Proceedings of the 2001 IEEE
International Symposium on Intelligent Control
September 5—7, 2001 + México City, México

A HYBRID KALMAN FILTER-FUZZY
LOGIC ARCHITECTURE FOR
MULTISENSOR DATA FUSION

P. J. Escamill azAmbrosio and N. Mort

Department of Automatic Control and Systems Engineeing
University of Sheffield
Mappin Stred, Sheffield S1 3ID, United Kingdom
Phone: +44 (0)114 22 5619, Fax: +44(0)114 222 561
E-mail: COP99PJE@Sheffield.acuk

Abstract— In this work a novel hybrid Multi-Sensor Data
Fusion (M SDF) architedure integrating Kalman filtering and
fuzzy logic techniques is explored. The objective of the hybrid
M SDF architedure is to obtain fused measurement data that
determines the parameter being measured as precisely as
possible. To reach this objedive, first each measurement
coming from each sensor is fed to a Fuzzy—adaptive Kalman
Filter (FKF), thus there are n sensors and n FKFsworking in
parallel. The adaptation in each FKF is in the sense of
adaptively adjusting the measurement noise covariance matrix
R employing a fuzzy inference system (FIS) based on a
covariance matching technique. Sewmnd, another FIS, here
called a fuzzy logic observer (FLO), is monitoring the
performance of each FKF. Based on the value of a variable
called Degree of Matching (DoM) and the matrix R coming
from each FKF, the FLO asdgns a degree of confidence a
number on theinterval [0, 1], to each one of the FKFs output.
The degree of confidence indicates to what level each FKF
output refleds the true value of the measurement. Finally, a
defuzzficator obtains the fused estimated measurement based
on the mnfidencevalues. To demonstrate the dfecivenessand
accuracy of this new hybrid MSDF architedure, an example
with four noisy sensors is outlined. Different defuzzification
methods are eplored to seled the best one for this particular
application. The results show very good performance

Index terms. Multi-sensor data fusion, Knowledge-based
sensor fusion, fuzzy logic, adaptive Kalman filtering.

. INTRODUCTION

The Multi-Sensor Data Fusion (MSDF) approach is
described as the aquisition, processng, and synergistic
combination of information gathered by various knowledge
sources and sensors to provide abetter understanding of a
phenomenon under consideration [1]. Different MSDF
tedchniques have been explored recently. These techniques
vary from those based on well -establi shed Kalman filtering
methods [2], [3], to those based on recent ideas from soft
computing technology [4], [5]. However, little work has
been done in exploring hybrid architedures that consider
both these gproaches. In this work a novel MSDF
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architedure is explored. This architedure is based on a
hybrid structure integrating fuzzy inference systems and
Kaman filt ering techniques.

The general idea eplored here is the combination of the
advantages that both techniques have. On the one hand,
Kaman filtering is reagnised as one of the most powerful
traditional tedhniques of estimation. This relies on the fad
that the Kalman filter is an optimal linea estimator; that
means it estimates are linea, unbiased, and with minimum
error variance [6]. On the other hand, the main advantages
derived from the use of fuzzy logic techniques, with resped
to traditional schemes, are the simplicity of the gproach,
the caability of fuzzy systems to ded with impredse
information, and the possbility of including heuristic
knowledge about the phenomenon under consideration.

The remainder of this paper is organised as follows. Sedion
Il describes the Kalman filter. Sedion Il summarizes the
proposed fuzzy-adaptive Kalman filter; a more detailed
description of this approad is given in Escamilla and Mort
[7]. Sedion IV introduces the proposed new hybrid MSDF
architedure where fuzzy logic and Kaman filtering
techniques are integrated. In order to show the dfediveness
of this MSDF architedure, in sedion V an illustrative
example is outlined and results are discussed. Finadly, in
sedion VI the mnclusions of this work are given.

