IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 2, APRIL 2015 993

A Practical Wireless Attack on the Connected Car
and Security Protocol for In-Vehicle CAN

Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee, Fellow, IEEE

Abstract—Vehicle-IT convergence technology is a rapidly rising
paradigm of modern vehicles, in which an electronic control unit
(ECU) is used to control the vehicle electrical systems, and the
controller area network (CAN), an in-vehicle network, is com-
monly used to construct an efficient network of ECUs. Unfortu-
nately, security issues have not been treated properly in CAN,
although CAN control messages could be life-critical. With the
appearance of the connected car environment, in-vehicle networks
(e.g., CAN) are now connected to external networks (e.g., 3G/4G
mobile networks), enabling an adversary to perform a long-range
wireless attack using CAN vulnerabilities. In this paper we show
that a long-range wireless attack is physically possible using a
real vehicle and malicious smartphone application in a connected
car environment. We also propose a security protocol for CAN
as a countermeasure designed in accordance with current CAN
specifications. We evaluate the feasibility of the proposed security
protocol using CANoe software and a DSP-F28335 microcon-
troller. Our results show that the proposed security protocol is
more efficient than existing security protocols with respect to
authentication delay and communication load.

Index Terms—Connected car, controller area network (CAN),
in-vehicle network security, key management.

I. INTRODUCTION

HE newest model vehicles pursue convergence with var-

ious IT technologies to provide users with a comfortable
driving environment and to effectively respond to auto emission
regulations [1], [2]. In order to apply IT technology to vehicles,
it is necessary to use a number of automotive application
components. Among these components, the electronic control
unit (ECU) is the most essential component that controls one
or more of the electrical systems and subsystems in a vehi-
cle [3]. State-of-the art vehicular on-board architectures can
consist of more than 70 ECUs [4] that are interconnected via
heterogeneous communication networks such as the controller
area network (CAN), local interconnect network (LIN), or
FlexRay [5].

As the most representative in-vehicle network, CAN has
become the de facto standard because it dramatically decreases
the number of communication lines required and ensures higher
data transmission reliability [6]. Unfortunately, information

Manuscript received January 13, 2014; revised May 2, 2014 and July 10,
2014; accepted August 8, 2014. Date of publication September 8, 2014;
date of current version March 27, 2015. This work was supported by the
Next-Generation Information Computing Development Program through the
National Research Foundation of Korea funded by the Ministry of Science,
ICT and Future Planning under Grant 2010-0020726. The Associate Editor for
this paper was M. Chowdhury.

The authors are with the Center for Information Security, Korea Univer-
sity, Seoul 136-701, Korea (e-mail: samuelwoo@korea.ac.kr; hyojinjo86@
gmail.com; donghlee @korea.ac.kr).

Digital Object Identifier 10.1109/TITS.2014.2351612

security has not been considered in the design of CAN, al-
though every bit of information transmitted could be critical
to driver safety. For example, when data are broadcast using
the BUS network, CAN does not ensure the confidentiality and
authentication of the CAN data frame, paving the way for a
malicious adversary to easily eavesdrop on data or launch a
replay attack [7], [8]. The situation becomes worse when a ve-
hicle is connected to automotive diagnostic tools. To check the
functions of the ECUs during a diagnostic process, the tools
broadcast CAN data frames without encryption and authentica-
tion to force control of the ECUs. This means that an adversary
can also use an automotive diagnostic tool to easily get CAN
data frames that can control an ECU [9].

Studies on vehicular security have been actively con-
ducted mainly by European-funded projects (e.g., SEVECOM,
PRECIOSA, EVITA, and OVERSEE) for the last ten years. The
E-safety Vehicle Intrusion proTected Applications (EVITA)
project specifically defined security requirements and devel-
oped appropriate solutions for vehicular on-board networks
[10]. Among these solutions, EVITA-MEDIUM-HSM was de-
veloped in order to implement a secure communication en-
vironment among ECUs [11], [12]. However, EVITA does
not provide a specific security architecture for a particular
communication protocol. We note that a security technique
used for the general IT environment cannot be immediately
applied to CAN, as it has unique features such as a limited data
payload. Therefore, it is necessary to design an efficient security
technique even when EVITA-MEDIUM-HSM is used.

Security protocols in [13]-[15] were designed considering
the limited data payload of the CAN data frame. However,
these protocols are not suitable for deployment in the vehicle
environment since they do not support real-time data processing
and do not consider connection with external devices such as an
automotive diagnostic tool. Considering the security vulnerabil-
ities of aforementioned CAN, the appearance of the connected
car that connects in-vehicle CAN to external networks enables
wireless vehicle attacks [16].

In this paper, we demonstrate a practical wireless attack
using a real vehicle in a connected car environment, in which
a driver’s smartphone is connected to the in-vehicle CAN.
Our attack experiment consists of two phases: preliminary and
actual attack. In the preliminary phase, i.e., before launching
an actual attack, an attacker first acquires a CAN data frame
to force control of the target vehicle using a diagnostic tool. In
fact, the same model vehicles (more precisely, vehicles with the
same configuration of automotive electronic subsystems) could
be used. We note that a diagnostic tool is used to get a CAN
data frame to force control of an ECU and does not need to be

1524-9050 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

994 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 2, APRIL 2015

attached to the target vehicle during an actual attack. The
attacker also manufactures a malicious self-diagnostic app that
masquerades as a normal one and uploads it onto applica-
tion markets. By using a self-diagnostic application such as
“Torque,” “Car Gauge Pro,” and an OBD2 scan tool such as
“EML327,” “PLX KiWi,” a driver can monitor CAN status
information even while driving. Once the driver of the target
vehicle downloads the malicious self-diagnostic app, the smart-
phone is under the control of the attacker. In the actual attack
phase, exploiting the infected smartphone of the driver, a long-
range wireless attack is carried out. That is, the attacker can in-
ject CAN data frames independently of his location through the
smartphone if mobile communication such as 3G, 4G, or LTE is
possible. Hence, the smartphone does not need to belong to the
attacker or a mechanic. Our proposed attack model is only pos-
sible when the driver downloads the malicious self-diagnostic
app. Even there are approximately 300 self-diagnostic apps
in application markets, they are not the most popular apps in
terms of amount of app downloads. This reduces the possibility
of attacks based on our proposed attack model. However, our
proposed attack model is still a realistic attack scenario and
would be practical in the near future since Google and leading
car makers are collaborating to bring Android OS in vehicles
and connected car services such as mirror link are increas-
ing rapidly. Our attack experiment is explained in detail in
Section IV.

Along with the practical wireless attack experiment, we also
propose a security protocol to remedy the vulnerabilities of
CAN satisfying the requirements in the following.

» The data encryption and authentication techniques ensure

real-time data processing in the in-vehicle CAN.

e The method using a message authentication code (MAC)

considers the limited data payload of the CAN data frame.

» Key management techniques support secure connectivity

between external device and the in-vehicle CAN.

In addition, we evaluate the security and performance of
the proposed security protocol using a manufactured Secure-
ECU, similar to a real ECU and a commonly used commercial
software tool. The following are the main contributions of this
paper.

1) Demonstration of a practical long-range wireless attack
experiment using a malicious smartphone app in a con-
nected car environment.

2) Design of a security protocol that can be implemented on
an ECU, accommodating the limited resources available
and the current CAN data frame format.

3) Analysis of the security and performance of the proposed
security protocol using Secure-ECU and CANoe.

II. BACKGROUND
A. CAN

The CAN is a high-integrity serial data communication tech-
nology developed in the early 1980s by Robert Bosch GmbH
for efficient communication between automotive applications.
CAN is a multimaster broadcast communication bus system
based on sender ID that allows ECUs to communicate on a

Extended Arbitration

Base Arbitration
D —

> BASE > :

Identifier

D Extended Control Data Field
. [ldentfier Field SEE

1bit 1bit

CRC ACK
Field Field

1bit 11bit 18bit 6bit 0 to 64bit 16bit 2bit

Fig. 1. Data frame format of CAN 2.0B protocol.

single or dual wire network with data rates up to 1 Mb/s. The
CAN protocol allowed auto makers to reduce the complexity
and cost of in-vehicle network wiring; hence, ISO established
CAN as the international standard in 1993 [17].

In the CAN protocol, each ECU transfers information to
other ECUs using a data frame. A sender ECU transmits data
frames that include its own ID. Other ECUs retrieve data frames
selectively after identifying the ID of the sender ECU in the data
frame. CAN protocol is divided into two modes, i.e., CAN 2.0A
and CAN 2.0B, according to the length of the ID field. As CAN
2.0B supports compatibility with CAN 2.0A, we only describe
CAN 2.0B in this paper. The data frame format of CAN 2.0B
is shown in Fig. 1. CAN 2.0B has a 29-bit ID field divided into
two parts: Base ID field and Extended ID field. The ID field is
used to set the message priority. The IDE field determines the
use of the 18-bit Extended ID field. The data field is a maximum
of 8 bytes and includes information to be transmitted from the
sender ECU to others. The cyclic redundancy check (CRC) field
is used for error detection of the transferred data frame. The
other fields are not related to our work and hence not explained.

