has been “pruned” from the network. In this way connections that simply fine-
tune the net—possibly to outliers and noise in the data—are removed, leaving those that are essential to model the underlying
data trends.

Many variations have been tried for the form of Ec,  and other heuristics, not based on a cost function like Ec,  have been
used to prune networks for better generalization; see Reed (1993) for a review. 

6.10.4
Constructing topologies

So far it has been assumed that the network topology (the number of layers and number of nodes in each layer) is fixed. Our
initial analysis, however, showed that the obvious thing to try is to determine a suitable number of hidden nodes. This may be
done  in  one  of  two  ways.  We  can  try  to  determine  an  optimum  topology  at  the  outset  and  then  proceed  to  train  using
backpropagation, or alter the topology dynamically in conjunction with the normal gradient descent. Either way, the resulting
algorithms tend to be fairly complex and so we only give the barest outline of two examples, one for each approach.

Weymare & Martens (1994)  provide an example of  the topology initialization technique in  which the data  are  first  sent
through a conventional clustering algorithm to help determine candidate hyperplanes, and hence hidden units. These candidate
units are then used in a network construction algorithm to estimate the optimal topology. Finally the net is fine tuned with a
limited  number  of  backpropagation  epochs.  This  algorithm is  perhaps  best  considered  as  a  hybrid  technique  in  which  the
hidden units are trained in part via the initial data clustering, as well as the normal gradient descent.

In the method of Nabhan & Zomaya (1994) nodes are dynamically added or subtracted from a network that is concurrently
undergoing training using backpropagation. Their algorithm is based on the hypothesis that nets which model the data well
will train in such a way that the root mean square (rms) value of the weight changes  decreases from epoch to
epoch.  If  this  fails  to  take  place  then  structural  changes  are  made  to  the  network  by  selecting  what  they  call  “promising”
structures—nets that start to decrease their rms weight change.

Other  constructive  algorithms,  such  as  the  cascade-correlation  procedure  (Fahlman  & Lebiere  1990),  make  use  of  cost-
function optimization but do not use gradient descent per se and are therefore only distantly related to backpropagation.
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6.11
Applications

It is not the intention here to give an exhaustive list of the areas in which multilayer perceptrons have found application; any
problem that can be framed as one of classification or prediction is a candidate for treatment in this way. Rather, it is more
instructive to take a couple of case studies that highlight some of the aspects of implementing a problem using an MLP. 

6.11.1
Psychiatric patient length of stay

Our first example (Davis et al. 1993) is taken from the area of medical diagnosis with a network that predicts the length of
stay  of  psychiatric  patients  in  hospital  based  on  demographic,  social  and  clinical  information  recorded  at  their  time  of
admission.  This  is  an  important  problem since  patient  admission  may  be  contingent  on  financial  resources,  which  will  be
better allocated if probable length of stay is known in advance.

In contrast to the previous net, which had only three continuously variable inputs, this one uses many tri-valued inputs (0, 0.
5, 1) representing two-valued categorical data with the value 0.5 reserved for missing data. For example, the rating for social
impairment is usually given on a nine-point scale from 0 (none) to 8 (severe) but was collapsed into two values—0 for “low”
and 1 for “high”. If this was not assessed for some reason then it is set to 0.5. The net had 49 inputs, 500 hidden units and four
outputs to represent the four categories of length of stay T: (I) T≤7 days, (II) T>7 days but ≤30 days, (III) T>30 days but ≤6
months, (IV) T>6 months but ≤1 year.

The data for the training set were gathered over a 3.5 year period with a view to controlling for factors such as health policy
changes, economic factors and resource availability. The main point to emerge here is that the network modeller should be aware
of any underlying assumptions concerning the variability of the data. The training patterns included information about age,
sex, population of town of residence, previous admission history, family support systems, severity of illness, length of stay in
the  community,  and  clinical  psychiatric  metrics  formalized  in  a  standard  psychiatric  reference  (Diagnostic  and  statistical
manual,  3rd  edn).  As  noted  above,  all  these  quantities  have  been  reduced  to  one  of  two  values  (or  0.5  if  the  data  were
missing). The authors also tried using analogue values but found that the performance was not as good. In binarizing the data,
information  is  discarded  and there  are  two possible  outcomes.  Either  important  information  that  can  be  used  by  the  net  is
thrown away,  or  irrelevant  variation (noise)  that  would present  the net  with a  much harder  problem to solve is  avoided.  It
appears, on the whole, that in this case the latter situation prevailed. One way in which noise can enter the clinical data is in
the reliability of assessment; thus two doctors may assign different values to diagnostic parameters since these are established
by subjective (albeit expert) judgement on rating scales.

One of the problems to be overcome in using MLPs lies in interpreting the output. Assuming that each class is encoded by
a single node, it is clear what category is being indicated if one of the output units has a value close to 1 while the others have
small values. However, it is not so clear what to do if two or more outputs are very close to each other. There are theoretical
grounds  (Haykin  1994:  164–5)  for  supposing  that,  no  matter  how  small  the  difference  between  output  values,  we  should
adopt  the  class  indicated  by  the  maximal  output.  In  interpreting  their  network  output,  Davis  et  al.  used  this  technique  for
reporting  one  set  of  results.  Another  set,  however,  were  based  on  what  they  called  “extended  tolerance”  in  which,  if  all
outputs  were  below 0.2,  they  deemed  that  the  network  was  unable  to  make  a  firm  categorical  estimate  for  T.  It  was  then
assumed that the net was unable to distinguish between classes I and II, and between III and IV, so that the only classification
possible is “short stay” (T≤30 days) or “long stay” (T>6 months). This is still useful since 30 days is a common dividing point
in hospital reimbursement schemes.

In all, 958 patient records were used for training and 106 for testing. The net predicted the length of stay correctly in 47 per
cent of cases in the test set, which grew to 60 per cent on using the extended tolerance criterion. A second, larger test of 140
patients was then taken and used to compare the net’s performance with that of a multidisciplinary team of clinicians and mental
health  experts.  The  network  scored  46  per  cent  on  exact  classification  and  74  per  cent  under  extended  tolerance.  The
treatment team attempted a classification of only 85 patients out of this group but, of those classified, they scored 54 per cent
and 76 per cent for exact and extended tolerance respectively. It is not clear whether the other cases were not attempted owing
to  uncertainty  or  lack  of  time.  If  the  former,  then  the  net  is  performing  better  than  the  team;  if  the  latter,  it  is  showing
comparable performance. It should be emphasized that the clinical team had access to the patients over a 72 hour period and
spent a significant amount of time with them before making their assessments.
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6.11.2
Stock market forecasting

The next example is taken from the work by Refenes et al. (1994) on predicting the performance of stock returns in the capital
markets. Although their work is introduced in the context of other models of stock returns, we shall focus here only on the
core of the problem as presented to the network in order to draw out the network-dependent issues. Thus, Refenes et al. seek
to predict the so-called “outperformance” Y of each stock as a function of three parameters A, B and C, which are extracted
from the balance sheets of the companies that contribute to the portfolio of stocks. The authors do not give details of what
these factors are—they presumably constitute commercially sensitive data—and, in any case, their exact nature is not critical
for understanding the network problem. The outperformance is a measure of relative success of the stock 6 months after the
data for the input factors A, B and C are gathered so that the value of Y for January, say, refers to something measured in June
of the same year. Therefore, the net is effectively being trained to predict the stock 6 months into the future, given current
information about factors that are believed to determine its behaviour. This is in contrast with the previous example in which
it was explicitly assumed that there is no temporal variation in the data, or that we are supposed to ignore any such change.
The  dataset  was  obtained  from  143  stocks,  each  one  having  an  input  triplet  and  outperformance  assigned  every  month.
Training was done using 6 months’ data and so used 143×6=858 vectors. 

One  of  the  questions  addressed  concerned  the  optimal  topology.  They  found  that  better  results  on  the  training  set  and
generalization on test data2 were obtained using two layers of hidden units. To help describe network topologies, let (I-H1-H2-
V) denote a three-layer net with I, H1, H2, V units in the input, first hidden, second hidden and output layers respectively; for
this problem I=3, V=1. The best  performance was obtained with a net of structural  type (3–32– 16–1),  with similar results
provided by nets of type (3–26–13–1) and (3–24–12–1). Two-layer nets gave errors on the training and test data that were
typically about twice as great. They conclude that the net shows stability with respect to the number of nodes in each layer,
with the number of layers being the most important factor. Further, the performance with the training data was significantly
better than that obtained with a multivariate linear regression (MLR) model currently in use.

The three-layer nets took typically 25000 epochs to train while the single-layer nets converged after about 5000 epochs. It
is not surprising that it should take longer to train three- rather than two-layer nets, but what is not clear is why they should
perform better on this problem. Now, the inputs and output are continuous variables rather than Boolean valued. Thus, there
may  be  a  complex,  nonlinear  relation  between  Y  and  each  of  A,  B  and  C,  so  that  the  net  has  to  “track”  relatively  small
variations  in  each  input.  We  therefore  speculate  that  the  first  hidden  layer  acts  to  recode  the  three-dimensional  input  in  a
higher dimensional (H1-D) space in which these differences are amplified in some way. The units in the second hidden layer
may then  act  on  the  receded  input  in  the  normal  way  as  some kind  of  feature  detectors.  There  is  a  theorem due  to  Cover
(1965) that provides some theoretical support for this idea. The theorem states that a complex classification problem recast in
a higher dimensional space via a nonlinear transform is more likely to be linearly separable. Although the stock prediction net
is  not  performing  classification  as  such,  we  could  repose  it  in  this  way  by  dividing  the  outperformance  Y  into  “low”  and
“high” values and merely asking for a decision into these course categories. These two problems, although not equivalent, are
obviously closely related.

In assessing the net’s ability to generalize, it is necessary to test using data from a different timeframe, since each stock has
only  a  single  input  vector  for  each  month.  Thus,  testing  took  place  using  a  subsequent  6  month  period  from  that  used  in
training. Two conclusions were drawn. First, the mean error on the test data was about one-half that obtained with the MLR
model. Secondly, the error increased slowly from month to month in the 6 month period whereas the MLR model showed no
temporal  variation.  That  there  may  be  some  variation  is  to  be  expected  since  the  environment  in  which  stock  prices  vary
changes over time according to government economic policy, general market confidence, etc. However, it is not clear over
what  time period  we should  expect  such  variations  and this  is  formalized  in  a  hypothesis  of  the  so-called  DynIM3  model,
which posits a slow change characterized by 6 month periods of relative stability. The net performance is consistent with this
hypothesis, being subject to slow temporal change, and is therefore superior to the MLR model, which is insensitive to time. 

One of the criticisms sometimes levelled at neural nets is that, although they may generate good models of the data, it is
difficult to then analyze the structure of the resulting model or to discover the relative importance of the inputs. Refenes et al.
tackled the second of these by a sensitivity analysis.  By holding two of the inputs constant, it is possible to plot the output
against the remaining variable. This was done for each variable while holding the other two at their mean values and it was
apparent that, while there was a complex, nonlinear relation between Y and the inputs A and B, the output was less sensitive to
C, with Y remaining fairly low over much of its range and only increasing when C took on large values.
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6.12
Final remarks

Backpropagation is probably the most well-researched training algorithm in neural nets and forms the starting point for most
people looking for a network-based solution to a problem. One of its drawbacks is that it often takes many hours to train real-
world  problems  and  consequently  there  has  been  much  effort  directed  to  developing  improvements  in  training  time.  For
example,  in  the  delta-bar-delta  algorithm  of  Jacobs  (1988)  adaptive  learning  rates  are  assigned  to  each  weight  to  help
optimize the speed of learning. More recently Yu et al. (1995) have developed ways of adapting a single, global learning rate
to speed up learning.

Historically, backpropagation was discovered by Werbos (1974) who reported it in his PhD thesis. It was later rediscovered
by Parker (1982) but this version languished in a technical report that was not widely circulated. It was discovered again and
made popular by Rumelhart et al. (1986b, c, d) in their well-known book Parallel distributed processing, which caught the
wave  of  resurgent  interest  in  neural  nets  after  a  comparatively  lean  time  when  it  was  largely  overshadowed  by  work  in
conventional AI.

6.13
Summary

We  set  out  to  use  gradient  descent  to  train  multilayer  nets  and  obtain  a  generalization  of  the  delta  rule.  This  was  made
possible by thinking in terms of the credit assignment problem, which suggested a way of assigning “blame” for the error to
the  hidden  units.  This  process  involved  passing  back  error  information  from  the  output  layer,  giving  rise  to  the  term
“backpropagation” for the ensuing training algorithm. The basic algorithm may be augmented with a momentum term that
effectively increases the learning rate over large uniform regions of the error-weight surface.

One of the main problems encountered concerned the existence of local minima in the error function, which could lead to
suboptimal  solutions.  These  may  be  avoided  by  injecting  noise  into  the  gradient  descent  via  serial  update  or  momentum.
Backpropagation is a quite general supervised algorithm that may be applied to incompletely connected nets and nets with more
than one hidden layer. The operation of a feedforward net may be thought of in several ways. The original setting was in pattern
space and it may be shown that a two-layer net (one hidden layer) is sufficient to achieve any arbitrary partition in this space.
Another viewpoint is to consider a network as implementing a mapping or function of its inputs. Once again, any function
may be approximated to an arbitrary degree using only one hidden layer. Finally, we may think of nets as discovering features
in the training set that represent information essential for describing or classifying these patterns.

Well-trained networks are able to classify correctly patterns unseen during training. This process of generalization relies on
the network developing a decision surface that is not overly complex but captures the underlying relationships in the data. If
this does not occur the net is said to have overfitted the decision surface and does not generalize well. Overfitting can occur if
there  are  too  many  hidden  units  and  may  be  prevented  by  limiting  the  time  to  train  and  establishing  this  limit  using  a
validation set. Alternatively, by making the training set sufficiently large we may minimize the ambiguities in the decision
surface,  thereby  helping  to  prevent  it  from  becoming  too  convoluted.  A  more  radical  approach  is  to  incorporate  the
construction of the hidden layer as part of the training process.

Example applications were provided that highlighted some of the aspects of porting a problem to a neural network setting.
These  were  typical  of  the  kind  of  problems  solved  using  backpropagation  and  helped  expand  the  notion  of  how  training
vectors originate in real situations (first introduced via the visual examples in Fig. 4.10).

6.14
Notes

1. Angled brackets usually imply the average or mean of the quantity inside.
2. Training and test data are referred to as in-sample and out-of-sample data respectively in the paper.
3. DynIM (Dynamic multi-factor model of stock returns) is a trademark of County NatWest Investment Management Ltd. 
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Chapter Seven
Associative memories: the Hopfield net

7.1
The nature of associative memory

In common parlance, “remembering” something consists of associating an idea or thought with a sensory cue. For example,
someone  may  mention  the  name  of  a  celebrity,  and  we  immediately  recall  a  TV  series  or  newspaper  article  about  the
celebrity. Or, we may be shown a picture of a place we have visited and the image recalls memories of people we met and
experiences we enjoyed at  the time.  The sense of  smell  (olfaction) can also elicit  memories and is  known to be especially
effective in this way

It is difficult to describe and formalize these very high-level examples and so we shall consider a more mundane instance
that,  nevertheless,  contains  all  the  aspects  of  those  above.  Consider  the  image  shown  on  the  left  of  Figure  7.1.  This  is
supposed  to  represent  a  binarized  version  of  the  letter  “T”  where  open  and  filled  circular  symbols  represent  0s  and  1s
respectively (Sect. 4.6.1). The pattern in the centre of the figure is the same “T” but with the bottom half replaced by noise—
pixels have been assigned a value 1 with probability 0.5. We might imagine that the upper half of the letter is provided as a
cue and the bottom half has to be recalled from memory. The pattern on the right hand side is obtained from the original “T”
by adding 20 per cent noise—each pixel is inverted with probability 0.2. In this case we suppose that the whole memory is
available but in an imperfectly recalled form, so that the task is to “remember” the original letter in its uncorrupted state. This
might be likened to our having a “hazy” or inaccurate memory of some scene, name or sequence of events in which the whole
may be pieced together after some effort of recall.  

The  common  paradigm  here  may  be  described  as  follows.  There  is  some  underlying  collection  of  stored  data  which  is
ordered  and  interrelated  in  some  way;  that  is,  the  data  constitute  a  stored  pattern  or  memory.  In  the  human  recollection
examples  above,  it  was  the  cluster  of  items  associated  with  the  celebrity  or  the  place  we  visited.  In  the  case  of  character
recognition,  it  was  the  parts  (pixels)  of  some  letter  whose  arrangement  was  determined  by  a  stereotypical  version  of  that
letter. When part of the pattern of data is presented in the form of a sensory cue, the rest of the pattern (memory) is recalled or
associated with it. Alternatively, we may be offered an imperfect version of the stored memory that has to be associated with
the true, uncorrupted pattern. Notice that it doesn’t matter which part of the pattern is used as the cue; the whole pattern is always
restored.

Conventional computers (von Neumann machines) can perform this function in a very limited way using software usually
referred to as a database. Here, the “sensory cue” is called the key  or index  term to be searched on. For example, a library
catalogue is a database that stores the authors, titles, classmarks and data on publication of books and journals. Typically we
may search on any one of these discrete items for a catalogue entry by typing the complete item after selecting the correct
option from a menu. Suppose now we have only the fragment “ion, Mar” from the encoded record “Vision, Marr D.” of the
book Vision by D.Marr. There is no way that the database can use this fragment of information even to start searching. We
don’t know if it pertains to the author or the title, and, even if we did, we might get titles or authors that start with “ion”. The
input to a conventional database has to be very specific and complete if it is to work.

Figure 7.1 Associative recall with binarized letter images. 

 



7.2
Neural networks and associative memory

Consider  a  feedforward net  that  has  the  same number  of  inputs  and outputs  and that  has  been trained with  vector  pairs  in
which the output target is the same as the input. This net can now be thought of as an associative memory since an imperfect
or incomplete copy of one of the training set should (under generalization) elicit the true vector at the output from which it
was obtained. This kind of network was the first to be used for storing memories (Willshaw et al. 1969) and its mathematical
analysis  may  be  found  in  Kohonen  (1982).  However,  there  is  a  potentially  more  powerful  network  type  for  associative
memory which was made popular by John Hopfield (1982), and which differs from that described above in that the net has
feedback  loops  in  its  connection  pathways.  The  relation  between  the  two  types  of  associative  network  is  discussed  in
Section 7.9. The Hopfield nets are, in fact, examples of a wider class of dynamical physical systems that may be thought of as
instantiating  “memories”  as  stable  states  associated  with  minima  of  a  suitably  defined  system  energy.  It  is  therefore  to  a
description of these systems that we now turn. 

7.3
A physical analogy with memory

To illustrate this point of view, consider a bowl in which a ball bearing is allowed to roll freely as shown in Figure 7.2. 
Suppose we let the ball go from a point somewhere up the side of the bowl. The ball will roll back and forth and around the

bowl  until  it  comes  to  rest  at  the  bottom.  The  physical  description  of  what  has  happened may be  couched in  terms of  the
energy of the system. The energy of the system is just the potential energy of the ball and is directly related to the height of
the ball above the bowl’s centre; the higher the ball the greater its energy. This follows because we have to do work to push
the ball  up the side of  the bowl and,  the higher  the point  of  release,  the faster  the ball  moves when it  initially  reaches the
bottom. Eventually the ball comes to rest at the bottom of the bowl where its potential energy has been dissipated as heat and
sound that are lost from the system. The energy is now at a minimum since any other (necessarily higher) location of the ball
is associated with some potential energy, which may be lost on allowing the bowl to reach equilibrium. To summarize: the
ball-bowl system settles in an energy minimum at equilibrium when it is allowed to operate under its own dynamics. Further,
this equilibrium state is the same, regardless of the initial position of the ball on the side of the bowl. The resting state is said
to be stable because the system remains there after it has been reached.

There is another way of thinking about this process that ties in with our ideas about memory. It may appear a little fanciful
at first but the reader should understand that we are using it as a metaphor at this stage. Thus, we suppose that the ball comes
to rest in the same place each time because it “remembers” where the bottom of the bowl is. We may push the analogy further
by giving the ball a co-ordinate description. Thus, its position or state at any time t is given by the three co-ordinates x(t), y(t),
z(t) with respect to some cartesian reference frame that is fixed with respect to the bowl. This is written more succinctly in
terms  of  its  position  vector,  x(t)=(x(t),  y(t),  z(t))  (see  Fig.  7.3).  The  location  of  the  bottom of  the  bowl,  xp,  represents  the
pattern that  is  stored.  By writing the ball’s  vector as the sum of xp  and a displacement Δx, x=xp+Δx,  we may think of  the
ball’s initial position as representing the partial knowledge or cue for recall, since it approximates to the memory xp. 

If we now use a corrugated surface instead of a single depression (as in the bowl) we may store many “memories” as shown
in Figure 7.4. If the ball is now started somewhere on this surface, it will eventually come to rest at the local depression that is
closest to its initial starting point. That is, it evokes the stored pattern which is closest to its initial partial pattern or cue. Once

Figure 7.2 Bowl and ball bearing: a system with a stable energy state.

Figure 7.3 Bowl and ball bearing with state description.
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again, this corresponds to an energy minimum of the system. The memories shown correspond to states x1, x2, x3 where each
of these is a vector. 

There are therefore two complementary ways of looking at what is happening. One is to say that the system falls into an
energy minimum; the other is that it stores a set of patterns and recalls that which is closest to its initial state. The key, then, to
building networks that behave like this is the use of the state vector formalism. In the case of the corrugated surface this is
provided by the position vector x(t) of the ball and those of the stored memories x1, x2,…, xn. We may abstract this, however,
to any system (including neural networks) that is to store memories.

(a) It must be completely described by a state vector v(t)=(v1(t), v2(t),…, vn(t)) which is a function of time.
(b) There are a set of stable states v1, v2, v1,…, vn, which correspond to the stored patterns or memories.
(c) The system evolves in time from any arbitrary starting state  v(0)  to  one of  the stable states,  which corresponds to the

process of memory recall.

As discussed above, the other formalism that will prove to be useful makes use of the concept of a system energy. Abstracting
this from the case of the corrugated surface we obtain the following scheme, which runs in parallel to that just described. 

(a) The system must be associated with a scalar variable E(t), which we shall call the “energy” by analogy with real, physical
systems, and which is a function of time.

(b) The  stable  states  vi  are  associated  with  energy  minima  Ei.  That  is,  for  each  i,  there  is  a  neighbourhood  or  basin  of
attraction around vi for which Ei is the smallest energy in that neighbourhood (in the case of the corrugated surface, the
basins of attraction are the indentations in the surface).

(c) The system evolves in time from any arbitrary initial energy E(0) to one of the stable states Ei with E(0)>Ei. This process
corresponds to that of memory recall.

Notice that the energy of each of the equilibria Ei may differ, but each one is the lowest available locally within its basin of
attraction. It is important to distinguish between this use of local energy minima to store memories, in which each minimum is
as valid as any other, and the unwanted local error minima occurring during gradient descent in previous chapters. This point
is discussed further in Section 7.5.3.

7.4
The Hopfield net

We  now  attempt  to  apply  the  concepts  outlined  above  to  the  construction  of  a  neural  network  capable  of  performing
associative recall. Consider the network consisting of three TLU nodes shown in Figure 7.5. Each node is connected to every
other node (but not to itself) and the connection strengths or weights are symmetric in that the weight from node i to node j is
the same as that from node j to node i. That is, wij=wji and wii=0 for all i, j. Additionally, the thresholds are all assumed to be
zero. Notice that the flow of information in this type of  net is not in a single direction, since it is possible for signals to flow
from a node back to itself via other nodes. We say there is feedback in the network or that it is recurrent because nodes may be

Figure 7.4 Corrugated plane with ball bearing: several stable states.

Figure 7.5 Three-node Hopfield net. 
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used repeatedly to process information. This is to be contrasted with the feedforward nets that have been used exclusively so
far.

Networks of this type and their energy-based analysis were described elegantly by John Hopfield in 1982 so that his name
is  usually  associated  with  this  type  of  net.  In  fact  something  very  close  to  the  “Hopfield  model”  had  been  introduced
previously by Little in 1974 but here there was less emphasis on the energy-based description. Little also made extensive use
of  a  quantum  mechanical  formalism,  which  may  have  made  his  work  less  accessible  to  readers  from  non-physics
backgrounds.

The state of the net at any time is given by the vector of the node outputs1 (x1, x2, x3). Suppose we now start this net in some
initial state, choose a node at random and let it update its output or “fire”. That is, the chosen node evaluates its activation in
the normal way and outputs a “1” if this is greater than or equal to zero and a “0” otherwise. The net now finds itself either in
the same state as it started in, or in a new state that is at Hamming distance 1 from the old one. We now choose another node
at  random,  let  it  update  or  fire,  and  repeat  this  many  times.  This  process  defines  the  dynamics  of  the  net  and  it  is  now
pertinent to ask what the resulting behaviour of the net will be.

In describing these state transitions it is convenient to attach a numeric label to each state and the most natural way of doing
this  is  to  interpret  the  Boolean  state  vector  as  a  binary  number,  so  that  state  (x1,  x2,  x3)  is  labelled  with  4x1+2x2+x3.  For
example, (1, 1, 0) is state 6, and state (0, 1, 1) is state 3. For each network state, there are three possible outcomes for the next
state depending on which of the three nodes is chosen to fire. Suppose, for example, the net starts in state (1, 0, 1) (label 5)
and node 1 fires. The activation a of this node is given by a=w13x3+w12x2=−2×1+1×0=−2. Then, since this is less than 0, the
new output is also 0 and the new state is (0, 0, 1) (label 1); in summary, state 5 goes to state 1 when node 1 fires. Repeating
this working for nodes 2 and 3 firing, the new states are 7 and 4 respectively. By working through all initial states and node
selections it is possible to evaluate every state transition of the net as shown in Table 7.1. Notice that a state may or may not
change when a node fires. This information may also be represented in graphical form as a state transition diagram, shown in
Figure 7.6. States are represented by triangles with their associated state number, directed arcs represent possible transitions
between states and the number along each arc is the probability that each transition will take place (given that any of the three
nodes are chosen at random to fire). For example, starting in state 5 we see from the diagram that there is an equal probability
of 1/3 of going to states 1, 7, or 4, which is reflected in the three arcs emanating from state 5 in the diagram. Again, starting in
state 1 and updating nodes 1 or 3 results in no state change, so there is a probability of 2/3 that state 1 stays as it is; however,
choosing node 2 to update (probability 1/3) results in a transition to state 3. The “no-change” condition gives an arc that starts
and ends at the same state. 

Table 7.1 State transition table for three-node net.

Initial state Next state (number labels)

Components Number label After node 1 has fired After node 2 has fired After node 3 has fired

x1 x2 x3

0 0 0 0 4 2 1
0 0 1 1 1 3 1
0 1 0 2 6 2 3
0 1 1 3 3 3 3
1 0 0 4 4 6 4
1 0 1 5 1 7 4
1 1 0 6 6 6 6
1 1 1 7 3 7 6

The important thing to notice at this stage is that, no matter where we start in the diagram, the net will eventually find itself
in one of the states 3 or 6, which re-enter themselves with probability 1. That is, they are stable states; once the net finds itself
in one of these it stays there. The state vectors for 3 and 6 are (0, 1, 1) and (1, 1, 0) respectively and so these are the patterns
or “memories” stored by the net.

The collection of states, together with possible transitions, is referred to as the state space of the network and is analogous
to the physical space in which the corrugated surface and ball reside. The set of states that can result in state 3 being retrieved
are 1, 2, 0, 5, 7 and the corresponding set for state 6 are 4, 2, 0, 5, 7. These are therefore the basins of attraction for these two
stable states and there is, in this case, a strong overlap between the two. Basins of attraction are also known simply as attractors
or confluents, which also reflect mental images we might have of the behaviour of the net in state space as being attracted to,
or flowing towards, the state cycles.
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As the network moves towards a stored pattern its  state becomes ever closer (in Hamming distance) to that  pattern.  For
example, in the case of the stored “T” pattern of Figure 7.1, starting in a state like the one on the left, we would see the degree
of  noise  decrease  gradually  and  the  pattern  on  the  left  of  the  figure  emerge.  This  is  illustrated  in  Figure  7.7  in  which  the
numbers indicate how many nodes have been selected for update. 

7.4.1
Defining an energy for the net

The dynamics of the net are described completely by the state transition table or diagram. It has demonstrated the existence of
stable  states  (crucial  to  the  associative  memory  paradigm)  but  it  is  not  clear  that  we  are  guaranteed  to  obtain  such  states
always. The alternative, energy-based formalism will, however, prove more fruitful in this respect. Our approach will be to
think of each member of a pair of nodes as exercising a constraint on the other member via the internode weight. The use of
the energy concept in this context may be introduced using an analogy with a simple physical system. Thus, consider a pair of
objects joined by a spring as shown in Figure 7.8. The left hand part of the figure shows the use of a tension spring, which
tends to pull the objects together. Since work has to be done to draw the objects apart, the energy minimum of this system
occurs when the objects are close to each other or, in other words, tend towards the same position in space. The right hand
part of the figure shows a compression spring whose energy minimum occurs when the objects are far apart or take different
positions in space.

