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Abstract—Recently, most wireless network security schemes
merely based on physical layer characteristics tackle the two
fundamental issues—device authentication and secret key extrac-
tion separately. It remains an open problem to simultaneously
achieve device authentication and fast secret key extraction merely
using wireless physical layer characteristics, without the help of
advanced hardware or out-of-band channel. In this paper, we
answer this open problem in the setting of wireless body area
networks (BANs). We propose MASK-BAN, a lightweight fast
authenticated secret key extraction scheme for intra-BAN com-
munication. Our scheme neither introduces advanced hardware
nor relies on out-of-band channels. To perform device authentica-
tion and fast secret key extraction at the same time, we exploit
the heterogeneous channel characteristics among the collection
of on-body channels during body motion. On one hand, MASK-
BAN achieves authentication through multihop stable channels,
which greatly reduces the false positive rate as compared to
existing work. On the other hand, based on dynamic chan-
nels, key extraction between two on-body devices with multihop
relay nodes is modeled as a max-flow problem, and a novel
collaborative secret key generation algorithm is introduced to
maximize the key generation rate. Extensive real-world experi-
ments on low-end commercial-off-the-shelf sensor devices validate
MASK-BAN’s great authentication capability and high-secret key
generation rate.

Index Terms—Authenticated key generation, physical layer,
received signal strength (RSS), sensor, wireless body area network
(WBAN).

I. INTRODUCTION

W ITH increasing prevalence of wireless devices, secure
wireless communications have been more imperative

than ever focusing on two most fundamental issues, device
authentication, and secret key extraction. Recent research has
shifted attention to bootstrapping security for wireless commu-
nications merely based on physical layer characteristics. Such a
trend is mostly due to rising concerns on drawbacks of applying
conventional public and symmetric-key techniques in wireless
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networks: preloading secret keys on heterogeneous wireless
devices is less practical; wireless devices are more likely to
be subject to physical compromise; expensive cryptographic
primitives for authentication and key distribution; and assump-
tions of attacker computation boundary. Bootstrapping security
from physical layer characteristics can eliminate the complex
process of key distribution and the computational assumptions,
and thereby achieving better efficiency and security for wireless
networks.

Existing literature in this area mainly utilizes three types
of physical layer characteristics for bootstrapping security:
1) advanced hardware [1]–[5]; 2) out-of-band (OOB) commu-
nication channels [6]; and 3) wireless channel measurements
[7]–[9]. Approaches based on the first two types assume the
availability of additional resources to measure or extract infor-
mation for device authentication [2], [3], [10], [11] or secret key
generation [1], or both [12]. However, in ubiquitous environ-
ments, wireless devices, especially commercial-off-the-shelf
(COTS) ones, are usually constrained in hardware configuration
that requires extra modifications of system stack. OOB com-
munication channels are not always available. Wireless channel
measurements-based approach is promising in bootstrapping
security for wireless devices in ubiquitous environments, since
the requirements on the wireless system are minimal—only
measuring wireless communication channels [e.g., received sig-
nal strengths (RSSs)]. Practical systems often require device
authentication and secret key generation to be fulfilled concur-
rently. To our best knowledge, there is no such work simultane-
ously providing effective device authentication and fast secret
key extraction simply by wireless channel measurements.