B. Connected Car Environment

The connected car is receiving much attention as the next-
generation Vehicle-IT convergence technology due to the rapid
development of mobile communication technology and the ex-
pansion of the smart device and application services. Many auto
manufactures have been independently developing connected
car technologies such as OnStar of GM or Connected Drive of
BMW. In addition, with the popularity of a Pay-as-You-Drive
insurance, a variety of electronic devices are being sold that
connect to the car’s OBD2 (On-Board Diagnostics) port and can
be used by smartphone applications. In general, a connected car
is a vehicle that is always connected to external networks while
driving. As in [16] and [18], the components of a connected car
are as follows:

¢ a vehicle with ECUs and an in-vehicle network;
e aportal to provide the vehicle with various services;
e a communication link to connect the vehicle and portal.

Fig. 2 shows a connected car environment containing these
components. In a vehicle, a number of ECUs are installed
and connected within CAN. The portal may be divided into
Web-based and smartphone app-based services. Recently, with
the high performance and popularization of mobile commu-
nication technologies, more connected car environments are
using smartphones. Various apps supporting the connected car
environment are now sold in app markets such as Google Play
and the Apple App Store (e.g., Send To Car, UVO Smart
Control, and BMW ConnectedDrive).

WOO et al.: WIRELESS ATTACK ON THE CONNECTED CAR AND SECURITY PROTOCOL FOR IN-VEHICLE CAN 995

The Vehicle

E‘iu Connection WIm <Wweless Palrmg
I IN-Vehicle I
ECU CAN BUS | ECU

OBD2 to Bluetooth or WiFi

Network

Fig. 2. Connected car environment.

The Communication Link

Telematics ECU

Head Unit \

Connection

&3 Bluetoo

Mobile DeVIce

Mobile Communication Network
(e.g., 3G, 4G, or LTE)

P
.
.

TABLE 1
CERT CLASSIFICATION OF THE PROPOSED ATTACK MODEL
Attacker Tool | Vulnerability | Action ‘ Target | Unauthorized result | Object
Hackers Autqmonve diagnostic tool Design of CAN Read Vehicle with ECUs ECU forced control Challc?nge
Malicious smartphone app Spoof Thrill

III. ATTACK MODEL AND SECURITY REQUIREMENTS

Our attack model is the same as that of Koscher et al. [9], [19]
in terms of exploiting the vulnerabilities of the in-vehicle CAN.
However, the method of injecting malicious data into the in-
vehicle CAN is clearly differentiated from those of the related
work. Our attack model is designed based on an environment
where a driver uses a self-diagnostic app to monitor status
information after installing an OBD2 scan tool on the vehicle
and then pairing it with his/her smartphone by Bluetooth.
When the driver installs on his/her smartphone the malicious
self-diagnostic app distributed by an attacker, the attacker can
launch the actual attack. The attacker can obtain status informa-
tion of the vehicle from the malicious self-diagnostic app and
use it to inject malicious data into the in-vehicle network. Since
the malicious self-diagnostic app and attacker’s server commu-
nicate using the mobile communication network (e.g., 3G, 4G,
or LTE), the attack is unconstrained by distance. Furthermore,
as our attack model uses ECU forced control data commonly
used for the same model (more precisely, vehicles with the same
configuration of automotive electronic subsystems), it is not
necessary to physically occupy the target vehicle in advance.

A. Attack Model

According to the Computer Emergency Response Team
(CERT) taxonomy suggested by [8], we illustrate the classifica-

tion of our proposed attack model in Table I. The assumptions
for our attack model are as follows.

e ATTACKER ABILITIES: An adversary has access to an
automotive diagnostic tool to acquire a CAN data frame to
force control of an ECU before launching an actual attack. The
attacker can eavesdrop and inject the CAN data frame using
a malicious self-diagnostic app into the in-vehicle CAN in the
connected car environment. Thus, the attacker does not have
to attack the target from a short range. The app may be widely
spread through the app markets by masquerading as a legitimate
self-diagnostic app for a vehicle.

o TARGET VULNERABILITIES: The target vehicle uses CAN
to communicate among ECUs. As mentioned in [3], [7], [8],
and [9], CAN does not offer security services such as encryp-
tion or data frame authentication. This means that eavesdrop-
ping and replay attack in CAN are possible. The unauthorized
use of automotive diagnostic tools is also a security hole since
the tool stores control commands for the ECUs.

e VICTIM BEHAVIOR: The victim of the target vehicle
downloads the malicious self-diagnostic app to his/her smart-
phone through an app market. The victim does not recognize
that the app is performing malicious acts such as eavesdropping
or replay attack on the in-vehicle CAN. In our proposed attack
model, we do not consider an attack to compromise the ECU
installed on the vehicle inside or an attack to manipulate the
firmware of ECU, as these require a long period of occupancy
of the target vehicle and specialized knowledge.

996

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 2, APRIL 2015

TABLE 1I
TooLS USED FOR THE ATTACK EXPERIMENT

Product | Model Name | Used During | Functionality and Characteristics | Product Detail Info
. . . eGeneration of ECU forced control data frames egitauto.com
Diagnostic HI-DS Preliminary . . .
The authors of [9] used a diagnostic tool for analyzing Commonly used tool
Tool Scanner Gold Phase . .
CAN data frame in auto repair shop
. oCAN data frame monitoring and capture epeak-system.com
M CAN.BUS PCAN Prellmlgary The authors of [9] manufactured CARSHARK tool for Commonly used tool
onitoring Tool Explorer Phase o X
CAN bus monitoring in CAN bus system
Preliminary eAnalysis and acquisition of In-Vehicle CAN data
Phase eResponse analysis to ECU control data
Vehicle Midsize car Actual Attack eUsed as target vehicle Omitted
¢ ulfhase ac The authors of [9] and [19] conducted a hacking experiment
) using the real vehicle
Wireless CANIink Actual Attack | eSupport of communication between In-Vehicle CAN BUS ermcan.com
OBD2 Scan Tool Bluetooth Phase and the app installed on the driver’s smartphone Wireless CAN interface
Samsung Actual Attack elnstall of ma11c10us‘ self—dlagnostfc app o esamsung.com/us/
Smartphone Galaxy S2 Phase The authors of [19] introduced a short-range wireless Based on
‘ attack model using Smartphone Android OS
. : Actual Attack - . S . " Intel i5-2500
Attacker’s Server Desktop PC Phase eCommunication with malicious self-diagnostic app Based on Win XP
TABLE III
AUTO MANUFACTURER AUTOMOTIVE DIAGNOSTIC TOOLS
Company | Tool Name | Company | Tool Name
Audi/Volkswagen VAS5052 Chrysler StarScan
Ford FoCOM Peugeot/Citroen XS Evolution Multiplexer
Benz Benz XP-Star Diagnosis HONDA HDS
BMW BMW ICOM A+B+C Toyota/Lexus Intelligent Testerll
Hyundai/KIA HI-DS Scanner Gold Nissan Consult

B. Security Requirements

Previous work has illustrated various types of attacks possi-
ble on vehicles. We note that all these attacks eventually stem
from the vulnerabilities of in-vehicle CAN, as discussed in
Section II. There are three main vulnerabilities of in-vehicle
CAN: 1) weak access control; 2) no encryption; and 3) no
authentication. In order to construct a secure in-vehicle CAN,
these three vulnerabilities have to be eliminated. However, an
in-vehicle CAN is a communication environment where access
control is virtually impossible. As an in-vehicle CAN is a
multimaster broadcast communication environment based on
the sender’s ID, a connected node may receive any data frame
transmitted. In addition, a malicious node may transmit a data
frame by stealing the ID of a normal node (e.g., a modification
and replay attack of a data frame). Since in-vehicle CAN access
control is virtually impossible by the nature of the broadcast
communication, it is necessary to encrypt and authenticate data
frames to prevent modification and replay attack. We identify
the requirements to provide a secure in-vehicle CAN as follows.

e CONFIDENTIALITY: Every data frame in CAN should be
encrypted to provide confidentiality. That is, the plain text form
of the data frame should be only available to a legitimate ECU
or party. Due to the nature of CAN, all the data frames are
broadcasted, enabling an attacker to easily eavesdrop on a CAN
data frame. In particular, a data frame to force ECU control can
be obtained using an automotive diagnostic tool, hence it is very
easy to analyze the meaning of a relevant data frame.

e AUTHENTICATION: A control data frame in CAN is iden-
tified only by the sender ID in the data frame, which makes

a replay attack possible. That is, an adversary with a valid
control data frame can retransmit it, possibly masquerading
as a legitimate sender. To thwart this type of attack, both the
authentication and integrity of the transmitted data should be
provided. The current CAN specification only offers a CRC
code to ensure transmission error detection, not authentication.

IV. PRACTICAL ATTACK EXPERIMENT

Based on the proposed attack model, this section describes a
long-range wireless attack scenario and gives the results of our
attack experiment. Our practical wireless attack experiment is
carried out in two phases: preliminary and actual attack. The
tools used in the experiment are listed in Table II.