Now  consider  two  nodes  i,  j  in  a  Hopfield  net  connected  by  a  positive  weight  +w,  as  shown  on  the  left  hand  part  of
Figure 7.9. We claim that positive and negative weights are analogous to the tension and compression springs respectively,
since positive weights tend to make the nodes take on the same output values while negative weights tend to force different

Figure 7.6 State transition diagram for three-node net.

Figure 7.7 Dynamic evolution of states.

Figure 7.8 Pairwise energy between objects joined by springs.
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values.  This  viewpoint  has  led to  the  name constraint  satisfaction network  being used occasionally  for  recurrent  nets  with
symmetric weights. To make this claim plausible, consider first the case of a positive weight +w (with w>0) and suppose, in
fact, the two nodes had opposite values with the outputs of i and j being 1 and 0 respectively. If j were given the chance to
update or fire, the contribution to its activation from i is positive, which helps to bring j’s activation above threshold, thereby
inducing an output of “1”. Of course, the contribution from i  on its own may be insufficient, the point being that node i  is
trying to drive node j  above threshold,  so that  the state2  1,  0 is  not stable with respect to these nodes.  The same argument
applies to state 0, 1 since the weight is the same for both nodes. Suppose now that both nodes have 1 on their outputs. The
contributions to each other’s activity are positive, which tends to reinforce or stabilize this state. The state 0, 0 is neutral with
respect to the sign of the weight since no contribution to the activation is made by either node. 

Now consider the case of a negative weight −w (shown on the right hand side of Fig. 7.9). The situation is now reversed
and opposite output values are stabilized. Thus, if i and j have outputs 1 and 0 respectively and j fires, then i inhibits j and
reinforces  its  negative  activation.  Similarly  with  both  outputs  equal  to  1,  each  node  inhibits  the  other,  which  tends  to
destabilize this state.

The constraint description may now be set within the energy framework by assigning high energies to states that tend to get
destabilized and low energies to those that are reinforced. One way of doing this is to define the internode energy eij by

(7.1)
This results in values for eij as given in Table 7.2. To see how this works, consider first the case where the weight is positive.
The last energy entry in the table (−wij) is then negative and, since it is the only non-zero value, is therefore the 

Table 7.2 Pairwise energies.

xi xj eij

0 0 0
0 1 0
1 0 0
1 1 −wij

lowest energy available. Further, it occurs when both units are “on”, which is consistent with the arguments above. On the
other hand, if the weight is negative the non-zero energy state (state 1, 1) is positive, has the highest energy available, and is
therefore not favoured, which is again in line with the requirements.

The energy of the whole network E is found by summing over all pairs of nodes

(7.2)

This may be written

(7.3)

since the sum includes each pair twice (as wijxixj and wjixjxi, where wij=wji) and wii=0.
In order to demonstrate the existence of stable network states, it is necessary to see what the change in energy is when a

node fires.  Suppose node k  is  chosen to be updated. Write the energy E  in a form that singles out the terms involving this
node:

The first term here contains no references to node k, which are all contained in the second two terms. Now, because wik=wki,
these last two sums may be combined

Figure 7.9 Pairwise energy in a Hopfield net.
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For  ease  of  notation,  denote  the  first  sum  by  S  and,  in  the  second  sum,  take  outside  the  summation  since  it  is  constant
throughout. Then

The sum following xk is just the activation of the kth node so that
(7.4)

Let the energy after k has updated be E′ and the new output be x′k. Then
(7.5)

Denote the change in energy E′−E by ΔE and the change in output x′k−xk by Δxk; then subtracting (7.4) from (7.5)
(7.6)

There are now two cases to consider:

(a) ak≥0. The output then goes from 0 to 1 or stays at 1. In either case Δxk≥0. Therefore Δxkak≥0 and so ΔE≤0.
(b) ak<0. The output then goes from 1 to 0 or stays at 0. In either case Δxk≤0. Therefore, once again, Δxkak≥0 and ΔE≤0.

Thus, for any node selected to fire, we always have ΔE≤0 so that the energy of the net decreases or stays the same. However,
the energy cannot continue decreasing indefinitely—it is bounded below by a value obtained by putting all the xi, xj=1 in (7.3).
Thus E must reach some fixed value and then stay the same. However, we have not quite guaranteed stable states yet for, once
E is constant, it is still possible for further changes in the network’s state to take place as long as ΔE=0. State changes imply
Δxk≠0 but, in order that E=0, (7.6) necessitates that ak=0. This, in turn, implies the change must be of the form 0→1. There
can be at most N of these changes, where N is the number of nodes in the net. After this there can be no more change to the net’s
state and a stable state has been reached.

7.4.2
Alternative dynamics and basins of attraction

Up to now it has been assumed that only a single node updates or fires at any time step. All nodes are possible candidates for
update and so they operate asynchronously; that is, there is no co-ordination between their dynamical action over time. The
other  extreme  occurs  if  we  make  all  nodes  fire  at  the  same  time,  in  which  case  we  say  there  is  synchronous  update.  In
executing this process, each node must use inputs based on the current state, so that it is necessary to retain a copy of the network’s
state as the new one is being evaluated. Unlike asynchronous dynamics, the behaviour is now deterministic. Given any state, a
state transition occurs to a well-defined next state leading to a simplified state transition diagram in which only a single arc
emerges from any state vertex. The price to pay is that the energy-based analysis of the previous section no longer applies.
However,  this  is  not  a  problem since the deterministic  dynamics lead to  a  simple description of  the state  space behaviour.
Thus, since the net is finite there is a finite number of states and, starting from any initial state, we must eventually reach a
state that has been visited before. In particular, single-state cycles occur again but now there is the possibility for multiple-
state cycles. The result is that the state space is divided into a set of discrete regions, each one being associated with a state
cycle as shown in Figure 7.10. Each of these is, of course, a basin of attraction but, unlike the state space under asynchronous

Figure 7.10 State space for synchronous dynamics.
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dynamics, the attractors are non-overlapping. Multiple-state cycles cannot occur under asynchronous dynamics and may be
useful for storing sequences of events or patterns.

It is of interest to compare the synchronous-dynamical confluent structure of the three-node net used earlier in the chapter
with its asynchronous behaviour in Figure 7.6. This is shown in Figure 7.11 and consists of three basins of attraction, two of
which  have  single-state  cycles  and  another  a  two-cycle.  The  single-state  cycles  are  the  same as  those  under  asynchronous
dynamics and it can be shown that this is a general result; the single stored patterns remain the same under both dynamics. 

7.4.3
Ways of using the net

So far it has been assumed that the net is started in some initial state and the whole net allowed to run freely (synchronously
or  asynchronously)  until  a  state  cycle  is  encountered.  As  indicated  in  the  central  pattern  of  Figure  7.1,  there  is  another
possibility in which some part of the net has its outputs fixed while the remainder is allowed to update in the normal way. The
part that is fixed is said to be clamped and, if the clamp forms part of a state cycle, the remainder (undamped) part of the net
will complete the pattern stored at that cycle. This process is illustrated in Figure 7.12, in which the top half of the “T” has
been  clamped  and  the  bottom  half  initially  contains  50  per  cent  noise.  Which  mode  is  used  will  depend  on  any  prior
knowledge about parts of the pattern being uncorrupted or noise free. 

7.5
Finding the weights

Although we have established the existence of stable states, nothing has been said so far about how the net can be made to
store patterns from a training set. In his original paper, Hopfield (1982) did not give a method for “training” the nets under an
incremental, iterative process. Rather he gave a prescription for making a weight set as a given set of patterns to be stored,
which, in spite of this, we will still refer to as a “training set”. In Section 7.5.2 we shall relate the storage prescription to a
biologically inspired learning rule—the Hebb rule—and show that the nodes may also be trained in the normal, incremental way. 

7.5.1
The storage prescription

The  rationale  behind  the  prescription  is  based  on  the  observations  made  in  Section  7.4.1  about  the  way  in  which  weights
constrain the outputs of node pairs. Consider, for example, two nodes that tend, on average, to take on the same value over the

Figure 7.11 Confluent structure of three-node net.

Figure 7.12 Evolution under clamp.
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training set so that the pairs 0, 0 or 1, 1 dominate; we say that the nodes are correlated. The pair 1, 1 will be reinforced by
there being a positive internode weight (although the 0, 0 pairing is not affected). If, on the other hand, the two nodes tend, on
average, to take on opposite values (they are anti-correlated) with pairs 0, 1 or 1, 0, then this will be reinforced by a negative
internode weight.

We  now  proceed  to  formalize  these  ideas  mathematically.  First,  it  is  convenient  to  introduce  an  alternative  way  of
representing binary quantities. So far these have been denoted by 0 and 1 but in the polarized or spin representation they are
denoted by −1 and 1 respectively. This name is derived from the fact that Hopfield nets have many similarities with so-called
spin glasses in physics, which are used to model magnetic materials; each local magnetic domain is either aligned with (+1)
or  against  (−1)  an  external  field.  The  connection  between spin  glasses  and  other  systems is  explored  by  Kirkpatrick  et  al.
(1983).  Now  let   be  components  of  the  pth  pattern  to  be  stored  as  given  in  the  spin  representation.  Consider  what
happens if the weight between the nodes i and j is given by

(7.7)

where the sum is over all patterns p in the training set. If, on average, the two components take on the same value then the
weight will be positive since we get terms like 1×1 and −1×−1 predominating. If, on the other hand, the two components tend
to take on opposite values we get terms like −1×1 and 1×−1 predominating, giving a negative weight. This is just what is required
according to the discussion given above, so that (7.7) is a suitable storage prescription for Hopfield nets. This discussion of
output correlation should be compared with that of feature detection in Section 6.7.3. Note that the same weights would result
if we had tried to learn the inverse of the patterns, formed by taking each component and changing it to the opposite value. The
net, therefore, always learns the patterns and their inverses; more will be said about these spurious states in Section 7.5.3.

The  storage  prescription  has  a  long  history.  Willshaw  et  al.  (1969)  proposed  a  correlational  scheme  for  use  in  their
feedforward  net,  which  is  a  simplified  precursor  to  that  described  above,  while  Anderson  (1972)  trained  single-layer
feedforward nets using essentially the same rule as that used by Hopfield. 

7.5.2
The Hebb rule

The use of (7.7), which is a recipe for fixing the weights without incremental adaptation, may appear to run counter to the
ideas  being  promoted  in  the  connectionist  cause.  It  is  possible,  however,  to  view  the  storage  prescription  as  a  shortcut  to
obtain weights that would result from the following process of adaptation

1. Choose a pattern from the training set at random.
2. Present the components of this pattern at the outputs of the corresponding nodes of the net.
3. If two nodes have the same value then make a small positive increment to the internode weight. If they have opposite

values then make a small negative decrement to the weight.

Iteration  of  these  three  steps  many  times  constitutes  a  training  algorithm  whose  learning  rule  (step  3)  may  be  written
mathematically as

(7.8)
where, as usual, a is a rate constant and 0<α<1. It is clear that, as the number of iterations increases, the pattern of weights
developed will approximate ever more closely to those given by the storage prescription up to some overall scaling factor. As
a variation on (7.8), suppose we had used the usual Boolean representation for the components  so that  is 0 or 1. The
rule would now be

(7.9)
Interpreting this, we see that the change in weight is only ever positive and only occurs if both nodes are firing (output “1”).
This is essentially the same as a rule posited by the neuropsychologist D.O.Hebb in 1949 as a possible way that biological
neurons learn. In his book The organization of behaviour Hebb postulated that

When an axon of  cell  A is  near  enough to  excite  a  cell  B and repeatedly or  persistently  takes  part  in  firing it,  some
growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B,
is increased.

The rules in (7.8) and (7.9) are examples of a family that involve the product of a pair of node activations or outputs. They are
known collectively as Hebb rules even though the mathematical formulation of Hebb’s proposal is most closely captured by
(7.9). 
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7.5.3
Spurious states

As  well  as  storing  the  required  training  set  patterns,  the  storage  prescription  has  the  undesirable  side  effect  of  creating
additional, spurious stable states together with their associated basins of attraction. It has already been noted that the inverse
patterns are also stored. In some sense, however, these are not “spurious” since the original labelling of pattern components is
arbitrary (renaming the set of “0” components as “1” and vice versa doesn’t really change the pattern). Apart from these there
is always a large number of other states that are mixtures of the training patterns. Amit (1989) has classified these and found
that there are more than 3P spurious states where p is the size of the training set.

However, things are not as bad as they seem at first glance. It transpires that the energies of the training set states (and their
inverses) are all equal and less than any of the spurious states. It is possible to take advantage of this to help the net settle into
a stable state corresponding to one of the prescribed patterns. Thus, suppose we replace the hard-limiter in the node output
function  with  a  sigmoid  and  interpret  its  value  as  the  probability  of  outputting  a  1.  That  is,  the  units  are  now  stochastic
semilinear nodes (Sect. 2.4). Now, when a node updates there is some possibility that the output will be the inverse of its TLU
value so that the energy increases. In this way it is possible for the net to move away from a spurious minimum, across an energy
boundary in state space, and find itself in the basin of attraction of a member of the training set. The price to pay is that we
have to work a little harder at interpreting the network output since, in this noisy regime, the state of the net is continually
fluctuating.  We  can  then  choose  to  interpret  the  retrieved  state  as  the  mean  of  each  node  output  or  the  state  that  has,  on
average, greatest overlap with the network state. This approach, together with a quantitative analysis of the effect of noise, is
given in the book by Amit (1989).

7.6
Storage capacity

The storage  prescription  attempts  to  capture  information  about  the  mean  correlation  of  components  in  the  training  set.  As
such, it must induce a weight set that is a compromise as far as any individual pattern is concerned. Clearly, as the number m
of patterns increases, the chances of accurate storage must decrease since more trade-offs have to be made between pattern
requirements.  In  some  empirical  work  in  his  1982  paper,  Hopfield  showed  that  about  half  the  memories  were  stored
accurately in a net of N nodes if m=0.15N. The other patterns did not get stored as stable states. In proving rigorously general
results of this type, it is not possible to say anything about particular sets of patterns so that all results deal with probabilities
and apply to a randomly selected training set. Thus McEliece et al. (1987) showed that for m<N/2logN, as N becomes very
large, the probability that there is a single error in storing any one of the patterns becomes ever closer to zero. To give an idea
of what this implies, for N=100 this result gives m=11.

7.7
The analogue Hopfield model

In a second important paper (Hopfield 1984) Hopfield introduced a variant of the discrete time model discussed so far that
uses leaky-integrator nodes. The other structural difference is that there is provision for external input. The network dynamics
are  now  governed  by  the  system  of  equations  (one  for  each  node)  that  define  the  node  dynamics  and  require  computer
simulation for their evaluation.

In the previous TLU model, the possible states are vectors of Boolean-valued components and so, for an N-node network,
they have a geometric interpretation as the corners of the N-dimensional hypercube. In the new model, because the outputs
can take any values between 0 and 1, the possible states now include the interior of the hypercube. Hopfield defined an energy
function  for  the  new network  and  showed  that,  if  the  inputs  and  thresholds  were  set  to  zero,  as  in  the  TLU discrete  time
model,  and if  the  sigmoid was  quite  “steep”,  then the  energy minima were  confined to  regions  close  to  the  corners  of  the
hypercube and these corresponded to the energy minima of the old model. The use of a sigmoid output function in this model
has the effect of smoothing out some of the smaller, spurious minima in a similar way to that in which the Boolean model can
escape spurious minima by using a sigmoid.

There are two further advantages to the new model. The first is that it is possible to build the new neurons out of simple,
readily available hardware. In fact, Hopfield writes the equation for the dynamics as if it were built from such components
(operational amplifiers and resistors). This kind of circuit was the basis of several implementations—see for example Graf et
al. (1987). The second is a more philosophical one in that the use of the sigmoid and time integration make greater contact
with real, biological neurons.
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7.8
Combinatorial optimization

Although we have concentrated exclusively on their role in associative recall, there is another class of problems that Hopfield
nets  can be used to  solve,  which are  best  introduced by an example.  In  the so-called travelling salesman problem (TSP) a
salesman has to complete a round trip of a set of cities visiting each one only once and in such a way as to minimize the total
distance travelled. An example is shown in Figure 7.13 in which a set of ten cities have been labelled from A through to J and
a solution indicated by the linking arrows. This kind of problem is computationally very difficult and it can be shown that the
time to compute a solution grows exponentially with the number of cities N. 

In 1985, Hopfield and Tank showed how this problem can be solved by a recurrent net using analogue nodes of the type
described in the previous section. The first step is to map the problem onto the network so that solutions correspond to states
of the network. The problem for N cities may be coded into an N by N network as follows. Each row of the net corresponds to
a city and the ordinal position of the city in the tour is given by the node at that place outputting a high value (nominally 1)
while the rest are all at very low values (nominally 0). This scheme is illustrated in Figure 7.14 for the tour of Figure 7.13.
Since  the  trip  is  a  closed  one  it  doesn’t  matter  which  city  is  labelled  as  the  first  and  this  has  been  chosen  to  be  A.  This
corresponds in the net to the first node in the row for A being “on” while the others in this row are all “off”. The second city is
F, which is indicated by the second node in the row for F being “on” while the rest are “off”. Continuing in this way, the tour
eventually finishes with city I in tenth position.

The  next  step  is  to  construct  an  energy  function  that  can  eventually  be  rewritten  in  the  form  of  (7.3)  and  has  minima
associated  with  states  that  are  valid  solutions.  When  this  is  done,  we  can  then  identify  the  resulting  coefficients  with  the
weights wij. We will not carry this through in detail here but will give an example of  the way in which constraints may be captured
directly via the energy. The main condition on solution states is that they should represent valid tours; that is, there should be
only one node “on” in each row and column. Let nodes be indexed according to their row and column so that yxi is the output
of the node for city X in tour position i and consider the sum

(7.10)

Each term is the product of a pair of single city outputs with different tour positions. If all rows contain only a single “on”
unit, this sum is zero, otherwise it is positive. Thus, this term will tend to encourage rows to contain at most a single “on”
unit.  Similar  terms may be constructed to encourage single units  being “on” in columns,  the existence of  exactly ten units
“on” in the net and, of course, to foster a shortest tour. When all these terms are combined, the resulting expression can indeed
be  written  in  the  form  of  (7.3)  and  a  set  of  weights  extracted3.  The  result  is  that  there  are  negative  weights  (inhibition)
between nodes in the same row, and between nodes in the same column. The path-length criterion leads to inhibition between
adjacent columns (cities in a path) whose strength is proportional to the path length between the cities for those nodes. By
allowing  the  net  to  run  under  its  dynamics,  an  energy  minimum  is  reached  that  should  correspond  to  a  solution  of  the
problem. What is meant by “solution” here needs a little qualification. The net is not guaranteed to produce the shortest tour
but only those that are close to this; the complexity of the problem does not vanish simply because a neural net has been used.

The  TSP  is  an  example  of  a  class  of  problems  that  are  combinatorial  in  nature  since  they  are  defined  by  ordering  a
sequence or choosing a series of combinations. Another example is provided from graph theory. A graph is simply a set of
vertices connected by arcs; the state transition diagram in Figure 7.6 is a graph, albeit with the extra directional information
on the arcs. A clique is a set of vertices such that every pair is connected by an arc. The problem of finding the largest clique
in a graph is one of combinatorial optimization and also takes time which is exponentially related to the number of vertices.
Jagota (1995) has demonstrated the possibility of using a Hopfield net to generate near optimal solutions using a network with
the same number of nodes as graph vertices.

Figure 7.13 Travelling salesman problem: an example.
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7.9
Feedforward and recurrent associative nets

Consider the completely connected, feedforward net shown in Figure 7.15a. It has the same number of inputs and outputs and
may therefore be used as an associative memory as discussed in Section 7.2 (for greater realism we might suppose the net has
more than three nodes and that  the diagram is schematic and indicative of the overall  structure).  Suppose now that the net
processes an input pattern. We imagine that, although the net may not have managed to restore the pattern to its original form
(perfect recall), it has managed to produce something that is closer to the stored memory pattern than the original input. Now
let this pattern be used as a new input to the net. The output produced now will, in general, be even closer to a stored memory
and, iterating in this way, we might expect eventually to restore the pattern exactly to one of the stored templates. 

To see how this is related to the recurrent nets discussed in this chapter, consider Figure 7.15b, which shows the network
output  being  fed  back  to  its  input  (the  feedback  connections  are  shown stippled).  Making  the  process  explicit  in  this  way
highlights the necessity for some technical details: there must be some mechanism to allow either the feedback or external
input to be sent to the nodes and, during feedback, we must ensure that new network outputs about to be generated do not
interfere  with  the  recurrent  inputs.  However,  this  aside,  the  diagram  allows  for  the  iterative  recall  described  above.
Figure  7.15c  shows  a  similar  net,  but  now there  are  no  feedback  connections  from a  node  to  itself;  as  a  result,  we  might
expect a slightly different performance.

Now, each input node may be thought of as a distribution point for an associated network output node. Part (d) of the figure
shows the input nodes having been subsumed into their corresponding output nodes while still showing the essential network
connectivity. Assuming a suitable weight symmetry, we now clearly have a recurrent net with the structure of a Hopfield net.
Since, in the supposed dynamics, patterns are fed back in toto, the recurrent net must be using synchronous dynamics (indeed
the mechanism for avoiding signal conflict in the “input nodes” above may be supplied by sufficient storage for the previous
and next states, a requirement for such nets as discussed in Sect. 7.4.3).

In  summary  we  see  that  using  a  feedforward  net  in  an  iterated  fashion  for  associative  recall  may  be  automated  in  an
equivalent  recurrent  (feedback)  net.  Under  suitable  assumptions  (no  self-feedback,  symmetric  weights)  this  becomes
a Hopfield net under asynchronous dynamics. Alternatively, we could have started with the Hopfield net and “unwrapped” it,
as it were, to show how it may be implemented as a succession of forward passes in an equivalent feedforward net.

Figure 7.14 Network state for TSP solution. 

Figure 7.15 Relation between feedforward and recurrent associative nets.
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7.10
Summary

Associative memory may be described as a process of recalling stored patterns or templates from a partial or noisy version of
the  original  pattern.  This  is  a  much more  general  paradigm than  that  used  by  conventional  computers  when working  with
databases.  Although  feedforward  nets  may  be  used  to  perform  this  task,  a  more  powerful  tool  is  provided  by  a  class  of
recurrent  nets.  These  may  be  thought  of  as  iteratively  processing  their  input  pattern  to  provide  new  versions  that  grow
progressively closer to a stored memory. Such nets may also be thought of as examples of a larger class of dynamical systems
that can be described in terms of an “energy” function. The system energy decreases as the system evolves and we identify
stable states (energy minima) with stored memories. The Hopfield net is an example of this type of net. It consists of a set of
TLUs with zero threshold in which every node takes input from all other nodes (except itself) and where the interunit weights
are symmetric.

Under asynchronous operation, each node evaluates its inputs and “fires” accordingly. This induces a state transition and it
is  possible  (in  principle)  to  describe  completely  the  network  dynamics  by  exhaustively  determining  all  possible  state
transitions. Alternative dynamics are offered by running the net synchronously, so that the net operation is deterministic. The
stable states are, however, the same as under asynchronous dynamics. For nets of any significant size the problem of finding
the state transition table is intractable but, since we are only interested in equilibrium states, this is not too important. It is here
that the energy formalism comes into its own and enables us to demonstrate the general existence of stable states. The energy
is defined by thinking of the net as instantiating a series of pairwise constraints (via the weights) on the current network state.
If  these constraints (the weights) are imposed by the pairwise statistics of the training set,  then these will  tend to form the
stable states of the net and, therefore, constitute stored memories. Although the weights may be calculated directly, they may
also be thought of as evolving under incremental learning according to a rule based on a description of biological synaptic
plasticity due to Hebb.

Hopfield nets always store unwanted or spurious states as well as those required by the training set. In most cases this is not
a  problem  since  their  energy  is  much  higher  than  that  of  the  training  set.  As  a  consequence  their  basins  of  attraction  are
smaller and they may be avoided by using a small amount of noise in the node operation. In order to store a given number of
patterns reliably the net must exceed a certain size determined by its storage capacity. 

Hopfield developed an analogue version of the binary net and also showed how problems in combinatorial  optimization
may be mapped onto nets of this type.

7.11
Notes

1. Since the Hopfield net is recurrent, any output serves as input to other nodes and so this notation is not inconsistent with previous
usage of x as node input.

2. In this discussion the term “state” refers to the arrangement of outputs of i and j rather than the net as a whole.
3. The analogue net has, in fact, an extra linear component due to the external input. 

A PHYSICAL ANALOGY WITH MEMORY 69



Chapter Eight
Self-organization

In  this  chapter  we  explore  the  possibility  that  a  network  can  discover  clusters  of  similar  patterns  in  the  data  without
supervision. That is, unlike the MLPs, there is no target information provided in the training set. A typical dataset to be dealt
with is illustrated schematically in Figure 8.1. Here, points appear to fall naturally into three clusters with two smaller, more
tightly bound ones on the left, and one larger, more loosely bound on the right. Note that no mention has been made here of
class labels; the relation between classes and clusters is discussed further in Section 8.2.1. If the network can encode these types
of  data,  by  assigning  nodes  to  clusters  in  some  way,  then  it  is  said  to  undergo  both  self-organization  and  unsupervised
learning.

A key technique used in training nets in this way concerns establishing the most responsive node to any pattern. One way
of doing this is simply to search the net for the largest activity. This, however, displaces the responsibility for this process
onto some kind of supervisory mechanism that is not an integral part of the net. An alternative is to supply extra resources to
the  network  that  allow  this   search  to  take  place  within  the  net  itself.  This  distinction  will  become  clearer  later  but  we
introduce it here to motivate the next section, which deals with a search mechanism intrinsic to the network.

8.1
Competitive dynamics

Consider a network layer of units as shown in Figure 8.2. Each unit is governed by leaky-integrator dynamics and receives the
same set of inputs from an external input layer. Additionally there are intra-layer or lateral connections such that each node j
is connected to itself via an excitatory (positive) weight  and inhibits all other nodes in the layer with negative weights 
 which are symmetric, so that  . The connections from only one node have been shown in the diagram for the sake of
clarity. This lateral connection scheme is sometimes referred to as on-centre, off-surround since it aptly describes the sign of
the weights with respect to any neuron as centre. 

Now  suppose  a  vector  x  is  presented  at  the  input.  Each  unit  computes  its  external  input  s,  as  a  weighted  sum  of  the
components  of  x,  formed using an input  weight  vector  w.  This  may be written in  vector  notation using the dot  product  as
s=w·x and is the most expressive way of writing this for our purposes since we wish to view the situation from a geometric
perspective. One of the nodes, labelled k say, will have a value of s larger than any other in the layer. It is now claimed that,
under the influence of the lateral connections, the activation ak of node k will increase towards its limiting value while that of
the  other  units  in  the  layer  gets  reduced.  The total  input  to  each node j  consists  of  the  “external”  input  sj,  together  with  a
contribution lj from other nodes within the layer. Thus, if yj=σ(aj) is the node’s output, lj may be written

(8.1)

Figure 8.1 Clusters in a training set. 



and, using (2.6) (with the constants relabelled c1 and c2),

(8.2)

What happens is that node k has its activation stimulated directly from the external input more strongly than any other node.
This is then reinforced indirectly via the self-excitatory connection. Further, as the output yk grows, node k starts to inhibit the
other nodes more than they can inhibit node k. The growth and decay processes are limited, however (Sect. 2.5), so that the
layer gradually reaches a point of equilibrium or stability. If the net is a one-dimensional string of nodes (rather than a two-
dimensional layer) its activity may be represented graphically in profile as shown in Figure 8.3. An initial situation, shown in
the lower part of the figure, will  evolve into that shown at the top. Each asterisk plots the activation of a node and dashed
lines have been fitted to the spatial profiles merely to help show their arrangement. The final output profile of the net reflects
that of the final activation (since y=σ(a)) and will have the same shape as that in the upper half of the figure, albeit with an
even higher contrast in values. 

The transition from initial state to equilibrium occurs as if there is a limited amount of activity to be shared amongst the
nodes under some competition. The net is said to evolve via competitive dynamics and it is the node with the largest external
input (the one with the initial advantage) that wins the competition by grabbing the bulk of the activity for itself. These nets
and  their  dynamics  are  therefore  sometimes  referred  to  as  “winner-takes-all”.  Thus,  competitive  dynamics  can  be  used  to
enhance the activation “contrast” over a network layer and single out the node that is responding most strongly to its input. 

To obtain the kind of  situation shown in Figure 8.3 where there is  a  distinct  and unique winning node,  three conditions
must  be  met.  First,  there  should  only  be  one excitatory  weight  emanating from any node that  is  connected to  itself.  Some
lateral  connections  schemes allow for  a  small  excitatory neighbourhood around each node so  that  nearby units  are  fed via
positive rather than negative weights. In this case there will be a “winning neighbourhood” or localized region of high activity
in  the  layer  rather  than a  single,  most  active  unit.  Secondly,  the  lateral  connections  must  be  sufficiently  strong so  that  the
resulting equilibrium is well defined; small intra-layer weights will give a lower maximum and larger residual activities in the
rest of the net. Finally, the inhibitory connections from each node must extend to all other nodes otherwise the competition
takes place only within local regions of the net and several local activity maxima can then be supported. Depending on the
requirements it may, in fact, be advantageous to allow any of these situations to occur by suitable choice of lateral weights

Figure 8.2 Competitive layer.

