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Abstract−− In this work a novel hybr id Multi-Sensor Data
Fusion (MSDF) architecture integrating Kalman fil tering and
fuzzy logic techniques is explored. The objective of the hybr id
MSDF architecture is to obtain fused measurement data that
determines the parameter being measured as precisely as
possible. To reach this objective, first each measurement
coming from each sensor is fed to a Fuzzy–adaptive Kalman
Fil ter (FKF), thus there are n sensors and n FKFs working in
parallel. The adaptation in each FKF is in the sense of
adaptively adjusting the measurement noise covar iance matr ix
R employing a fuzzy inference system (FIS) based on a
covar iance matching technique. Second, another FIS, here
called a fuzzy logic observer (FLO), is monitor ing the
performance of each FKF. Based on the value of a var iable
called Degree of Matching (DoM) and the matr ix R coming
from each FKF, the FLO assigns a degree of confidence, a
number on the interval [0, 1], to each one of the FKFs output.
The degree of confidence indicates to what level each FKF
output reflects the true value of the measurement. Finally, a
defuzzificator obtains the fused estimated measurement based
on the confidence values. To demonstrate the effectiveness and
accuracy of this new hybr id MSDF architecture, an example
with four noisy sensors is outlined. Different defuzzification
methods are explored to select the best one for this par ticular
application. The results show very good performance.

Index terms: Multi-sensor data fusion, Knowledge-based
sensor fusion, fuzzy logic, adaptive Kalman fil tering.

I. INTRODUCTION

The Multi -Sensor Data Fusion (MSDF) approach is
described as the acquisition, processing, and synergistic
combination of information gathered by various knowledge
sources and sensors to provide a better understanding of a
phenomenon under consideration [1]. Different MSDF
techniques have been explored recently. These techniques
vary from those based on well -established Kalman filtering
methods [2], [3], to those based on recent ideas from soft
computing technology [4], [5]. However, littl e work has
been done in exploring hybrid architectures that consider
both these approaches. In this work a novel MSDF

architecture is explored. This architecture is based on a
hybrid structure integrating fuzzy inference systems and
Kalman filtering techniques.

The general idea explored here is the combination of the
advantages that both techniques have. On the one hand,
Kalman filtering is recognised as one of the most powerful
traditional techniques of estimation. This relies on the fact
that the Kalman filter is an optimal linear estimator; that
means it estimates are linear, unbiased, and with minimum
error variance [6]. On the other hand, the main advantages
derived from the use of fuzzy logic techniques, with respect
to traditional schemes, are the simplicity of the approach,
the capabili ty of fuzzy systems to deal with imprecise
information, and the possibil ity of including heuristic
knowledge about the phenomenon under consideration.

The remainder of this paper is organised as follows. Section
II describes the Kalman filter. Section III summarizes the
proposed fuzzy-adaptive Kalman filter; a more detailed
description of this approach is given in Escamilla and Mort
[7]. Section IV introduces the proposed new hybrid MSDF
architecture where fuzzy logic and Kalman filtering
techniques are integrated. In order to show the effectiveness
of this MSDF architecture, in section V an illustrative
example is outlined and results are discussed. Finally, in
section VI the conclusions of this work are given.

II . THE KALMAN FILTER

The Kalman filter is an optimal recursive data processing
algorithm [6] that provides a linear, unbiased, and minimum
error variance estimate of the unknown state vector

n
kx ℜ∈  at each instant k = 1,2,…, (indexed by the

subscripts) of a discrete-time controlled process described
by the linear stochastic difference equations:

kkkkkk wuBxAx ++=+1 (1)
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where xk is an n × 1 system state vector, Ak is an n × n
transition matrix, uk is an l × 1 vector of the input forcing
function, Bk is an n × l matrix, wk is an n × 1 process noise
vector, zk is a m × 1 measurement vector, Hk is a m × n
measurement matrix, and vk is a m × 1 measurement noise
vector.

Both wk and vk are assumed to be uncorrelated zero-mean
Gaussian white noise sequences with covariances,
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where E{ ⋅} is the statistical expectation, superscript T
denotes transpose, Qk is the process noise covariance
matrix, and Rk is the measurement noise covariance matrix.

The Kalman filter algorithm [8] can be organised in two
groups of equations,

i) Time update (or prediction) equations:

kkkkk uBxAx +=−
+ ˆˆ 1 (6)

k
T
kkkk QAPAP +=−

+1 (7).

These equations project, from time step k to step k+1, the
current state and error covariance estimates to obtain the a
priori (indicated by the super minus) estimates for the next
time step.

ii ) Measurement update (or correction) equations:

1][ −−− += k
T
kkk

T
kkk RHPHHPK (8)

]ˆ[ˆˆ −− −+= kkkkkk xHzKxx     (9)
−−= kKkk PHKIP ][  (10).