A. Preliminary Phase

e Use of an automotive diagnostic tool to acquire CAN data
frames to force control of ECUs: To identify the data frames
controlling the critical components of the vehicle, Koscher et al.
suggested various techniques in [9]. Among them, exploiting
an automotive diagnostic tool is very simple because the tool
stores control commands for the ECUs. Global auto manu-
facturers offer diverse kinds of automotive diagnostic tools
for convenient diagnosis. Table III shows various automotive
diagnostic tools. Our acquisition process using an automotive
diagnostic tool is as follows.

1) An automotive diagnostic tool is connected to the OBD2
port of a vehicle, as shown in Fig. 3(a).

WOO et al.: WIRELESS ATTACK ON THE CONNECTED CAR AND SECURITY PROTOCOL FOR IN-VEHICLE CAN 997

Additional port

‘tg connect CAN
IR

a)
13

Ao

OBD2 Port

s : \
\§‘; \\

Diagnostic
tool

(1

[

Conneclaptp with
additional CAN Port

Connect diagnostic tool
with OBD2 Port

Fig. 3. Experimental environment to analyze the CAN data frame.

2) The in-vehicle CAN buses are monitored after connecting
a laptop to an additional port, as shown in Fig. 3(b).

3) A command is performed to forcibly actuate a certain
ECU using the automotive diagnostic tool.

When the aforementioned three steps have been performed,
the laptop connected to the additional port can obtain CAN
data frames to force control of an ECU. We acquired various
kinds of ECU controlling CAN data frames in the experiment.
In particular, we obtained the CAN data frame controlling an
injector to shut off fueling and were able to make the engine
shut down. We also analyzed the CAN data frames generated
during a vehicle’s normal driving. We repeatedly analyzed the
characteristics of data frames generated by reproducing typical
driving states (e.g., rapid acceleration and execution of the
Smart Parking Assist System). Table IV shows the CAN data
frames to force control of ECUs analyzed in our experiment. (In
order to prevent the malicious use of our research findings, the
complete byte information of the analyzed data frames is omit-
ted.) CAN data frames acquired during normal vehicle driving
are shown in frames 1-5 and those acquired with the diagnostic
tool are shown in frames 6 and 7. The in-vehicle ECUs uses IDs
ranging from 0x000 to Ox5FF and the automotive diagnostic
tool uses an ID ranging from 0x700 to Ox7FF. Because they use
different ID ranges, it is possible to easily identify the CAN
data frames to control ECUs that have been generated from the
automotive diagnostic tool.

e Production and distribution of a malicious smartphone app
for attack: As of December 2013, there are more than 300
different smartphone apps for vehicles being distributed on app
markets. We produced a malicious Android app masquerading
as a self-diagnostic app for vehicles. The malicious app shows
vehicle speed and an ECU error code while transmitting the
CAN data frame from an in-vehicle CAN to an attacker’s server
using a mobile communication network such as a 3G/4G net-
work. In addition, it is possible to transmit an ECU controlling
CAN data frame from the attacker’s server to the in-vehicle
CAN. To produce the malicious app, we installed JAVA JDK,
Android ADT, and Android SDK on a Windows 7-based PC
and developed the app using Eclipse. We confirmed that the
developed app works normally while driving on a real smart-
phone. Fig. 4 shows the state diagram of the malicious self-
diagnostic app we produced and screenshots of the malicious

self-diagnostic app. We did not actually upload and distribute
our malicious app on an app market; however, as shown in [19],
it is easy to do so. However, there is a weak point in the attack
model using a malicious self-diagnostic app. Once an attacker
has used the app to control a vehicle, the reputation of the app
will start to decrease because Android users will shortly notice
that the app is malware. A future research issue to strengthen
the attack model could be on concealing actions to avoid the
attack being noticed by users.

B. Actual Attack Phase

e ECU forced actuation attack through the malicious smart-
phone app: Using an Android smartphone, a server, an OBD2
scan tool, and a midsize car, we organized an environment
as shown in Fig. 5(a) and performed an experimental attack.
Fig. 5(b) shows the steps of the proposed attack scenario. After
the preliminary phase is completed, the actual attack phase is
launched when a driver installs the malicious self-diagnostic
app onto his/her smartphone and uses it. A diagnostic tool is
not physically attached to the target vehicle during the attack.
The OBD2 scan tool is installed on the target vehicle and paired
with the driver’s smartphone by Bluetooth. The malicious self-
diagnostic app and attacker’s server are then connected using a
mobile communication network. The experiment was done as
follows.

1) The malicious app was installed on the victim’s smart-
phone.

2) The victim connected the smartphone to the target vehicle
using Bluetooth or WiFi. The malicious app provided the
victim with normal functions, masquerading as a self-
diagnostic app.

3) The malicious app transmitted data frames of the in-
vehicle CAN to the attacker’s server using the smart-
phone’s mobile communication network. The attacker’s
server checked the state of the target vehicle and trans-
mitted a CAN data frame to force control of an ECU to
the in-vehicle CAN via the malicious app.

4) The target vehicle had a physical malfunction caused by
the abnormal control data that was transmitted from the
attacker’s server.

Our attack experiment was reported on a television news
program. The news video clip is available at URL http://goo.
gl/mo33ay. The text on the URL is translated into English and
attached to the Appendix. The Appendix explains details of
the experiment between 28 s ~ 1 min 46 s in the news video
clip. The news video shows four types of attack experiments:
distortion of the dash board, engine stop, handle control, and
acceleration. In the news video, we manufactured and used the
attacker app only for broadcasting. The attacker app, running
on the attacker’s smartphone, sends an attack message (i.c., the
CAN data frame to force control of an ECU) to the attacker’s
server that then transmits and injects the attack message into
the in-vehicle CAN of the target vehicle through the driver’s
infected smartphone. In our attack model, the attacker’s server
directly injects the attack message without using the attacker’s
smartphone (the attacker app).

998 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 2, APRIL 2015

TABLE 1V
CAN DATA FRAME FOR FORCED CONTROL OF ECU
Vehicle’s State-Transition . Data Frame
CANID | Data Frame (8 Byte) in Case of Data Frame Replay-Attack Analytic Method Transmission Site

1 0x43F 16 48 - - -- 00 FO Rapid acceleration (max 200 km/h)
) 0x440 FF 4E - - - 09 00 Speedometer info change

16 48 - --- 09 00 Fix speedometer to 0 km/h

03 03 - --- 00 00 .

04 03 - - - 00 00 Dash board info change (SPAS-related)
3 0x505 IE 03 - - -- 00 00 SPAS malfunction Data frame
: 0A 03 ---- 0000 . I . Installed ECU

1403 - - - 00 00 Voice notification play (SPAS-related) smfﬁqg and. rf:play in vehicle

during driving

4 0x545 FF FF - - .- FF FF Dash board info change (fuel residual quantity)

0005 - --- 00 00 . e
5 0x59B 0007 - - - 00 00 Dash board info change (gear shift)
6 OX7DF 0210 -- - 00 00 Imitate diagnostic tool connection

0120 ---- 00 00 £nos Data frame monitoring

04 3049 ---- 00 No. 1 Injector ON/OFF (Engine shut down) during diagnostic Diagnostic tool
7 0x7EQ 04 30 4A ---- 00 No. 2 Injector ON/OFF (Engine shut down) tool execution

04304B ---- 00 No. 3 Injector ON/OFF (Engine shut down)

04 30 4C ---- 00 No. 4 Injector ON/OFF (Engine shut down)

(a)

Connection to the
OBDII Scan Tool
(Bluetooth pairing)

v 1t

Vehicle
™M

,mmmul

Connection to the Read From| | Inject To
Attacker server CAN CAN
(Socket connect) A

v A
Receive Send to the
Attack Attacker
Command Server
L

Fig. 4. State diagram of the malicious self-diagnostic app and screenshot of
the malicious self-diagnostic app.

V. DEFENSE
A. Design Goal

To design a secure and efficient security protocol given the
low-performance of an ECU and the limited data payload of a
CAN data frame, these goals should be achieved.

e ENCRYPTION AND AUTHENTICATION FOR CAN DATA
FRAMES: To provide confidentiality for a broadcasted data
frame, it should be transmitted after encryption. In addition,
to authenticate a transmitted data frame, a MAC should be
generated and transmitted along with it. However, it is not easy
to efficiently include a MAC in CAN data frame. As shown
in Fig. 1, the CAN data frame consists of 120 bits, including
a 64-bit data field. If the data field is used for a MAC, the
total amount of CAN data frame transmission increases at least
twice: one data frame for the original data and at least one for
a MAC. Such a method is not proper since it will increase the
CAN bus load rapidly. Therefore, a security protocol needs an
efficient data authentication technique that can be applied to the
current CAN data frame format.

e AN EFFICIENT KEY MANAGEMENT FOR CAN: For se-
cure communication, a CAN security protocol should offer a
secure and fast key distribution mechanism for data frame en-
cryption and authentication. In addition, an efficient and secure

session key update protocol is needed in order to enhance the
security of the session key and truncated MAC. It is also needed
to support the connectivity between an external device and a
vehicle. For secure session key updates, two properties should
be ensured:

1) FORWARD AND BACKWARD SECRECY: In CAN, every
ECU should use an authentication session key AK,, and an
encryption session key EK, to ensure the authentication
and confidentiality of CAN data frames in the ny, session.
Keys AK,, and EK, should not be used for decryption and
authentication of the CAN data frames broadcasted in the
n + 1y, session and n — 1y, session (forward and back-
ward secrecy). If forward and backward secrecy cannot
be ensured, regardless of the key update cycle, confiden-
tiality, and authentication of the CAN data frames cannot
be guaranteed.