Figure 8.3 Competitive dynamics: network before and after reaching equilibrium.
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(Sect. 8.3.2). However, focusing on the winner-takes-all situation, we now examine how competitive dynamics may be useful
in a learning situation.

8.2
Competitive learning

Consider a training set whose vectors all have the same unit length, that is  for all x. If the vector set does not originally
have unit length it is possible to convert or normalize it to a new one that does, by multiplying each vector by the reciprocal
of its original length. Thus, if x′ is the new vector formed from the original x,

(8.3)

In 2D the vectors all fall on the unit circle as shown in Figure 8.4. In general, they fall on the n-dimensional equivalent—the
unit hypersphere—in which case the figure is a schematic representation of the true situation. 

Suppose  that  a  competitive  neural  layer  has  a  set  of  normalized  weight  vectors  for  connection  to  external  input.  These
vectors may also be represented on the unit sphere as shown for a three-node net on the left hand side of Figure 8.5. What we
require for this net is that each node responds strongly to vectors in one of the clusters in the training set. Since there are three
nodes and, apparently, three clusters, we should expect to be able to encode each cluster with a single node. Then, when a
vector is presented to the net, there will be a single node that responds maximally to the input. 

Clearly, for this process to take place, it is necessary to understand the relation that must pertain between a weight vector w
and an input pattern x if a node is to respond “strongly” to x. The key is provided by using the inner product expression for
the node’s external input, s=w·x. Using the geometric viewpoint of the inner product developed in Chapter 3, s will be large
and positive if the weight and input vectors are well aligned. Then, if the “angle” between w and x becomes larger, s becomes
smaller, passing through zero before becoming negative. Corresponding with these changes, the output starts at comparatively
large values and decreases towards zero.

Further,  if  the  weight  and  pattern  vectors  are  all  of  unit  length,  then  s  gives  a  direct  measure  of  the  alignment  of  each
node’s  weight  vector  with  a  particular  pattern.  To  see  this,  write  the  external  input  using  the  geometric  form of  the  inner
product,   where  this  defines  the  angle  θ  between  w  and  x.  The  appearance  of  the  vector  lengths  in  this
expression  means  that,  in  general,  they  are  confounded  with  the  angular  term  and  can  lead  to  a  misinterpretation  of  the
angular  separation;  large  external  inputs  can  arise,  not  because  θ  is  small  but  simply  through  large  values  of  ||w||,  ||x||.
However, if all vectors are normalized, the lengths are both one, so that s=cosθ and is therefore a true measure of the angular
proximity between weight and pattern vectors. If we do not use normalized vectors, it would be possible for a single weight
vector to give the largest response to several clusters simply by virtue of its having a large length, which is contrary to the
proposed encoding scheme.

The ideal network will therefore have its three weight vectors aligned with the three pattern clusters as shown on the right
hand side of Figure 8.5. This is brought about most efficiently by “rotating” each weight vector so that it  becomes aligned

Figure 8.4 Normalized vectors on unit sphere.

Figure 8.5 Normalized weights and vectors.
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with the cluster that is initially its nearest neighbour. This has been indicated in the figure by attaching labels to the weight
vectors, which they retain throughout training.

The  desired  state  may  be  effected  by  iteratively  applying  vectors  and  adjusting  the  weights  of  the  node  whose  external
input is largest. According to the above discussion, this is indeed the node whose weight vector is closest to the current pattern
x and, under competitive dynamics, is identified as the node with the largest output at equilibrium. Let the “winning node”
have index k and weight vector wk (note that wk is the kth weight vector, not the kth component of w, which is wk). Then wk
should now be rotated towards x, which may be accomplished by adding a fraction of the difference vector x−wk, as shown in
Figure 8.6. This gives the learning rule for an arbitrary node j

(8.4)

Suppose now the net is truly winner-takes-all, so that node k has its output y close to one while all the others have values close
to zero. After letting the net reach equilibrium, the learning rule in (8.4) may be expressed without any special conditional
information as

(8.5)
This may now be incorporated into a training algorithm as follows:

1. Apply a vector at the input to the net and evaluate s for each node.
2. Update the net according to (8.2) until it reaches equilibrium.
3. Train all nodes according to (8.5).

In practice, the number of updates in the second step will be predetermined to ensure a network state close to equilibrium in
most cases.

As learning progresses, the best responding node to any pattern will change as the weight vectors reorganize themselves. If
the training patterns are well clustered then it is usually the case that a stable weight set will be found (in the  sense that the
most  responsive node for  any pattern remains  the  same,  although its  exact  response value may continue to  change).  If  the
patterns are not so well clustered and if there are many more patterns than nodes, then the weight coding may be unstable.
This issue is addressed further in Chapter 9.

If a stable solution is found, then the weight vector for each cluster represents, in some sense, an average or typical vector
from the cluster, since it has been directed towards each of them during training. Thus we may think of the weight vectors as
archetypal patterns or templates for the cluster, a theme that is also taken up again in Chapter 9.

There  remains  a  problem  concerning  the  normalization  that  has  not  been  addressed  because,  although  the  weights  are
initially of unit length, it is to be expected that as they adapt their length will change. One way around this is to renormalize
the updated weight vector after each training step. However, this is computationally demanding and there is a simpler way that
allows for a good approximation to true normalization while being automatically implemented in the learning rule. Thus, if
we restrict ourselves to positive inputs, the condition

(8.6)

is approximately equivalent to the normalization given by the Euclidean length that has been used so far. To see this we note
that, because the (Euclidean) length is one, the squared length is also one and so, under the normalization used so far,

(8.7)

While (8.7) defines points on a unit sphere, (8.6) defines points on a plane (since it is a linear relation). This is illustrated in
3D in Figure 8.7, which shows the surfaces that weight or input vectors must lie on in the two normalization schemes. Since
quantities are restricted to be positive, these surfaces are constrained to the positive quadrant of the space. According to how

Figure 8.6 Competitive learning rule. 
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closely the distance of the plane from the origin approximates to one, the two schemes may be said to be equivalent. Now
suppose that we do indeed use

(8.8)

as an alternative definition of the the “length” of a vector so that normalization of both weights and inputs implies (8.6). The
change in length of a weight vector is now just the sum of the changes in the weight components. If these changes take place
under the training rule (8.5) then

(8.9)

For y=0 there is no change. If y=1 the first sum in the brackets on the right hand side is always one since the training patterns
don’t change. If the weight vector was normalized according to (8.6) prior to learning update then the second sum is also one
and  so  the  right  hand  side  is  zero.  Thus,  the  change  in  the  length  of  the  weight  vector  is  zero  and  normalization  is
automatically preserved. The use of normalization based on (8.8) turns out under most circumstances to be adequate although
it should be emphasized that it relies on the input patterns having positive components. This is conceptually, at least, not a
difficulty since, if we interpret the inputs as having come from a previous layer of sigmoidal output units, they must all be
positive. 

It is of interest to rewrite the learning rule in a slightly different way as the sum of two terms
(8.10)

The  first  of  these  looks  like  a  Hebb  term while  the  second  is  a  weight  decay.  Thus  competitive  self-organization  may  be
thought  of  as  Hebb  learning  but  with  a  decay  term  that  guarantees  normalization.  This  latter  property  has  a  biological
interpretation in terms of a conservation of metabolic resources; the sum of synaptic strengths may not exceed a certain value,
which is governed by the physical characteristics of the cell to support synaptic and postsynaptic activity.

A good introduction to competitive learning is given by Rumelhart & Zipser (1985) who also provide several examples,
one of which is discussed in the next section.

8.2.1
Letter and “word” recognition

Rumelhart and Zipser trained a competitive net using pairs of alphabetic characters A and B, each one being based on a 7 by 5
pixel array and inserted into one-half of a larger, 7 by 14, grid as shown in Figure 8.8. In a first set of experiments the input
patterns were the letter pairs AA, AB, BA, BB.  With just  two units in the net,  each one learned to detect  either A  or  B  in a
particular serial position. Thus, in some experiments, one unit would respond if there was an A in the first position while the other
would  respond if  there  was  a  B  in  the  first  position.  Alternatively  the  two units  could  learn  to  respond to  the  letter  in  the
second position. Note that these possibilities are, indeed, the two “natural” pairwise groupings of these letter strings leading to
the clusters {AA, AB}, {BA, BB} or {AA, BA}, [AB, BB}. Rumelhart and Zipser call the two-unit net a “letter detector”. With
four units each node can learn to respond to one of the four letter pairs; each training pattern is then a separate “cluster” and
the net is a “word detector”. In making these distinctions, it is clear that we have attached class labels to the patterns, which is
predicated on our understanding of “letter” and “word”. 

Another set of experiments used the letter pairs AA, AB, AC, AD, BA, BB,  BC, BD.  When a net with only two units was
used, one unit learned to recognize the pairs that started with A, while the other learned to respond to those that began with B.
When four units were used each unit learned to recognize the pairs that ended in one of the four different letters A, B, C, D.
This again represents the two natural ways of clustering the training set, although both are examples of “letter” detection.

Figure 8.7 Normalization surfaces
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8.3
Kohonen’s self-organizing feature maps

In addition to identifying clusters in training data, there is an additional level of organization that a competitive network can
develop.  This  occurs  when  nodes  that  are  physically  adjacent  in  the  network  encode  patterns  that  are  “adjacent”,  in  some
sense, in the pattern space of the input.  The concept of proximity leads to the idea of a topography  or map  defined over a
neural layer in which these maps represent some feature of the input space. This property is one that is enjoyed by many areas
of cortex in animal brains, which makes their description a natural starting point. 

8.3.1
Topographic maps in the visual cortex

The mammalian cortex is the externally visible sheet of neural tissue that is folded and then wrapped to enclose more central
areas of the brain. Among other things, it is responsible for processing sensory information such as sound and vision. Here we
focus on the visual cortex, which is a rich source of topographic maps.

The simplest example occurs when the measure, or metric,  for map proximity is just the spatial separation of luminance
within the visual field. Thus, in the primary visual cortex (area V1), patches of light that are physically close to each other
will  stimulate  areas  of  cortex  that  are  also  in  close  proximity.  This  is  a  so-called  retinotopic  map  since  it  relates  cortical
location to position on the retina of the eye. Connolly & Van Essen (1984) have demonstrated this for the Macaque monkey
V1  as  shown  in  Figure  8.9.  Part  (a)  shows  the  visual  field  for  one  eye  expressed  in  a  co-ordinate  system  with  circular
symmetry that is labelled according to the visual eccentricity (in degrees) from the centre of gaze. The bold line delimits the
extent of the field of view. Part (b) is the representation in V1 of this field, where the locations of cortex responding to the
dark squares in (a) have been shown to facilitate comparison. Two points need to be emphasized. First, adjacent areas in the
field  of  view  are  processed  by  adjacent  areas  of  cortex  and,  secondly,  more  cortex  is  devoted  to  the  immediate  area
surrounding the centre of gaze (the fovea). The first 5° of foveal vision are mapped into a region that represents about 40 per
cent  of  the  cortex  (shown  by  the  shaded  area  in  the  diagram).  This  is  quite  general  in  topographic  maps;  although  the
proximity relation between areas (or topology) of the input is preserved, the relative size within regions of the input space may
not be.

Another example occurs in V1 by virtue of the fact that many of its cells are “tuned” to oriented features of the stimulus.
Thus, if a grid or grating of alternating light and dark lines is presented to the animal, the cell will respond most strongly when
the lines are oriented at a particular angle and the response will fall off as the grating is rotated either way from this preferred
orientation. This was established in the classic work of Hubel & Wiesel (1962) using microelectrode  studies with cats. Two
grating stimuli are now “close together” if their orientations are similar, which defines the input space metric. In a later study
Hubel & Wiesel (1974) made recordings from an electrode inserted almost tangentially to the cortex and plotted the optimal
orientation  tuning  of  the  cells  encountered  against  the  distance  of  electrode  penetration.  Two  sets  of  data  are  shown  in
Figure 8.10 (the open and filled symbols refer to which eye is dominant for that cell and their distinction can be ignored here).

Figure 8.8 Letters used in competitive training example.

Figure 8.9 Retinotopic maps. 
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In  the  graph  on  the  left  hand  side  the  orientation  varies  smoothly  with  electrode  track  distance.  That  on  the  right  shows
several smooth segments interrupted by discontinuities. This pattern is typical and has been demonstrated more graphically
for cat visual cortex using a direct optical imaging technique (Bonhoeffer & Grinvald 1991), which makes use of the small
changes  in  reflectivity  of  the  surface  of  the  exposed  cortex  when  it  is  in  metabolic  demand  due  to  neural  activity.  By
presenting stimuli at different orientations, it is possible to map simultaneously the orientation preference of cells in an entire
region  of  cortex.  Apart  from  reinforcing  the  results  of  Hubel  and  Wiesel,  this  new  data  showed  that  there  were  point
discontinuities around which the orientation tuning changed gradually,  resulting in what the authors refer to as “pinwheel”
structures.  Bonhoeffer  and Grinvald  displayed their  maps using artificial  colour  codes  for  orientation preference.  We have
reproduced a typical pinwheel structure in Figure 8.11 by using small bars oriented in alignment with the optimal tuning for
that region. The orientation centre has been marked with a shaded disc. Note that orientation is defined over the range 0–180°
and that no directions are implied so that orientations differing by 180° are identified as the same. 

8.3.2
Developing topographic maps

The first  attempt  to  train  a  map of  this  kind was that  of  von der  Malsburg (1973).  A network of  units  arranged on a  two-
dimensional hexagonal grid learned orientation tuning from a “retina” of 19 nodes also arranged hexagonally (see Fig. 8.13).
The  training  set  consisted  of  Boolean  patterns  of  light  bars  (“on”  units)  against  a  dark  background  (“off”  units)  at  nine
different  orientations.  The  model  was  biologically  motivated  so  that,  rather  than  there  being  a  single  self-excitatory
connection per node, the lateral excitatory region included a unit’s nearest neighbours, and lateral inhibition was mediated via
a separate set of neurons. Further, the resulting inhibitory region did not then extend to the rest of the net but was restricted only
to units that were at most three nodes distant. At each pattern presentation, the competitive dynamics were allowed to run so
that  an  equilibrium  output  profile  was  established.  At  equilibrium  a  Hebb  rule  was  applied,  followed  by  an  explicit
renormalization of the weights.

This  model  worked  well  and  the  net  learned  a  local  map,  in  which  several  parts  of  the  net  responded  well  to  a  given
orientation. To understand how this emerges, consider a typical equilibrium output profile in the latter stages of training, as

Figure 8.10 Orientation tuning of cat visual cortex.

Figure 8.11 Pinwheel structures for orientation tuning.
 

76 SELF-ORGANIZATION



shown  schematically  in  1D  in  Figure  8.12.  There  are  two  points  to  note  here.  First,  there  is  more  than  one  region  of
significant activity which occurs because the lateral inhibition does not operate globally over the entire net. This allows parts
of the net that are sufficiently well separated to act independently and develop their own local maxima. Secondly, the activity
within each region is spread across several units with there being no single “winning node”. This is a result of the excitation
extending over a small region of the net and not being restricted to a single self-excitatory connection per node. Now consider
what happens under the Hebb rule. Connections from the “on” units in the input retina will have their strengths increased to
those units that are active, and this increase will be in proportion to the unit’s output. Thus, nodes in active network regions
will  learn  to  respond  more  strongly  to  the  current  pattern.  In  this  way  neighbouring  nodes  tend  to  develop  similar  weight
vectors and so the network topography has its origins in the extended regions of activity prior to training.

Although  this  example  worked  well,  there  are  aspects  of  the  model  that  are  potential  causes  of  difficulty.  The  use  of
competitive dynamics per se leads to a problem concerning the parametrization of the lateral weights. What is the best radius
of excitation and the best ratio of inhibition to excitation? Although not crucial in the orientation net, it should be borne in
mind that the input space had only a single feature or dimension to be encoded (i.e. orientation) and in most problems there
are  several  metric  dimensions  to  the  input  (discussed  further  in  Sect.  8.3.5).  This  can  serve  to  make  the  learning  more
sensitive  to  the  activity  profiles  at  equilibrium.  Secondly,  the  iterative  solution  of  the  net  dynamics  can  be  very
computationally intensive and, if a global rather than local solution were sought (requiring full lateral interconnectivity), this
could be prohibitive.

Kohonen (1982) re-examined the problem of topographic map formation from an engineering perspective and extracted the
essential computational principles. Most work in this area now makes use of the algorithm he developed for self-organizing
feature  maps  (SOFMs  or  simply  SOMs).  He  has  described  the  principles  and  further  developments  in  a  subsequent  book
(Kohonen 1984) and review paper (Kohonen 1990).

8.3.3
The SOM algorithm

The network architecture still consists of a set of inputs that are fully connected to the self-organizing layer, but now there are
no lateral connections. It is clear, from the analysis of the orientation map in the last section, that the key principle for map
formation is that training should take place over an extended region of the network centred on the maximally active node. All
that  is  required  is  that  the  concept  of  “neighbourhood”  be  defined  for  the  net.  This  may  be  fixed  by  the  spatial  relation
between nodes within the self-organizing layer, as shown in Figure 8.13. Three neighbourhood schemes are shown based on a
linear  array  of  nodes  and  two  two-dimensional  arrays  in  the  form  of  rectangular  and  hexagonal  grids.  In  all  cases,  three
neighbourhoods are shown delimited with respect to a shaded unit at distances of 1, 2 and 3 away from this node. Thus, the
linear, rectangular and hexagonal arrays have 5, 25 and 19 nodes respectively in their distance-2 neighbourhoods (including
the central nodes). Although three-dimensional arrays of nodes are conceivable, they tend not to get used in practice owing to
their complexity. We now give details of the algorithm, followed by a discussion of each step. 

The  weights  are  initialized  to  small  random  values  and  the  neighbourhood  distance  dN  set  to  cover  over  half  the  net.
Vectors are drawn randomly from the training set and the following series of operations performed at each selection.

1. Find the best  matching or  “winning” node k  whose weight  vector  wk  is  closest  to  the current  input  vector  x  using the
vector difference as criterion:

(8.11)
2. Train node k and all nodes in the neighbourhood Nk of k using a rule similar to that in (8.4)

(8.12)

3. Decrease the learning rate a slightly.

Figure 8.12 Output profiles in orientation map.
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4. After a certain number M of cycles, decrease the size of the neighbourhood dN.

Concerning  the  definition  of  best  matching  node  (point  1)  the  weight-pattern  inner  product  or  node  activation  has  been
abandoned in favour of the distance between the weight and pattern vectors. This uses both angular and length information
from w and x, and so does not suffer from the difficulties that require vector normalization. If the vectors are normalized, then
the two schemes are equivalent. To show this formally we use (3.10) to show that, for any w and x,

(8.13)

Thus, a decrease in the distance  implies an increase in the dot product w·x and vice versa.
Secondly, the winning node is found using a straightforward search rather than by the internal dynamics of the net, which

therefore obviates the overhead associated with this task. Both these features make for computational ease and efficiency but
are biologically unrealistic. It is possible to train using the inner product measure but this then requires normalization at each
training  step.  Alternatively,  if  the  training  set  has  only  positive  components,  we  can  use  the  simple,  linear  normalization
method  described  in  Section  8.2  and  rely  on  the  auto-renormalization  implied  (8.9).  If  we  adopt  the  vector  difference
criterion, the response of the net when used after training is given by supposing that the winning node is “on” while all others
are “off”. The advantage of the inner product measure is that it leads to a more natural network response in which each node
computes an activation a=w·x. We can then either pass this through a sigmoid output function or simply interpret it directly as
the output so that y=a.

The  learning  rule  (point  2)  is  identical  to  that  used  in  competitive  learning  if  we  suppose  that  the  nodes  in  the  current
neighbourhood are active with output equal to 1, and the rest of the net is quiescent with output 0. However, learning now
takes place over an extended neighbourhood and, as noted previously, it is this regional training that induces map formation.
By starting with a large neighbourhood we guarantee that a global ordering takes place, otherwise there may be more than one
region of the net encoding a given part of the input space. The best strategy is to let dN decline to zero over a first phase of
training,  during which the map topography is  formed,  and then continue to  train only the best-match nodes to  make small
adjustments and pick up the finer detail of the input space. If the learning rate is kept constant, it is possible for weight vectors
to oscillate back and forth between two nearby positions in the later stages of training. Lowering a ensures that this does not
occur and the network is stable.

8.3.4
A graphic example

It is possible to illustrate the self-organization of a Kohonen net graphically using a net where the input space has just two
dimensions. Consider a net with six nodes on a rectangular grid, as shown in Figure 8.14. Because each node has only two
inputs, it is possible to visualize the representation of this net in weight space (Fig. 8.15) in which a marker is placed at the
position corresponding to each node’s weight vector (as drawn from the co-ordinate origin). The weights are assumed to start

Figure 8.13 Neighbourhood schemes for SOMs.

Figure 8.14 Six-node network with node labels.
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with positive random values, and lines have been drawn connecting markers for nodes that are physically adjacent in the net.
For example, nodes 2 and 5 have small and large weight vectors respectively and are therefore widely separated in weight
space. They are, however, nearest neighbours in the network and so are linked by a line in the diagram. 

Suppose now that  there are six training vectors  A, B,  C,  D,  E,  F,  as  shown in the pattern space diagram in Figure 8.16.
Since  there  are  six  units  in  the  network  and  six  training  patterns  we should  expect  that,  in  a  well-trained  net,  each  unit  is
assigned a unique training pattern so that its weight vector matches the corresponding input vector. This is the result of the
competitive learning but, under the Kohonen algorithm, we also expect a topographic map to emerge. The implication of this
is that neighbouring nodes will become associated with neighbouring patterns so that the weight space of the trained net looks
like that of Figure 8.17. 

The intermediate stage between the initial and final weight space diagrams is better illustrated using a slightly larger net. In
this  example,  200 vectors  have been chosen at  random from the unit  square  in  pattern space and used to  train  a  net  of  25
nodes  on  a  5  by  5  rectangular  grid.  The  vectors  and  the  initial  weight  space  are  shown  on  the  left  and  right  hand  sides
respectively of Figure 8.18. Subsequent “snapshots” of weight space are shown in Figure 8.19, where the numbers refer to
how many patterns have been used to train up to that point. After only 60 iterations, all nodes have weights that are close to
the centre of the diagram1, which indicates that they are near the average values of the training set. This is a result of using a
large initial neighbourhood so that nearly all nodes get trained at every step. As the neighbourhood shrinks, the weight space
representation starts to “unravel” as distinct parts of the pattern space can start to be encoded by different regions of the net. After

Figure 8.15 Untrained net in weight space.

Figure 8.16 Training set in pattern space.

Figure 8.17 Trained net in weight space.

Figure 8.18 A 25-node net: training set and initial weight space.
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600  training  steps,  the  net  has  become  ordered  with  the  correct  topology,  which  is  apparent  as  there  are  no  internode
connection lines crossing each other. Further training does not alter the ordering of the map but makes fine adjustments to the
weight vectors so that the entire input space is represented equally. Since the training patterns cover the square uniformly, the
final map reflects this by being almost regular in shape. 

8.3.5
Maps, distributions and dimensionality

In another example, the training set is not uniformly distributed in pattern space but is drawn from a semicircular arc of width
0.2; the initial weight space and patterns are shown in Figure 8.20. A net of 100 nodes on a 10 by 10 grid was trained using
these patterns and some snapshots of weight space are shown in Figure 8.21. Once again, ordered map formation takes place
and  the  node  weights  occupy  the  same  region  in  pattern  space  as  the  training  set.  However,  this  time   the  pattern  space
representation  on  the  net  has  to  be  contorted  to  enable  the  map  to  exist.  In  this  process  there  are  a  few  nodes  that  have
developed weight vectors which do not represent any members of the training set and which have become “stranded”, as it were,
in a pattern-free zone. This is almost inevitable, and another example of this phenomenon is provided by Kohonen (1984) in his
book.

The  situation  becomes  even  more  complex  when  the  input  space  has  more  than  two  dimensions.  Now,  the  higher
dimensions must be “squashed” onto the two-dimensional grid but this will  be done in such a way as to preserve the most
important variations in the input data. To see what is meant by “important variation” here, consider the example illustrated in
Figure 8.22. Here, patterns that are specified by their two (x and y) co-ordinates in the plane have been sampled from an arc of
a circle. However, any pattern in this set is uniquely specified by a single number—for example, the angle θ around the arc
from one  of  its  end  points.  Its  underlying  dimensionality  is  therefore  1,  and  provides  us  with  a  simple  example  of  a  low-
dimensional space (a line) embedded in a higher dimensional one (the plane).  It  is  therefore possible to train a set  of two-

Figure 8.19 A 25-node net: “snapshots” in weight space during training.

Figure 8.20 Vectors constrained to a 2D arc: training set and initial weight space. 
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input units arranged in line (rather than a two-dimensional array) to map accurately the input set shown in the figure. Then,
nodes get assigned according to the density of vectors along the line in pattern space, so that more nodes would be assigned to
the ends of the arc than the middle. The data nominally in 2D have been mapped into the 1D of the linear neural net array,
which has therefore effected a dimension reduction of the data. 

Oriented patterns on a simple, circular array provide another example as shown in Figure 8.23. Each pattern is Boolean and
is set on an array of 32 elements so that its nominal vector dimensionality is also 32. However, each one has the same shape
and the only difference between them is their orientation. A single parameter—the angle of orientation—may then be used to
specify the pattern uniquely so the underlying dimensionality is, once again, 1. In general, the underlying dimensionality of
the training set is greater than 2 and so, even after dimension reduction, the input space has to be deformed to be mapped onto
a two-dimensional neural layer. Further, the representation of the data in the lower dimensional space is usually not perfect in
a real-world, non-idealized situation. For example, the “linear” dataset in Figure 8.22 would realistically occupy a finite width
in the plane rather than being strictly confined to the line, and the orientation set would not be exactly the same shape. In spite
of this, the net can still develop good maps for these sets along their primary parameter dimension.  

8.3.6
SOMs and classification: LVQ

Our emphasis in discussing self-organization has been on encoding clusters in the training set. Class labels may be attached to
nodes if we have already assigned labels to patterns in some way. This was the case, for example, in the examples provided by
Rumelhart and Zipser (in Sect. 8.2.1). In general, nodes may become classifiers by repeatedly presenting patterns to the net,
finding the maximally responding node and labelling it according to the class of that pattern. The problem with this simple-

Figure 8.21 Vectors constrained to a 2D arc: “snapshots” in weight space during training.

Figure 8.22 Two-dimensional data with underlying dimensionality 1.
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minded approach is that, in general, a node may respond maximally to more than one class of pattern. Therefore, we have to base
the node’s class label on a majority vote to find the class to which it most frequently responds.

The relation between clusters and classes may be discussed further using the patterns in Figure 8.1. To facilitate this, let the
two smaller clusters on the left be designated L1 and L2 and the loosely bound cluster on the right, R. If a net with three units
is trained on these patterns then each unit would be assigned to one of L1, L2 and R. Now, how these are interpreted in terms
of  class  labels  is  entirely  dependent  on  the  context  of  these  patterns  in  relation  to  the  problem  domain  in  which  they
originated.  Thus,  it  may  be  that  each  of  the  three  clusters  does  indeed  represent  a  separate  class  and  it  is  comparatively
straightforward to make node assignments. Alternatively, L1 and L2 may be from the same class, which may then be thought of
as containing two subcategories—perhaps upper and lower case versions of the same letter in a character recognition task—
and then two nodes will be used for one of the classes. Another possibility is that one of the three visually apparent clusters
we have identified is, in fact, a result of two adjacent or overlapping subclusters, each of which has a different class label.
This gives rise to the problem alluded to above in which a node will appear to belong to more than one class. Now suppose
the net has only two nodes. The most probable outcome is that L1 and L2 will be represented by one node while R is assigned
to the other. If there is a one-to-one mapping between clusters and classes we will then necessarily fail to distinguish between
two of them. On the other hand, if we have more than three nodes, several nodes will be assigned to a single class.

Having  made  the  initial  class-node  assignment,  is  it  possible  to  improve  the  network’s  performance  in  classification?
Kohonen has shown (Kohonen 1988a,  Kohonen 1990) that  it  is  possible  to  fine-tune the class  boundaries  of  an SOM in a
supervised  way  and  has  developed  several  methods  for  doing  this.  They  are  all  variants  of  what  he  calls  linear  vector
quantization (LVQ). Vector quantization is a standard statistical clustering technique (Gray 1984), which seeks to divide the
input space into areas that are assigned typical representatives or “code-book” vectors. The problem, of course, is to discover
what is meant by “typical” and to cover the input space in an efficient manner. These ideas are, of course, at the heart of the
SOM algorithm. The weight vector of each node may be thought of as a stereotypical example of the class assigned to that
node since, by the nature of the training, it is necessarily close to vectors in that class. The weights are therefore code-book
vectors and the SOM algorithm a kind of vector quantization. 

In order to understand the LVQ techniques it should be borne in mind that the closest weight vector wk to a pattern x may
be associated with a node k that has the wrong class label for x. This follows because the initial node labels are based only on
their most frequent class use and are therefore not always reliable. In the first variant, LVQ1, the procedure for updating wk is
as follows:

(8.14)

The negative sign in the misclassification case makes the weight vector move away from the cluster containing x, which, on
average, tends to make weight vectors draw away from class boundaries.