These equations incorporate a new measurement into the a
priori estimate to obtain an improved a posteriori estimate.

In the above equations, kx̂  is an estimate of the system

state vector xk, and Pk is the covariance matrix
corresponding to the state estimation error defined by,

{ }T
kkkkk xxxxEP )ˆ)(ˆ( −−= (11)

the term −
kk xH ˆ  is the one-stage predicted output kẑ , and

)ˆ( −− kkk xHz  is the one-stage prediction error sequence,

also referred to as the innovation sequence or residual,
generally denoted as r and defined as:

)ˆ( −−= kkkk xHzr (12).

The innovation represents the additional information
available to the filter as a consequence of the new
observation kz . The weighted innovation, ]ˆ[ −− kkkk xHzK ,

acts as a correction to the predicted estimate −
kx̂  to form the

estimation kx̂ ; the weighting matrix Kk is commonly

referred to as the filter gain or the Kalman gain matrix.

The Kalman filter algorithm starts with initial conditions at

0=k  being: −
0x̂ , and −

0P . With the progression of time,

as new measurements kz  become available, the cycle

estimation-correction of states and the corresponding error
covariances can follow recursively ad infinitum.

III . THE FUZZY-ADAPTIVE KALMAN FILTER

As described previously, the traditional Kalman filter
formulation assumes complete a priori knowledge of the
process and measurement noise statistics, matrices Q and R.
However, in most practical applications these statistics are
initiall y estimated or, in fact, are unknown. The problem
here is that the optimali ty of the estimation algorithm in the
Kalman filter setting is closely connected to the quality of
these a priori noise statistics [9], [10]. It has been shown
how poor estimates of the input noise statistics may
seriously degrade the Kalman filter performance, and even
provoke the divergence of the filter [11]. From this point of
view it can be expected that an adaptive formulation of the
Kalman filter will result in a better performance or will
prevent filter divergence.

In next section, an on-line adaptive scheme of the Kalman
filter employing the principles of fuzzy logic is presented.
The adaptation is in the sense of adaptively adjusting the
measurement noise covariance matrix R from data as they
are obtained. The main advantages derived from the use of
fuzzy techniques, with respect to traditional adaptation
schemes, are the simplicity of the approach, the possibility
of including heuristic knowledge about the phenomenon
under consideration, and the relaxation of the a priori
statistical assumptions.

A. Adaptive estimation of the measurement noise
covariance matrix R

The covariance matrix R represents the accuracy of the
measurement instrument. A larger value of the covariance
matrix R for measured data means that we trust this
measured data less and have more faith in the prediction.
Assuming that the noise covariance matrix Q is completely
known, an algorithm to estimate the measurement noise
covariance matrix R can be derived.
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Here an innovation-based adaptive estimation (IAE)
algorithm [12] to adapt the measurement noise covariance
matrix R has been derived [7]. In particular, the technique
known as covariance-matching [13] is used. The basic idea
behind this technique is to make the actual value of the
covariance of the residual consistent with its theoretical
value. The innovation sequence or residual rk has a
theoretical covariance,

k
T
kkkk RHPHS += − (13)

obtained from the Kalman filter algorithm. Given the
availabili ty of the innovation sequence rk, its actual

covariance rkĈ  is approximated by its sample covariance

through averaging inside a moving estimation window of
size N [12],

∑
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where 10 +−= Nki  is the first sample inside the estimation

window. The window size N is chosen empirically to give
some statistical smoothing.

Thus, if it is found that the actual covariance of rk has a
discrepancy with its theoretical value, then adjustments
have to be made to R in order to correct this mismatch.

Now, to detect the discrepancy of Sk and its actual value

rĈ  a new variable is defined. This variable is called the

Degree of Matching (DoM),

rkkk CSDoM ˆ−= (15).

The basic idea used by a Fuzzy Inference System (FIS) to
adapt R is as follows. It can be noted from equation (13)
that an increment in R will increment S, and vice versa.
Thus, R can be used to vary S in accordance with the value
of DoM in order to reduce the discrepancies between S and

rĈ . From here, three general rules of adaptation are

defined:

1. If DoM ≅  0 (this means S and rĈ  match almost

perfectly) then maintain R unchanged.
2. If DoM > 0 (this means S is greater than its actual

value rĈ ) then decrease R.

3. If DoM < 0 (this means S is smaller than its actual

value rĈ ) then increase R.

Thus R is adjusted in this way:

kkk RRR ∆+= −1 (16).

where  ∆R  is the factor that is added or subtracted from R
each instant of time. ∆R is the FIS output and DoM is the
FIS input. A graphical representation of the Fuzzy-adaptive
Kalman Filter (FKF) is shown in Fig. 1.
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 zk

S k

D oM k

rk

∆R k

R k

FK F

Fig. 1. Basic structure of the Fuzzy-adaptive Kalman Filter.