2) KEY FRESHNESS: The encryption key EK, and authen-
tication key AK,, which are used for encryption and au-
thentication of CAN data frames in the nyy, session, should
be freshly generated. In order to ensure key freshness,
a parameter used for key generation should be conti-
nually changed using a random number or counter. Key
freshness is essential for preventing a replay attack [20].

B. Proposed Security Protocol

In order to describe our proposed security protocol, we
assume the following. First, the gateway and general ECUs
preshare the long-term symmetric keys K and GK. Second, the
loading of long-term symmetric keys is done through a secure
channel. Third, ECUs use the message filtering functionality
of CAN. Each ECU registers the ID of sender-ECU on its ID
table, and each ECU receives a packet only if it has the sender-
ID registered on its ID table. For other packets, it performs
filtering. Fourth, the sender and receiver ECUs synchronize data
frames with a counter. When a data frame is completely trans-
ferred to the receiver, both increment a data frame counter. (In
CAN, senders and receivers reciprocally check the transmission

WOO et al.: WIRELESS ATTACK ON THE CONNECTED CAR AND SECURITY PROTOCOL FOR IN-VEHICLE CAN 999
: (b)
s Malicious a
Malicious Procliullcgon%distribution
Self Preliminary Phase)
Diagnostic | :]
CTRY | .
CemB
;Pairlng with'\\ = Malici 0A3 Connecti
) - alicious App Connection
"_-/ Malicious App \ 01 '[\)Ag\l,:fr:%la%A P to the Attacker’s Server
And : Installation Injf;ct«on Attack Command
OBD2 Scan tool, T 5
l (Bluetooth) g @
04 - =
VA4 - 04
! « Traffic
OBD2 y
- Accident
Scan 02 Malicious App Occurs
Tool Connection
to the Car
Fig. 5. Practical wireless attack experiment environment and steps of the proposed attack scenario.
TABLE v ECU; GECU
NOTATION USED FOR PROPOSED MECHANISM e ! *
® Select random number
Notation | Description R; N
______________ y _____________>
ECU; ECU using identity i !
ID; Identity of ECU; ® Select random number (Seed;) and generates MAC,
GECU Gateway ECU Seed; , MAC, = Hy,,(ID; || IDgsyl R; | [Seed;)
CTRgcy, | ECU; data frame counter
Seed Seed value of kyj, session €--mmmmmmmmm Seedy[[MAC; |-====-=======~--
EKk Encryption key of kyj, session ® MAC verification and Key Derivation
AKg Authentication key of k;;, session
MAC, = H,,K;(ID;| 1D R; | 1Seed
C Ciphertext 1 1K (ID; | Iy |R; 1 1Seed,)
M Plaintext IG)FGK(Seedl) = EK]' |AK1| IKEKll |KGK1| |UK
Key encryption key of k¢, session ® Generates MAC, and MAC,
KEK (general key update phase)
g y update phase) MAC, = H,g, (ID;||Seed;)
KGK, Key generation key of k¢p session
(key generation key used for session key update process) MAC; = H,, N(l(IDi| |EK; | |AK, | |KEK; | |KGK, | |UK)
UK Key encryptipn key of new sessi.on N e et MAG,|IMAC; |-=====-=====--= >
(when releasing an External Device Connection)
K. Long-term symmeltric key between GECU and ECU; ® AC verification and Key Derivation
I futhentication key usf fo; initial EEIC(;)E ke}(fi ({:lrlivlgtci;o&l) MAC, = H,, Ki(I[)i| |Seed;)
GK ong-term symmetric key between an _
(key generation key used for initial session key derivation) KDFge(Seed,) = ER, | 1AK, | IKEK, | IKGK, | IUK
KDF;() | Keyed one-way function used for key derivation v MAC; = H;, AKI(ID; | [EK, | | AK, | |KEK, | IKGK, | |UK) v
Hy Keyed hash function using x
o Hix: {0,1}* x key — {0,1}%4 Fig. 6. Distribution of initial session key.
Ho Keyed hash function using x
T . 32 . . .
Ho.z : {0, 1} X key — {0,1} symmetric keys loading phase is performed only when manu-

state of the CAN data frame using the ACK bit field. Hence,
between the sender and receiver, it is possible to manage and
synchronize a data frame counter.) Fifth, the gateway ECU
has higher computing power than a general ECU. Sixth, a
device certificate is loaded onto the gateway ECU and external
devices.

Our proposed security protocol is divided into five phases.
Phases 1 and 2 use a well-known security technique (Long-
term symmetric key and Authenticated Key Exchange Protocol
2 (AKEP2)) in order to construct an initial session key dis-
tribution. In the security protocol we propose, the main novel
contributions lie in Phases 3, 4, and 5. The notations used in
this paper are listed in Table V.

1) Loading Long-Term Symmetric Keys: ECU; loads long-
term symmetric keys K; and GK into secure storage. The GECU
loads N of the K; and a GK into secure storage. (The value N is
the number of ECUs installed on the vehicle.) The long-term

facturing a vehicle or changing an ECU.
2) Distribution of Initial Session Keys: After starting a ve-
hicle, every ECU performs an initial session key derivation
process with GECU in a fixed order. While GECU derives the
initial session keys with a particular ECU, other ECUs do not
communicate but wait their turn. We used AKEP2 to construct
a secure and efficient key derivation process in the in-vehicle
CAN environment, as it provides mutual entity authentication
and implicit key distribution [21]. As [21] explicitly allows
for the removal of redundant parts from the protocol without
impacting security, we removed the redundant parts and added
a value for key confirmation. The distribution of the initial
session keys is shown in Fig. 6.
(A) ECU; selects random number R; and transmits it to
GECU.

(B) GECU selects random number Seed;, generates MAC;
for ID;, IDgecu, R;, and Seed; using K;, and transmits it
to ECU; with Seed; .

1000

Descy | 40 | EEE IDescy| 40 | E222
D, | 10 || OWN| 10 ”

Extended ID

SOF | Base ID | SRR | IDE
1bit | 11bit | 1bit|1bit

Control Data CRC |ACK
[ofo] ebit 0~64bit 16bit | 2bit

16bit

Fig. 7. Secure CAN data frame generation and counter table management.
ECU ECU,
(Sender% (Receiver)

? e Generate Cipher text(C) and MAC t
C = By, CTRey) @ M
MAC = szmq((IDs| ICl ICIRECUS)
C’IREK:US = C[Rmus +1
-------------- C||MAC |-----=-=-==--=-->
® MAC verification and Decryption
MAC = Hy, (1D, C1 [CTRygy)
M= EEKk(CTREUS) @ C
v CTRgey, = CTRgy, + 1y

Fig. 8. Encryption and authentication of CAN data frame.

(C) ECU; verifies MAC,.
(D) ECU; computes the initial session keys as

KDF gk (Seed;) = EKy |AK1||KEK, |[KGK, UK. (1)

(E) ECU; generates MAC; for ID; and Seed; using K. It
also generates MAC; for ID;, EKy, AKy, KEK;, KGKq,
and UK using AK;. MAC; and MAC; are transmitted to
GECU.

(F) GECU verifies MAC,. By verifying MACo, it is possible
to confirm that ECU; received Seed; correctly. After
MAC, verification, GECU computes the initial session
keys as in (1).

After generating the initial session keys, GECU verifies
MAC; using AK;. By verifying MACs, it is possible
to confirm that ECU; generated the initial session keys
correctly.

3) Encryption and Authentication of CAN Data Frames:
After the initial session key distribution process is complete,
each ECU performs encryption and authentication of the data
frames generated during a vehicle’s normal driving. In our pro-
posed protocol, we use the Advanced Encryption Standard-128
(AES-128) and the Keyed-Hash MAC. We propose two meth-
ods: Basic and Enhanced. CAN data frame encryption and
authentication are shown in Figs. 7 and 8.

e Basic Method

Message Transmission (ky, Session)

(©)

(A) Sender ECUg manages its own data frame counter value
CTRecu,. When transmitting a data frame, ECU gener-

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 2, APRIL 2015

ates ciphertext (C) using CTRgcy, from
C= EEKk<CTRECU5) & M. 2)

When using the AES-128 algorithm, the result of
Eek, (CTRecy,) is 128-bit. As the maximum size of the
CAN data payload is 64 bit, only the first 64 bits are
used to generate ciphertext (C).