Two variant techniques (LVQ2 and LVQ3) have also been described by Kohonen (1990). These are more complex than
LVQ1 but allow for improved performance in classification.

Figure 8.23 Oriented patterns on a grid. 
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8.3.7
The role of SOMs

Biological purpose

What  purpose  do topographic  maps  serve  in  cortical  networks?  In  artificial  neural  nets  it  is  sufficient  for  a  single  node to
encode a cluster or region of the input space. This was the case when the competitive dynamics sharpened the output profile
in an extreme way in the winner-takes-all  net.  In biological  nets,  however,  structural  and signal  noise require considerable
redundancy if  a  network is  to  represent  an  input  feature  in  a  robust  way.  It  is  therefore  better  to  use  a  distributed  code  at
dynamic equilibrium in which several nodes respond to some extent when presented with a given input. This was the case in
the orientation maps of von der Malsburg (1973) whose equilibrium activity was shown in Figure 8.12. The other side of this
coin is that even though each node responds optimally to a particular input pattern it also gives significant output to nearby
patterns in the input space. That is, nodes have a broad tuning with respect to the dimensions encoded in the net so that in the
orientation maps, for example, each node responds somewhat to a range of orientations. This is shown in Figure 8.24, which
contrasts it with the point-like tuning in a winner-takes-all net.

Recall  that,  in order for distributed profiles to emerge,  there had to be an extensive excitatory region around each node.
Now imagine that, instead of the excitatory links being local, they are spread randomly throughout the net. Under competitive
learning,  the  same distributed  encoding  would  emerge,  albeit  in  a  non-topographic  way  and  leading  to  apparently  random
output profiles. However, the average length of axonic projections would be longer since there is now no predisposition to
local  connections.  Turning  the  argument  around,  since  we  know  that  local  connectivity  leads  to  topographic  maps,  it  is
possible that maps appear in the cortex through the requirement of minimizing “wiring” length or, equivalently of ensuring
that infra-cortical computation is carried out locally. This hypothesis has been tested in simulation by Durbin & Mitchison
(1990), who showed that the criterion of minimizing the cortical wiring led to the kind of dimension-reducing topographic
maps observed in the cortex.

Understanding cortical maps

Self-organizing topographic maps were introduced from the biological perspective and one of the objectives in using them is
to explore the computational principles that may be at work in their generation in real cortical tissue. Willshaw & von der
Malsburg (1976) gave an account of the emergence of retinotopic maps; Obermayer et al. (1990) showed how retinotopy and
orientation maps can develop concurrently; Goodhill (1993) has discussed the generation of ocular dominance maps in which
areas of cortex become associated with processing input from each eye when initially driven binocularly. Gurney & Wright
(1992b)  showed how a  self-organizing  network  can  develop  topographic  maps  of  image  velocity  in  which  the  dimensions
encoded  are  the  speed  and  direction  of  a  rigidly  moving  body.  One  of  the  direction  maps  that  was  learned  is  shown  in
Figure 8.25.  Compare this  with the orientation pinwheels  discovered by Bonhoeffer  and Grinvald (Fig.  8.11).  There is  the
same basic swirling pattern but, because we are dealing with direction rather than orientation, the encoding covers the entire
range of  angles  between 0° and 360°.  Notice also the discontinuity or  “fracture” in  the map in the left  hand upper  region,
which was a characteristic of the data of Hubel and Wiesel (Fig. 8.10).

Visualizing the input space

In artificial neural nets, the dimension reduction framework provides a basis for understanding the nature of the training set in
that it may be useful to be able to visualize metric relations in the input space. This is apparent in the work of Kohonen et al.
(Kohonen et al. 1984, Kohonen 1988b) in which a map of the phonemes in the Finnish language was developed from natural
speech samples. Phonemes are the smallest units of sound that characterize speech— they are usually smaller than syllables

Figure 8.24 Node tuning to pattern features in competitive nets.
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and consist of the primitive utterances that constitute speech in a given language. One of the phonotopic maps that Kohonen
developed is  shown in Figure 8.26.  Although a full  appreciation of this  map requires knowledge of the phonemic notation
used and its Finnish speech equivalent, it is apparent that vowel-like sounds occur in the top right hand part of the map and
grade into consonant-like sounds over the rest of the net. Clearly, the true dimensionality of “phoneme space” is not known a
priori, but the final two-dimensional representation gives us some insight into the metric relations between phonemes. The net
also  works  as  a  phoneme  classifier  first  stage  in  an  automatic  speech  to  text  translation  device  in  which  phonemes  are
subsequently transcribed into the corresponding textual symbols.

One of the problems in speech recognition is that each time a phoneme is uttered it is slightly different. This is most severe
between different speakers but is also apparent within the speech of a single person. The neural network is ideally suited to
overcoming these types of noisy data. However, there are more fundamental problems to be overcome. Continuous speech
does not come ready parcelled in phonemic segments, leading to so-called co-articulation effects in which the exact sound of
a phoneme can vary according to its context within a word. These difficulties are addressed by Kohonen but with methods that
do not use neural networks. For example, context sensitivity is dealt with using a conventional rule-based system. This is an
example,  therefore,  of  a  hybrid  approach,  which  is  often  the  most  pragmatic  in  engineering  a  problem  solution  (see
Sect. 11.4.4).

Another  example  concerns  the  representation  of  animal  categories  given  an  input  vector  of  animal  properties  (Ritter  &
Kohonen  1989).  The  input  patterns  consist  of  Boolean  vectors,  each  describing  a  particular  animal,  and  with  components
signalling the presence or absence of properties such as “is small”, “is big”, “has two legs”, “has four legs”, “likes to fly”,
“likes to run”, etc. When an SOM is trained on these descriptors, each animal gets assigned to a distinct part of the net so that
the net becomes partitioned into regions representing the three types of animal: birds, hunter-carnivores and herbivores. In the
original work of Ritter & Kohonen, the input vectors were augmented with preassigned classification information. However,

Figure 8.25 Direction tuning in velocity-encoding net.

Figure 8.26 Phonemic map.
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there  are  several  unsatisfactory  aspects  to  this,  as  noted  by  Bezdek  &  Pal  (1995),  who  go  on  to  show  that  this  extra
information is unnecessary for good class ordering on the SOM.

Combining SOMs and MLPs

Huang  &  Kuh  (1992)  used  a  combination  of  a  single-layer  perceptron,  an  SOM  and  a  multilayer  perceptron  to  solve  the
problem of isolated word speech recognition on a database of 20 words consisting of numbers (0 through to 9) and ten so-
called “control” words. The latter were drawn from the kind of commands required to interact with a computer program, such
as “go”, “help”, “yes”, “no”, etc. This problem is considerably simpler than the recognition of continuous speech discussed
above,  since  the  vocabulary  is  small  and  the  words  are  supposed  to  be  spoken  separately  with  distinct  interword  silence.
Nevertheless, there will still be inter- and intra-speaker variations in the input, and true silence has to be distinguished from
background noise.

The raw input  was  split  into  samples  of  16  ms duration.  Each sample  was  then processed  to  give  information about  15
frequency channels and three other parameters that were used in a simple perceptron to distinguish speech from noise. If a
sample was classified as speech then it was fed into a rectangular-array SOM, which was used to learn an acoustic map of the
words  in  the  training  set.  This  is  similar  to  the  phonotopic  map  shown in  Figure  8.26  but  this  time  there  is  no  attempt  to
distinguish phonemes per se and each 16 ms segment is treated as a valid input. When a complete word is input to the net, a
temporal  sequence of  sound segments is  generated and,  by recording all  those units  that  responded to a word,  a  pattern of
excitation is built up which is characteristic of that word. These characteristic word signatures produced by the SOM are then
used as input vectors to an MLP, which is trained to recognize them using backpropagation. In this way, the SOM is being
used as a preprocessor for the MLP and it is in this way that SOMs often find practical application.

Several  further  points  are  worth  mentioning.  First,  the  SOM was trained using Kohonen’s  self-organizing algorithm but
was  fine-tuned  using  a  kind  of  vector  quantization  known as  K-means  clustering.  Secondly,  the  topographic  nature  of  the
acoustic  map  was  used  to  good  effect  in  searching  for  best-matching  units.  Thus,  adjacent  segments  in  an  acoustic  word
sequence are often not too different because of physical constraints on the vocalization of sounds. The result is that they tend
to excite nodes that are close to each other (although not necessarily adjacent) on the network array. Having located the first
best match in a word sequence, the next one is likely to be found in its near vicinity, the subsequent match close to this and so
forth. Finally, the combined network was very successful, with the best recognition rates approaching 99.5 per cent.

8.4
Principal component analysis

We have seen that one way of viewing SOM learning is that it accomplishes a dimension reduction. There is another way of
performing this, which we first examine in pattern space before seeing its implementation in a network.  

Consider the two clusters of two-dimensional patterns shown in Figure 8.27. It is clear in this graphical representation that
there are two clusters;  this  is  apparent because we can apprehend the geometry and the two sets  have been identified with
different  marker  symbols.  However,  suppose  that  we  did  not  have  access  to  this  geometric  privilege,  and  that  we  had  to
analyze the data on the basis of their (x, y) co-ordinate description alone. One way of detecting structure in the data might be

Figure 8.27 Clusters for PCA. 
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to examine the histograms with respect to each co-ordinate—the number of points lying in a series of groups or bins along the
co-ordinate  axes—as  shown  in  the  top  half  of  Figure  8.28.  There  is  a  hint  that  the  histograms  are  bimodal  (have  two
“humps”), which would indicate two clusters, but this is not really convincing. Further, both histograms have approximately
the same width and shape. In order to describe the data more effectively we can take advantage of the fact that the clusters
were generated so that their centres lie on a line through the origin at 45° to the x axis.

Now consider a description of the data in another co-ordinate system x′, y′ obtained from the first by a rotation of the co-
ordinate axes through 45°. This is shown schematically in Figure 8.29. The new x′ axis lies along the line through the cluster
centres, which gives rise to a distinct bimodality in its histogram, as shown in the bottom left of Figure 8.28. Additionally, the
new y′ histogram is more sharply peaked and is quite distinct from its x′ counterpart. We conclude that the structure in the data
is now reflected in a more efficient co-ordinate representation.

In a real situation, of course, we are not privy to the way in which the clusters were produced, so that the required angle of
rotation is not known. However, there is a simple property of the data in the new co-ordinate system that allows us to find the
optimal transformation out of all possible candidates; that the variance along one of the new axes is a maximum. In the example
this  is,  of  course,  the  x′  axis.  A  corollary  of  this  is  that  the  variance  along  the  remaining  y′  axis  is  reduced.  With  more
dimensions, a “rotation” of the co-ordinate axes is sought such that the bulk of the variance in the data is compressed into as
few vector components as possible. Thus, if the axes are labelled in order of decreasing data variability, x1 contains the largest
data variance commensurate with a co-ordinate rotation; x2 contains the largest part of the remaining variance; and so forth.
The  first  few  vector  components  in  the  transformed  co-ordinate  system  are  the  principal  components  and  the  required
transformation is obtained by principal component  analysis  or PCA. This is a standard technique in statistical analysis and
details of its operation may be found in any text on multivariate analysis—see, for example, Kendall (1975).

To the extent that the essential information about the dataset is contained in the first few principal components, we have
effected a dimension reduction. Thus, in our simple two-dimensional example, the class membership is related directly to the
distance along the x′ axis. Then, although each point still needs two co-ordinates, the most important feature is contained in
the  single  dimension—x′.  The  situation  is  reminiscent  of  the  dimension  reduction  discussed  for  SOMs.  However,  the
transformation under PCA is linear (since co-ordinate rotation is a  linear transformation) whereas dimension reduction on an
SOM is not necessarily so. For example, the embedding of the arc in the plane (Fig. 8.22) requires a nonlinear transform to
extract the angle θ around the arc (e.g. θ=tan−1y/x).

We now attempt to place PCA in a connectionist setting. Figure 8.30 shows a single pattern vector v taken in the context of
the two-dimensional example used above. Also shown is the expression  for its first principal component vx′ along the

Figure 8.28 Histograms for PCA data.
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x′ axis, in terms of the angle θ between x and this axis. Consider now a node whose weight vector w has unit length and is
directed along the x′ axis. The following now holds for the activation:  since ||w||=1. But

 so that a=vx′. That is, the activation is just the first principal component of the input vector. Thus, if we use a
linear node in which the output equals the activation, then the node picks up the most important variation in its input. Further,
we may obtain an approximation of v according to

(8.15)
This property only becomes useful, however, if we can develop the required weight vector in a neural training regime. This
was done by Oja (1982), who showed that it occurs under self-organization with a Hebb-like learning rule

(8.16)
This is similar to (8.5) except that the decay term is y2w instead of yw. Of course, it is more useful if we can extract principal
components other than just the first, and Sanger (1989) has shown how to do this using a single layer of linear units, each one
learning one of the component directions as its  weight vector.  Sanger also gave an application from image compression in
which the first eight principal component directions were extracted from image patches of natural scenes. Let the resulting
weight  vectors  be  w1…w8  and  their  outputs  in  response  to  an  image  patch  be  y1…y8.  These  outputs  are  just  the  principal
components and so, under a generalization of (8.15), the original patch may be reconstructed by forming the vector y1w1+y2w2
+…+y8w8.  Sanger  showed  how  the  components  yi  can  be  efficiently  quantized  for  each  patch,  without  significant  loss  of
image information, so that the number of bits used to store them for the entire image was approximately 4.5 per cent that of the
original image pixels.

Finally, we note that it is possible to extend PCA in a neural setting from a linear to a nonlinear process—see, for example,
Karhunan & Joutsensalo (1995).

8.5
Further remarks

We have seen how self-organization has connections with clustering, vector quantization and PCA. It also has connections
with  a  branch  of  the  theory  of  communication  known  as  information  theory.  This  deals  with  the  structure  and  relations
between signals  treated in  the abstract.  There  is  not  room to develop these ideas  here  but  the  interested reader  may find a
suitable introduction in Jones (1979). Linsker was one of the first to explore these connections in a series of papers (Linsker
1986), which are summarized in Linsker (1988). Linsker showed how a layer of linear neurons can, using a type of Hebb rule
under self-organization, learn to extract features from its input simply by virtue of there being a local receptive field structure
in the input  connections.  By training a  set  of  hierarchical  layers  one at  a  time,  it  was possible  for  the net  to  learn a  set  of
progressively more complex features. Further, he went on to demonstrate how the Hebb-like rule was equivalent to a learning
principle that tried to optimize the preservation of information through the net. Plumbley (1993) has shown similar principles

Figure 8.29 Rotated co-ordinate axes. 

Figure 8.30 Vectors and PCA.
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at work with so-called anti-Hebbian learning in which weight values are decreased in response to input-output correlation. This
type of learning has the effect of decorrelating the outputs of a net so they respond to different patterns.

Self-organizing multilayer nets with local receptive fields have also been studied by Fukushima in a network known as the
neocognitron  (Fukushima 1980, Fukushima 1988, Fukushima 1989). It is a complex structure with three cell or node types
and its overall connection scheme is similar in broad outline to the animal visual system in that each successive layer sees a
local patch (receptive field) of its input. The neocognitron is therefore best suited to visual pattern recognition problems and is
able to generalize to scaled, translated, rotated and highly distorted versions of the training exemplars, just as humans are able
to do when reading handwritten characters.  Fukushima reports  simulations with the numerals  0–9,  and Kim & Lee (1991)
have demonstrated the ability of a neocognitron to recognize Hanguls (Korean) syllabic characters.

8.6
Summary

Lateral  on-centre,  off-surround  connections  in  a  layer  of  neurons  enable  the  activity  profile  of  the  layer  to  be  contrast
enhanced. Thus, nodes being supplied with the strongest external input become very active at the expense of nodes that are
being weakly driven. With suitable lateral weights this can result in the extreme case of “winner-takes-all” dynamics in which
the node with the largest external input reaches its maximum activity strength while all others have their activities reduced to
a minimum. This mechanism is used in competitive learning where nodes become associated with pattern clusters by aligning
their weight vectors with cluster centres. For any given pattern x, the node whose weight vector w is best aligned with x is
adapted so that w moves even closer to x. The degree of weight-pattern alignment is determined by node activity since this is
proportional to the dot product w·x of the two vectors (under a scheme in which these two sets of vectors are normalized). The
most active node is therefore the one whose weight vector should be adapted and may be found using the competitive (winner-
takes-all)  dynamics.  In  an ideal  case each cluster  is  encoded by (gives  maximal  response with)  at  least  one node although
what constitutes a cluster is determined by the network. The learning rule used in weight adaptation may be written as the sum
of  a  Hebb  rule  and  a  decay  term.  This  type  of  learning  is  called  unsupervised—equivalently  the  net  is  said  to  undergo  a
process of self-organization—because there are no target outputs.

In a topographic feature map, not only are nodes responsive to clusters but also they are arranged in the net so that adjacent
nodes encode clusters that are “close” to each other. The concept of proximity here is based on the idea that the pattern space
has an underlying dimensionality significantly smaller than the nominal dimensionality of each vector. If this is the case then
the  feature  map  will  vary  smoothly  along  each  of  these  main  dimensions  although  singularities  or  fractures  may  also  be
found. Topographic feature maps are found extensively in animal cortex where they encode sensory and motor information.
They  may  be  developed  in  artificial  nets  under  self-organization  using  a  learning  rule  similar  to  that  used  in  competitive
learning but now, not only is the “winning” node trained, but also nodes within a surrounding neighbourhood. To ensure well-
ordered maps with good resolution of pattern space detail, both the neighbourhood size and learning rate must be gradually
reduced as training progresses. After training a self-organizing map (SOM) in the manner outlined above, its class boundaries
(if these are known) may be improved using linear vector quantization (LVQ).

The  purpose  of  feature  maps  in  the  biological  setting  may  be  related  to  a  need  to  conserve  “wire  length”.  The  SOM
algorithm sheds light on possible developmental processes in the brain and feature maps allow visualization of fundamental
relations  in  the  pattern  space  of  the  training  set.  SOMs may be  thought  of  in  terms  of  a  dimension  reduction  of  the  input
space;  an alternative,  linear  statistical  method that  attempts  to  do this  is  principal  component  analysis  (PCA),  which has  a
neural network implementation. 

8.7
Notes

1. All  the  weights  are  slightly  different  although  only  five  points  are  shown;  the  graphic  resolution  is  not  able  to  make  these  fine
differences apparent. 
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Chapter Nine
Adaptive resonance theory: ART

Adaptive resonance theory, or ART, refers to a class of self-organizing neural architectures that cluster the pattern space and
produce  archetypal  weight  vector  templates.  As  such  they  have  many  features  in  common with  the  networks  described  in
Chapter  8.  However,  ART  networks  are  substantially  richer  architecturally  and  dynamically  since  they  attempt  to  fulfil  a
much broader programme of objectives.

9.1
ART’s objectives

9.1.1
Stability

One of the problems noted in connection with simple competitive nets was that, under certain circumstances, the assignment
of best-matching nodes to patterns can continually be in a state of flux so that no stable coding is reached. Grossberg (1976a,
b) gives specific examples of this phenomenon and has examined the general conditions under which it is likely to happen. In
particular,  he  notes  that  an  attempt  to  use  too  few  nodes  may  well  lead  to  instability  and  shows  how  the  order  of  vector
presentation  may be  crucial  in  this  respect.  Carpenter  & Grossberg  (1987b)  refer  to  this  problem as  the  plasticity-stability
dilemma: how can a network remain open to new learning (remain plastic) while not washing away previously learned codes?
In the SOMs developed under Kohonen’s algorithm this was overcome by gradually reducing the learning rate. However, this
is a rather ad hoc  solution that simply limits the plastic period of the net.  One of the main claims made for ART is that it
overcomes the plasticity-stability dilemma in a natural way, so that the net is continually immersed in a training environment
where there are no separate learning and testing phases. 

9.1.2
Control over detail of encoded features

A further problem is to know a priori how many nodes are required to cluster the pattern space. Clearly, if we provide a large
number  then  we shall  obtain  an  extremely  finely  graded classification,  while  too  few and the  clusters  will  be  too  large.  It
would, therefore, be more satisfactory if we could allow the net to decide for itself how many templates or clusters to provide
according to the setting of a single parameter that determines the net’s “attention to detail”.

9.1.3
Biological plausibility

Several  aspects  of  the  SOM  algorithm  were  clearly  not  biologically  plausible.  Indeed,  its  motivation  was  to  extract  the
required  computational  principles  and  then  discard  their  biological  basis.  The  gradient  descent  algorithms  like
backpropagation used with MLPs do not even attempt to provide any biological support. It is therefore a significant challenge
to ensure that each mechanism and component of a network can be identified (at  least  in principle) with a neurobiological
counterpart.

9.1.4
System integration

The learning rules and training algorithms we have dealt with so far imply that there is an external controller which supervises
the sequencing of many of the steps during learning. For example, weight adjustment is initiated at specific times at the end of



a pattern presentation cycle, an error signal is accumulated at the output layer of an MLP, or a neighbourhood size parameter
is reduced in an SOM. Is it possible, at the neural level, to integrate a large part of this system control into the fabric of the
network itself or, at a higher level, to make each part manifest and exhibit it as a seamless part of the whole system?

9.1.5
Mathematical foundation

One requirement when developing a network algorithm is to ensure that properties of the net such as convergence, stability,
the nature of internal representation, etc., should be mathematically provable. With some of the algorithms described so far,
attempts to characterize their behaviour have often been carried out well after their initial use, which was largely empirically
driven;  they  worked  and  the  results  appeared  to  justify  the  means.  It  is  therefore  desirable  that  a  mathematically  proven
foundation of the network properties be developed as early as possible so that empirical simulation work is avoided which
may be directed at trying to achieve the impossible.

9.1.6
The way forward

The construction of a self-organizing network that addresses all these issues is an extremely ambitious programme to fulfil.
Nevertheless, Grossberg and Carpenter attempted to do just this with the ART1 architecture and learning scheme. This paper
is  the  culmination  of  a  long  development  effort  initiated  by  Grossberg  (1973),  who  had  started  by  characterizing  the
behaviour of the competitive dynamics that would be an essential component of the network. The elements of the learning
theory were laid in Grossberg (1976b) and refined in Grossberg (1980). The final form of ART1 is presented by Carpenter &
Grossberg (1987b). ART1 is restricted to dealing with Boolean input patterns but further enhancements and revisions have
extended the scope of the ART family of architectures. We shall, however, restrict our main focus of attention to ART1, only
briefly  describing  subsequent  developments  in  Section  9.4.  Reviews  of  ART  may  be  found  in  Grossberg  (1987)  and
Carpenter & Grossberg (1988, 1992), and Grossberg (1988) includes a review of Grossberg’s work on competitive dynamics.

The literature on ART sometimes has the appearance of being rather impenetrable and Byzantine. This is partly because it
is a complex system and partly because the programme is so all embracing, attempting to make connection with neurobiology
at both the cellular and anatomical levels, and with psychological theories of learning. All of this is then interwoven with a
rich mathematical description. The connection with biology often results in many of the familiar network features we have
described being referred to by unfamiliar names. The mathematics also makes occasional use of notation that is not intuitive
in a connectionist context.

Our purpose here is not to give an exhaustive description of every aspect of the ART paradigm; rather, we wish to give an
overview that will (hopefully) make it more accessible. The key to our approach is not to try and tackle ART “head on” in all
its complexity, but to try and disentangle a set of levels of analysis using a suitable hierarchical approach. This perspective is
of  quite  general  applicability  and  so  we  will  revisit  some  networks  and  algorithms  described  earlier,  both  to  deepen  our
understanding of these systems and to illustrate how it may be applied to ART.

9.2
A hierarchical description of networks

In  his  book  Vision,  David  Marr  (1982)  described  a  hierarchical  framework  for  discussing  the  nature  of  computational
processes. The motivation for this was an understanding of the nature of computation in the visual system. However, Marr’s
approach is of quite general applicability and we shall use a modified version of it to describe the process of training a neural
network (in particular the ART1 net).

The top level of the hierarchy is the computational level. This attempts to answer the questions—what is being computed
and why? The next level is the algorithmic, which describes how the computation is being carried out, and, finally, there is
the implementation level, which gives a detailed “nuts-and-bolts” description of what facilities the algorithm makes use of. In
applying this scheme, the clear distinctions that are hypothesized may not be so easy to make in practice, and how system
features get allocated to levels may be, to some extent, a matter for debate. However, Marr’s original example helps illustrate
the meaning intended. It examines the computation of the bill in a supermarket with a cash register. In answer to the top-level
question of “what” is being computed, it is the arithmetical operation of addition. As to “why” this is being done, it is simply
that the laws of addition reflect or model the way we should accumulate prices together from piles of goods in a trolley; it is
incorrect, for example, to multiply the prices together. Next we wish to know how we do this arithmetic and the answer is that
it is done by the normal procedure taught at school where we add individual digits in columns and carry to the next column if
required.  This  will  be  done  in  the  usual  decimal  representation  rather  than  binary  (normally  encountered  in  machine
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arithmetic)  because  of  the  possibility  of  incurring  rounding  errors  when  converting  to  and  from  binary.  As  for  the
implementation, this occurs using logic gates made out of silicon, silicon oxide and metal. Notice that, in principle, the three
levels  are  independent.  In  particular  the  type  of  implementation  used  is  quite  independent  of  the  chosen  algorithm
(alternatives in the above example might make use of an older mechanical machine or pencil and paper). In addition, for any
given computation, we may choose from a variety of algorithms to achieve the same final result.

In Marr’s original hierarchy, the implementation level was associated with a particular set of hardware resources. Here we
are not so concerned with this issue per se as much as supplying a more detailed account of the network operation. Further,
we shall find it useful to divide the implementation level into two—a high or system implementation level and a low or signal
implementation  level.  The  system  level  includes  processes  and  mechanisms  that  have  yet  to  be  articulated  at  the  level  of
artificial neurons. For example, in backpropagation no specific neural mechanism is indicated for finding the error. This may
be  possible  in  principle  but  its  instantiation  would  reside  at  the  signal  level.  This  distinction  will  become  clearer  as  we
proceed with the explanation of ART1, and further examples of this approach may be found in Chapter 11. 

9.3
ART1

Historically  the  first  (and  simplest)  member  of  the  ART  family  is  ART1.  It  is  a  two-layer  network  that  discovers  pattern
cluster templates in arbitrary Boolean pattern sets.

9.3.1
Computational level

The computational level has the same goal of finding cluster templates as simple competitive learning. However, the number
of templates is not fixed ab initio but is determined by the requirement that each pattern should be sufficiently similar to its
associated template. Further, the template set and the mapping between patterns and templates should be stable so that, after a
finite time, these do not change.

In order to make this more concrete, first recall that ART1 deals with Boolean patterns. It also uses Boolean templates and
each “1” in a template or pattern is referred to as a feature. Now let d be the number of features common to the template and
pattern, divided by the number of features in the pattern. In other words, d is that fraction of the features in a pattern that are
held in common with the template, and 0≤d≤1. Notice that large values of d imply that the pattern is close to the template, so
d is a measure of proximity rather than distance.

The  computational  requirement  is  now  that  each  pattern  should  be  assigned  a  template  such  that  the  pattern-template
similarity d is greater than some prescribed value ρ. The object of this is to overcome the problem outlined above concerning
the level of detail in encoding features. For, if ρ is small then the similarity criterion is loose, comparatively few templates
will be required and a few coarse clusters will be found. If, on the other hand, ρ is large then the similarity criterion is demanding,
and many templates may be used in encoding a large number of smaller clusters, many of whose templates may be similar to
each other. In the terminology of ART, ρ is known as the vigilance since it informs the net of how closely it should examine new
patterns to see if they are similar to existing stored templates.

9.3.2
Network architecture

The  intimate  relation  between  the  algorithm  and  the  ART  network  makes  it  profitable  to  describe  the  neural  network
architecture  at  this  stage  (the  relation  between  algorithms  and  networks  is  explored  further  in  Sect.  11.2).  The  network
(Fig. 9.1) has two layers of leaky-integrator-type neurons. Although the dynamics of each are somewhat more complex than
those  described  by  equation  (2.6)  this  is  not  a  problem  as  we  will  be  concerned  primarily  with  their  equilibrium
properties. The first layer (labelled F1 in the ART notation) receives input from the external environment and from the second
layer labelled F2. Quantities relating to layers F1, F2 are indexed by i, j respectively and individual nodes denoted by vi and vj.
Layers F1 and F2 contain M and N nodes respectively. The input to F1 from F2 is mediated by a set of top-down weights zji,
which constitute the stored templates. Layer F2 is subject to competitive, winner-takes-all dynamics and receives input from F1
via a set of bottom-up weights zij (notice that the ordering of the i, j indices indicates bottom up or top down). In contrast with
simple competitive learning, these weights do not store templates as such, although, as will be shown later, they are closely
related. Note that, in some versions of ART1, layer F1 is also equipped with lateral on-centre, off-surround connections. Only
one set of each type of connections has been shown for simplicity.
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9.3.3
Algorithmic level

We proceed by first describing the algorithm informally. Next it is formalized in some pseudo-code and detailed points are
subsequently discussed.

At the algorithmic level, each pattern presentation initiates a search for a closely matching template. If the template-pattern
match is within the vigilance criterion, then the template is adjusted to incorporate information provided by the new pattern by
losing any features that are not shared with it. If no sufficiently well-matched template can be found, a new template is created
that is set equal to the current pattern.