In this paper, we answer this open problem in wireless
body area networks (BANs) and propose MASK-BAN, a
lightweight, body movement-aided authenticated secret key
extraction scheme for intra-BAN communication. Without
advanced hardware and OOB communication channel, MASK-
BAN achieves device authentication and secret key extrac-
tion simultaneously only by wireless channel measurements
between BAN nodes. MASK-BAN is inspired by our important
observations of channel characteristics when body movements
are involved: channels between the control unit (CU) and on-
body sensors (OBSs) in line-of-sight (LOS) vicinity tend to be
more stable than OBSs in nonline-of-sight (NLOS) locations.
However, channels between off-body devices and CU experi-
ence much severer fluctuations than on-body channels, whether
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OBSs are LOS or NLOS to CU. Utilizing relatively stable chan-
nels between OBSs, device authentication guarantees that all
the sensor devices to communicate with CU are on the same
body. Concurrently, secret keys are extracted between every
authenticated OBS and CU, utilizing their relatively unsta-
ble channels. Specifically, to seek multihop stable channels
and multihop unstable channels between every OBS and CU,
MASK-BAN introduces authentication transitivity, i.e., trust
relationship is established between nodes A and B if node A
authenticates a relay node, which authenticates node B. In this
way, an OBS is validated if at least one relatively stable multi-
hop channel to the CU exists. Along multihop unstable channels
between one sensor and CU, a final secret key is derived from
pairwise keys between relay nodes in between with maximized
key generation rate and entropy in terms of number of bits. Our
experiments on real-sensor devices prove the existence of both
stable and unstable multihop on-body channels. MASK-BAN
is shown to provide concurrent node authentication and secret
key extraction with a high rate.

We summarize our major contributions as follows.
1) MASK-BAN is the first work that provides authenti-
cated secret key extraction using only wireless channel
measurements. 2) Generally, MASK-BAN greatly reduces
false positive rate through our multihop authentication scheme.
3) MASK-BAN introduces a novel collaborative secret key
extraction scheme with multihop relay nodes based on the
max-flow algorithm, which can find application in other
wireless systems.

Note that this paper is the extended version of [13]. This
paper is organized as follows. Section II gives an overview of
related work. Section III defines the problem and the system
model. We illustrate our observations of unique BAN channel
characteristics in Section IV, followed by the detailed descrip-
tion of MASK-BAN in Section V. Section VI evaluates and
discusses our experimental and simulation results of imple-
menting MASK-BAN on real sensors. We conclude this paper
in Section VII.

II. RELATED WORK

In this section, we review existing noncrypto key gen-
eration and authentication schemes based on physical layer
characteristics.

By using nonwireless channels in some constrained sce-
narios, it is possible to simultaneously achieve secret key
generation and device authentication. Such works are mainly
biometric-based and motion-based. By physiological signals,
physiological information collected from sensors is compared,
such as electrocardiogram (ECG), iris ,and fingerprint, to assist
authentication and key establishment without a prior distribu-
tion of keying material [10]–[12], [14]–[16]. However, biomet-
rics derived from physiological features usually suffer from
high degrees of noise and variability inherently present in
the signals. Also, it cannot guarantee consistent physiologi-
cal signal measurements with the same accuracy for sensors in
different positions. Moreover, not all the physiological param-
eters have the same level of entropy for key generation [17].
Similarly, motion-based authentication and key generation [1],

[2], [4], [5] require specialized sensing hardware and human
participation, which is demanding for COTS devices.

In recent years, wireless channels become widely used for
authentication and/or key generation. For device authentication,
wireless channels have been used to determine device proximity
by the difference between the RSS [3], [7], [8]. Taking advan-
tage of wireless channel characteristics with body motions, Shi
et al. [9] proposed body area network authentication (BANA), a
lightweight authentication scheme based on RSS measurements
only. However, BANA only considers authentication for LOS
on-body devices. For key generation, several seminal schemes
were proposed [18], [19]. Along this direction, one of the key
research topics is to improve the key generation rate. Lai et al.
[20] exploited random channels associated with relay nodes
in the wireless network as additional random sources for key
generation, but only between two nodes with one-hop relay
nodes.