Il. THEKALMAN FILTER

The Kalman filter is an optimal recursive data processng
agorithm [6] that provides alinea, unbiased, and minimum
error variance etimate of the unknown state vector
x, 0O" a eah ingant k = 1,2,..., (indexed by the
subscripts) of a discrete-time @ntrolled process described
by the linea stochastic difference euations:
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where x, is an n x 1 system state vedor, A, isan n x n
transition matrix, uy isan | x 1 vedor of the input forcing
function, By isan n x | matrix, wy isan n x 1 processnoise
vedor, 7z is am x 1 measurement vedor, Hy isam x n
measurement matrix, and v is am x 1 measurement noise
vedor.

Both w and v, are assumed to be uncorrelated zero-mean
Gaussian white noise sequences with covariances,
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where E{(J] is the statisticd expedation, superscript T
denotes transpose, Qg is the process noise mvariance
matrix, and R, is the measurement noise mvariance matrix.

The Kalman filter algorithm [8] can be organised in two
groups of equations,

i) Time update (or prediction) equations:
X = AX + B,
Pea = AP AII +Qy

(6)
(7).
These euations projed, from time step k to step k+1, the
current state and error covariance etimates to oltain the a

priori (indicaed by the super minus) estimates for the next
time step.

ii) Measurement update (or corredion) eguations:

K,=P H/[H,P H]+R]™" (8)
X =X + K[z, - H %] 9)
P.=[l —-K,HIP (10).

These gyuations incorporate anew measurement into the a
priori estimate to oltain an improved a posteriori estimate.

In the @ove eyuations, X, is an estimate of the system

state vedor x, and P, is the @variance matrix
corresponding to the state estimation error defined by,

P = E{(Xk = X (X ~ )A(k)T} 11
the term H, X, is the one-stage predicted output Z, , and
(z, - HX,) is the one-stage prediction error sequence,

aso referred to as the innovation sequence or residual,
generally denoted asr and defined as:
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e =(z —HX) (12.
The innovation represents the alditional information
available to the filter as a mnsequence of the new

observation z, . The weighted innovation, K,[z —H, %],
ads as a crredion to the predicted estimate X, to formthe
estimation X, ; the weighting matrix K is commonly
referred to asthefilter gain or the Kalman gain matrix.

The Kalman filter algorithm starts with initial conditions at
k =0 being: X, , and P, . With the progresson of time,
as new meassurements z, bewmme available, the cycle

estimation-corredion of states and the @rresponding error
covariances can follow reaursively ad infinitum.

IIl. THE FUzzY-ADAPTIVE KALMAN FILTER

As described previoudly, the traditiona Kaman filter
formulation assumes complete a priori knowledge of the
processand measurement noise statistics, matrices Q and R.
However, in most pradica applications these statistics are
initially estimated or, in fad, are unknown. The problem
here is that the optimality of the estimation algorithm in the
Kaman filter setting is closely conneded to the quality of
these a priori noise statistics [9], [10]. It has been shown
how poa estimates of the input noise statistics may
serioudly degrade the Kalman filter performance, and even
provoke the divergence of the filter [11]. From this point of
view it can be expeded that an adaptive formulation of the
Kaman filter will result in a better performance or will
prevent filter divergence

In next sedion, an on-line aaptive scheme of the Kalman
filter employing the principles of fuzzy logic is presented.
The aaptation is in the sense of adaptively adjusting the
measurement noise mvariance matrix R from data & they
are obtained. The main advantages derived from the use of
fuzzy techniques, with resped to traditional adaptation
schemes, are the simplicity of the gproad, the posshility
of including heuristic knowledge @out the phenomenon
under consideration, and the relaxation of the a priori
statisticd assumptions.

A. Adaptive estimation of the measurement noise
covariance matrix R

The wvariance matrix R represents the acaracy of the
measurement instrument. A larger value of the cvariance
matrix R for measured data means that we trust this
measured data less and have more faith in the prediction.
Assuming that the noise cvariance matrix Q is completely
known, an agorithm to estimate the measurement noise
covariance matrix R can be derived.