The success  of  ART lies  in  the  subtlety  with  which the  templates  are  searched,  as  it  is  not  necessarily  the  case  that  the
closest template is chosen first. Rather, the bottom-up weights zij determine the order of search by specifying the F2 node that
has  the  largest  response  to  the  input  out  of  a  set  J  of  nodes  which  are  currently  eligible  for  template  match.  By  “largest
response” here is meant the weighted (by wij) sum of inputs from F1. If a node selected in this way does not match its template
well with the pattern then it is deleted from the list J, which initially contains all N nodes in F2.

Thus, there is a sequence of selection-match trials in which F2 selects the most active node (in response to the current input
pattern) from its remaining pool of untried nodes, and then tests its template against the input. If there is a match (under the
vigilance criterion) resonance is said to occur between the template and the pattern, and the weights are updated. If there is no
match then the currently active F2 node is deleted from J and the search continued. The search will terminate if either there is
a previously trained template that matches well,  or an untrained node in F2  is selected. The initialization conditions ensure
that such a node resonates with any input since it is non-specific and provides strong inputs to the whole of F1. Of course, in
limiting cases,  all  nodes are trained and there are no free ones to take new templates.  In this  case the net  cannot  learn the
entire training set.

At resonance, all top-down weights that correspond to template-pattern feature matches are set to 1, while the rest are set to
0.  All  bottom-up weights are set  to 0 or the same positive value,  which is  determined by the number of matching features
between pattern and template. Larger numbers of matches cause smaller positive weights and vice versa so that, as discussed
later, there is some kind of normalization at work. Finally, if zij is set to 0 then so too is zji so that the bottom-up weight vector
to any F2 node is like a normalized version of that node’s top-down template.

In  order  to  develop  this  more  formally  we  introduce  some  new  notation  in  keeping  with  that  due  to  Carpenter  and
Grossberg. Vectors are written in upper case italic and, for any vector V, let V be the set of component indices in V that are
greater than zero. For example, V=(1, 0, 0.7, 0, 0.5) has positive elements at the first, third, and fifth positions so V={1, 3, 5}.
If V is a Boolean vector then, in the terminology of ART, the 1s are features so that V is a feature-index set. Further, let |V| be
the number of elements in V, which, for a Boolean vector, is just the number of features in V. The top-down template vector
will be denoted by Z(j)1 so that Z(j) has components zji. Then, if I is the input pattern, use will be made of the set X, which is
the set intersection, I ∩ Z(j). That is, X is just the index set for the features that the input and the template have in common.

The ART1 algorithm may now be expressed as follows. Comments are bracketed by the symbols /* */ and use has been
made of the set notation xєY to mean “x is a member of set Y”.

/* Initialization—top-down weights */
put all zji=1
/* Initialization – bottom-up weights */
Choose constant L>1
Choose random values for zij ensuring all zij<L/(L−1+M) 
repeat
Apply input I

Figure 9.1 ART1 network architecture.
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/* Initialize eligibility set to include all F2 nodes */
Put J={v1,…, vj,…vN}
Resonance=FALSE
repeat /* search for match */
find vj in F2 with largest value of I·Z(k) where kєJ
/* I·Z(k) is what we call the activation */
compute X=I∩Z(j)

if  /* template matches pattern */
Resonance=TRUE
else
delete vj from J
/* vj no longer eligible for template searched */
endif
until Resonance or J is empty
if Resonance then /* weight update */

endif
until…

We now comment on some of these steps by way of explanation and to help show their interrelation.

– The condition  is the symbolic representation of the matching criterion; that is, the fraction of input features that
are also common to the template must be greater than the vigilance. One corollary of this definition is that inputs with a
large number of features require more feature mismatches to fail the vigilance test than do inputs with only a few features.
For example, suppose I1 and I2 have 10 and 100 features respectively and that they match against templates with 7 and 81
features respectively. For I1 the test ratio is 7/10=0.7 while for I2 it is 81/100=0.81. Thus, if ρ=0.8, I1 would fail a vigilance
test  against  a  template  with  only  three  mismatching  features,  while  I2  would  pass  with  19  mismatches.  Carpenter  and
Grossberg call this the self-scaling property, pointing out that, for a pattern like I1, each feature contains useful information
about the pattern because there are so few of them. However, for a pattern like I2  a few missing features may be due to
noise rather than true informational content.

– The prescriptions given for weight update constitute a pair of learning rules for bottom-up and top-down weights.
– The  search  sequence  is  such  that  trained  nodes  are  always  tested  first  before  an  untrained  node  is  used  to  establish

resonance. However, if a search ends in this way, it must be guaranteed that resonance occurs. This is done by virtue of the
initialization that sets all the top-down weights to 1. This template matches any input and then X=I so that a fresh template
simply encodes the current pattern. Subsequent matches with this new template are always partial so that templates always
lose features and can never gain them.

– Although L>1 (Carpenter & Grossberg 1987b) it is of interest to see what happens in the limiting case when L=1. Then the
initial values of zij are all 1/M so that the sum of the weights is 1 and the bottom-up weight vector is normalized according
to the criterion in  (8.8).  Then,  the bottom-up learning rule  becomes  for  those i  in  X  and 0 otherwise.  Again

 so that the weights remain normalized. In general L≠1 so that normalization is not obtained in the sense we have
used. Carpenter and Grossberg refer to the quasi-normalization condition occurring for arbitrary L as the Weber law rule.
We have seen that this class of process is essential for self-organized learning.

– Although L>1 is required for correct operation, L should not be chosen too large or new templates will be chosen at the
expense of adapting previously learned ones, even though ρ may be small (Carpenter & Grossberg 1987b).

– In later variants of the architecture, F1 is equipped with competitive dynamics and can normalize the input prior to sending
it on to F2. This allows for a simpler bottom-up learning rule that puts zij=1 for those i in X and 0 otherwise.

– If resonance does not occur then all nodes in F2 have been searched for match without success (J is empty). In this case,
the  net  cannot  classify  all  the  patterns  at  the  required  level  of  vigilance.  Lowering  ρ  sufficiently  will  allow  full
classification since this  decreases  the  number  of  clusters  required.  This  is  emphasized by the  extreme cases  of  ρ=0,  for
which all patterns are assigned the same template, and ρ=1, for which all patterns are assigned their own template.

– It can be shown (Carpenter & Grossberg 1987b) that after a finite number of presentations of the training set, the learned
templates stabilize so that applying the learning rules at resonance does not alter the weight sets. At this point, each pattern

A HIERARCHICAL DESCRIPTION OF NETWORKS 93



directly  accesses  a  learned template.  That  is,  the first  template to  be chosen on presentation of  a  pattern is  the one that
causes resonance. This allows us to avoid having to supply a terminating condition to the outer loop (it has been written—
until…).  The  implication  of  this  is  that  the  whole  process  carries  on  indefinitely  and  there  is  no  separate  learning  and
testing phase with ART (as is the case with most architectures) although, in a real application, we would stop presenting
patterns after template stabilization. If,  on the other hand, the training environment were changed and new vectors were
suddenly to be presented, then learning would start again as new templates are assigned and old ones updated.

– Georgiopoulous et al. (1991) have shown that, although the learned templates are always stable, their form depends on the
order  of  pattern  presentation.  They  also  showed  that  it  is  possible  for  a  learned  template  to  exist  that  is  not  directly
accessed by any training pattern. These are therefore spurious templates with the same status as the spurious stable states in
the Hopfield  nets.  However,  several  computer  simulations exhibited by Carpenter  & Grossberg (1987b)  have shown an
absence of such templates and so it appears that these may be the exception rather than the rule.

– In another result, Georgiopoulous et al. (1991) showed that the number of epochs (complete presentations of the training
set) is limited by the number of different pattern sizes. The size of a pattern is just its number of features and, if there are m
pattern  sizes,  then  the  net  will  stabilize  in  at  most  m  epochs.  This  occurs  irrespective  of  any possible  reordering  of  the
training set at each epoch.

9.3.4
An example

The principles outlined above are now applied to a simple example, which is shown in Figure 9.2. The four patterns A, B, C, D
are presented to a net with at least three F2 nodes and the vigilance is set at 0.8. Eventually, three templates will be assigned
after a single pass through the training set, after which stability has been reached. Initially the three templates are unassigned,
having  all  zji=1,  indicated  by  the  grid  squares  being  filled  in  the  topmost  row  of  the  figure.  Subsequent  rows  show  the
development of the templates after each of the patterns (shown on the right) has reached resonance and learning taken place.
Thus, the second row shows the net after training with pattern A, during which it attains resonance with the first unassigned
template. The common feature set, or template match, is just the pattern itself and so the first template becomes equal to A.
When B is presented, it first searches against template 1. There are 11 features in pattern B and, of these, B shares eight in
common so that, at resonance, and . In this case, then,  since 8/11=0.73<0.8. The node  with template
1 is therefore taken out of the eligibility set J and B is forced to resonance with the next unassigned template.

Patterns C and D consist of a common upper region of ten elements overlaid on A and B respectively so that they differ in
the  same group of  elements  as  A  and B.  C  is  quite  different  from templates  1  and 2  and so,  after  searching them,  reaches
resonance with template 3. On presentation of D, it also fails to reach resonance with templates 1 and 2. On comparison with
template 3, we have  and . The difference  is the same as it was in comparing templates for A and
B since the third template is the same as C, and D differs from C by the same group of elements that distinguish A and B. Now,
however,   since  14/17=0.82>0.8.  Resonance  occurs  and  template  3  is  set  to  the  common  features  between  its

Figure 9.2 Simple ART training example.
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original  form  (C)  and  pattern  D.  Here  we  have  an  example  of  the  self-scaling  property  for,  although  the  same  group  of
features distinguish the pairs A, B and C, D, they give rise to different learning strategies depending on their context. In the
case of A, B they are regarded as true pattern features and are retained in separate templates. In the case of C, D, however,
they are regarded as noise since they represent a smaller fraction of the total feature set. Separate templates are therefore not
required and the existing one is modified to discard the feature difference set. 

9.3.5
A system-level implementation

In our development of the implementation, we attempt to adhere to the ART terminology in order to accustom the reader to
what can be expected in the literature. Two terms are usefully dealt with right away.

The short-term memory (STM) is the pattern of neural activity or activation profile in the network as a result of stimulation
by  an  input  pattern.  In  his  work  on  competitive  dynamics,  Grossberg  (1973)  showed  how  it  is  possible  (with  the  right
dynamics and weight structure) for the activation profile to continue after the input has been withdrawn. In this way, the net
“remembers”  its  previous  input  although  this  is  truly  “short  term”  since,  if  the  activity  is  destroyed  by  further  input,  this
memory trace is lost. The long-term memory (LTM) traces, in contrast, are the sets of network weights (either top down or
bottom up).

At  the  system  level,  the  network  in  Figure  9.1  is  now  supplemented  by  some  extra  control  structures  as  shown  in
Figure 9.3. The individual units or neurons are no longer shown, and each layer is now represented by an unfilled rectangle. The
two layers together are known as the attentional subsystem. The weights (LTM traces) have also been lumped graphically into
single  open arrow symbols.  The filled  arrows represent  control  signals  that  may be  thought  of  as  formed by summing the
outputs from one of the neural layers, or by combining other control signals. The signs over the arrows indicate whether the
signals contribute additively or subtractively from their destination. Where a control signal meets a neural layer it is supposed
to affect all nodes in that layer. Note that the control signals here are not resolved at the neural level (in accordance with the
definition of the system level), and specific mechanisms for affecting each node are not specified.

Much  of  this  control  mechanism  is  devoted  to  orchestrating  the  search  for  template  matches  and  to  determining  what
constitutes  a  template  mismatch.  As indicated in  Figure  9.1,  the  template  matching is  accomplished in  F1  and the  winner-
takes-all dynamics of F2 ensure that only one template is chosen at any one time.  

We now examine the sequence of events that occurs for each pattern presentation with short summaries posted before each
main point.

Summary The F2 node that responds most strongly to the input I is active while all others are inactive.

The input I produces an STM trace X in layer F1 (vector of activations) which, in turn, results in a set of F1 outputs, S. The
latter is related to X via a squashing function of some kind (although its exact form is not often specified in many descriptions
of ART). Each F2 node vj then multiplies or gates S by its bottom-up LTM traces zij to form an input signal Tj; that is, each
node forms the weighted sum of its inputs from F1 (the summation component is also referred to as an adaptive filter). The
competitive dynamics contrast-enhance the activity to give a pattern of STM Y at F2 and a final pattern of output U related to
Y by another squashing function. U is such that it specifies a single node with output 1, corresponding to the node with largest
input Tj, while the rest have output 0. Thus, F2 executes the normal winner-takes-all choice.

Figure 9.3 ART1—system level. 
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Summary The F1 gain control allows the input to be transmitted to F2 under the 2/3 rule. The orienting subsystem is
not active.

The  above  choice  at  F2  is  made  possible  by  the  correct  values  of  the  control  signals.  Until  F2  has  chosen  an  optimally
responding node, all its outputs are weak and it provides no signal input to inhibit the F1 gain control. This is, however, being
excited by the input I so that it provides input to F1. Now, one of the criteria for an F1 node to be active is that it should have
at least two out of three of its inputs active; this is the so-called 2/3 rule. All nodes in F1 receive input from the gain control
but only those nodes that also receive input from I are able to become significantly active2 and transmit the input to F2 (the
reason for this mechanism will become clear in the next step). A similar role is played by the F2 gain control, which allows
this layer to become active only while input is being applied.

Additionally, before F1 has had a chance to process its input from F2, it sends a signal to the F2 reset mechanism, which is
the same as that from the input at this time, since the pattern in X is governed directly by I. This mechanism is also known as
the  orienting  subsystem  since  it  helps  control  the  search  for  templates.  The  two  signals  providing  input  into  the  orienting
subsystem therefore cancel and no signal is sent to F2, which continues to operate in the normal way.

Summary If a match occurs then resonance takes place, otherwise F2 is reset and a new template is read out.

The output pattern U now contributes to the STM trace at F1 via the top-down LTM-gated signals V. That is, each node vi in
F1 calculates the weighted sum of inputs Vi, from F2. Since only one node vj is active in F2, the top-down template of LTM
traces zji from vj gets imposed on or “read out” to F1 as shown in Figure 9.4. Note that Carpenter and Grossberg regard the
signals V as the template (or top-down expectation) rather than the weights. However, since only one node at F2 is stimulating
V, its components are identical to the zji and the two terms are functionally equivalent (at least in ART1).

Now, only those nodes in F1 that have input from both external pattern and top-down template features are active in the new
STM trace  X*.  This  follows  because,  when  F2  chooses  a  winning  node,  it  is  able  to  send  an  inhibitory  signal  to  the  gain
control. The 2/3 rule now requires both external input and template signals for node activity; those for which the template and
pattern input differ will be turned off. Note that the template match index set X (defined in the algorithm) is consistent with the
use of the symbol X to denote F1 STM. If X* and X are sufficiently different, the inhibitory signal from F1 to the orienting
subsystem will be diminished to the extent that this now becomes active and sends an arousal  burst  to F2.  This excites all
cells equally and results in the currently active node being reset to an inactive state in a long-lasting way. That a node can be
inhibited  in  this  way  by  an  excitatory  signal  may  appear  paradoxical  at  first  but  possible  neural  mechanisms  for  its
instantiation are discussed in the next section.

As soon as F2 has been reset, the original input pattern I can be reinstated in STM at F1 since F2 is no longer able to inhibit
the gain control. F1 excites F2 again but this time the maximally responding node (largest Tj) is not able to take part in the

Figure 9.4 Reading out top-down templates.
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development of STM Y in F2. The node with the next largest response now gives rise to the peak in STM under competitive
dynamics, and therefore becomes the new active node in F2. 

The process of match and possible reset is continued in this way until a match is found that allows F1 to continue inhibiting
the orientation subsystem. The degree of inhibition required is, of course, governed by the vigilance ρ. When this is done, the
two layers are supporting each other or resonating and learning takes place according to the rules given in the algorithm. The
LTM traces  are,  in  fact,  supposed  to  be  plastic  at  all  times  but  the  template  search  period  is  supposed  to  be  very  rapid  in
comparison to the duration of resonance, and so significant changes only take place at this time.

The training of the bottom-up zij is sometimes referred to as in-star learning since it trains LTM traces that are inbound to
an F2 node. This is in contrast to the out-star learning that takes place with the top-down zji since these modulate outbound
signals from F2.

On withdrawal of the input, the F2 gain control becomes inactive and the STM at F2 therefore collapses. The reset of any
F2 nodes is also discontinued so that all nodes are now eligible for template search.

9.3.6
The signal level: some neural mechanisms

It is not the intention here to give an exhaustive account of the neural-level signalling and processing mechanisms that (at least
hypothetically) underpin ART1. Instead, we give brief descriptions to give a flavour of the approach taken and to help define
some of the terms used in the literature.

As noted previously, all nodes in the network obey leaky-integrator-like dynamics. Grossberg also uses the term membrane
equation  to  describe  laws  like  this  governing  activation  dynamics,  because  he  thinks  of  the  activation  as  analogous  to  the
membrane  potential  in  real  neurons.  However,  unlike  the  simple  model  of  (2.6),  which  incorporates  the  weighted  sum  of
inputs  s  additively,  the  models  used  by  Grossberg  involve  terms  in  which  the  activation  is  multiplied  by  the  input.
Neurophysiologically,  multiplication  of  signals  is  sometimes  referred  to  as  a  shunting  operation  so  the  ART  neurons  are
shunting rather than additive. The advantage of this approach is that it enables input normalization using a type of on-centre,
off-surround connection scheme that is feedforward (Fig. 9.5). In additive models this kind of process is only available with
lateral competitive connections. For a review of these ideas see Grossberg (1988).

The control signals are established by providing neural inputs from the signal source. For example, the inhibition of the F1
gain control by F2 is implemented by a signal that is just the sum of all the F2 outputs.

The  reset  mechanism  at  F2  has  been  given  a  plausible  basis  in  the  so-called  on-centre,  off-surround  dipole  (Grossberg
1980). This is a small circuit of six neurons with recurrent connections and a pair of slowly adapting synapses that can have
its output inhibited by an appropriately connected excitatory input signal. The long-lasting reset at F2 is then mediated by the
slowly responding synaptic links. Each node is now replaced by one of these dipoles and Grossberg’s use of the term field to
mean an array of neurons leads to the term dipole field being used occasionally for layer F2.

The LTM traces also obey equations governing their rate of change3, which implies that they are, in general, continually
plastic.  However,  as  noted  above,  the  search  for  resonance  is  supposed  to  take  place  on  a  much  shorter  timescale  than
resonance is maintained. Further, during this time, the LTM traces are supposed to be able to come to equilibrium in the so-
called fast-learning regime. That is, LTM changes fast enough to allow its steady-state values to be reached at resonance but
not so fast that they are substantially affected during search. The learning rules given in the algorithm are then the equilibrium
values  of  LTM  traces  under  fast  learning.  The  assignment  of  zero  to  previously  positive  LTM  traces  occurs  because  the
dynamics of LTM involve a decay component, leading to what is referred to as the associative decay rule.

Figure 9.5 Feedforward, on-centre, off-surround architecture.
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9.4
The ART family

We have dealt here with the network known as ART1 but this is just one of a series of architectures rooted in the principles of
adaptive resonance theory. ART2 (Carpenter & Grossberg 1987a, Carpenter et al. 1991b) extends ART1 to the classification
and stable coding of analogue patterns. In ART2, the F1 layer is replaced by a complex five-layer network, which is notionally
split  into  a  three-tier  F1  “layer”  and  a  two-tier  preprocessing  “layer”  F0.  The  length  of  search  involved  here  is  a  potential
problem area, as it was with ART1, and has been addressed in a fast, algorithmic version of ART2 (Carpenter et al. 1991b).

A  conceptually  simpler  analogue  adaptation  of  ART1  is  described  in  the  so-called  fuzzy  ART  system  (Carpenter  et  al.
1991c). This is advertised as an algorithm rather than a network, although a neural implementation does exist (Carpenter et al.
1991d),  and  makes  use  of  fuzzy  set  theory  to  generalize  the  notion  of  “feature”.  In  ART1,  a  template  location  is  either  a
member  of  the  feature  set  or  it  is  not.  In  fuzzy set  theory  (Zadeh 1965,  Kosko 1992)  an  element  can  have  a  continuously
graded membership between 0 and 1, with 0 and 1 implying “definitely not in” and “definitely in” the set respectively. By
allowing template locations to take analogue values between 0 and 1 we can interpret them as fuzzy set membership values.
The same applies to F1  outputs and the template-pattern match is now made by the fuzzy equivalent of the set intersection
I∩X at resonance; this reduces to finding the minimum of the pair (zji, xi).

ARTMAP (Carpenter  et  al.  1991a)  is  a  supervised  system that  learns  input-output  pairs  (x,  y).  It  consists  of  two ART1
modules linked by an intermediate layer or map field. Each ART module self-organizes in the normal way and is devoted to
processing either the x or y patterns. The map field allows the learned templates of the ART module Ma on the input side to
access  the  templates  in  the  module  Mb  on  the  output  side.  In  this  way  predictions  from an  input  vector  can  be  made  and
checked  against  the  target  output.  The  control  system  contains  a  facility  to  alter  the  vigilance  of  Ma  so  as  to  ensure  that
sufficient  categories  or  templates  are  learned  in  Ma  to  reduce  the  discrepancy  with  the  supervised  output  to  a  minimum.
However,  the  vigilance  is  not  increased  unnecessarily  and  templates  are  kept  as  large  as  possible  in  order  to  promote
generalization.  The  network  is  a  hybrid,  containing  self-organizing  elements  in  a  supervisory  environment,  and  has
similarities with the algorithms that dynamically construct the hidden layer in MLPs (Sect. 6.10.4) if we think of F2 templates
in  Ma  as  corresponding  to  hidden  nodes.  Remarkably  successful  results  are  reported  by  Carpenter  et  al.  (1991a)  for  the
classification of mushrooms on a database of over 8000 examples. Inevitably, the fuzzy extension of ART1 has been applied
to  ARTMAP  to  allow  it  to  process  analogue  data  (Carpenter  &  Grossberg  1992)  giving  rise  to  the  fuzzy  ARTMAP
architecture. Carpenter & Grossberg (1992) contains a précis of the ARTMAP algorithm (albeit in its fuzzy guise), which is
less theory bound than that in Carpenter et al. (1991a).

ART3 (Carpenter & Grossberg 1990) allows any number of ART2 modules to be concatenated into a processing hierarchy.
In this way the F2 nodes of one ART2 module send their output to the inputs of the next one. This paper also sees a return to
the biological roots of ART in that a chemical transmitter mechanism is postulated for the F2 reset mechanism.

9.5
Applications

Caudell et al. (1994) describe an application of ART1 to the classification of parts in the inventories of the aircraft industry.
This  was  successfully  used  by  Boeing  in  the  early  stages  of  the  design  process  to  avoid  replication  of  effort  and  to  make
optimum use of existing parts. Each part was assigned a binary vector in a preprocessing stage that encoded shape, fastening
hole locations and the number and type of  metal  bends.  For two-dimensional  parts  like flat  metal  fasteners,  the shape was
encoded via its silhouette on a pixel grid, while three-dimensional parts were treated by describing polygons that were fitted
to  their  surfaces.  The  resulting  binary  vectors  were,  in  general,  extremely  long  and,  to  avoid  excessive  storage,  they  were
encoded by describing the run lengths of successive 0s and 1s. For example, 0000011110001111111 would map into 5437.
The ART networks then used a modification of the standard algorithm that could work directly on the run-length encodings.
The system consisted of a “hierarchical abstraction tree” of ART1 “macrocircuits”, each of which contained a collection of
ART  modules  (Fig.  9.6).  Consider  first  a  single  macrocircuit  as  shown  on  the  left  of  the  figure.  The  run-length-encoded
vectors are first divided into parts that describe shape, holes and bends. The partial vectors for shape are then applied to the
first (bottom) ART1 network, which clusters or groups them accordingly. For each shape-based cluster learned in this way,
the partial vectors for bends and holes are then separately applied to another pair of ART nets so that the cluster is further
refined on the basis of these two criteria. Now consider the hierarchy of macrocircuits shown on the right of Figure 9.6. The
bottom-most  macrocircuit  is  trained  with  a  comparatively  low  vigilance  so  that  it  carries  out  a  coarse  grouping  of  parts.
Successively finer classification can be achieved by subsequently applying the pattern vector to macrocircuits further up the
hierarchy,  which  will  have  higher  levels  of  vigilance.  Within  each  macrocircuit  the  design  engineer  can  then  specify  a
classification  based  on  shape,  shape  and  bends,  shape  and  holes,  or  on  all  three  aspects  of  the  component  part.  The  final
system had over 5000 ART modules and dealt with a database of over 10000 parts.
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Carpenter  et  al.  (1989)  describe  a  system for  recognizing  images  that  uses  an  ART2  module  to  develop  the  categories.
Much  of  this  paper  is,  however,  devoted  to  the  image  preprocessing  that  segments  the  region  of  interest  and  ensures  a
consistent size, orientation and contrast for input to the ART network.  

The results of several simulation studies for ARTMAP are reported in Carpenter & Grossberg (1992). In particular, they
describe a letter recognition problem that attempts to classify a database of 20000 noise-corrupted, black-and-white printed
characters into one of 26 upper case letter categories. The training set was a subset of 16000 patterns and the other 4000 were
used for testing. Training took only one to five epochs (although note the comments below on training times) and there was a
90 to 94 per cent success rate on the test set.

ART  was  conceived  with  biological  realism  in  mind  and  so  one  of  its  applications  has  been  in  the  modelling  of  brain
function. Thus, Banquet & Grossberg (1987) investigated EEG recordings under various conditions of human subject learning
and compared them successfully with predictions made on the basis of ART. In connection with the primate visual system,
Desimone (1992) identifies F1 and F2 with the prestriate and inferotemporal cortex respectively.

9.6
Further remarks

Although not  proven here,  ART1 does lead to stable learning under arbitrary Boolean training environments (Carpenter  &
Grossberg 1987b). However, as noted by Lippmann (1987), the templates that emerge under ART are not always the most
useful.  He uses  an  example  (albeit  a  toy  one)  in  the  domain of  character  recognition in  which,  in  order  to  obtain  separate
categories  for  two  well-formed  letters  (C  and  E),  it  is  necessary  to  allocate  separate  templates  for  two  noisy  versions  of
another letter (F). This may, however, be a problem with any clustering technique—our high-level intuitive understanding of
what constitutes a class or template may not be that which is discovered by the algorithm or network. It is then necessary to
assign many templates to each nominal category and to have a higher-level choice mechanism to associate templates logically
with classes.

According to the result  of Georgiopoulous et al.  (1991), at  most m  epochs are needed for a training set with m  different
sizes. The implication of this is that training in ART is very fast. It should be realized, however, that, although the number of
epochs  needed  may  be  small,  the  time  to  execute  each  one  may  be  large  if  there  are  a  large  number  of  templates  to  be
searched  at  each  pattern  presentation.  To  help  overcome  this  difficulty,  Hung  &  Lin  (1995)  have  proposed  an  ARTl-like
network that can search its template space much faster than the original ART1 net.

Historically,  ART was  developed  from the  bottom up;  that  is,  the  design  was  initially  based  at  the  signal  level  and  the
systemic approach came later. However, the algorithm defines what occurs in many ART simulators and has similarities (as
does simple competitive learning) with conventional clustering analysis. This comparison was noted by Lippmann (1987) and
has been pursued by Cheng & Titterington (1994) and Burke (1991). Nevertheless it is the system-level implementation of the
algorithm that distinguishes it as characteristically connectionist and the neural-signal-level analysis as biologically plausible. 

Figure 9.6 Aircraft part inventory system. 
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9.7
Summary

ART  describes  a  set  of  networks  that  undergo  self-organization  to  learn  a  set  of  stable  cluster  categories  or  templates.
However,  in  contrast  to  simple  competitive  self-organizing  networks,  ART  systems  allow  the  number  of  categories  to  be
determined using a single vigilance parameter. This is achieved by controlling the degree of match between stored templates
and  new  patterns,  which  is,  in  turn,  implemented  by  a  set  of  top-down  weights  from  the  second  to  the  first  layer.  An
explanation of the principles of ART is facilitated by describing the net at several levels in a hierarchy. At the signal level it
consists  of  biologically  plausible  mechanisms  and  many  aspects  of  system  behaviour  may  be  described  in  rigorous
mathematical terms (although this has not been addressed here). ART nets represent one of the few attempts to incorporate all
control  mechanisms into  the  totality  of  the  architecture  (rather  than  leaving them to  some extrinsic  control  software).  It  is
necessary, however, to be aware that the learned templates may not match our intuitive expectations and that the theoretical
bounds on the time to learn may obscure lengthy, single-epoch computation.

9.8
Notes

1. This is not a Carpenter-Grossberg form although it is in the spirit of their notation.
2. Carpenter  &  Grossberg  refer  to  these  as  supraliminally—literally  “above  threshold”—active.  This  does  not  imply  that  there  is  a

simple threshold output function but that the neuron dynamics are able to generate large outputs.
3. These are known as differential equations because they make use of differentials (derivatives or slopes). 
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Chapter Ten
Nodes, nets and algorithms: further alternatives

In this chapter we wish to disabuse the reader of some ideas that may have inadvertently been imparted: namely, that artificial
neurons always look something like a semilinear node and that feedforward nets are always trained using backpropagation or
its variants.