IV. HYBRID ARCHITECTURE FOR MULTI-SENSOR DATA

FUSION

The objective of the proposed hybrid multi-sensor data
fusion (MSDF) architecture is to obtain fused measurement
data that determines the parameter being measured as
precisely as possible. To reach this objective, it is assumed
that there are n different sensors measuring the same
parameter and each sensor has its own characteristics of
noise and measurement errors. First, the measurements
coming from these sensors are fed to a FKF, one for each
sensor, thus there are n sensors and n FKFs working in
parallel (see Fig. 2).
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Fig. 2. Proposed MSDF architecture.

Second, another fuzzy inference system, here called the
fuzzy logic observer (FLO), is used to monitor the
performance of each FKF. Based on the values of the
variables DoM and R coming from each FKF, the FLO
assigns a degree of confidence w, a number on the interval
[0, 1], to each one of the FKFs output. The degree of
confidence indicates to what level each FKF output reflects
the true value of the measurement. At the same time, the
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degree of confidence acts as a weight that tells a
defuzzificator at what confidence level it should take each
FKF output value.

Finally, a defuzzificator obtains the fused estimate of the
measurement based on the confidence values. Here several
defuzzification procedures can be used. Fig. 2 shows a
graphical representation of the proposed MSDF
architecture.

V. ILLUSTRATIVE EXAMPLE

To demonstrate the effectiveness and accuracy of this new
hybrid MSDF architecture, an example with four noisy
sensors is outlined.

Consider the following linear system, which is a modified
version of a tracking model [14], [15],
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Fig. 3. (a) Noise on sensor 1; (b) noise on sensor 2; (c)
noise on sensor 3; (d) noise on sensor 4.

with initial conditions 0ˆ 0 =x , 
30 01.0 IP = , where x1, x2,

and x3 are the position, velocity and acceleration,
respectively, of a flying object. In equation (17), the system
noise sequence { wk} is a pseudorandom sequence (i.e.,
uncorrelated zero-mean Gaussian white noise sequence)
with Q = 0.02I3.

MATLAB code was developed to simulate the process
described by equation (17) and the proposed MSDF system
considering four sensors measuring the position of the
flying object. The simulation was carried out for 500s with
a sample time of 0.5s. Q was fixed as 0.02I3. The actual
value of R for each sensor has been assumed unknown, but
its starting value in all sensors was selected as 1. The sensor
measurements are corrupted with the noises described in
Fig. 3. Sensor 1 is corrupted with noise 1, sensor 2 with
noise 2, and so on.

In subsequent sections, the implementation of each one of
the components of the hybrid MSDF architecture is
described.

A. Fuzzy-adaptive Kalman Filter (FKF)

Following the general guidelines given in section III .A,
each FIS used in each FKF to adjusts R was implemented
considering three fuzzy sets for DoM: N = Negative, ZE =
Zero, and P = Positive; and three fuzzy sets for ∆R: I =
Increase, M = Maintain, and D = Decrease. These
membership functions are presented in Fig. 4. Hence, three
fuzzy rules are included in each FIS rule base:

1. If DoM = N, then ∆R = I
2. If DoM = ZE, then ∆R = M
3. If DoM = P, then ∆R = D.

Fig. 4. Membership functions for DoM and ∆R.

Thus, using the compositional rule of inference sum-prod
and the center of area defuzzification method R is adjusted
in each FKF as mentioned in equation (16). The size N of
the moving window in equation (14) was selected from
experimentation as 15.

B. Fuzzy Logic Observer (FLO)

Each FLO was implemented using two inputs, the absolute
value of DoM (AbsDoM) and the current value of R; and
one output, the degree of confidence denoted as w. The

(a)

(b)

(c)

(d)
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membership functions for AbsDoM and R are shown in Fig.
5. Here the fuzzy labels mean: ZE = zero, S = small , and L
= large. For the output w, 3 fuzzy singletons were defined
with the labels: G=1=good, AV=0.5=average, and
P=0=poor. Thus 9 rules complete the fuzzy rule base of
each FLO, and these are:

1. If AbsDoM = ZE and R = ZE, then w = G
2. If AbsDoM = ZE and R = S, then w = G
3. If AbsDoM = ZE and R = L, then w = AV
4. If AbsDoM = S and R = ZE, then w = G
5. If AbsDoM = S and R = S, then w = AV
6. If AbsDoM = S and R = L, then w = P
7. If AbsDoM = L and R = ZE, then w = AV
8. If AbsDoM = L and R = S, then w = P
9. If AbsDoM = L and R = L, then w = P.

The above rules are based on two simple heuristic
considerations. First, if the absolute value of DoM is near to
zero and R is near to zero then it means the filter is working
almost perfectly. Second, if one or both of these values
increases far from zero that means the filter performance is
degrading. Thus, using the compositional rule of inference
sum-prod and the centre of area defuzzification method
each FLO obtains the degrees of confidence for each FKF.