Here a1 innovation-based adaptive estimation (IAE)
algorithm [12] to adapt the measurement noise mvariance
matrix R has been derived [7]. In particular, the technique
known as covariance-matching [13] is used. The basic idea
behind this technique is to make the adua vaue of the
covariance of the residual consistent with its theoreticd
value. The innovation sequence or residual r, has a
theoreticd covariance,

S =HPRH +R

obtained from the Kalman filter agorithm. Given the
availability of the innovation sequence ry, its adua

(13

covariance C,, is approximated by its smple covariance

through averaging inside a moving estimation window of
sizeN [12],

N

1 '
N 1=

Cu = (14

where i, =k—N+1 is the first sample inside the estimation

window. The window size N is chosen empiricdly to give
some statistical smoothing.

Thus, if it is found that the adual covariance of ry has a
discrepancy with its theoreticd value, then adjustments
have to be madeto Rin order to corred this mismatch.

Now, to deted the discrepancy of S and its adual value
C, anew variable is defined. This variable is caled the

Degreeof Matching (DoM),

DoM, =S, -C,, (15).

The basic ideaused by a Fuzzy Inference System (FIS) to
adapt R is as follows. It can be noted from equation (13)
that an increment in R will increment S, and vice versa
Thus, R can be used to vary Sin acordance with the value
of DoM in order to reduce the discrepancies between S and
C,. From here, three general rules of adaptation are

defined:

1. 1f DoM 0O (this means Sand ér match almost

perfedly) then maintain R unchanged.
2. If DoM >0 (this means Sis greder than its actua

value C,) then deaease R.
3. If DoM <0 (thismeans Sis snaller than its adual

value C,) thenincrease R.
Thus Ris adjusted in this way:

R =R +AR (16).
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where AR isthe fador that is added or subtraded from R
ead instant of time. AR is the FIS output and DoM is the
FIS input. A graphicd representation of the Fuzzy-adaptive
Kaman Filter (FKF) isshownin Fig. 1.

Kalman >
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Filter

Zk
Sensor >

Compute
Cu

Fuzzy
Inference
System

FKF
Fig. 1. Basic structure of the Fuzzy-adaptive Kalman Filter.

IV. HYBRID ARCHITECTURE FOR MULTI-SENSOR DATA
FusioN

The objedive of the proposed hybrid multi-sensor data
fusion (MSDF) architedure is to oltain fused measurement
data that determines the parameter being measured as
predsely as posshle. To read this objedive, it is assumed
that there ae n different sensors measuring the same
parameter and ead sensor has its own charaderistics of
noise and measurement errors. First, the measurements
coming from these sensors are fed to a FKF, one for eat
sensor, thus there ae n sensors and n FKFs working in
parallel (seeFig. 2).

|Sensor 1 |£>| FKF 1

DoM
R
v
FLO 1
Sensor 2 |£>| FKF 2 |—2>
DoM A
R De'f.u- 7
v zzifi- —»
cator

FLO 2

Sensor n IA"->| FKFn
DoM

FLOn »-

Fig. 2. Proposed MSDF architedure.

Seowond, another fuzzy inference system, here cdled the
fuzzy logic observer (FLO), is used to monitor the
performance of eah FKF. Based on the values of the
variables DoM and R coming from each FKF, the FLO
asdgns a degree of confidence w, a number on the interval
[0, 1], to ead one of the FKFs output. The degree of
confidence indicates to what level ead FKF output reflects
the true value of the measurement. At the same time, the



degree of confidence ats as a weight that tells a
defuzzficator at what confidence level it should take eat
FKF output value.

Finally, a defuzzficaor obtains the fused estimate of the
measurement based on the mnfidence values. Here several
defuzzfication procedures can be used. Fig. 2 shows a
graphicd representation of the proposed MSDF
architedure.

V. [LLUSTRATIVE EXAMPLE

To demonstrate the effedivenessand acairacy of this new
hybrid MSDF architedure, an example with four noisy
sensorsis outlined.

Consider the following linea system, which is a modified
version of atradking model [14], [15],
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Fig. 3. (@) Noise on sensor 1, (b) noise on sensor 2; ()
noise on sensor 3; (d) noise on sensor 4.
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with initial conditions %, = 0, P, = 0.011,, where x", X,

and xX* are the position, velocity and acceeration,
respedively, of aflying objed. In equation (17), the system
noise sequence {wg} is a pseudorandom sequence (i.e.,
uncorrelated zero-mean Gausdan white noise sequence)
with Q = 0.023.