10.1
Synapses revisited

In everything we have seen so far the combination of input signals through a linear weighted sum has been a recurrent theme.
This has been the case in spite of many variations in the way this is eventually used—semilinear nodes, TLUs, leaky integrators
—as they all perform this basic operation as a first stage. It is now time to go back and review the validity of this assumption
and, as with our first look at node functionality, our initial approach will be biologically motivated because we argue that real
neurons have not developed their functional repertoire gratuitously but in response to computational needs. The stereotypical
synapse shown in Figure 10.1 is the inspiration for the weighted connection in simple models of neural activation. It consists
of an electrochemical connection between an axon and a dendrite; it is therefore known as an axo-dendritic synapse and its
basic operation was discussed in Section 2.1.  

There  are,  however,  a  large  variety  of  synapses  that  do  not  conform  to  this  structure  (Bullock  et  al.  1977).  Of  special
importance  for  our  discussion  are  the  presynaptic  inhibitory  synapses  shown  in  Figure  10.2.  Here,  one  axon  terminal  A2
impinges on another A1 just as it, in turn, is making synaptic contact with a dendrite. A2 can now modulate the efficiency of
the synapse with A1 by inhibiting its action; thus, signals at A2 can “turn off” the (otherwise excitatory) effect of A1. This structure
is therefore of the axo-axonic type, it utilizes presynaptic inhibition, and it is supposed to be of crucial importance in detecting
image motion in early visual processing (Koch et al. 1982).

Elaborations of this structure occur when several synapses are grouped together into so-called glomeruli (Steiger 1967)—
see Figure 10.3. It is difficult to know exactly what kind of intersynaptic processing is going on here but it is almost certainly
not  linear.  Even  when  regular  axo-dendritic  synapses  occur  in  close  proximity  (Fig.  10.4)  they  are  liable  to  interact  in
nonlinear  ways.  The  basic  unit  of  neural  processing  is  starting  to  look  like  the  synaptic  cluster,  an  approach  promoted  by
Shepherd (1978) in which he refers to these as neural microcircuits.  

Figure 10.1 Single axo-dendritic synapse. 

Figure 10.2 Presynaptic inhibitory synapse.



10.2
Sigma-pi units

How can we model  these more complex situations? Consider,  again,  the double synapse in Figure 10.2 and let  the signals
arriving from A1 and A2 be x1 and x2 respectively. If A1 existed in isolation we could write its contribution δa to the activity of
the postsynaptic neuron as wx1. However, A2 modulates this by reducing its value as x2 is increased. In order to express this
mathematically it is useful to ensure that all values are normalized (lie in the range 0 ≤xi≤1). This can be done by letting the xi
denote the original signal value divided by its maximum; in any case, there will be no problem with artificial neurons that use
the sigmoid output function since signals are normalized by default. There is now a simple way of expressing the inhibitory

Figure 10.3 Glomerulus. 

Figure 10.4 Synaptic cluster.
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effect of A2 and that is to multiply by (1−w*x2) where w*≤1, so that δa=wx1(1−w*x2). When x2=0 this expression reduces to
wx1 and so A2 has no effect, but when x2=1, δa=wx1(1−w*), which can be made as small as we please by making w* close
enough to 1. This does indeed, therefore, capture the interaction between A1 and A2.

Expanding the expression for δa we obtain δa=wx1−ww*x1. This may now be written in a way that allows generalization to
other types of pairwise interaction. Thus, we put

(10.1)
where, for the case of presynaptic inhibition, w1=w, w2=0 and w12=−ww*. Notice that we have allowed the possibility that A2
can influence the postsynaptic cell directly by including a term like w2x2. This may be the case, for example, in expressing the
effect of A1 and A2 in Figure 10.4. For a neuron with n inputs we have to include all possible pairwise interactions (bearing in
mind  that  a  term  including  x1x2  is  not  different  from  one  with  x2x1).  This  gives  the  following  expression  for  the  total
contribution to the activation a:

(10.2)

This is unwieldy because we have a compact notation for the linear sum but no equivalent for the sum of product terms. What
is required is a generic symbol for product, which is provided by the Greek upper case pi (written II). Then, we may rewrite
(10.2) as

(10.3)

In general we may want to include products of more than two inputs to capture the possibility that there are contributions that
come only via  the interaction of  all  participants  in  this  particular  group of  inputs.  Thus,  we need to incorporate  terms like
xi1xi2…xij…xim where i1, i2,…, im are some set of indices and, of course, m<n. Rather than deal with the input indices directly,
it is easier to deal with them as sets since we can enumerate these and write {i1, i2,…, im}=Ik where Ik is the kth index set. How
many such sets are there? One way to construct them is to write the integers 1…n in sequence, run along from left to right,
and  either  include  or  not  include  each  integer  in  the  set.  This  process  gives  n  two-way  choices  with  each  particular
combination yielding a different index set. Altogether then, there are 2n sets giving this many product terms in the expansion.
These also include terms like xi  on its own, where the index set contains one entry, and the “empty” term that contains no
variables  and  is  therefore  associated  with  a  constant  or  threshold  w0.  We  can  now write  the  entire  activation  in  this  most
general case as

(10.4)

where the range iєIk means that we include all i in the index set Ik when forming the product string from the variables xi. To
summarize: this is just a compact way of writing expressions like (10.2) where we have included terms like w0, wixi, w12x1x2,
w123x1x2x3, etc., all the way up to the single term w1…nx1x2…xn.

The activation is  now in  the  form of  a  sum of  products  or,  using the  notation itself,  in  sigma-pi  form—hence the  name
sigma-pi unit for one that uses (10.4) to define its activation. Alternatively, they are also known as higher order units since
they contain products of pairs of inputs (second order or quadratic), products of three inputs (third order or cubic) and so on.
However,  any  term  contains  each  variable  only  in  a  linear  way;  that  is,  there  are  no  expressions  like   or   etc.  The
activation is therefore sometimes referred to as a multilinear form. 

Sigma-pi units were introduced by Rumelhart et al. (1986d). Networks of units with second order terms have been used to
solve the so-called “contiguity problem” (Maxwell  et  al.  1987)  in  which the task is  to  determine whether  there are  two or
three “clumps” of 1s in Boolean pattern strings. (A clump is just a group of contiguous components of the same value so that,
for example, 1100011100 and 1011100111 have two and three clumps of 1s respectively.) Heywood & Noakes (1995) have
shown how backpropagation and weight-pruning techniques may be applied to nets of sigma-pi units to perform orientation-
invariant classification of alphabetic characters.

10.3
Digital neural networks

In  this  section  we  deal  with  networks  of  nodes  that  lend  themselves  easily  to  being  implemented  in  digital  computer
hardware.
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10.3.1
Boolean functions as artificial neurons

Consider once again the lowly TLU, which, when used with Boolean input, may be represented by a population of 0s and 1s at
the vertices of the n-dimensional hypercube or n-cube. Recall that each input vector (string of 0s and 1s) locates a cube vertex
or site that has the corresponding TLU output associated with it. For TLUs these values are, of course, constrained so that the
cube can be divided by a hyperplane reflecting the linear separability of TLU functionality. Normally we think of a TLU as
being  specified  by  its  weights  and  the  geometric,  pattern  space  representation  on  the  cube  as  secondary.  However,  it  is
possible to imagine defining TLUs by endowing the cube sites with 0s and 1s while ensuring that the resulting two populations
may be separated by a hyperplane.

Suppose now we allow any distribution of 0/1 values on the hypercube without regard to linear separability. We can now
implement any Boolean function of the (Boolean) input vector.  An example is  given in Figure 10.5,  which shows a three-
input function with its pattern space, three-cube representation, and as a table of input-output correspondences. If there are
more  than  three  dimensions,  we  cannot  draw  the  n-cube  but  may  represent  the  situation  schematically  as  shown  in
Figure 10.6. Shown on the left is a cartoon diagram of an n-cube, which has been populated so it can be implemented by a
TLU. The cube on the right has had its site values randomly assigned. The TLU function may be defined in alternative form
by supplying a suitable weight vector whereas the other function can only be defined by specifying its table of input-output
correspondences. The possible advantage in breaking out of the linearly separable regime is that the increased functionality
will allow more compact nets that learn more efficiently.

A  table  of  Boolean  assignments  of  the  form  shown  in  Figure  10.5  is,  however,  exactly  what  a  computer  memory
component known as a random access memory  (RAM) performs (see Fig. 10.7). The input to a RAM is referred to as the
address since it is used to select, via a decoder, one of a set of “pigeonholes” or cells in the memory store. Upon selection, the
cell may then have its contents read out, or overwritten with a new value, depending on which mode (read or write) has been
selected. In computer engineering parlance, each component of a Boolean vector (0 or 1) is a bit so that, if the address is n bits
wide, then there are 2n bits in the memory store. This follows because each address bit has two possible values so that there
are 2×2×…×2 (n times) different addresses. In the diagram, the address is 8 bits wide so that the memory store has 256 bits. 

It  should  now be  clear  that  a  RAM can  be  used  to  implement  the  table  of  input-output  values  for  an  arbitrary  Boolean
function. There are, therefore, three views of a Boolean function:

Lookup  table  It  is  a  table  of  correspondences  between  Boolean  vectors  and  scalar  Boolean  values.  Such  tables  are
sometimes  called  truth  tables  since  the  values  0  and  1  are  able  to  represent  “true”  and  “false”  in  the  manipulation  of
statements in a logical algebra (not dealt with here).

Hypercube It is a population of Boolean values at the vertices or sites of the n-dimensional hypercube (n-cube). This is the
geometric viewpoint and yields useful insights about generalization and learning—see Section 10.3.6.

RAM It is a random access memory component in which the memory store contains the values of the lookup table.
A  further  viewpoint  on  Boolean  functionality  will  be  articulated  in  Section  10.3.5  focusing  on  the  development  of  a

mathematical form for node function.
These  different  views  give  rise  to  their  own  terminologies,  which,  on  occasion,  are  used  interchangeably:  truth-table

locations are cube sites (or just “sites”) and, in the RAM scheme, memory cells; the Boolean vector input is a RAM address
or  sometimes  an  n-tuple;  truth-table  values  or  site  values  are  also  RAM  bit  values.  Note  that  the  TLUs,  when  used  with
Boolean input, form a special subclass of Boolean function.

Figure 10.5 Example of three-input Boolean function that is not linearly separable.
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The development of the RAM implementation and its use in neural networks is largely attributable to Aleksander and co-
workers.  This can be traced from its  beginnings with devices that  used fusible links to store bit  values (Aleksander 1965),
through the use of “stored-logic adaptable microcircuits”, or SLAMs (an early form of semiconductor memory) (Aleksander
& Albrow 1968), to the use of what we now know today as RAMs (Aleksander et al. 1984).

The use  of  RAM technology as  a  means  of  implementation has  led  to  the  name digital  nodes  for  these  and a  family  of
related  node  types,  and  their  use  in  neural  networks  has  largely  been  fostered  by  workers  in  the  UK.  Unfortunately  a
proliferation  of  acronyms  has  grown  up,  referring  to  essentially  equivalent  node  structures,  and  this  has  not  helped  to
popularize the area. One of the reasons for this is that many people were working on developing node structure at around the
same time (late 1980s) and each variant was described under its own name. The term “digital node” appears the most neutral
and will be adhered to as far as possible. An overview of much of this work is available in Gurney & Wright (1992a), which also
serves to introduce several papers on digital nodes.

10.3.2
Using Boolean functions in nets

Recurrent nets

Several workers in the 1960s and 1970s became interested in what we might describe now as “Boolean Hopfield nets”. That
is, a set of interconnected units that are allowed to take arbitrary Boolean functionality and that have many feedback paths.
However, since the size of the memory store, even in simulation, goes up exponentially with the size of the input, the nets
were  incompletely  interconnected,  often  using  units  with  only  two  or  three  inputs.  Walker  & Ashby  (1966)  examined  the
dynamics of nets composed of three-input functions in which one of the inputs is taken from the unit output and all functions
are the same. They noted the appearance of stable states and multiple-state cycles as described in Chapter 7. However, the
authors do not conceive of these systems as neural nets, there is no attempt to train and, surprisingly, no connection is made with
associative  memory.  Kauffman  (1969)  investigated  similar  systems,  but  with  variable  functionality  throughout  the  net,  as
models of genetic switching in DNA.

Aleksander & Mamdani (1968) are responsible for  one of  the first  attempts to use a recurrent  net  of  digital  nodes as an
associative  memory.  Training  a  state  cycle  in  such  a  net  is  trivial.  First,  the  desired  pattern  is  clamped  onto  the  net  in  its

Figure 10.6 Schematic representation of TLUs and general Boolean functions. 

Figure 10.7 RAM as Boolean function.
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entirety; then, for each node, the memory cell addressed by the part of the clamp that forms its input is made to take on the
value that  the  node currently  has  as  output.  The clamp has  then been made a  stable  state  of  the  network.  A desirable  side
effect (in incompletely connected nets) is that other state transitions are created which are associated with the confluent of the
state cycle (Milligan 1988). Martland (1987) provides an example of using these nets in a character recognition task.

10.3.3
Feedforward nets

Consider  the  system  shown  in  Figure  10.8.  There  is  an  input  layer  of  Boolean  values,  which  has  been  drawn  as  a  two-
dimensional array because we have image recognition in mind. An input pattern has been indicated that is supposed to be a
character  from the  class  of  the  letter  “T”.  The  input  is  randomly  sampled  by  a  collection  of  two-input  Boolean  functions,
representatives of which have been shown by exhibiting their truth tables.  These functions are all  initialized to output 0 in
response to any input. When a training pattern is presented, the locations addressed in each function are then changed to a 1.
Thus, each function acts as a recorder of two-component features seen during training. In the figure, the truth tables are those
that  pertain  after  initialization  and  training  with  the  single  pattern  shown at  the  input.  Suppose  now that  a  set  of  “T”s  are
presented  whose  members  differ  slightly  from  each  other;  then  any  feature  that  is  present  in  this  set  will  be  recorded.
However, if the patterns do not differ too much, many of their features will be the same and, in this case, only a few locations
in each function will be altered to the value 1. Now suppose that another “T”, not in the training set, is presented at the input
and the function outputs are read out and summed together. Each feature that the new pattern has in common with all those
seen  during  training  will  generate  a  1,  while  any  new features  will  produce  a  0.  If  there  are  N  Boolean  functions  and  the
pattern results in m previously seen features, then the response of the net may be defined as the fraction m/N. If the unseen
pattern is quite different from anything seen during training, the response will be close to zero. If, on the other hand, it is close
(in Hamming distance) then it will yield a response close to 1. In this example two-input Boolean functions were used but, in
general, we may use functions with any number of inputs.

The  system described  so  far  is  a  single  discriminator  allowing  the  possibility  of  identifying  a  single  class.  Thus,  in  the
example above we might hope to classify “T”s from non-“T”s. In general we require one discriminator per class and, during
training,  each  discriminator  adapts  only  to  the  class  it  is  supposed  to  represent.  In  testing,  the  input  is  applied  to  all
discriminators simultaneously and that which supplies the largest response is deemed to signify the pattern class.

Systems like this were first described by Bledsoe & Browning (1959), who referred to their technique as the n-tuple pattern
recognition method. They used computer simulation in which the mapping of the algorithm onto the computer memory store
was not suggestive of a hardware implementation. However, Aleksander and co-workers realized the possibility of using the
newly  developed  semiconductor  memory  devices  (later  to  be  called  RAMs)  to  build  physical  instantiations  of  n-tuple
machines. Work initiated in the 1960s (Aleksander & Albrow 1968) was mature by 1979 (Aleksander & Stonham 1979) and
culminated in the commercially available WISARD1  pattern recognition machine (Aleksander et al. 1984). Aleksander was
also responsible for casting the technique in the language of neural networks.

Suppose now that we have several WISARD discriminators whose pattern of connectivity to the input array is identical.
Suppose  further  that  there  is  a  threshold  θ  such  that,  if  the  discriminator’s  response  r  is  less  than  θ,  then  we  regard  it  as
signalling a  0  and if  r>θ,  we consider  it  as  outputting a  1.  In  this  way we obtain  a  Boolean vector  of  outputs  y.  It  is  now
possible to imagine training this discriminator array to associate patterns at the input with desired target vectors t at its output.
To do this, those discriminators that are supposed to output 1 would be trained in the normal way by setting their addressed

Figure 10.8 n-tuple recognition system.
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feature locations to 1, whereas those that are supposed to output 0 would leave their addressed locations at 0. This is the basis
of the ADAM2 architecture proposed by Austin (1987a). In addition, this also uses a two-stage process in which a large input
image is first associated with a much smaller class code, which is associated, in turn, with the final (large) target output image.
This two-stage process requires much less memory than a straightforward association between two large pattern vectors. The
use of feedforward architectures for associative memory is discussed further in Section 11.1.1.

The learning scheme of writing 1s to a Boolean truth table can lead to several problems in training. The first is that there is
substantial loss of information in only using two values (0, 1) for each n-tuple feature—a feature that gets accessed once has
the  same  effect  in  training  as  one  that  gets  accessed  many  times.  Bledsoe  &  Bisson  (1962)  noted  this  deficiency  in  their
original  n-tuple  technique  and  proposed  recording  the  frequency  of  feature  occurrence  at  each  location  in  the  truth  table.
Secondly,  if  the  size  of  each  class  is  too  big  then  the  number  of  features  recorded  within  each  truth  table  will  grow  and
eventually most of the table will be filled. This saturation effect may be avoided if we allow site values to decrease as well as
increase  so  that,  for  the  simple  case  of  Boolean-valued  sites,  we  allow  transitions  1→0  as  well  as  0→1.  This  scheme  is
contingent,  however, on developing more sophisticated learning rules.  The development of such rules for semilinear nodes
hinged  on  our  ability  to  analyze  them  mathematically  and  evaluate  things  such  as  error  gradients  like  .  We  have
avoided the machinations that actually deal with these calculations and chosen to focus on the conceptual basis for learning rules.
However, their formal development requires that the node output be described by a smooth function of its input, which is not
facilitated  by  any  of  the  viewpoints  (truth  tables,  hypercubes,  RAMs)  developed  so  far.  In  summary,  two  elements  are
required for progress in using digital-type nodes: an extension of the node structure to allow multiple-valued sites and a way
of describing the node functionality in a mathematically closed form.

10.3.4
Extending digital node functionality

The frequency of occurrence scheme proposed by Bledsoe and Bisson is fine if we simply read out this value but is no good if
the output must be Boolean, as it must be if it is to form part of the address of other nodes in a network. The first attempt to
overcome this was made by Kan & Aleksander (1987) who used a function with three values in its truth table: 0, 1 and “u” or
undecided. When “u” is addressed, a 1 is output with probability 0.5. These nodes were first used in recurrent Hopfield-like
nets and dubbed probabilistic logic nodes or PLNs. The natural extension was to use more than three site values resulting in
the  multi-valued  probabilistic  logic  node  (MPLN)  (Myers  &  Aleksander  1988).  The  probability  of  outputting  a  1  is  then
related to the site value via a sigmoid function. Many people were experimenting independently with node structures of this
type at around the same time, which is one of the reasons for the profusion of names in this field (my own term for the MPLN
is a type-2 cubic node).

It is possible to formulate all classes of function dealt with so far in a unified framework that makes contact with the more
normal weighted nodes. First consider the simple Boolean functions. We now suppose that cube sites store activation values
+1  or  −1  rather  than  Boolean  values  1,  0  and  that  these  are  then  passed  as  input  to  a  threshold  output  function.  For  the
purposes  of  subsequent  development,  it  is  useful  to  think  of  the  function  output  y  as  defining  the  probability  of  the  node
emitting a 1 (of course, there is no distinction for a step function between this interpretation and that of a simple deterministic
relation). This use of the threshold function in this way is shown in the top left of Figure 10.9. The three-valued PLN now has
the interpretation shown in the top right of the figure, in which a piecewise linear function suffices. The MPLN has a finite
set  of  activation  values  that  have  some  maximum  absolute  value  Sm.  The  value  at  site  µ  therefore  lies  in  the  range
−Sm≤Sµ≤Sm. The activation-output form is then shown at the bottom left3. Of course, any function f that obeys f(−1)=0, f(1)=1
would have served equally well for the Boolean function but the use of the step function fits well with the development shown
here and allows contact to be made with the TLU. In another cube-based variant—the so-called probabilistic RAM or pRAM
(Gorse & Taylor 1989)—output probabilities are stored directly at the site values and are allowed to vary continuously. This
results in the simple activation-output interpretation shown on the bottom left of Figure 10.9. 

10.3.5
Expressions for cube activation

The second requirement for progress with digital nodes was that it be possible to write the output y as a continuous function
of the inputs. To achieve this we use a model in which the site values are continuous. Just as in the MPLN, the activation a is
just the currently addressed site value Sµ, the output y is the sigmoid of a and is to be interpreted as a probability of outputting
a 1. To reinstate the MPLN model (which has a RAM-based hardware implementation) we can later restrict the site value to a
discrete set.  This process of site quantization is  not without repercussions,  however,  and introduces noise into the learning
process (Gurney 1992b). 
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Our task now reduces to finding a form for a and, rather than exhibit a general expression, we focus on a two-input example
in which the site values may be written S00, S01, S10, S11. The function of a node is effectively to choose the site value Sµ for
which the site label µ  is  just  the address string x1x2.  Therefore we require a “choosing function” g(µ, x1,  x2)  which is  zero
unless µ=x1x2, for then we may write

(10.5)
and only one term in the sum will survive because x1x2 can only match one address.

To develop a  form for  g  it  is  convenient  to  use the spin representation for  Boolean values  discussed in  Section 7.5.1 in
which we make the correspondence 0↔−1, 1↔1 so that xi=±1. Now let µi be the ith component of site address µ(µi=±1) and
put

(10.6)

Then, if either µ1≠x1 or µ2≠x2, g=0 since the corresponding product µixi is −1. The only way to avoid zero is if µ1=x1 and µ2=x2,
in which case g=1 as required. Substituting this in (10.5)

(10.7)

The choosing function for n inputs involves n brackets multiplied together (one for each input) so, collecting all the factors of
1/2 together, the general form of the activation may be written

(10.8)

This is reminiscent of (although not identical to) the activation of a sigma-pi node (10.4). However, after some rearrangement
it is possible to show that (10.8) may indeed be expressed in sigma-pi form (Gurney 1989, Gurney 1992d) where the weights
wk are linear combinations of the site values. Digital nodes may therefore be thought of as an alternative parametrization of
sigma-pi nodes so that any sigma-pi node has its digital node equivalent and vice versa. Although we have only dealt with
Boolean values, it may be shown (Gurney 1989) that analogue values may be incorporated into this scheme using stochastic
bit-streams of the type shown in Figure 2.8.

Equation (10.8) is the required relation between the activation, site values and inputs. It may now be used in a programme
of training algorithm development for digital nodes (Gurney 1989, Gurney 1992a). Thus, it may be shown that a modification
of backpropagation converges for nets of digital nodes. Further, two other algorithms discussed in Section 10.5 also apply;
these  are  the  reward-penalty  scheme  of  Barto  &  Anandan  (1985)  and  a  new  algorithm  based  on  system  identification  in
control theory.

Figure 10.9 Digital node output functions.
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10.3.6
Some problems and their solution

Generalization

Suppose a TLU has been trained to classify just two input vectors of different class. This fixes a hyperplane in pattern space
and  every  other  possible  input  pattern  will  now  be  classified  according  to  its  placement  so  that  there  is  automatic
generalization across the whole input space.

Consider now a cubic node (MPLN) which, in the untrained state, has all sites set to zero. The response to any vector is
totally random with there being equal probability of a 1 or a 0. If this node is now trained on just two vectors, only the two
sites addressed by these patterns will have their values altered; any other vector will produce a random output and there has
been no generalization. We shall call sites addressed by the training set centre sites or centres. In order to promote Hamming
distance generalization, sites close to the centres need to be trained to the same or similar value as the centres themselves. That
is, there should be a clustering of site values around the centres. One way to do this is to “fracture” the hypercube according to
a  Voronoi  tessellation  in  which  each  site  is  assigned  the  same  value  as  its  nearest  centre  (Gurney  1989,  Gurney  1992c).
Figure 10.10 shows this schematically for Boolean functions. Centre sites  are shown as open or filled circles and clusters of
1s and 0s are indicated by shaded and plain filled regions respectively. Clusters associated with each centre can abut neighbouring
clusters  either  of  the  same  or  different  type.  These  have  been  indicated  by  thin  and  thick  lines  respectively  and,  in  the
example, there are five distinct regions produced from ten centres. This should be contrasted with the random assignment of
site values shown on the right in Figure 10.6 where we would expect poor generalization. Notice that the linearly separable
function  shown  in  the  same  figure  has  excellent  generalization  but  this  has  been  obtained  at  the  expense  of  functional
generality.

The method of tessellation is an “off-line” technique in so far as it is carried out in a separate phase after the training set has
been used to establish centre sites.  An alternative,  “on-line” method makes use of  noisy copies of  the training set,  thereby
visiting sites close to true centres, and is the basis of techniques developed by Milligan (1988) (the on-line, off-line distinction
is  explored  further  in  Sect.  11.2).  Noisy  training  patterns  may  be  produced  naturally  using  an  enhancement  of  the  node’s
architecture as described in Gurney (1992a).

Memory growth

Consider  a  digital  node  with  n  inputs.  It  has  N=2n  sites  and  for  n=8,  N=256.  For  n=32,  N=232≈109.  Clearly  there  is  an
explosion in the number of sites as n  grows, which is not only impractical from an implementation point of view, but also
suspect from a theoretical viewpoint: do we really need to make use of all the functional possibilities available in such nodes?
The answer is almost certainly “No” and one way of overcoming this is developed in the multi-cube unit or MCU (Gurney
1992a, Gurney 1992d) where several small subcubes sum their outputs to form the activation as shown in Figure 10.11. This
also has a biological analogue in that the subcubes may be likened to the synaptic clusters described in Section 10.1, which
are then supposed to sum their contributions  linearly. In terms of the sigma-pi form, we are limiting the order of terms that
are used, so, for example, if all subcubes have four inputs, there can be terms of, at most, order 4. It is also possible to make a
link  with  other  network  types  via  the  perceptron.  Recall  that  a  perceptron  has  adaptive  weights,  predefined  Boolean
association units and a threshold output function. An MCU, on the other hand, has a superficially similar internal structure but
has fixed unit weights, adaptive association units with multiple-site values, and a sigmoid output function.

Figure 10.10 Voronoi tessellation 
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Gurney  (1995)  has  demonstrated  several  interesting  properties  of  MCUs.  Thus,  it  can  be  shown  that  they  offer  an
intermediate  degree  of  site  clustering  between  that  of  linearly  separable  functions  and  randomly  organized  cubes.  They
therefore  offer  a  natural  approach to  an  optimal  trade-off  between functional  variety  and generalization.  Further,  it  can  be
shown  that  they  have  the  most  “interesting”  information  theoretic  profiles  in  terms  of  an  array  of  conditional  mutual
information measures.

10.4
Radial basis functions

We now continue our description of alternative node structures with a type of unit that, like the semilinear node, makes use of
a vector of parameters with the same dimension as the input. 

In Chapter 8 it was shown that, if the weight and input vectors w and x are normalized, then the activation term w·x gives
an indication of the degree of alignment between the two vectors. In the language of pattern space, it says how well the input
matches the feature template defined by the weights. If there is no normalization then it is better to use the difference 
 a  point  that  was  discussed  in  connection  with  the  SOM algorithm (Sect.  8.3.3).  Therefore,  if  we  require  a  pattern  match
without normalization, it makes sense to use units that incorporate the difference  into their activation directly. The
simplest way to do this is simply to put  so that patterns at the same distance from w have the same activation.
This  is  shown  in  2D in  Figure  10.12,  which  emphasizes  the  radial  symmetry  of  the  situation,  since  patterns  at  a  constant
distance from the weight vector lie on a circle with w  as centre. We now require an output function f(a)  that falls off with
increasing values of a. A suitable candidate is the Gaussian, a one-dimensional example of which is shown in Figure 10.13.
The new unit is therefore defined according to

Figure 10.11 Multi-cube unit (MCU). 

Figure 10.12 Vector difference as basis of node activation.

Figure 10.13 One-dimensional Gaussian.
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(10.9)

where exp(x)=ex. Notice that (because the  length of a vector is independent of its sign or direction) so that
both forms may be encountered. A plot of y against (x1, x2) for an example in 2D is shown in Figure 10.14 in which the output
falls off in a circularly symmetrical way from a point w=(0.5, 0.5), and should be compared with the plots of functionality for
TLUs and semilinear nodes given in Figure 6.10. This symmetry is responsible for the name radial basis function (RBF) and,
since the components of w are no longer used in a multiplicative sense, we refer to w as a centre rather than a weight vector.

RBFs were introduced in a network context by Broomhead & Lowe (1988) although they had previously been studied in
the context of function approximation and interpolation (Powell 1987). Poggio & Girosi (1990a, 1990b) have demonstrated
the link between RBF networks and the theory of regularization, which deals with fitting functions to sample data, subject to
a smoothness constraint. This is, of course, exactly the task of supervised learning, as Poggio & Girosi also emphasize, since,
in  the  language  of  connectionism,  we  have  to  learn  the  training  set  (fit  the  function  to  the  data)  while  simultaneously
enforcing generalization (making a smooth functional fit).