ECU; generates a MAC value for the CAN data frame
that includes ciphertext (C) and CTRgcy, as follows:

(B)

MAC = Hj ak, (IDs]|C||[CTRgcy,) - 3)

Since the data frame payload is 8 bytes, we use a
truncated 32-bit MAC and a division method to transmit
it. As shown in Fig. 1, the ID field of CAN 2.0B
is separated into two subfields. Our proposed security
protocol uses the first 16 bits in the extended ID field and
the 16-bit CRC field for MAC transmission. In the 18-bit
extended ID field, the unused two bits are set to zero.
CRC is used for the integrity of the received data. Since
MAC provides both data authentication and integrity
simultaneously [22], it still ensures that the received
data has not been altered. MAC verification delays may
occur; however, the delay is not severe and does not
interfere with the real-time processing of data. We ex-
perimentally show that MAC ensures a performance rate
similar to that of a normal CAN. Section VII gives a de-
tailed description of the performance evaluation experi-
ment. Fig. 7 shows details of the division process. Once
ECU, completes the aforementioned steps, it transmits
the secure CAN data frame and increments CTRgcy, .

Message Reception (k;}, Session)

(A) Receiver ECU, manages the counters of ECUs. ECU,

verifies the MAC of the received secure CAN data frame

using CTRgcy, and AK.

When step A) is completed correctly, ECU, performs de-

cryption and obtains plaintext (M) using the following:

(B)

M = Egk, (CTREgcu,) @ C. 4

(C) After completing verification and decryption of the
received data frame, ECU, increments the CAN data
frame counter of ECU,(CTRgcy,).

e Enhanced Method

In the AES-128 algorithm, the result of Egx, (CTRecy,) is
always 128 bits. In the enhanced method, two CAN data frames
are encrypted using the result of one AES encryption. Since
the size of a CAN data payload is 64 bits, a single 128-bit
calculation of Egk, (CTRgcy,) is used twice by dividing it into
two parts (left and rightmost 64 bits). Thus, the computation
cost for AES is half that of the basic method.

4) Key Update: A 32-bit truncated MAC is not enough to
secure a CAN. In addition, it is possible for an adversary to leak
a session key using an external device connection. Accordingly,
the encryption and authentication keys used for each session
should be updated periodically. In the k;, session, the proposed
phases for key update are as follows.

¢ General Key Update Phase (ki;, SESSION)

WOO et al.: WIRELESS ATTACK ON THE CONNECTED CAR AND SECURITY PROTOCOL FOR IN-VEHICLE CAN

GECU
1 General Key Update Phase(k,, Session)
® Select random number (Seed,,;)

® Generates Key Request Message

C = Bguy, (CTRgzey) Seedyy

® Session Key Derivation

KDFKGKK(SeedKﬂ) = gy | | ARgy | [KEKGy | 1KGEyy
Key Request Message:: C || MAC

BCU,

® MAC verification and Decryption
MAC = HZ’AKK(IDGBCUI ICl |CIRGECU)

Seedm = EKEJ(K(C'IRGH)U) (5] C

® Session Key Derivation

KDFKGKK(SeedKﬂ) = Elgyy | | ARgyy | [KERGy, | 1KGEyy

Generates Key Response Message

Hy g, (ID; | 1 Seedyy)
® |nitialization of data frame counter

(_.

Key Response Message:: Hya,,,IDjl|Seedy.;)

@ Verification Key Response Message
v @ Initialization of data frame counter v

Fig. 9. Session key update process.

GECU performs the key update per predefined period (T) as
follows. (Fig. 9 shows the key update process.)

(A) After selecting random values for Seedy 1, GECU gen-

erates a Key Request Message and broadcasts it to

the in-vehicle CAN. The message is formed of the

following:
C =Ekek, (CTRGgecy) @ Seedy44 Q)
MAC = Hg ak, (IDgecul|C||CTRgEcu) - (6)

(B) Every ECU; that receives a Key Request Message per-
forms verification of the MAC and decrypt ciphertext
(C) using AKy and KEKj, respectively. Then, ECU;
derives session keys to be used in the k + 1y, session
using a predefined function KDF() with KGKy. Each
data frame counter is also initialized to zero.

After step B), each ECU; generates a Key Response
Message as follows and transmits it to GECU to confirm

that they received the Key Request Message correctly:

©)

HLAKHI(ID;HSeedkH). (7)

(D) After key confirmation, GECU initializes each data
frame counter of ECU; to zero. The key update phase
is complete when GECU initializes its own data frame
counter.

e Key Update Phase When Releasing an External Device
Connection (k;, Session)

If a connection between an external device and a vehicle is
terminated, GECU performs a session key update process to
maintain secrecy as follows.

(A) GECU generates random values of Seedey. Then it

generates a Key Request Message using UK

C =Euk(CTRgecy) @ Seednew (®)
MAC = Hs ak, (IDgecul|C||[CTRGgecy) - &)

1001

Then, GECU broadcasts the Key Request Message to the
in-vehicle CAN.

(B) Every ECU; that receives a Key Request Message per-

forms verification of the MAC and decrypt ciphertext
(C) using AKy and UK, respectively. The rest of the
steps are the same as the general key update phase.

5) Sharing a Session Key With an External Device: We pro-
pose a phase for additional authentication and key distribution
when connecting a vehicle with external devices such as an
automotive diagnostic tool, assuming it is a reliable device. In
the k¢y, session, external device authentication and session key
distribution are as follows.

(A) After connecting an external device to a vehicle, the ex-
ternal device sends an authentication request to GECU.
After receiving the request, GECU generates a random
number ry(r; € Z;), and a signature on r;P. Then, it
transmits these values to the external device with its
certificate. (Where G is the subgroup of the elliptic curve
group, P is a generator point of G and its order is a large
prime q.)

If the certificate and signature transmitted by GECU
are successfully verified, the external device generates
a random number ra(r2 € Z;) and a signature on roP.
Then, it transmits these values to GECU with its certifi-
cate. After completing transmission, the external device
generates a temporal session key (SK =riryP) and
removes ro.

After verifying the certificate and signature transmitted
by the external device, GECU generates a temporal
session key (SK = ryroP) and removes r;. Then, GECU
encrypts Seedy with the SK and transmits it to the
external device. The external device derives the session
keys to be used in the ky, session using Seedy and is then
able to communicate.

(B)

©)

(D)

VI. RELATED WORK

With the commercialization of the connected car, the in-
vehicle CAN, which was regarded as a closed network in
the past, is now being connected to external networks and
provides useful services such as Remote Diagnostics [18],
[23], Firmware Updates Over the Air [24], [25], and Real-time
Product Carbon Footprints Data Analysis [26]. On the other
hand, such connectivity to external networks introduces a new
type of security threat to the vehicle.

Koscher et al. suggested specific wireless attack techniques
and experimented with short- and long-range wireless attacks
[19]. A short-range wireless attack is possible when a Blue-
tooth device installed on the vehicle is paired with the driver’s
smartphone on which a malicious app has been installed. A
long-range wireless attack is possible owing to the vulnera-
bility of the authentication function in the aqLink protocol.
However, to conduct the wireless attacks in [19], complex and
advanced technologies such as reverse engineering are required
to analyze automotive electronics. In addition, the long-range
wireless attack is possible only for a vehicle using the agLink
protocol. The previous studies on vehicular security point out
vulnerabilities of the in-vehicle CAN as the primary cause of a

1002

cyber attack [8], [13]. In particular, [9] mentions the lack of
data frame authentication and encryption as the most severe
vulnerabilities of CAN.

In order to construct a secure in-vehicle CAN, a variety of
studies and research projects have been conducted over the
past ten years. One of the European-funded projects, EVITA
developed a hardware security module (HSM) for On-Board
network security. HSMs may be classified into three types
according to the field, in which they are used.

1) Full HSMs suitable for Vehicular Networks (Inter or
Intra).

2) Medium HSMs suitable for Intra Vehicle Networks.

3) Light HSMs suitable for sensors and actuators.

Schweppe er al. suggested a communication security ar-
chitecture for vehicles using EVITA-HSM in [11] and [12].
They used a truncated 32-bit MAC considering the limited data
payload of CAN data frames and explained that a 32-bit MAC
is secure from collision attacks for 35 weeks due to the limited
properties of an in-vehicle network (CAN bus load and band-
width). However, the security architecture of Schweppe et al.
is very abstract. It does not provide a detailed description re-
garding how to generate and transmit a 32-bit MAC. It also does
not consider data confidentiality and connectivity to external
devices.

To provide an in-vehicle CAN communication environment
secure against a replay attack, [14] and [15] proposed data au-
thentication techniques that considered the limited data payload
of a CAN data frame. Groza and Marvay suggested a CAN data
authentication protocol using a TESLA-like protocol in [14]. In
TESLA, a sender attaches to each data a MAC computed with
a key k known only to the sender. A short time later, the sender
sends k& to the receiver, who can then authenticate the data.
We note that key disclosure delay in the TESLA-like protocol
should be minimized to ensure real-time processing in CAN.
However, the shorter the delay is, the larger the bus load is.
Our simulation in the next section shows that the TESLA-like
protocol [14] finds it difficult to provide real-time processing in
CAN. Groza et al. also proposed a single master case to min-
imize key disclosure delay. In a single master case, the sender
generates a MAC with a long-term secret key shared with the
communication master and transmits a data and the correspond-
ing MAC to the master. The master then transmits the data and
MAC to the receivers. However, since the secret key shared
between a sender and the communication master cannot be
changed for each session, a replay attack after eavesdropping
on the transmitted CAN data frame and MAC is possible.