MATLAB code was developed to simulate the process
described by equation (17) and the proposed M SDF system
considering four sensors measuring the position of the
flying objed. The simulation was carried out for 500s with
a sample time of 0.5s. Q was fixed as 0.02;. The adual
value of R for eat sensor has been assumed urknown, but
its darting value in al sensors was sleded as 1. The sensor
measurements are rrupted with the noises described in
Fig. 3. Sensor 1 is corrupted with noise 1, sensor 2 with
noise 2, and so on.

In subsequent sedions, the implementation of ead one of
the cmponents of the hybrid MSDF architedure is
described.

A. Fuzzy-adaptive Kalman Filter (FKF)

Following the general guidelines given in sedion Il .A,
eat FIS used in each FKF to adjusts R was implemented
considering three fuzzy sets for DoM: N = Negative, ZE =
Zero, and P = Positive; and three fuzzy sets for AR: | =
Incresse, M = Maintain, and D = Deaeae. These
membership functions are presented in Fig. 4. Hence, three
fuzzy rules are included in eat FIS rule base:

1. 1f DoM =N, thenAR=1
2. If DoM =ZE, then AR=M
3. If DoM =P, then AR=D.

"%
Degree of membership
/

Degree of membership

0015 A0 2005 0 0005 (1]
Dol

Fig. 4. Membership functions for DoM and AR.
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Thus, using the cmmpositional rule of inference sum-prod
and the center of areadefuzzficaion method R is adjusted
in eat FKF as mentioned in equation (16). The size N of
the moving window in equation (14) was sleded from
experimentation as 15.

B. Fuzzy Logic Observer (FLO)

Eadh FLO was implemented using two inputs, the @solute
value of DoM (AbsDoM) and the aurrent value of R; and
one output, the degree of confidence denoted as w. The



membership functions for AbsDoM and R are shown in Fig.
5. Here the fuzzy labels mean: ZE = zeo, S = small, and L
= large. For the output w, 3 fuzzy singletons were defined
with the labels: G=1=good AV=0.5=average, and
P=0=poor. Thus 9 rules complete the fuzzy rule base of
eah FLO, and these ae:

If AbsDoM = ZE and R=ZE, thenw =G
If AbsDoM =ZEand R=S thenw=G
If AbsDoM = ZE and R=L, thenw=AV
If AbsDoM = Sand R=ZE, thenw=G
If AbsDoM = Sand R=S, thenw = AV
If AbsDoM =SandR=L, thenw=P

If AbsDoM =L and R= ZE, thenw = AV
If AbsDoM =L and R=S thenw=P

If AbsDoM =L and R=L, thenw=P.

CoNOO~WNE

The &ove rules are based on two simple heuristic
considerations. First, if the esolute value of DoM is nea to
zero and Risnea to zero then it means the filter is working
amost perfedly. Sewmnd, if one or both of these values
increases far from zero that means the filter performanceis
degrading. Thus, using the compositional rule of inference
sum-prod and the entre of area defuzzification method
eadt FLO obtains the degrees of confidence for eat FKF.
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Fig. 5. Membership functions for AbsDoM and R.

C. Defuzification

Different defuzzificaion methods were explored to seled
the best one for this particular application. The results
obtained with the centre of area (COA) and a variation of
the maximum are reported here. In the COA method the

fused measurement output ik is obtained as,

4

Z Zi; Wy

. £

Zk =y
Zwki
1=

where Z,; isthe output of the i-th FKF (i=1,2,3,4) and W,

is its respedive degree of confidence a instant of time k
(seeFig. 2). Strictly spe&ing, in this case the COA method
is smply a weighted average. That is, ead FKF output is
weighted acording to its corresponding degree of
confidence, w. In the maximum method the fused
measurement output is that one which corresponds to the

(19
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FKF output that has the maximum degree of confidence d
ead instant of time k.