RBFs are usually used in two-layer networks in which the first (hidden) layer is a series of RBFs and the second (output)
layer is  a  set  of  linear  units  that  can be thought  of  as  computing a weighted sum of the evidence from each of  the feature
template RBF units. A typical example of such a net is shown in Figure 10.15. Notice that the node structure is quite different
in the two layers (hidden and output). 

The  function  of  such  a  net  can  be  understood  directly  by  examining  the  contributions  of  the  RBF  templates  in  pattern
space. Each one contributes a Gaussian “hump” of the form shown in Figure 10.14 (albeit in n dimensions rather than in 2D),
which is weighted before being blended with the others at the output. This is shown schematically on the left hand side of
Figure  10.16  in  which  the  individual  RBF  contributions  are  depicted  as  circles  (plan  view  of  two-dimensional  cartoon  of
Gaussians) and their combined effect indicated by the dashed outline. This is the region of pattern space in which an input
vector will produce significant output (assuming that there are no very small weights) and has been drawn again for clarity on
the right hand side of the figure. It is disconnected and each part is non-convex. Thus, quite complex decision regions may be
built  up  from comparatively  few nodes.  In  the  figure  the  most  general  situation  has  been  shown in  which  the  RBFs  have
different widths. In the simplest scheme, however, a set of functions with constant width is used, in which case it may take
very many RBFs to cover the region of pattern space populated by the training data.  It  might be thought that this problem
could be surmounted by using functions with a large width but there is then a risk that we will not be able to supply enough
detail in the structure of the decision region.

The simplest scheme for training RBF networks is to take a series of centre values chosen randomly from the training, use
fixed width functions, and train only the weights to the linear output units. This may be done in a single step by solving a set

Figure 10.14 Radial basis function.
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of  linear  equations  for  minimizing  the  sum  of  square  errors  between  targets  and  net  outputs  (Broomhead  &  Lowe  1988).
Alternatively it may be done iteratively according to the delta rule, in which case the RBF node outputs are used as the inputs
in the algorithm. Further embellishments of training allow self-organization of fixed width centres (combined with supervised
learning of output weights) and, in the most general case, learning of all network parameters including the width of each RBF.

10.5
Learning by exploring the environment

We now turn to look at alternative ways of training feedforward nets. The gradient descent algorithms like backpropagation
rely on substantial intervention by the external “supervisor”, which must calculate error signals for each output node. Further,
the weight adjustments for hidden nodes are made only after extensive calculation to evaluate explicitly gradient information.
In this section we look at learning paradigms that are conceptually simpler and are based on the idea that a network can learn
by trial and error. 

10.5.1
Associative reward-penalty training

Consider a single node (semilinear or digital) that has stochastic Boolean output. Suppose that there is a set of input-output
pairs so that each input vector is associated with a 0 or 1. On applying a vector and noting the output, we compute a signal,
which is  “1” (reward)  if  the node classified the input  correctly,  and “0” (penalty)  if  it  classified incorrectly.  If  the node is
rewarded, it adjusts its internal parameters (weights or site values) so that the current output is more likely with the current
input. If, on the other hand, the node is penalized, it adjusts its parameters so that the current output is less likely. Two things
make this paradigm distinctive: first, the node is simply told whether it was “right” or “wrong”—no continuously graded error
is calculated; secondly, in order to “discover” what the correct output should be, the node has to “experiment” with its two
possible output options—it has to risk getting the wrong answer in order to find the right one—so that it does indeed use “trial
and error”.

To formalize this, let the ith input and output be xi and y respectively (xi, y⇒ {0, 1}), let the reward signal be r, and α, λ be
two  positive  constants,  where  α,  λ<1.  We  now  specialize  to  the  case  of  semilinear  nodes  so  that  the  weights  wi  are  the
parameters to be adapted. The required action is taken using a learning rule of the form

(10.10)

Figure 10.15 RBF network.

Figure 10.16 RBF net function in pattern space.
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where  is  the mean or expected  value of the Boolean output y  given the input vector x.  If  a sigmoid output relation is
assumed then  where ax is the activation induced by x.

To see how this works, suppose r=1. In general, but,  for a sigmoid output function, strict inequality always
holds so that, if y=1, then . Thus, if xi=1, then wi increases, tending to make the activation more positive and
enhancing the likelihood of outputting a 1 (the correct response) next time x appears at the input. If, on the other hand, y=0, then

 and a positive xi  enforces a decrease in wi,  tending to make the activation more negative, thereby making it
more likely to output a 0 (correctly) next time with x. In either case, an input with xi=0 does not contribute to the activation
and  so  it  makes  no  sense  to  adjust  its  weight.  If  now r=0 (node  output  is  wrong)  then  the  sense  of  the  weight  changes  is
reversed since the the rule for penalty learning is obtained from its reward counterpart by replacing y with 1−y (the opposite
Boolean value to y). Thus, 1−y replaces y in having  subtracted from it, and 1−y is just the opposite Boolean value to y.
This means that, on failure, the node learns to enhance the chances of the output opposite to the one it is currently producing.

The learning rule in (10.10) was developed by Barto and co-workers (Barto & Anandan 1985, Barto 1985) who call it the
associative reward-penalty rule or AR−P. In discussing the origins of their work, Barto et al. acknowledge its relation both to
psychological  theories  of  learning—in particular  Thorndike’s  law of  effect  (Thorndike 1911)—and the theory of  stochastic
learning automata (Narendra & Thathacar 1974).

In Thorndike’s scheme, a neural connection is supposed to be built up between stimulus and response (input and output)
when an animal is in a learning environment. The law of effect then says that this connection is likely to be strengthened if the
response is followed by a satisfaction (reward) for the animal, whereas it will be diminished if the animal is made to undergo
discomfort  (penalized).  In  fact,  Thorndike  later  modified  this  theory  and  denied  the  efficacy  of  administering  discomfort.
Interestingly, this seems to be in line with empirical simulation results, which show that small values of λ work best; that is,
training when the net has been penalized takes place much more slowly than training when it has been rewarded.

By way of developing the connection with automata theory, a deterministic automaton is a machine that can exist in only a
finite number of states and whose next state depends on its current state and input; additionally, each state is associated with a
particular output. An example of such a machine is a Hopfield net running under synchronous dynamics. In this case there is
no explicit  input (although it  is straightforward to allow external input to each node) and the output is just the state vector
itself.  A  stochastic  automaton  is  one  in  which  the  next  state  is  related  probabilistically  to  the  current  state  and  input  (e.g.
Hopfield net under asynchronous dynamics) and, if learning is allowed, it corresponds to altering the probabilities that govern
each state transition.  It  is  therefore a very general  theory and is  not  tied to any particular  model  of  computation,  neural  or
otherwise. It has its roots in mathematical theories of animal learning, but was later developed as a branch of adaptive control
theory (see Sect. 10.5.2). The connection with reward-penalty learning is that schemes very similar to it have been used to
train stochastic automata.

There are some superficial similarities between the AR−P rule and the delta rule, in so far as each uses a difference between
two output quantities to determine a weight change. Barto et al. (1983) have also developed a reward-penalty-style rule, which
is  related  more  closely  to  the  Hebb  rule.  This  makes  use  of  two  components:  an  adaptive  search  element  or  ASE and  an
adaptive critic element or ACE. The ASE is the basic learning system while the ACE has the job of providing reward-penalty
signals  for  the  ACE that  are  based not  only on the  externally  applied reward signal,  but  also on the  current  input.  Further
information on these methods may be found in Barto (1992).

Much  of  the  early  work  on  reward-penalty  techniques  considered  single  nodes  or  very  simple  nets.  However,  Barto  &
Jordan  (1987)  have  reported  simulation  studies  with  multilayer  networks  of  semilinear  nodes,  and  network  learning
convergence for these nets has been demonstrated by Williams (1987). In his proof, Williams showed that the effect of the AR

−P rule was to perform a noisy or stochastic gradient ascent with respect to the mean value of the reward signal (trained nets will
have high values of ). However, this computation is implicit rather than explicit as it is with backpropagation. Further, the
net can be trained using a single scalar signal (the reward) being fed back to the net, rather than a large array of delta values.
In  fact,  Barto  and  Jordan  trained  the  output  layer  of  their  nets  using  the  delta  rule  and  the  hidden  layer  using  AR−P.  This
reduced training time considerably and is indicative of a general principle: the more information supplied to a node during
training, the less time it takes to adapt successfully. Thus, a single scalar signal is less informative than a signal vector and so
the output layer will take longer to develop useful weights under AR−P than it will under the delta rule (in which each node has
its own custom δ). However, the non-specific signal r is used to train the hidden layer, and the net does take longer to train
than under backpropagation. In spite of this, the algorithm is much simpler than backpropagation and may take advantage of
its inherent noise to escape local minima.

It remains to describe how the reward signal is determined for a network with more than one output unit. One way of doing
this is to define a sum of square differences error e (just as if we were going to perform a gradient descent), normalize it, and
then put r=1 with probability 1−e. However, this is not necessary and Gullapalli (1990) provides an interesting example that
makes use of a custom-defined reward signal for the control of a robot arm. This work also shows an extension of reward-
penalty-style training to nodes that output continuous variables.
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For digital nodes, Myers & Aleksander (1988) have developed an algorithm with a reward-penalty “flavour”, which they
use to train nets  of  PLNs.  However,  this  is  not  amenable to analysis  and proof of  convergence.  Gurney,  however,  showed
(Gurney  1989,  Gurney  1992a)  that  the  rule  of  Barto  et  al.  may  be  adapted  with  little  change  to  digital  nodes,  as  can  the
associated proof of learning convergence by Williams. The digital learning rule—assuming a sigmoid output function—is simply

(10.11)

where µ is the currently addressed site. Notice that the only difference from the rule for semilinear nodes is that there is no
input  multiplier  xi.  Training  MCUs with  AR−P  also  follows  in  a  straightforward  way and has  been  implemented  in  custom
VLSI hardware (Hui et al. 1991, Bolouri et al. 1994).

10.5.2
System identification

System identification is a branch of the engineering discipline of control theory that attempts to solve the following problem.
Suppose we have an input-output system for which we know the underlying model description but which is not entirely fixed
because certain parameters are unknown; how can we go about finding these parameters empirically? Figure 10.17 shows a
system with  unknown parameters  whose  internal  state  description  is  not  directly  accessible.  Instead,  it  is  corrupted  by  the
addition of noise so that we only have access to imperfect data concerning the system. To obtain an estimate for the internal
system parameters  we  apply  a  set  of  test  signals,  observe  the  behaviour  of  the  system output  and  then,  by  measuring  any
input-output correlations, we can, in effect, “pin down” the system parameters. How can this be used in training neural nets?
Our strategy is to consider the derivatives or slopes required for a gradient descent to be parameters of the network viewed as
a system whose model structure is known. In fact,  we will consider each node as a separate system, make estimates  of the
gradients locally within each unit, and perform a noisy or stochastic gradient descent.

We start by re-examining the relationship between small changes in function inputs and output. Recall Equation (5.3) for a
function y of one variable x, which is rewritten here for convenience (with the small change in x denoted by δx)

(10.12)

The multidimensional equivalent of this is that y is now a function of several variables (x1, x2,…, xn) and requires that we sum
contributions from each

(10.13)

Returning to the network, we suppose (as with AR−P) that it is stochastic in its behaviour. It is convenient to introduce another
notation for the expectation value of the output  by writing it instead as . Then, we define the network error for a single pattern
by

(10.14)

where the summation is over the output layer and t is a target value (compare (5.15)). Now, although this is an expression for
E considered as a function of the output layer variables, it is always possible to imagine that we focus on another layer L by
expressing each of the  in the output layer in terms of the mean outputs in L. Thus, we think of the error E as a function of
the form  where the index i refers to nodes in L so that

(10.15)

We now single out a particular node k, say, and write

(10.16)

Figure 10.17 System identification.
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The reason for doing this is that we now wish to consider δE as a system output signal in response to test signal  and to
treat the remaining sum as a noise term nk. That is, we think of k as being responsible for the error and consider the effect of
the rest of the layer as noise superimposed on its influence. To clarify this it is convenient to abbreviate  to  so that
we have

(10.17)
This does indeed map onto the system identification (SID) paradigm in an almost trivial way as indicated in Figure 10.18. The
“system” in this case consists of the operation of multiplication of the input by  in a single node so that  is the system’s
single parameter to be estimated. Of course, there is nothing special about any particular node in the net and we suppose that
each one sees things from this subjective perspective in order to find its error gradient. In order to calculate these, it is necessary
to provide a series of random signals of the type δ k. This would be unwieldy if it were not for the fact that this can be made
to occur naturally in stochastic units. Details of how this is done, techniques for making the estimates of ∂k, together with the
proof of convergence for SID training, are given in Gurney (1989, 1992a). The effects of noise in the gradient descent and a
comparison between nets of digital and semilinear nodes can be found in Gurney (1992b).

It is pertinent here to say a few words about the nature of gradient estimates and noise. The description “noisy” was used for
the estimates found under pattern-update mode in backpropagation. However, this use of the term is more in the nature of a
paraphrase for a situation that is slightly more complicated. Thus, given a particular input pattern and state of the network, the
gradient estimate found in backpropagation is quite deterministic; the “noise” arises in the sense that the estimate may not be
in the true direction of a gradient descent (we may sometimes go uphill). The estimates in system identification, on the other
hand,  are  truly  noisy;  with  a  given  pattern  and  network  state  the  estimate  is  entirely  dependent  on  the  random  pattern  of
signals produced from a noise source. 

It can be shown that, when the gradient estimates are made using the minimum of resources, the SID training rule reduces
to  something  that  has  the  appearance  of  reward-penalty  learning.  This  is  consistent  with  the  fact  that  both  techniques  are
rooted in the ability of the net to explore possible alternatives,  although AR−P  uses this to allow the net to discover correct
responses, whereas SID uses it to generate test signals in a system identification task.

10.6
Summary

This chapter has broadened the discussion of feedforward nets from semilinear nodes and gradient descent algorithms. A re-
evaluation of the function of local synaptic circuits in real neurons leads to the conclusion that the simple linear weighted sum
form of the activation may not be fully biologically plausible. One attempt to inject more realism occurs in the sigma-pi node,
which uses multilinear terms in its activation.

Another starting point was to note that RAM components can implement arbitrary Boolean functions of their input. These
digital  nodes  were  used  in  the  construction  of  the  WISARD  pattern  discriminators  and  ADAM  associative  memories.  By
using more than two values in each RAM cell (or at each site), it is possible to extend the functionality of digital nodes. This
prevents the loss of information in training and opens up the possibility (in the limit of continuous site values) of dealing with
digital  nodes  on  a  principled  mathematical  basis.  When  this  is  done  it  transpires  that  digital  nodes  and  sigma-pi  units  are
intimately related. One problem with digital nodes occurs in their inherent inability to generalize. This may be overcome by
promoting clustering of similar site values around trained centres. A further problem arises with the exponential growth of the
number of sites with the number of inputs, which may be solved by using multi-cube-type units.

One further node type—the radial basis function—was examined. This implements a Gaussian hump in pattern space and,
by linearly combining several such functions,  it  is  possible to approximate any function as closely as we please.  RBF nets
with fixed centres may be “trained” very quickly by analytically solving a least squares problem for the weights to the output
node.

Two new training algorithms were described. The first (reward-penalty) makes use of stochastic nodes to explore the space
of possible solutions. It uses a single scalar feedback signal in training, which informs the net whether its current output was
“right” or “wrong”. A more information-rich technique makes use of ideas from system identification in control theory. This

Figure 10.18 System identification for estimating gradients.
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identifies each error gradient (with respect to each node output) as the parameter in a separate system that simply multiplies
its input by the gradient. System identification training reduces to reward-penalty in circumstances that minimize the available
resources. 

10.7
Notes

1. WIlkie Stonham Aleksander Recognition Device, after its inventors.
2. Advanced Distributed Associative Memory.
3. The notation used here is my own and not that used by Myers and Aleksander. 
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Chapter Eleven
Taxonomies, contexts and hierarchies

Our intention in this chapter is to take a step back and to try and look at neural networks from some high-level perspectives.
First, we will attempt to impose some order on the seemingly disparate set of structures, algorithms, etc., that make up the
network “zoo”. Secondly, we will explore further the consequences of the hierarchical scheme introduced in Chapter 9. Next,
we will look at connectionism alongside conventional AI and compare their relative merits in providing an understanding of
intelligent systems. Finally, an historical overview helps to complement the structural taxonomy and provides an insight into
the nature of the scientific process.

11.1
Classifying neural net structures

On first exposure to the neural net literature it may seem that the whole area is simply a large collection of different architectures,
node types, etc., which are somewhat ad hoc and not related in any way. It is the intention of this section to try and give a
framework  for  classifying  any  network  that  enables  it  to  be  viewed  as  a  special  instance  of,  or  as  a  composite  of,  only  a
handful of structures. All of the material discussed here has been introduced in previous chapters but is drawn together for a
comparative review. We start by looking at the types of task that neural nets can perform and show that their definitions are
not  always  mutually  exclusive.  Thus,  we  have  seen  nets  performing  classification,  associative  recall,  and  cluster  template
formation.  However,  these  descriptions  are  in  some  sense  “in  the  eye  of  the  network  designer”,  and  often  shade  into  one
another.

11.1.1
Neural net tasks

Consider the first network task we encountered, which was classification with feedforward nets. This has the connotation that
a pattern with a large number of inputs is assigned a comparatively small code on the output layer. However, it is perfectly
feasible to allow any number of output units and, in particular, there may be equal numbers of inputs and outputs. Then it is
possible for the input and output patterns to be the same and the net can be used as an associative memory (Sect. 7.2). Now
suppose that the output pattern is still roughly the same size as the input but their contents are quite different. This is still a
kind of associative recall  but,  in order to distinguish it  from the previous case,  it  is  referred to as hetero-associative recall
whereas, if the input and output are the same, we refer to auto-associative recall. If there are just a few output nodes is the net
performing classification or hetero-association? Clearly there is no hard and fast way of deciding but conventionally we tend
to think of the case with few output nodes as classification and that with many nodes as association.

Typically (although not necessarily) classification will make use of Boolean-valued target outputs to make clear the class
distinctions. If a net then responds with some nodes failing to reach saturation (i.e. close to Boolean values) we may either
interpret its output as an inconclusive result or look for the nearest Boolean class vector.

If, on the other hand, we are using a feedforward net with continuous output, then we may wish to interpret all values of the
output in response to arbitrary inputs. This will occur if we are attempting to learn a smooth input-output function in which
case  we  refer  to  the  net  as  performing  function  interpolation.  An  example  occurred  in  Section  6.11.2  in  which  a  net  was
trained to forecast financial market indices whose values were continuous.

Within the context of auto-association in recurrent nets we saw two distinct modes of operation (see Fig. 7.1). In one, the whole
pattern was corrupted uniformly by noise and so we think of the recall process as a kind of noise filtering. In the other case, a
part of the pattern was known to be intact and represented a key to initiate recall of the remaining part. The network is then
behaving as a content addressable memory (CAM) since the contents of a pattern are the key to its retrieval. Recurrent nets
may also perform hetero-association as shown in Figure 11.1 in which, conceptually, the pattern is divided into two parts and
we always clamp one half and recall on the other. By analogy with the feedforward case we may also perform classification if



the clamp occupies the bulk of the pattern and the nodes for recall are small in number. Hetero-association is also clearly an
example of CAM in operation.  

Table 11.1 Example of neural network tasks and network types.

Network architecture Tasks

Principally feedforward – Classification
– Function interpolation
Principally recurrent – Associative memory

– Auto-association
– Noise filtering
– CAM

– Hetero-association (also example of CAM)
Competitive – Cluster template formation
– Analysis of topological relationships

Turning to competitive nets, these can be thought of in two ways. On the one hand they perform a cluster analysis and learn
weight vector templates corresponding to the centre of each cluster. Alternatively we can think of the net as a classifier if we
interpret winning nodes as signifying pattern classes. As an additional feature, self-organizing feature maps (SOMs) allow us
to discover topological relationships (pattern proximities) between input vectors.

The various network tasks and the nets used to perform them are summarized in Table 11.1. The judicious use of the term
“principally” in the left hand column emphasizes the fact that the correspondence between task descriptions and nets is not rigid.

11.1.2
A taxonomy of artificial neurons

Many  artificial  neurons  have  their  functional  behaviour  defined  within  the  activation-output  model  shown  in  Figure  11.2.
Here,  the  xi  are  a  set  of  n  inputs,  and  qk  a  set  of  N  internal  parameters.  The  activation  a  is  a  function  of  the  inputs  and
parameters, a=a(qk, xi), and the output y is a function of the activation, y=y(a). Splitting up the node functionality like this can
assist the understanding of what “ingredients” have been used in the node make-up. In this model the TLUs and semilinear
nodes  have as  their  parameters  a  set  of  weights  wk,  k=1…n,  and a  is  just  given by the  usual  weighted sum of  inputs.  The
sigma-pi units have 2n weights wk, the radial basis functions have centres given by a set of n vector components wk, and the
digital nodes have their activation defined via a set of 2n site values Sµ. All of this is summarized in Table 11.2. The point here
is that what follows the generation of a—the activation-output function (or, simply, output function)—is wholly independent
of the form a takes so that we are, in principle, free to “mix and match” activation forms and output functions.

Examples of output functions are shown in Figure 11.3 where we have chosen to concentrate on their graphical form rather
than their  mathematical  description,  many of  which  have  been described previously.  The  only  new member  is  the  “ramp”
function, which is given by

Figure 11.1 Hetero-associative recall in recurrent nets. 

Figure 11.2 Activation-output model of artificial neuron.
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(11.1)

and has been used by Fukushima (1980) in his neocognitron.
There are two further aspects to node structure. First, the result of the output function may not be used directly but, rather,

as a probability in a source of stochastic output that is usually Boolean. Secondly, what we have referred to so

Table 11.2 Forms of activation.

Description Mathematical form Used in

Linear weighted sum of inputs w·x TLUs, semilinear nodes
Distance from a centre RBF units
Multilinear form Sigma-pi units
Site value on hypercube Sµ: µ=x Digital nodes 

 far as the “activation” may instead be subject to some kind of temporal integration and decay (recall the leaky integrators). In
this case, the quantities in Table 11.2 are acting as an input “driving force” in a more complex relation that determines the
final activation. It is possible to modify Figure 11.2 to include these functional additions but this will not be done here.

To summarize: nodes can be specified according to the following criteria:

– Particular choice of activation form (Table 11.2).
– Form of output function (Fig. 11.3).
– Whether  the  activation  is  given  directly  by  an  expression  like  those  in  Table  11.2,  or  indirectly  via  leaky-integrator

dynamics.
– Stochastic or non-stochastic output.

11.1.3
A taxonomy of network structures and dynamics

The  last  section  dealt  with  an  analysis  of  the  micro-structure  of  the  net  at  node  level;  here  we  deal  with  the  large-scale
topology and dynamics.

We  have  seen  three  main  network  architectures:  feedforward,  recurrent  and  competitive  layers.  Within  the  feedforward
genre, the net may or may not be layered, contain hidden units or be fully interconnected from layer to layer. Feedforward
nets have trivial dynamics—the input simply initiates a flow of signals that propagate through to the output layer. 

The main example of a recurrent net we discussed was that due to Hopfield. The nets described in Chapter 7 were fully
connected,  although  this  need  not  be  the  case;  Hopfield-like  nets  with  incomplete  connectivity  turn  out  to  have  a  smaller
training  pattern  capacity  than  their  fully  connected  counterparts.  Additionally,  there  may  or  may  not  be  symmetric

Figure 11.3 Output functions.
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connections or hidden units. The latter have been used in the so-called Boltzmann machines (Hinton et al. 1984) where they
help  form  an  internal  representation  of  the  training  environment.  Since  there  is  no  special  distinction  between  input  and
output units in a recurrent net, the non-hidden units in the Boltzmann machine are referred to as visible units since they may
interact  directly  with  the  environment.  The  dynamics  of  recurrent  nets  may  be  synchronous  or  asynchronous  leading  to
deterministic or probabilistic behaviour respectively.

The final structure—the competitive layer—has a distinct, highly structured architecture and the dynamics are governed by
those of its individual, leaky-integrator nodes.

Not all networks are examples of one of these three categories but, if they are not, then it is usually possible to break them
down into these architectural building blocks. For example, ART may be thought of as a competitive layer together with a
single-layer net whose input is partly derived via the top-down templates. Our summary of network architectures is therefore
as follows:

– Is  the  net  one  of  the  three  main  types  (recurrent,  feedforward,  competitive)?  If  not,  how  can  it  be  broken  down  into
components of this form?

– Are there hidden units?
– If feedforward, is the network layered?
– Is the connectivity complete (layer to layer in feedforward nets and node to node in recurrent nets)?
– Are any recurrent, reciprocal connections symmetric?
– If recurrent, are the dynamics synchronous or asynchronous?

11.1.4
A taxonomy of training algorithms

The  first  kind  of  training  encountered  was  supervised  learning  in  the  guise  of  the  perceptron  rule,  delta  rule  and
backpropagation. The characteristic of this type of training is that it necessitates a target output vector for each input pattern.
Self-organization,  on  the  other  hand,  requires  no  such  targets  and  each  training  pattern  is  considered  a  complete  whole.
Examples of this occurred with the competitive nets and the Kohonen SOMs. Characteristic of self-organization is the use of a
Hebb-like rule (possibly with a weight decay term). A further type of “training” took place with the Hopfield nets in which
the  weights  were  set  by  fiat  according  to  a  prescription  formula.  However,  we  saw  that  this  was  equivalent  to  learning
incrementally with a Hebb rule and, since there is no separate output with these nets, training in this way is a type of self-
organization. The reward-penalty rule and system identification require target vectors of some kind but the signals fed back to
the net are less complex than those used in, say, backpropagation. Because of this, some workers choose to think of R-P and
the like as belonging to a separate class of learning algorithms although they may also be thought of as part of the supervised
family.

Our training taxonomy is then:

– Supervised

– Complex signal feedback (e.g. backpropagation)
– Simple signal feedback (e.g. R-P).

– Unsupervised (self-organized).
– Weights given by formulaic prescription.

Another dimension to training concerns the separation of the network operation into distinct training and testing phases. This
is  the  most  common  state  of  affairs  but  is  not  necessary,  as  demonstrated  by  the  ART networks,  which  do  not  make  this
distinction.

11.2
Networks and the computational hierarchy

In our description of the ART networks, we found it useful to separate out different strands of the net’s function and structure
according to a hierarchical system based on that originally propounded by Marr (1982). Here we will apply this scheme to other
types of net.

Consider, first, the case of supervised learning using MLPs and backpropagation. There is a training set consisting of input-
output vector pairs xi, yi that are related by being samples from some underlying mapping or functional relation f(x)=y. Let
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the set of input-output mappings realizable by the network be F; this is restricted by the network connection scheme, number
of hidden units, etc. At the computational level we seek a function  a member of F, such that an error measure E (the sum of
square differences  for  is a minimum over F. Depending on the choice available in F, the network function  will
approximate more or less to the underlying function f. If it is indeed close to f then we expect there to be good generalization.

At the algorithmic level we perform a steepest descent gradient descent on E with respect to the parameters (the weights) that
define . Depending on whether this occurs under serial or batch pattern update, the descent may or may not include noise. In
going  further,  it  is  useful  to  differentiate  between  the  forward  and  backward  passes.  The  former  calculates  the  following
function of its hidden unit outputs yj:

(11.2)

where each yj  is, of course, a similar function of the network inputs. This calculation may be thought of as a feature at the
system level of implementation. It has, of course, an immediate signal-level implementation in terms of the artificial neurons
supporting  these  functions.  Indeed  one  may  argue  that  the  finesse  of  thinking  of  the  calculation  at  a  higher  level  than  its
neural implementation is unwarranted and that we should omit the system level in this case. However, the learning process is
quite different. The calculations may be articulated at the system level but the consequent signal-level implementation is not
consistent with artificial neuron function. Examples of this are the forming of target-output differences, the summation in the
error  calculation,  and  mechanisms  to  turn  on  and  off  the  plasticity  of  the  weights  between  forward  and  backward  passes.
Grossberg (1987) has given a graphical description of the signals in backpropagation training and notes that it does not appear
neurally inspired; that is, the signal-level implementation does not appear to map well onto the combined function of a set of
artificial  neurons.  The lack of a neural-like signal-level description is sometimes appreciated intuitively when a network is
said to be “biologically implausible”.

Notice that what is attempted at each level in the description backpropagation is independent of what occurs at the other
levels. Thus, at the computational level we are free to define alternative forms for the error E. At the algorithmic level we can
then choose to minimize it in any way we please—gradient descent does not have a monopoly here. Other techniques include
quasi-random  search  (Baba  1989)  or  genetic  algorithms  Jones  1993,  Nolfi  &  Parisi  1995).  Indeed,  even  having  chosen
gradient  descent,  we  are  still  free  to  choose  the  particular  technique  out  of  many  available,  which  vary  in  speed  and
complexity, and are not bound to use only backpropagation. For example, the so-called conjugate gradient method (Fletcher &
Reeves 1964) or second-order techniques (Battiti 1992), which make use of the higher order gradients (rate of change of rate
of  change).  Notice  that  what  we  have  previously  referred  to  as  an  algorithm—“backpropagation”—is  now  viewed  as  a
particular  implementation  of  gradient  descent.  However,  we  believe  that  teasing  out  the  description  into  the  multi-level
hierarchy does allow a deeper understanding in terms of what the net is doing, alternatives available, and issues of biological
plausibility.