Lin et al. proposed a MAC generation technique using an ID
table, message counter, and pair-wise symmetric key (PWSK)
[15]. Receivers’ IDs are registered on a sender’s ID table. It is
assumed that a sender shares a PWSK with the receivers in the
ID table. Their MAC generation technique is similar to ours
in that it uses a synchronized message counter among ECUs.
However, the protocol of Lin er al. uses a PWSK, whereas
ours uses a group session key. Using a PWSK implies that
a sender must generate as many MACSs as receivers in the
communication group and transmit them separately to each
receiver. This will increase the bus load rapidly and is hence im-

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 2, APRIL 2015

practical. In addition, their security technique does not consider
data confidentiality and connectivity with external devices. In
Section VII, we perform comparative evaluations among the
proposed security protocol and those in [14] and [15].

VII. SECURITY AND PERFORMANCE ANALYSIS
A. Security Analysis

e CONFIDENTIALITY: Our proposed security protocol uses
AES encryption algorithms to ensure the confidentiality of
the CAN data frame. When a vehicle is started, every ECU
performs an initial session key derivation process with GECU
using the long-term symmetric key (K;) and (GK). While the
legitimate ECUs storing the long-term symmetric key (K;)
and (GK) can compute the initial session key, an adversary
cannot obtain it. This means that an adversary cannot acquire an
encryption key (EK) and an authentication key (AK;) derived
from Seed;. In subsequent sessions, the adversary cannot gain
any session keys because Seed; has been encrypted by KEK;_;.
Since the security of the AES algorithms has been proven in
[27], it is clear that the adversary cannot obtain CAN data
without a session key.

e AUTHENTICATION: We use a 32-bit truncated MAC that is
the same as the one used by EVITA-MEDIUM-HSM. Accord-
ing to [28], a 32-bit MAC can be broken after O(2'®) queries
if an adversary can access the 32-bit MAC generation oracle.
This means it is possible for an adversary, who can access the
firmware of an ECU, to compromise it. However, we do not
assume this type of adversary, as explained in Section III-A.
It is also possible for the attacker to use the known structure of
the input to a MAC to generate meaningful messages. However,
the attacker still cannot generate the MAC corresponding to
the meaningful message without knowing the MAC key. The
key used to generate a MAC is securely shared in the proposed
protocol. The only option for the attacker is to choose one 32-bit
string out of 232 possible MAC values. While a 32-bit MAC
can be forged within a few seconds in a general IT environment
that allows access to an MAC generation oracle, it takes about
11930 h for an adversary to transmit 232 data frames per 10 ms
for a forgery attack in a general in-vehicle CAN. If an adversary
transmits a malicious data frame to an in-vehicle CAN in less
than a 10-ms period, the network will generate a “CAN Bus off”
error state indicating communication failure (This attack could
be detected by an Intrusion Detection System). We also design
a session key update protocol for security of the 32-bit MAC.

e FORWARD AND BACKWARD KEY SECRECY: In the pro-
posed security protocol, a session key is exposed by an external
device that communicates with the in-vehicle CAN. However,
it is difficult for the external device to acquire the keys of the
forward session. If a connection between the external device
and in-vehicle CAN expires, GECU broadcasts a Key Request
Message including Seed,y. Because the Key Request Message
is encrypted by UK, the external device cannot know the keys to
be used for the forward session. It is also difficult to acquire the
key of a backward session. For example, although EKy, AK,,
and KEK| of the ky, session keys are exposed, it is impossible
to acquire EK_1, AKy_1, and KEK_; of the k — 1}, session
keys as there is no association between Seedy_; and Seedy.

WOO et al.: WIRELESS ATTACK ON THE CONNECTED CAR AND SECURITY PROTOCOL FOR IN-VEHICLE CAN

USB Connection
T

CAN piggy l’—“-!1
'/

N

| Secure-ECU

Fig. 10. Performance evaluation environment.

TABLE VI
TooLS USED FOR THE SIMULATION
Product [Model Name [Note
Microcontroller DSP F28335 60-150 MHz

Emulator XDS100S

.) For Texas Instruments
Compiler Code Composer Embedded Processors

SW CANoe Network Slmu!atlon Tool
for Vehicle

Connector VAN 760 CAN Piggy Interface Device

e KEY FRESHNESS: Keys used for every session are derived
from a randomly generated value, hence, they have no associa-
tion with each other. In other words, Seed;, Seeds, Seeds, and
Seed, are different values.

e REPLAY ATTACK: In our proposed security protocol, a
sender and a receiver manage the data frame counter. We used
the data frame counter, which is synchronized and managed
between the sender and receiver for generation of the MAC.
As shown in Figs. 7 and 8, Section V, the sender uses the data
frame counter in order to generate the MAC. As such, because
the data frame counter is used for the generation of the MAC,
our proposed security protocol is secure against a replay attack.

B. Performance Evaluation

For performance analysis of the proposed security protocol,
we manufactured a Secure-ECU that has a similar functionality
to that of a real ECU and then performed a hardware-based
simulation. We also performed a simulation that interlocked the
Secure-ECU with CANoe software. The simulation environ-
ments are as shown in Fig. 10. Table VI shows specifications
of the equipment used for the evaluation.

1) Hardware-Based Evaluation (F28335 Microcontroller):
We manufactured a Secure-ECU on a DSP-F28335 microcon-
troller of Texas Instruments for this evaluation. The execution
time for encryption and authentication of a CAN data frame was
measured by implementing the algorithms (AES-128, MAC) on
the Secure-ECU firmware. Changing the CPU clock rates of
the DSP-F28335 microcontroller to 150, 120, 90, and 60 MHz,
we analyzed the resulting execution times of the proposed
security protocol. For a more accurate evaluation, we repeated
the protocol 1 000 000 times and obtained an average execution
time, as shown in Fig. 11(a).

1003

If the enhanced technique is used, the encryption and au-
thentication of a CAN data frame can be performed within
378 us when the CPU clock rate is 60 MHz. We note that if
the proposed security protocol is implemented on Application
Specific Integrated Circuits (ASICs), execution times will be
faster than our implementation results [29], [30].

2) Software—Hardware-Based Evaluation: To construct an
evaluation environment similar to that of a real in-vehicle CAN,
we used CANoe of Vector Co. CANoe is the network simula-
tion software used for developing or testing embedded systems
for vehicles [31]. We constructed an evaluation environment us-
ing Secure-ECU, CANoe, and a VN7600 interface, as shown in
Fig. 10. The proposed security protocol was also implemented
on a CANoe virtual ECU node. We implemented our security
protocol and built a DLL (Dynamic Linking Library) to apply
it within CANoe.

However, we could not actually load a 32-bit MAC value
to the Extended-ID and CRC fields because, as is generally
the case for microcontrollers such as DSP-F28335, the unique
functions of Extended-ID and CRC fields cannot be changed.
Hence, we implemented the results of the hardware-based eval-
uation as an execution time delay for the software—hardware-
based evaluation. After setting the execution time delay to
happen before transmission and after reception of a data frame,
we conducted the software—hardware-based evaluation.

e Communication Response Time: We measured the com-
munication response time by connecting the Secure-ECU (re-
ceiver ECU) with CANoe. In this experiment, we varied the
number of the virtual ECUs (sender ECUs) transmitting to the
CAN data frame by 5, 10, 15, and 20 and measured com-
munication response time of the Secure-ECU. Virtual ECUs
broadcasted the CAN data frame with a cycle of 10 ms. After
receiving the data frame, the Secure-ECU performed authen-
tication and decryption, then transmitted a response CAN data
frame. In Fig. 11(b), we plotted the response time of the Secure-
ECU in terms of the number of virtual ECUs. When the CPU
clock rate of the Secure-ECU is assumed to be 150 MHz,
there is no significant difference between the general and mod-
ified CANs in implementing the proposed protocol. However,
although not pictured in Fig. 11(b), when the clock rate was
under 90 MHz, there was a loss in the received data frame
when the number of virtual ECUs was more than 15. The loss
of data frames occurred because the cycle of the received data
frame was faster than the execution time needed for decryption
and authentication in the data frame transmission and receipt
processes.

However, we also conducted the performance evaluation
experiment while setting the communication load much higher
than that of a typical in-vehicle CAN. A typical in-vehicle CAN
is divided into three subnetworks: 1) powertrain and chassis,
2) body electronics, and 3) infotainment. Each subnetwork
is composed of less than 15 ECUs. In the case of a Volvo
XC90, more than 40 ECUs are installed on more than two
subnetworks. In particular, the largest subnetwork is the body
electronics function, where 13 ECUs communicate with each
other [5], [6]. Furthermore, in the newest ECUs used for vehicle
development, microcontrollers with a computing power of more
than 150 MHz have been installed [32] Hence, it is possible to

1004
2 (b)
600 Hs) @) X P ms)
(o]
; : 9
» %—Basic g) y 3
3 a5 —4—Enhanced 215 /A
El —e—Encryption 35 .—’_—././‘
o 2.8
5 —@—Authentication =z
2. 300 ¥ g3
3 7
B X gs
§_ 150 2 os %-Basic
= g —A—Enhanced
0 ® —@-Normal CAN

150 120 90 60 (MHz) 3 10 15 20

Microcontroller CPU Clock rate(MHz) Number of ECU

Fig. 11.
key derivation time. (d) Key update time.

use our proposed security protocol without data frame loss in
the general in-vehicle CAN environment.

o Initial session key derivation time: Assuming the Secure-
ECU was being used as GECU, we measured the initial session
key derivation time in terms of the number of ECUs and the
CPU clock rate. The CPU clock rate of GECU was fixed at
150 MHz. Fig. 11(c) shows the results of an average initial
session key derivation time from our experiment. Our proposed
security protocol used AKEP2 to derive the initial session key.
In order to establish a session key in a secure manner, AKEP2
performed an authenticated three-way handshake. Once a cer-
tain ECU performed a three-way handshake with GECU, the
communication response time delay occurred twice. In addi-
tion, as the next ECU began an initial session key derivation
after confirming the last third of a three-way handshake, if N
ECUs performed a three-way handshake with GECU, N-1 com-
munication response time delays additionally occurred. In other
words, the communication response time delay that happened
when N ECUs performed an initial session key derivation with
GECU was as follows.