In order to prevent possble cnflicts, one modificaion for
ead method was incorporated. For the COA method, if the
sum of the degrees of confidenceis equal to zero, then the
fused autput is smply the average of the FKF outputs. For
the cae of the maximum, if there is more than one maximal
degreeof confidence, then the FKF output corresponding to
the first maximum encourtered is given as the fused
measurement.

D. Results

For comparison purposes, the following performance
measures were adopted:

1 n

JN:JE;(mk_Zk)Z (19
10 -

J,. = \/H Zl(zak -2,) (20),

where za, is the adual value of the paosition; z is the
measured pasition; and 2, is the estimated pesition at an
instant of time k; n = No. of samples.
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Fig. 6. (@) Actual and fused estimated pdsition obtained
with the MSDF architedure using the COA defuzzficaion
method. (b) Corresponding error on the fused estimated
position.

Table 1 shows the performance measures obtained for eah
individual FKF and those obtained from the fusion of the
four sensors using the proposed MSDF architedure with
both defuzzificaion methods mentioned above. Analysing
the data, it is noted that the best estimated pasition is
obtained with the MSDF architedure using the COA
defuzzificaion method. In this case the eror on the
estimation is 17% less with resped to that obtained with



FKF 4 (for sensor 4), which has the best individual
performance measure. At the same time this error is 52%
lesswith resped to that obtained with FKF 2 (for sensor 2)
which has the worst individua performance measure. Fig.
6a shows the atual and fused estimated pasition; and Fig.
6b shows the corresponding error on the estimation, for this
case.

For the cae of the MSDF using the maximum
defuzzficaion method, the performance measure is only a
littte larger than that for the cae previously analysed.
However, this performance measure shows smaller error
estimation than that observed in the best individua FKF
(number 4). Thus both fused measurements are more exad
than any individual FKF estimation.

Tablel

Sensor N Jse
Sensor 1 2.0604 0.4180
Sensor 2 3.3701 0.5994
Sensor 3 1.9224 0.3719
Sensor 4 1.9446 0.3454
Fused —COA 0.2866
Fused —Maximum 0.3011

VI. CONCLUSIONS

A novel hybrid MSDF architecure integrating Kalman
filtering and fuzzy logic techniques has been presented.
This approach exploits the advantages that both approaches
have: the optimality of the Kalman filter and the caabili ty
of fuzzy systems to ded with impredse information using
‘common sense’ fuzzy rules.

In this novel approach the linea estimations of the
individual Kaman filters are improved through the
adaptation of the measurement noise @variance matrix R
by means of a FIS. This prevents filter divergence ad
relaxes the a priori assumption of the value of R It is
particularly relevant that only three rules were neeaded to
cary out the adaptation.

The role of the FLO in the proposed MSDF architedure is
of grea importance This is becaise the fusion of the
information is caried out based on the degrees of
confidence generated on this component no matter what
defuzzficaion method is used. Other important points are
that only two variables were monitored to establish the
degree of confidence for eath FKF output and only nine
‘common sense’ fuzzy rules were needed.

The results obtained in the illustrative example ae
promising. They show that this novel hybrid MSDF
architedure is effedive in situations where there ae severa
sensors measuring the same parameter and ead sensor
measurement is contaminated with a different kind of noise.
Both fused estimated measurements (with COA and
maximum  defuzzificaion methods) were  better
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approximations to the adual value of the parameter being
measured than that obtained with any single FKF.

Thus the general idea of exploring the cmbination of
traditional together with non-traditional techniques appeas
to be agood avenue of investigation.

The system employed to ill ustrate the effectiveness of the
approach presented was very simple and only one parameter
is considered as being measured. However, the gproach
can be eaily extended for systems with more than one
parameter being measured. In fad, this is the subjed of
current work by the authors.

The doice of the fuzzy sets used in the FISs was caried
out using atrial and error scheme. Obviously this processis
time nsuming and depends on the problem under
consideration. In order to tadkle this problem the aithors are
exploring the idea of using a neuro-fuzzy system to adjust
automaticdly these fuzzy sets. For the ase of the fuzzy
rules, the general guidelines given for both cases (FKF and
FLO) showed its effedivenessin the chosen example.
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