We now turn to self-organization under competitive dynamics. There is still an input set {xi} but no corresponding {yi}.
Instead there are a fixed number of templates wk, 1≤k≤N (we have in mind, of course, the weight vectors in a competitive layer),
and a distance measure d(wk, xi) that defines how “close” the pattern is to the template. Computationally, we now seek a set

{wki}  and  a  mapping  xi→wki  (patterns  to  templates)  that  tends  to  minimize1  The  motivation
here is that what constitutes “clustering” is defined via d, for patterns xi, xj that are close together have small values of d(xi,
xj). Finally, we require that the mapping is many to one so that each pattern is assigned only one template. Examples of d that
we have seen before are the inner product xi·wk and the length of the vector difference .

A typical algorithm then proceeds as follows. Choose a pattern at random, find the current best template match wj, and then
update the template according to some rule like (8.4).

In terms of implementation, it is the search for best template match that highlights the difference in network types. In the
Kohonen SOMs this is done using a computer supervised search, which constitutes a system-level implementation. There is
then  no  signal-level  detail  for  these  nets.  On  the  other  hand,  the  use  of  competitive  dynamics  to  find  the  closest  match
represents a feature of implementation at the signal level.

It is apparent from the discussion of both types of learning that it is usually the training algorithm proper (rather than the
operation of the net in its testing phase) that fails to have a signal-level implementation. Another slant on this observation is
the distinction made by Williams (1987) between “on-line” and “off-line” processes in networks. In our language, the former
are able to be carried out at the signal level using a network whereas the latter have no obvious network-bound, signal-level
description.
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11.3
Networks and statistical analysis

On several occasions it has been noted that there were similarities between a net’s training algorithm and some technique in
statistics or data analysis. For example, we can liken backpropagation to nonlinear regression and competitive learning to some
kinds  of  cluster  analysis.  Is  it  the  case  that  all  neural  nets  are  simply  a  reworking  of  familiar  techniques?  We  claim  that,
although there are similarities to be drawn out between “classical” methods and networks, the latter do retain a novelty and
utility that lies outside of the established methods.

Consider  again  the  MLP defined by (11.2).  At  the  computational  level  this  may be thought  of  as  a  model  for  nonlinear
regression that is parametrized by the weights. However, as noted by Cheng & Titterington (1994), this does not correspond
to any model of regression previously developed and the form of (11.2) was not given a priori but was based on the network.
The network paradigm therefore  has  the  potential  to  inspire  novel  computational  approaches  in  a  bottom-up way;  it  is  not
merely an implementation of given computational strategies and is indeed able to stand on its own merits.

Now suppose we discover a network in a biological setting that appears to have the same architecture as one of those we
have studied in its  artificial  guise.  An understanding of the computational and algorithmic aspects of the artificial  network
promises to provide insight into the nature of these processes in its  biological  counterpart.  There are further benefits  if  we
have a signal-level implementation of the net endowing it with biological plausibility.

11.4
Neural networks and intelligent systems: symbols versus neurons

There are, as pointed out in the first chapter, many ways of viewing connectionist systems depending on which intellectual
stance one starts from. Here we wish to focus on networks as one way of building intelligent machines. In attempting this, it is
not clear at the outset whether we are obliged to copy the physical structure of the brain, or if it is possible somehow to skim
off  or  extract  the  essential  processes  responsible  for  intelligence  and  encapsulate  them  in  computer  programs.  The  first
approach is fulfilled in the connectionist programme, the latter by conventional symbol-based artificial intelligence or AI. We
now explore these issues in more depth.

11.4.1
The search for artificial intelligence

What is artificial intelligence? One definition is that it is intelligent behaviour embodied in human-made machines. In some
sense, however, we have simply reposed the question as “what is intelligence?” It appears then that we are in an impasse, for
to  answer  this  would  pre-empt  the  whole  research  programme  of  artificial  intelligence.  One  way  out  of  this  potential
“Catch-22” situation is simply to give examples of intelligent behaviour and then to say that achieving machine performance
in these tasks, as good as or better than humans, is the goal of artificial intelligence research. Thus, we are typically interested
in tasks such as: the perception and understanding of the world from visual input; the generation and understanding of speech;
navigation  in  complex  environments  while  avoiding  obstacles;  the  ability  to  argue  in  a  common-sense  manner  about  the
world;  playing  games  of  strategy  like  chess;  doing  mathematics;  diagnosis  of  medical  conditions;  making  stock  market
predictions.

From the early days of computing, in the late 1940s and early 1950s, there have existed two quite different approaches to
the problem of developing machines that might embody such behaviour. One of these tries to capture knowledge as a set of
irreducible semantic objects or symbols, and to manipulate these according to a set of formal rules. The rules, taken together,
form a “recipe” or algorithm for processing the symbols. The formal articulation of the symbolic-algorithmic paradigm has
been  made  most  vigorously  by  Newell  &  Simon  (1976)  and  has  represented  the  mainstream  of  research  in  artificial
intelligence; indeed “Artificial Intelligence” (capital “A” and “I”)—or its acronym AI—is usually taken to refer to this school
of thought.

Concurrent with this, however, has been another line of research, which has used machines whose architecture is loosely
based on that of the animal brain. These artificial neural networks are supposed to learn from examples and their “knowledge”
is stored in representations that are distributed across a set of weights. This is in contrast to the AI approach, which requires a
computer to be preprogrammed2 in some computer language and whose representations are localized within a memory store.

In order to appreciate the radical differences between these two approaches, it is necessary to know something about symbolic
AI. The following section must serve as the briefest of outlines suitable for our comparison and readers are referred to texts
such as those by Winston (1984) and Rich & Knight (1991) for a comprehensive introduction.
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11.4.2
The symbolic paradigm

We will illustrate the symbolic approach with the example of playing a game like chess although the details have been chosen
for clarity rather than any relation to genuine chess programs. The first ingredient is a method of describing the state of the
board at any time. This might easily be represented symbolically by assigning lexical tokens to the pieces and using a grid
system for  the  squares.  It  then  makes  sense  to  say,  for  example,  that  “white_pawn(2)  is  on  square(d2)”.  Next  we  need  to
define what the initial state and final (or goal) states of the game are; the system needs to know what constitutes checkmate. It
must also have knowledge of what constitutes a valid move. This will consist of a series of rules of the form “If there is a
white  pawn  at  square(d2)  AND  square(d3)  is  empty  THEN  the  pawn  can  move  to  square(d3)”.  Of  course,  higher  level
abstractions of rules like this (which don’t require specific square labels, etc.) will almost certainly be used. The use of legal
moves should then guarantee that only legal board positions are obtained. Finally we need some controlling strategy that tells
the system how to find goal states. This takes the form of a search through the space of board states a given number of moves
ahead. At each move a value is assigned to the final board position according to its utility for the chess-playing system. For
example, moves that result in loss of pieces will (usually) score poorly. The search may be guided by more rules or heuristics
that embody further knowledge of the game: for example, “don’t put your queen under direct attack”, or “material loss is OK
if mate can be forced in two moves”.

The main ingredients in such an approach are therefore well-defined rules and their  assembly into procedures that  often
constitute some kind of search strategy. In addition, symbolic descriptions are all pervasive, both in describing the problem
explicitly  and  as  tokens  in  defining  the  rules.  Chess  may  be  thought  of  as  an  instantiation  of  one  area  of  human  expert
knowledge and, quite generally, AI has sought to articulate these domains in so-called expert systems in which each fragment
of knowledge is encapsulated in a construction of the form “if condition 1 and condition 2…then result”. These have proven
very  successful  in  many  areas  as,  for  example,  in  configuring  computer  systems  (McDermott  1982)  and  giving  advice  on
mineral exploration (Hart et al. 1978).

How are we to implement such systems? The answer lies in the fact that they all  represent computable  procedures.  One
formal  definition  of  computability  is  couched  directly  in  terms  of  a  hypothetical  machine,  the  universal  Turing  machine
(Turing 1937). Although all modern, general purpose computers are equivalent to this abstract model they are more normally
referenced to another that more closely depicts the way they work. This model—the von Neumann machine—also highlights
their intimate relation with the symbolic paradigm and is illustrated in Figure 11.4.

The von Neumann machine/computer repeatedly performs the following cycle of events:

1. Fetch an instruction from memory.
2. Fetch any data required by the instruction from memory.
3. Execute the instruction (process the data).
4. Store results in memory.
5. Go back to step 1.

Although  the  first  computers  were  built  to  perform  numerical  calculations,  it  was  apparent  to  the  early  workers  that  the
machines  they  had  built  were  also  capable  of  manipulating  symbols,  since  the  machines  themselves  knew  nothing  of  the
semantics of the bit-strings stored in their memories. Thus, Alan Turing, speaking in 1947 about the design for the proposed
Automatic Computing Engine (ACE), saw the potential to deal with complex game-playing situations like chess: “Given a
position  in  chess  the  machine  could  be  made  to  list  all  the  ‘winning  combinations’  to  a  depth  of  about  three  moves…”
(Hodges 1985).

We  can  now  see  how  the  von  Neumann  architecture  lends  itself  naturally  to  instantiating  symbolic  AI  systems.  The
symbols are represented as bit-patterns in memory locations that are accessed by the CPU. The algorithms (including  search

Figure 11.4 The von Neumann machine. 
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strategies and rules) are then articulated as computer programs by gradually breaking them down into successively smaller
operations until these consist of the instructions that the CPU can directly work on. The machines on which the modern AI
fraternity run their algorithms have not changed in any fundamental conceptual way from the pilot ACE, all of these being
examples of the classic von Neumann architecture. Granted, there has been a speed increase of several orders of magnitude,
and hardware parallelism is sometimes available, but contemporary “AI engines” are still vehicles for the instantiation of the
theoretic  stance  which  claims  that  intelligent  behaviour  can  be  described  completely  as  a  process  of  formal,  algorithmic
symbol manipulation.

Mainstream  AI  has  proved  successful  in  many  areas  and,  indeed,  with  the  advent  of  expert  systems  has  become  big
business. For a brief history of its more noteworthy achievements see Raj (1988). However, AI has not fulfilled much of the
early promise that was conjectured by the pioneers in the field. Dreyfus, in his book What computers can’t do (Dreyfus 1979),
criticizes the early extravagant claims of the AI practitioners and outlines the assumptions they made. Principal among these
is the belief that all knowledge or information can be formalized, and that the mind can be viewed as a device that operates on
information according to formal rules. It is precisely in those domains of experience where it has proved extremely difficult to
formalize the environment that the “brittle” rule-based procedures of AI have failed. The differentiation of knowledge into that
which can be treated formally and that which cannot has been further examined by Smolensky (1988) where he makes the
distinction  between  cultural  or  public  knowledge  and  private  or  intuitive  knowledge.  Stereotypical  examples  of  cultural
knowledge are found in science and mathematics in which proofs, demonstrations and procedures can be made as clear and as
detailed  as  we  wish.  Examples  of  private  knowledge  include  many areas  of  everyday  human activity:  the  skills  of  natural
language  understanding,  fine  motor  control  in  sport,  visual  navigation  and  scene  understanding,  or  even  the  intuitive
knowledge of an expert in some narrow domain such as wine tasting. Public knowledge can be displayed in its entirety in a
well-defined way—Newton’s laws of motion can be stated unequivocally—and there is no more nor less to them than their
symbolic representation. Private or intuitive knowledge can be indicated or pointed to but cannot be made explicit. A tennis
professional can indicate how to play a good serve but cannot transfer the required skill directly to the motor areas of your brain
—this needs much practice and may never be acquired.

We may draw up a list of the essential characteristics of von Neumann machines (computers) running symbolic AI systems
for comparison with those of networks.

– The machine must be told in advance, and in great detail, the exact series of steps required to perform the algorithm. This
series of steps is the computer program.

– The types of data it deals with have to be in a precise format—noisy data confuse the machine. 
– The hardware is easily degraded—destroy a few key memory locations and the computer will stop functioning or “crash”.
– There is a clear correspondence between the semantic objects being dealt with (numbers, words, database entries, etc.) and

the computer hardware. Each object can be “pointed to” in a block of memory.

The first point here requires some qualification in the light of the possibility of the machine learning from previous experience
(Rich  &  Knight  1991,  Thornton  1992).  However,  learning  in  this  case  can  only  result  in  “more  of  the  same”  (rules  and
symbols) and, further, this is constrained to be within the framework provided by the programmer. So, notwithstanding this
proviso, the success of the symbolic approach in AI is predicated on the assumption that we can at least find an algorithmic
framework to describe the solution to the problem. As already noted, it turns out that many everyday task domains we take for
granted are difficult to formalize in this way. Further specific examples are: how do we recognize handwritten characters, the
particular instances of which we may never have seen before, or someone’s face from an angle we have never encountered;
how do we recall whole visual scenes, given some obscure verbal cue?

11.4.3
The connectionist paradigm

The neural network or connectionist approach starts from the premise that intuitive knowledge cannot be captured in a set of
formalized rules and a completely different strategy must be adopted. It assumes that, by copying more closely the physical
architecture  of  the  brain,  we  may  emulate  brain  function  more  closely  and  build  machines  that  can  tackle  some  of  these
apparently intractable problems. Some features of this approach are as follows:

– Clearly the style of processing is completely different; it  is more akin to signal processing than symbol processing. The
combining of signals and generation of new ones is to be contrasted with the execution of instructions stored in a memory.

– Information is  stored in  a  set  of  weights  rather  than a  program.  In  general,  the  weights  adapt  by continually  presenting
examples from a set of training vectors to the net.
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– Processing in a network occurs in a parallel rather than a serial fashion. There is no single CPU and each node can operate
independently and simultaneously with other nodes in the net.

– Nets are robust in the presence of noise; small changes in an input signal will not drastically affect a node’s output. 
– Nets  are  robust  in  the  presence  of  hardware  failure:  a  change  in  a  weight  may  only  affect  the  output  for  a  few  of  the

possible input patterns.
– There is often no simple correspondence between nodes and high-level semantic objects. Rather, the representation of a

“concept” or “idea” within the net is via the complete pattern of unit activities, being distributed over the net as a whole. In
this way any given node may partake in many semantic representations (however, this is not necessarily the case, a point
taken up again in the next section).

– A characteristic feature of their operation is that neural nets work by extracting statistical regularities or features from the
training set. This allows the net to respond to novel inputs (not seen during training) by classifying them appropriately with
one of the previously seen patterns, or by assigning them to new classes. This process of generalization is one of the key
reasons for using neural nets.

– Nets are good at “perceptual” tasks like pattern classification and associative recall in the presence of noise. These are just
the tasks that the symbolic approach can have difficulties with.

11.4.4
Symbols and neurons—a rapprochement

We  have  tried  to  show  that  the  conventional  symbolic  paradigm  can  fail  to  be  effective  for  tasks  where  it  is  difficult  to
formalize  the  procedures  we  use  and  that  an  alternative,  subsymbolic,  network-based  paradigm  may  be  more  suitable.
However, we must be careful not to throw the symbolic “baby” out with its “bath water”. AI has been moderately successful
in  some  restricted  domains  of  human  expertise  and  some  high-level  cognitive  skills  possessed  by  humans  are  most  easily
formulated  in  symbolic  terms.  In  particular,  the  usual  applications  to  which  computers  are  put—mathematics,  database
retrieval, etc.—are clearly easier to implement on a von Neumann machine than in a neural network.

Further, the connectionist approach has one disadvantage in that, although a solution to the problem may be available, it is
usually not clear why that particular solution is correct. This is the other edge of the distributed processing sword: patterns of
activity across a network are not semantically transparent and, even if we attempt to interpret a node’s activity as some kind
of  micro-feature,  these  may  be  difficult  to  understand  and  their  sheer  number  may  conspire  to  obscure  the  reason  for  a
particular network output. Of course, in some sense it might be argued that it is just this insistence on explanation that has
hindered previous efforts in AI to develop models of perception and cognition that may have to rely on subsymbolic operation.
However, in applications work it is often desirable to have some insight as to how the model is working. 

It  would  appear,  therefore,  that  there  may  be  significant  gains  to  be  made  by  attempting  to  integrate  connectionist  and
symbolic styles of computing in a hybrid system. In this spirit, the relation between networks and expert systems is reviewed
by  Caudill  (1991)  from an  applications  viewpoint  in  which  several  ways  of  integrating  the  two  approaches  are  described.
First,  it  may be possible  to  break a  problem down into  subtasks,  each of  which may then be tackled with  either  an expert
system or  a  network,  depending  on  which  is  more  appropriate.  A  more  tightly  bound  scenario  occurs  if  the  networks  are
embedded as part of the expert system. For example, the job of finding the appropriate set of rules for any particular input
may be likened to one of  pattern matching.  Thus,  the series  of  conditional  clauses (“if”  statements)  that  apply at  any time
constitute a pattern vector of input statements. In this way, a network may be used to evaluate which rule (or rules) should be
used  in  response  to  the  current  state  of  the  system environment.  Alternatively,  the  network  may be  the  mechanism that  is
activated in response to an “if-then” rule instantiated in the normal way If a network is clearly superior to a symbol-based
system for a particular task but a premium is placed on explanation then it may be possible to run the network in parallel with
an expert system, which, although inadequate for solving the problem consistently, may provide some insight as to why the
net has chosen the solution it has.

Finally, it is possible, in principle at least, to extract rules from networks. For example, suppose a node in a single-layer net
has two large positive weights wi, wj, that the node has a threshold-type output function (or very steep sigmoid) and that the
inputs and outputs have clear semantic identities (e.g. medical symptoms and diagnosis respectively). Then, if the other weights
of the node are sufficiently small it may be possible to write the node’s function in the form “If symptom(i) and symptom(j)
then  diagnosis(l)”  where  the  latter  is  one  of  the  two  possible  node  outputs.  This  is  engendered  if  both  inputs  i  and  j  are
required to make the node fire and the other inputs cannot contribute significantly to the activation. A full system realization
of this form is described by Gallant (1988).

Other  workers  are  not  interested  so  much  in  providing  explanations  of  the  problem-solving  process  as  in  providing  a
connectionist  model  for  high-level,  cognitive human skills  that  have traditionally  appeared to  be tractable  by the symbolic
approach. Sun and Bookman provide an introduction to these hybrid cognitive models in a workshop report (Sun & Bookman
1993)  and  a  comprehensive  review  (Sun  &  Bookman  1994).  The  localist  approach  uses  the  theme  (introduced  above)  of
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assigning clear conceptual interpretation to individual nodes. This appears to abandon one of the tenets of the connectionist
philosophy,  namely  distributed  representations,  and  Smolensky  (1988)  has  argued  for  the  “proper  treatment  of
connectionism”,  in  which  nets  can  only  operate  at  a  subsymbolic  level  and  where  there  are  no  local  high-level  semantic
representations.  Nevertheless  it  would appear  that  a  useful  bridge between symbols  and neurons  may be built  in  this  way.
Other approaches are truly distributed in using whole networks to represent concepts and ideas, and open up the possibility
for the combination of local and distributed representations working in concert. 

At the very highest level of analysis, Clark (1990) has speculated that we humans may have to emulate a von Neumann
architecture  within  the  neural  nets  that  are  our  brains,  in  order  to  perform  symbolic-based  tasks.  That  this  is  a  logical
possibility was made clear by McCulloch and Pitts in their original paper on the TLU (1943) when they proved that networks
of such units could evaluate any Turing computable function.

11.5
A brief history of neural nets

We draw together here some of the key contributions described in previous chapters but in the context of a brief historical
narrative that highlights the way ideas in science can, just like hemlines, also be subject to the vagaries of fashion. Many of
the  most  significant  papers  on  neural  networks  are  reprinted  in  the  collection  of  Anderson  &  Rosenfeld  (1988).  Some
interesting anecdotes and reminiscences can be found in the article by Rumelhart & Zipser (1985).

11.5.1
The early years

The development of machines that incorporate neural features has always run in parallel with work on their von Neumann-
style counterparts. In fact the analogy between computing and the operation of the brain was to the fore in much of the early
work on general purpose computing. Thus, in the first draft of a report on the EDVAC, von Neumann (reprinted, 1987) makes
several correspondences between the proposed circuit elements and animal neurons.

In  1942  Norbert  Weiner  (see  Heims  1982)  and  his  colleagues  were  formulating  the  ideas  that  were  later  christened
cybernetics  by  Weiner  and  that  dealt  with  “control  and  communication  in  the  animal  and  the  machine”.  Central  to  this
programme,  as  the  description  suggests,  is  the  idea  that  biological  mechanisms  can  be  treated  from  an  engineering  and
mathematical  perspective.  With  the  rise  of  AI  and  cognitive  science,  the  term  “cybernetics”  became  unfashionable
(Aleksander 1980) although it might be argued that, because of its interdisciplinary nature, connectionism should properly be
called a branch of cybernetics; certainly many of the early neural net scientists would have described their activities in this
way.

In  the  same  year  that  Weiner  was  formulating  cybernetics,  McCulloch  and  Pitts  published  the  first  formal  treatment  of
artificial neural nets and introduced the TLU. Soon after this, Donald Hebb (1949) made his seminal contribution to learning
theory with his suggestion that synaptic strengths might change so as to reinforce any simultaneous correspondence of activity
levels between the presynaptic and postsynaptic neurons.

The  use  of  the  training  algorithm  in  artificial  nets  was  initiated  by  Rosenblatt  (1962)  in  his  book  Principles  of
neurodynamics, which gave a proof of convergence of the perceptron rule. The delta rule was developed shortly afterwards by
Widrow & Hoff  (1960) and neural  nets  seemed set  for  a  bright  future.  However,  in 1969 this  first  flush of  enthusiasm for
neural nets was dampened by the publication of Minsky and Papert’s book Perceptrons (Minsky & Papert 1969). Here, the
authors show that there is an interesting class of problems (those that are not linearly separable) that single-layer perceptron
nets cannot solve, and they held out little hope for the training of multilayer systems that might deal successfully with some of
these.  Minsky had clearly  had a  change of  heart  since  1951,  when he  had been involved in  the  construction of  one of  the
earliest connectionist machines in a project that motivated work on learning in his PhD thesis. The fundamental obstacle to be
overcome was the  credit  assignment  problem; in  a  multilayer  system,  how much does  each unit  (especially  one not  in  the
output layer) contribute to the error the net has made in processing the current training vector?

In spite of Perceptrons, much work continued in what was now an unfashionable area, living in the shadow of symbolic
AI: Grossberg was laying the foundations for his adaptive resonance theory (ART) (Carpenter & Grossberg 1987b, Grossberg
1987);  Fukushima was  developing  the  cognitron  (Fukushima 1975);  Kohonen  (Kohonen  1984)  was  investigating  nets  that
used topological feature maps; and Aleksander (Aleksander & Stonham 1979) was building hardware implementations of the
nets based on the n-tuple technique of Bledsoe and Browning (Bledsoe & Browning 1959).

Several developments led to a resurgence of interest in neural networks. Some of these factors are technical and show that
Minsky and Papert had not had the last word on the subject, while others are of a more general nature.
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11.5.2
The neural net renaissance

In 1982 John Hopfield, then a physicist at Caltech, showed (Hopfield 1982) that a highly interconnected network of threshold
logic  units  could  be  analyzed  by  considering  it  to  be  a  physical  dynamic  system  possessing  an  “energy”.  The  process  of
associative recall could then be framed in terms of the system falling into a state of minimal energy.

This novel approach to the treatment of recurrent nets led to the involvement of the physics community, as the mathematics
of these systems is very similar to that used in the Ising spin model of magnetic phenomena in materials (Amit & Gutfreund
1985).  Something  very  close  to  the  “Hopfield  model”  had  been  introduced  previously  by  Little  (1974),  but  remained
comparatively unnoticed because of its heavy technical emphasis.

A  similar  breakthrough  occurred  in  connection  with  feedforward  nets,  when  it  was  shown  that  the  credit  assignment
problem had an exact solution. The resulting algorithm, “back error propagation” or simply backpropagation also has claim to
multiple  authorship.  Thus  it  was  discovered  by  Werbos  (1974),  rediscovered  by  Parker  (1982),  and  discovered  again  and
made popular by Rumelhart et al. (1986a). In fact it is possible to see the essential concept of backpropagation in Rosenblatt’s
Principles of neurodynamics but the author appears not to have felt able to develop these ideas to a formal conclusion.

Aside from these technical advances in analysis, there is also a sense in which neural networks are just one example of a
wider  class  of  systems  that  the  physical  sciences  started  to  investigate  in  the  1980s,  which  include  chaotic  phenomena
(Cvitanović  1984),  fractals  (Mandelbrot  1977)  and cellular  automata  (Farmer  et  al.  1983).  These  may all  be  thought  of  as
dynamical systems governed by simple rules but which give rise to complex emergent behaviour. Neural nets also fall into
this category and so one view is that they are part of the “new wave” of physical science.

Another factor in the birth of any new thread of scientific investigation is the development of the appropriate tools. In order
to investigate the new physical models (including neural nets), it is usually necessary to resort to computer simulation. The
availability of this method increased dramatically in the 1980s with the introduction of personal computers and workstations
that provided computing power that was previously the province of large, batch-run machines. These new workstations also
provided many new graphical  tools that  facilitated visualization of what was going on inside the numeric simulations they
were running. Further, the new computers allowed simple, interactive use and so facilitated experiments that would have been
unthinkable  15  years  previously  by  the  average  worker,  given  the  accessibility  and  power  of  the  computing  resources
available.

In summary, therefore, research in connectionism was revived after a setback in the 1970s because of new mathematical
insights, a conducive scientific zeitgeist, and enormous improvement in the ability to perform simulation.

11.6
Summary

This chapter has looked at some high-level issues. First, we described the various tasks that nets can perform and noted that,
although it  is convenient to distinguish between them, it  is often possible to think of one task as a special case of another.
Some  order  was  imposed  on  the  connectionist  “menagerie”  by  introducing  taxonomies  for  artificial  neurons,  network
structures  and  training  algorithms.  The  computational  hierarchy  was  revisited  and  applied  to  MLPs,  competitive  nets  and
SOMs.  Its  application  led  to  the  idea  that  the  intuitive  understanding  of  “biological  plausibility”  may  be  captured  more
precisely by an articulation of the network and the training algorithm at the signal level of implementation. The similarities
and  differences  between  nets  and  statistical  techniques  were  discussed.  Network  architectures  can  lead  to  new variants  of
established statistical techniques and may provide insight into the operation of biological networks. Next we looked at neural
networks  in  the  context  of  artificial  intelligence  and  discussed  the  contrast  between  the  connectionist  and
symbolic approaches. It was concluded that both have something to offer, depending on the type of problem to be addressed.
Finally,  we  gave  a  brief  history  of  neural  networks,  which  noted  the  watershed  created  by  the  publication  of  the  book
Perceptions. The technical objections raised there have been met in principle but it remains to be seen whether the practice
and application can realize the potential offered by the theoretical foundation now being established.

11.7
Notes

1. It may not find the true minimum but should at least act to decrease this sum.
2. This is subject to the proviso that learning has not been implemented in the program. This is discussed again in Section 11.4.2. 

CLASSIFYING NEURAL NET STRUCTURES 127



Appendix A
The cosine function

The cosine is defined in the context of a right-angled triangle, as shown in Figure A.1. For an angle ø (Greek phi) in a right-
angled triangle, the cosine of ø—written cosø—is the ratio of the side a adjacent to ø, and the longest side, or hypotenuse h, so
that

(A.1)
To explore the properties of this definition, consider the series of triangles shown in Figure A.2. Each panel pertains to one of
a series of representative angles ø drawn in the range 0≤ø≤180°, in which all the triangles have the same hypotenuse h. They
may be thought of as being obtained by a process of rotating the radius of a circle anti-clockwise around its centre and, at each
stage,  forming  the  right-angled  triangle  whose  hypotenuse  is  the  radius  and  whose  base  (length  a)  is  along  a  horizontal
diameter. The panels are numbered with increasing ø. When ø=0 (panel 1) the two sides a and h are equal and so cosø=1. As ø
is gradually increased to small values (panel 2) a is only slightly reduced, and so cosø≈1 (read ≈ as “is approximately equal
to”). For larger values of ø (panel 3) cosø becomes significantly less than 1. As ø approaches 90° (panel 4) a becomes very
small and so cosø is almost 0. When ø=90° (panel 5) a=0 and so cosø=0.

Now,  when  ø  is  increased  beyond  90°  (panel  6),  the  angle  must  still  be  measured  with  respect  to  the  same  horizontal
reference but this results in ø lying on the opposite side of the hypotenuse to that which it has occupied so far; that is, it lies
outside  the triangle. This is expressed by making a  negative so that the  cosines are also negative for the rest of the series.
Panels 7–9 show what happens as ø increases towards 180°. It can be seen that it is equivalent to a reversal of the sequence in
panels 1 through to 3, albeit with the introduction of a negative sign.

By evaluating cosø  for all  values of ø  between 0 and 180°, a graph of cosø  over this angular range may be obtained, as
shown in Figure A.3.  

Figure A.1 Cosine relations. 



Figure A.2 The cosine function for various angles.

Figure A.3 Graph of cosine function. 
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definition, 1
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