(3N — 1) * (communication response time delay). (10)

The results of Fig. 11(c) analyzed in combination with those
of Fig. 11(a), (b), show that the difference in initial session
key derivation execution time arises from the difference of
MAC function execution time. In the authenticated three-way
handshake, the MAC function is used six times. When the ECU
CPU clock rate is 150 or 60 MHz, the difference in MAC
function execution time needed for the authenticated three-way
handshake is about 720 ps. A comprehensive analysis of the
results shows that the communication response time delay has
a greater effect on the initial session key derivation time than
the MAC function execution time. In addition, as shown in the
results of Fig. 11(c), the time for 60 ECUs to complete the
initial session key derivation process is less than 235 ms.
Therefore, when applying our proposed security protocol to
vehicles with low-performance ECUs, its availability may be
sufficiently ensured.

e Key Update Time: We experimentally measured key up-
date time in the same environment as that of the initial session
keys derivation time. Fig. 11(d) shows the results, where it can
be seen that key update can be performed within 6 ms. The
key update time is similar regardless of CPU clock rate with
the exception of 60 MHz because both the reception of a key
request data frame and the generation of a key response data

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 2, APRIL 2015

ms) (C) ms) (d)

—*—-150MHz
©-120MHz

—4-90MHz

—-60MHz
Normal CAN

w
o
=)

N
N
[l

—%-150MHz

(spuodasijjiw)
awny ayepdn A9y uoissas
w

(spuodasijjiw)
awi) uoneauaq A9y uoissas [eniuf
-
O
o

& 150MHz

©-120MHz

—4-90MHz

7 1S —¢-60MHz

Normal CAN
&3 150MH:z
0 0

15 30 45 60 15 30 45 60

Number of ECU Number of ECU

(a) Execution time for encryption and authentication of a CAN data frame. (b) Communication response time of the in-vehicle CAN. (c) Initial session

TABLE VII
COMPARATIVE EVALUATION CONDITIONS
CAN BUS Speed 1 Megabits per second | Fixed
MAC Function 32 bit MAC Fixed
ECU Data Transmission Cycle | 10 milliseconds Fixed
S 10, 7, 4, .
Key Disclosure Delay and 1 millisecond Variable value
Number of ECU Nodes 20, 15, 10, and 5 nodes | Variable value

frame are performed in parallel on all ECUs. In other words,
increases in key update time are proportional to the number
of ECUs and communication speed rather than the ECUs’
performance (CPU clock rate).

C. Security and Efficiency Comparison

Here, we compare our protocol to the protocol suggested
in [14] [15]. For the convenience of description, our proposed
security protocol is denoted as OURS and the protocol of [14]
is denoted as EPSB (Efficient Protocol for Secure Broadcast)
and the protocol of [15] is denoted as IDT&C(using ID Table &
message Counter). There are two modes in EPSB: single master
mode and multimaster mode. We only consider the single
master mode since the multimaster mode requires a high bus
load. In the single master mode of EPSB, one communication
master conducts authentication of the data frames that every
sender transmits. For a detailed comparison, we divided the
single master mode of EPSB into EPSB — 1 and EPSB — 2.
EPSB — 1 is a mode that contains both a message and MAC in
one CAN data frame. EPSB — 2 is a mode that transmits two
CAN data frames, one for a message and one for a MAC sepa-
rately. IDT&C generates as many MAC messages as receivers
in the communication group. Letting M be the number of ECUs
in the communication group, the number of extra messages
generated is M x (M — 1) in order for every ECU in the
group to interchange messages.

We analyzed the required bus loads of OURS, EPSB-I,
EPSB-2, and IDT&C using the evaluation environment given in
Table VII. Key disclosure delays were applied only to EPSB-1
and EPSB-2. Fig. 12 shows the required bus loads in OURS,
EPSB-1, EPSB-2, and IDT&C in terms of the number of ECU
and the key disclosure delay. In a general CAN, the bus load
has to remain under 50% of maximum to preserve a stable
communication environment. As shown in Fig. 12(a), OURS
keeps the bus load under 50%, although there are 20 ECUs
because it neither requires an additional CAN data frame and
nor uses key disclosure for message authentication.

WOO et al.: WIRELESS ATTACK ON THE CONNECTED CAR AND SECURITY PROTOCOL FOR IN-VEHICLE CAN

(a)

1005

(d)

()

1000 g 100 " " 100(%) & 100{%)
IDT&C
75 75 75 75
2 2 2 2 Sl
z z z z EPSB2
w @ @ @
£ e—e—e—e g 50 g 50 2 50
@ @ R
- - ° o ° ° s e
g g 2 g EPSB1
25 25 25 e— o o @0 25 —o—
e—e o6 0
OURS
0
10 7 4 1 (ms) 10 7 4 1 (ms) 10 7 4 1 (ms) 10 7 4 1 (ms)

Key Disclosure Time (milliseconds) Key Disclosure Time (milliseconds)

Key Disclosure Time (milliseconds) Key Disclosure Time (milliseconds)

Fig. 12. Comparison between OURS, EPSB, and IDT&C at BUS Load. The number of ECUs that participated in communication were: (a) 20, (b) 15, (c) 10,

and (d) 5.

TABLE VIII
SECURITY AND EFFICIENCY COMPARISON

OURS | EPSB | IDT&C
Data Confidentiality O X X
Data Authentication & Integrity O O O
Connectivity with External Device O X X
Increased BUS load X (6] O
Resistance to Replay-attack O X O

However, in the case of EPSB — 1 and EPSB — 2, bus loads
increase by more than 50% due to the extra CAN data frames
and key disclosures. EPSB can maintain a bus load under 50%
only when there are less than five ECUs and the key disclosure
delay is more than 4 ms. IDT&C also increases bus load rapidly
since it additionally has to transmit as many MAC messages as
receivers. IDT&C can maintain a bus load of 60% only when
there were five ECUs in the communication group.

Table VIII shows the overall comparisons of security and
efficiency of OURS, EPSB, and IDT&C. Detailed comparative
evaluations of the data listed in Table VIII are as follows.

1) Security measures (data encryption and authentication).

2) Connectivity with external devices (i.e., key exchange
with external devices).

3) Efficiency of the proposed technique (whether it may
maintain a bus load of less than 50%).

4) Security from our attack-model. (Our attack-model uses
the message replay attack. If security techniques can
ensure security from the message replay attack, they are
secured from our attack model.)

EPSB and IDT&C offer authentication for the CAN data
frame but they do not consider the connection of external
devices during vehicle operation. Furthermore, in EPSB and
IDT&C, it is possible to analyze the meaning of certain data
frames since confidentiality is not ensured. As shown in Fig. 12,
EPSB and IDT&C increase bus load considerably. EPSB is also
vulnerable to a message replay attack since a secret key shared
between sender and communication master is not changed for
every session. Thus, it is possible to perform a replay attack
after eavesdropping on CAN data frames including MACs.
IDT&C has disadvantages in that a MAC has to be transmitted
additionally for message authentication and a message cannot
be used before MAC verification. However, it is secure from
replay attack. Based on the experimental findings, it is expected
that security could be ensured with our proposed attack model
when using IDT&C for communication groups of less than

five ECUs. In contrast to those aforementioned, our proposed
security protocol offers both security and efficiency.

OURS supports the connection of an external device. In
addition, as aforementioned, OURS offers data frame confi-
dentiality and authentication. OURS offers both confidentiality
and authentication but rarely increases bus load, enabling real-
time processing of CAN data frames. Furthermore, in OURS,
a replay attack is impossible because a counter between the
sender and receiver is managed and used for encryption and
authentication of CAN data frames.

VIII. CONCLUSION

Recently, many studies on the vulnerability of in-vehicle
CAN have been done. However, such attack models are un-
realistic because they require significant effort and complex
technology such as reverse engineering and carjacking. Thus,
in this paper, we proposed an actual attack model using a ma-
licious smartphone app in the connected car environment and
demonstrated it through practical experiments. After demon-
strating the attack model with an analysis of the vulnerability
of in-vehicle CAN, we designed a security protocol that could
be applied to the car environment. Furthermore, we analyzed
the security and performance of the proposed security pro-
tocol through an evaluation based on both Secure-ECU and
CANoe. In the future, we plan to improve the performance of
the proposed security protocol with an implementation of the
encryption and hash algorithms on hardware to optimize our
security technology.