Nevertheless, using wireless channel alone, it has been
demanding to realize authentication and key generation at the
same time in such a dilemma: authentication usually requires
proximity, while fast key generation requires channel fading
that proximity cannot provide. Take BANA [9] for example,
since its authentication does not generate a credential and
hence is “memoryless,” it is difficult to derive an authenti-
cated secret key by directly applying existing key extraction
techniques to BANA. Alternatively, simply utilizing channels
between BAN sensors and CU would result in a low-key gen-
eration rate with low entropy carried by these stable channels.
For only RSS-based solutions, fast key extraction and device
authentication seem to be two conflicting objectives due to
the gap between their distinct requirements on channel sta-
bility. Addressing this challenge, we take a step forward for
achieving effective authentication and fast key generation con-
currently only based on wireless channels in BAN. Unlike
previous work, our MASK-BAN does not require advance hard-
ware for physical layer characteristic measurement, nor does it
rely on auxiliary OOB channels. Since wireless channel charac-
teristics can be measured by most COTS devices, MASK-BAN
can easily be adopted in a wide range of applications. To the
best of our knowledge, our work is the first in the literature
to achieve authenticated secret key generation using channel
characteristics.

III. PROBLEM DEFINITION

A. System Model and Assumptions

Our wireless BAN is composed of n COTS sensors and
one CU. Worn on the body, sensors measure physiological
signals and transmit the collected data to CU, but are resource-
constrained with limited energy supply, memory space, and
computation capabilities. As a hand-held device such as a smart
phone or PDA, CU is worn on body or placed near the body
with close physical proximity, i.e., less than 1 m to all OBSs,
for aggregating and/or processing the received data, and relay-
ing the data to local or remote trusted third-parties such as
caregivers, physicians, and emergency services.

All the BAN devices have wireless communication capa-
bility, but neither advanced hardware (e.g., multiple antenna,
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accelerometer, and GPS) is equipped nor OOB channel is avail-
able. We assume static relative positions between the BAN
nodes during the security bootstrapping process with body
movements. Extensive existing work has shown that the coher-
ent signal observations located greater than half wavelength
away from two communicating wireless devices are typically
not correlated. In this paper, nodes are placed at least half wave-
length (approximately 12.5 cm for Zigbee radios) away from
each other to ensure uncorrelated wireless channels. For some
users may have limited mobility, easily-done body movement
options are available in our experiments: 1) slowly random
walking; 2) slowly rotating by sitting on a spinning chair; and
3) moving back-and-forth in a straight line by sitting on a
wheelchair trundled by a caregiver.

B. Attack Model

Multiple attackers with advanced hardware may exist with
potential collusion. Following existing proximity-based authen-
tication schemes [3], [7], [8], our authentication aims at dif-
ferentiating on-body BAN devices from off-body ones. Thus,
we assume attacker devices, either LOS or NLOS to legiti-
mate OBSs and CU are deployed off-body in random locations.
Distance between attacker and user could vary greatly from 1 m
to tens of meters. Attacks with malicious devices placed on the
user’s body are not considered.

Our primary concern is impersonation attack, in which
attacker devices attempt to pretend to be a legitimate OBS
or CU to join the BAN, thereby launching further attacks.
Attackers are aware of the deployed security mechanisms,
transmission technology, and the technical specs of the sensors
and CU. They are able to fabricate physical addresses, eaves-
drop wireless channels, replay or inject false data, and vary
transmission power. They may be knowledgeable about the sur-
rounding wireless channel environment. Also, historical data
might be used for path loss prediction of the channel between
the attacker and a legitimate node. Note that we do not con-
sider jamming and denial-of-service (DoS) attacks in this paper.
CU is assumed to be not compromised. Advances in existing
techniques for mobile security can be applied to safeguard CU,
which are out of the scope of this paper.

C. Design Requirements

Our main design goal is to efficiently establish a shared secret
key between each legitimate OBS and CU, whereas effectively
differentiating valid OBSs/CU from off-body attacker nodes.
Our scheme applies to scenarios such as setting up OBSs at
home, in hospital, or even during moving. In addition, the
proposed scheme is expected to have following properties:
1) lightweight: expensive operations are not involved on OBSs;
2) usability: the device is plug-n-play by common users without
complicated setup and use of the BAN; 3) fast authenticated
key extraction: applying our scheme would not put user’s life
at risk in emergency scenarios, i.e., authenticated keys shall be
extracted with a sufficient length in a fairly short-time period;
4) compatibility: our scheme shall be compatible with COTS
sensors and does not require additional hardware or changing

Fig. 1. (a) Sensor deployment on the body. (b) Sensor trust relationship
topology.

existing system stack; and 5) reliability: our scheme shall work
under various scenarios with desirable accuracy.