Fig. 5. Membership functions for AbsDoM and R.

C. Defuzzification

Different defuzzification methods were explored to select
the best one for this particular application. The results
obtained with the centre of area (COA) and a variation of
the maximum are reported here. In the COA method the

fused measurement output kẑ is obtained as,
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where kiẑ  is the output of the i-th FKF (i=1,2,3,4) and kiw
is its respective degree of confidence at instant of time k
(see Fig. 2). Strictly speaking, in this case the COA method
is simply a weighted average. That is, each FKF output is
weighted according to its corresponding degree of
confidence, w. In the maximum method the fused
measurement output is that one which corresponds to the

FKF output that has the maximum degree of confidence at
each instant of time k.

In order to prevent possible conflicts, one modification for
each method was incorporated. For the COA method, if the
sum of the degrees of confidence is equal to zero, then the
fused output is simply the average of the FKF outputs. For
the case of the maximum, if there is more than one maximal
degree of confidence, then the FKF output corresponding to
the first maximum encountered is given as the fused
measurement.

D. Results

For comparison purposes, the following performance
measures were adopted:
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where zak is the actual value of the position; zk is the
measured position; and kẑ  is the estimated position at an

instant of time k; n = No. of samples.

Fig. 6. (a) Actual and fused estimated position obtained
with the MSDF architecture using the COA defuzzification
method. (b) Corresponding error on the fused estimated
position.

Table 1 shows the performance measures obtained for each
individual FKF and those obtained from the fusion of the
four sensors using the proposed MSDF architecture with
both defuzzification methods mentioned above. Analysing
the data, it is noted that the best estimated position is
obtained with the MSDF architecture using the COA
defuzzification method. In this case the error on the
estimation is 17% less with respect to that obtained with

(a)

(b)
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FKF 4 (for sensor 4), which has the best individual
performance measure. At the same time this error is 52%
less with respect to that obtained with FKF 2 (for sensor 2)
which has the worst individual performance measure. Fig.
6a shows the actual and fused estimated position; and Fig.
6b shows the corresponding error on the estimation, for this
case.

For the case of the MSDF using the maximum
defuzzification method, the performance measure is only a
littl e larger than that for the case previously analysed.
However, this performance measure shows smaller error
estimation than that observed in the best individual FKF
(number 4). Thus both fused measurements are more exact
than any individual FKF estimation.

Table 1
Sensor Jzv Jze

Sensor 1 2.0604 0.4180
Sensor 2 3.3701 0.5994
Sensor 3 1.9224 0.3719
Sensor 4 1.9446 0.3454

Fused – COA 0.2866
Fused – Maximum 0.3011

VI. CONCLUSIONS

A novel hybrid MSDF architecture integrating Kalman
filtering and fuzzy logic techniques has been presented.
This approach exploits the advantages that both approaches
have: the optimali ty of the Kalman filter and the capabili ty
of fuzzy systems to deal with imprecise information using
‘common sense’ fuzzy rules.

In this novel approach the linear estimations of the
individual Kalman filters are improved through the
adaptation of the measurement noise covariance matrix R
by means of a FIS. This prevents filter divergence and
relaxes the a priori assumption of the value of R. It is
particularly relevant that only three rules were needed to
carry out the adaptation.

The role of the FLO in the proposed MSDF architecture is
of great importance. This is because the fusion of the
information is carried out based on the degrees of
confidence generated on this component no matter what
defuzzification method is used. Other important points are
that only two variables were monitored to establish the
degree of confidence for each FKF output and only nine
‘common sense’ fuzzy rules were needed.

The results obtained in the il lustrative example are
promising. They show that this novel hybrid MSDF
architecture is effective in situations where there are several
sensors measuring the same parameter and each sensor
measurement is contaminated with a different kind of noise.
Both fused estimated measurements (with COA and
maximum defuzzification methods) were better

approximations to the actual value of the parameter being
measured than that obtained with any single FKF.

Thus the general idea of exploring the combination of
traditional together with non-traditional techniques appears
to be a good avenue of investigation.

The system employed to ill ustrate the effectiveness of the
approach presented was very simple and only one parameter
is considered as being measured. However, the approach
can be easily extended for systems with more than one
parameter being measured. In fact, this is the subject of
current work by the authors.

The choice of the fuzzy sets used in the FISs was carried
out using a trial and error scheme. Obviously this process is
time consuming and depends on the problem under
consideration. In order to tackle this problem the authors are
exploring the idea of using a neuro-fuzzy system to adjust
automatically these fuzzy sets. For the case of the fuzzy
rules, the general guidelines given for both cases (FKF and
FLO) showed its effectiveness in the chosen example.
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