APPENDIX

The content of the news report at URL http://goo.gl/mo33ay
is summarized as follows.

¢(00:28)The application (app) is used for diagnosing a vehi-
cle. (00:31)By wirelessly connecting the electronic controller
to the vehicle, the smartphone reveals information that is not
displayed on the dashboard, such as vehicle breakdown infor-
mation, accurate gas mileage information, and travel route in-
formation. ¢(00:43)There are over 200 vehicle diagnostic apps
in the market that are used by many drivers. ¢(00:50)However,
the problem is that if a hacker installs a malicious code to this
App, he/she would be able to externally control the automobile.
¢(00:59)We carried out an experiment under the support by
the research team, Korea University. e(01:04)As soon as the

1006

attackers smartphone button is pressed, the dashboard immedi-
ately triggers the alarm. e(01:12)The ignition of the running
car is suddenly turned off. e(01:19)The steering wheel goes
randomly when using a smart parking system. e(01:26)More
dangerous remote control is also possible. When the rapid
acceleration button is pressed on the smartphone, the vehicles
speed increases immediately, and it increases to 160 km/h in
an instant with the vehicle lifted up. ¢(01:46)In this way, the
hacker can control the automobile at will using the victims
smartphone infected by his/her malicious codes.

REFERENCES

[1] A. Saad and U. Weinmann, “Automotive software engineering and
concepts,” GI. Jahrestagung., vol. 34, pp. 318-319, 2003.

[2] E. Nickel, “IBM automotive software foundry,” in Proc. Conf. Comput.
Sci. Autom. Ind., Frankfurt, Germany, 2003.

[3] M. Wolf, A. Weimerskirch, and T. Wollinger, “State of the art: Embedding
security in vehicles,” EURASIP J. Embedded Syst., vol. 2007, no. 5, p. 1,
2007.

[4] R. Charette, This Car Runs on Code. [Online]. Available: http://www.

spectrum.ieee.org/feb09/7649

T. Nolte, H. Hansson, and L. L. Bello, “Automotive communications-past,

current and future,” in Proc. IEEE Int. Conf. Emerging Technol. Factory

Autom., 2005, vol. 1, pp. 992-999.

[6] K. H. Johansson, M. Torngren, and L. Nielsen, “Vehicle applications of
controller area network,” in Handbook of Networked and Embedded Con-
trol Systems. New York, NY, USA: Springer-Verlag, 2005, pp. 741-765.

[7]1 T. Hoppe and J. Dittman, “Sniffing/replay attacks on CAN buses: A
simulated attack on the electric window lift classified using an adapted
CERT taxonomy,” in Proc. Conf. Embedded Syst. Security, 2007, pp. 1-6.

[8] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN
networks—Practical examples and selected short-term countermeasures,”
Rel. Eng. Syst. Safety, vol. 96, no. 1, pp. 11-25, Jan. 2011.

[9] K. Koscher et al., “Experimental security analysis of a modern automo-
bile,” in Proc. IEEE Security Privacy. Symp., Oakland, CA, USA, 2010,
pp. 447-462.

[10] The EVITA project, 2008, Webpage.
evita-project.org

[11] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D. Scheuermann,
“Car2X communication: Securing the last meter—A cost-effective ap-
proach for ensuring trust in Car2X applications using in-vehicle symmet-
ric cryptography,” in Proc. Conf. Veh. Technol., San Francisco, CA, USA,
2011, pp. 1-5.

[12] H. Schweppe et al., “Securing Car2X applications with effective hard-
ware software codesign for vehicular on-board networks,” in Proc. Conf.
Autom. Security, Berlin, Germany, 2011.

[13] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Efficient in-vehicle delayed
data authentication based on compound message authentication codes,”
in Proc. Conf. IEEE 68th Int. Conf. Veh. Technol., Calgary, BC, Canada,
2008, pp. 1-5.

[14] B. Groza and S. Murvay, “Efficient protocols for secure broadcast
in controller area networks,” IEEE Trans. Ind. Informa., vol. 9, no. 4,
pp- 2034-2042, Nov. 2013.

[15] C. W. Lin and A. Sangiovanni Vincentelli, “Cyber-security for the Con-
troller Area Network (CAN) communication protocol,” in Proc. Conf.
IASE Int. Conf. Cyber Security, 2012, pp. 344-350.

[16] P. Kleberger, T. Olovsson, and E. Jonsson, “Security aspects of the in-
vehicle network in the connected car,” in Proc. IEEE Intell. Veh., Symp.,
2011, pp. 528-533.

[17] BOSCH CAN, 2004, Webpage. [Online]. Available: www.can.bosch.com

[18] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Creating a secure infrastruc-
ture for wireless diagnostics and software updates in vehicles,” in Proc.
Conf. Comput. Safety, Rel., Security, Tyne, UK., Newcastle upon Tyne,
U.K., 2008, pp. 207-220.

[19] S. Checkoway ef al., “Comprehensive experimental analyses of automo-
tive attack surfaces,” in Proc. 19th Conf. USENIX Sec., Washington, DC,
2011, p. 6.

[20] IEEE Standard for Local and Metropolitan Area Networks Part 16 Air
Interface for Fixed and Mobile Broadband Wireless Access Systems, IEEE
Std 802.16, 2009, IEEE Standard.

[21] M. Bellare and P. Rogaway, “Entity authentication and key distribution,”
in Proc. Conf. CRYPTO, 1993, pp. 232-249.

[5

=

[Online]. Available: http:/

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 2, APRIL 2015

[22] J. M. Alfred, P. C. van O, and A. V. Scott, Handbook of Applied Cryp-
tography, Chapter-9-Hash Function. Boca Raton, FL, USA: CRC Press,
1997, pp. 359-368, no. 4.

[23] S. You, M. Krage, and L. Jalics, “Overview of remote diagnosis and main-
tenance for automotive systems,” in Proc. SAE World Congr., Detroit, MI,
USA, 2005, pp. 1-8.

[24] M. Shavit, A. Gryc, and R. Miucic, “Firmware Update Over The Air
(FOTA) for automotive industry,” in Proc. Conf. Asia Pacific Autom. Eng.,
Hollywood, CA, USA, 2007.

[25] D. K. Nilsson and U. E. Larson, “Secure firmware updates over the air
in intelligent vehicles,” in Proc. IEEE Int. Conf. Commun. Workshop,
Beijing, China, 2008, pp. 380-384.

[26] H. Hilpert, L. Thoroe, and M. Schumann, “Real-time data collection for
product carbon footprints in transportation processes based on OBD2 and
smartphones,” in Proc. Conf. Syst. Sci., 2011, pp. 1-10.

[27] J. Daemen and V. Rijmen, The Design of Rijndael. AES-the Advanced
Encryption Standard. Berlin, Germany: Springer-Verlag, 2002.

[28] K. Yasuda, “Multilane HMAC: Security beyond the birthday limit,” in
Proc. Conf. INDOCRYPT, 2007, pp. 18-32.

[29] A.Hodjat and I. Verbauwhede, “Minimum area cost for a 30 to 70 Gbits/s
AES processor,” in Proc. IEEE. Comput. Soc. Annu. Symp VLSI, 2004,
pp- 83-88.

[30] S. Mangard, M. Aigner, and S. Dominikus, “A highly regular and scal-
able AES hardware architecture,” IEEE Trans. Comput., vol. 52, no. 4,
pp. 483491, Apr. 2003.

[31] Vector, Webpage. [Online]. Available: www.vector-informatik.com

[32] Texas Instruments, Webpage. [Online]. Available: http://www.ti.com/
TMS570

Samuel Woo received the M.S. degree in computer
science from Dankook University, Seoul, Korea, in
2010. He is currently working toward the Ph.D. de-
gree in information security in the Graduate School
of Information Security, Korea University.

His research interests include cryptographic pro-
tocols in authentication, applied cryptography, secu-
rity, and privacy in vehicular networks and controller
area network security.

Hyo Jin Jo received the B.S. degree in industrial
engineering from Korea University, Seoul, Korea, in
2009. He is currently working toward the Ph.D. de-
gree in information security in the Graduate School
of Information Security, Korea University.

His research interests include cryptographic pro-
tocols in authentication, applied cryptography, secu-
rity, and privacy in ad hoc networks and smart car
security.

Dong Hoon Lee (F'06) received the B.S. degree
from the Department of Economics, Korea Uni-
versity, Seoul, Korea, in 1985, and the M.S. and
Ph.D. degrees in computer science from University
of Oklahoma, Norman, OK, USA, in 1988 and 1992,
respectively.

Since 1993 he has been with the Faculty of Com-
puter Science and Information Security, Korea Uni-
versity. Since 2004 he has been the President of the
Ubiquitous Information Security Organization that
has been supported by the BK21 Project in Korea.
He is currently a Professor and the Vice Director of the Graduate School of
Information Security with Korea University. His research interests include the
design and analysis of cryptographic protocols in key agreement, encryption,
signature, embedded device security, and privacy-enhancing technology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