IV. CHANNEL CHARACTERISTICS WITH BODY MOTIONS

IN BAN

To bridge the gap between fast secret key extraction and
device authentication, we made some significant observations
of special channel characteristics with body motions in BAN.
These new findings solve the dilemma above and build the
basis of our authenticated key extraction scheme. For brevity,
on-body channel denotes the communication channel wherein
both transceivers are on the same body or one of them is in
close vicinity of the body (i.e., CU). Off-body channel denotes
the channel wherein one transceiver on/near body and the other
off-body at a distance away.

A. Distinct RSS Variations Among on-Body Channels With
Body Motions

Shi et al. [9], Cotton et al. [21], [22], and Latré et al. [23]
have shown that in a BAN, significant differences of RSS varia-
tion profiles exist between on-body and off-body channels with
body motions. In this paper, we claim that, with body motions,
channel variations among on-body channels may differ notably
even if OBSs remain relatively static to each other, but the vari-
ation for all on-body channels are still more stable compared
to those for off-body channels. That is, depending on different
positions of OBSs and CU, some on-body channels, especially
those NLOS to each other, may experience more dramatic vari-
ations than other on-body ones over time in terms of amplitude
and changing rate. But overall, off-body channels prominently
display much larger RSS fluctuations than those of on-body
channels.

1) Experimental Evidence: To validate our claim, we took
on-body channel measurements in time domain with six
Crossbow TelosB motes (TRP2400), which have the same hard-
ware configuration as many COTS medical sensors. As shown
in Fig. 1(a), five motes are configured as OBSs, placed on: chest
(S1), left abdominal area (S2), right side of the waist (S3, S4),
and upper back (S5); one mote is carried in front by the sub-
ject as CU and close to other sensors. All the motes were fixed
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Fig. 2. RSS variations among on-body channels.

and kept relatively stationary to each other. The subject per-
formed 1-min simple body movements suggested in Section III
for each test. Different types of movement were performed
in a small office, a medium office, and a large indoor corri-
dor. RSS measurements are collected by all the devices during
their round-robin message broadcasting of 200 ms, i.e., each
node obtains 5 RSS measurements for every other node per
second. From the RSS measurements, we observed two promi-
nent characteristics of on-body channels while body motions
are involved, as shown in Fig. 2 for one of our settings.

a) On-body channels exhibit obviously different varia-
tions: For example, in Fig. 2, S1, S2, and S3 have stable
RSS values with small fluctuations for their channels to CU,
whereas S4-CU and S5-CU channels experiencing much larger
RSS variations. For channels to S4, all the nodes display highly
variable RSS values except S3 and S5. Similar phenomenon
is observed in other settings. As a close approximation to
actual channel property, especially for heterogeneous devices,
fluctuation of RSS values reflects channel variations.

b) Channels between LOS on-body devices tend to be
much more stable than NLOS ones: For example, in Fig. 2,
for channels to S4, S3 has much steadier RSSs than others. S5

is somewhat more stable than S1 and S2. This is due to the sen-
sor placement. S5 is LOS to S4, both on the back of the subject.
S3 is very close to S4 with clear LOS. Other sensors are all on
the front side of the subject.

Every sensor applies two-group classification to all the chan-
nels between it and others by their average RSS variations
between consecutive measurements (ARVs). Sensors with ARV
in the group of smaller ARV mean value are trusted, i.e.,
believed to be on the same body. In this way, a graph can be
derived indicating the direct trust relationship between sensors
denoted by a solid connecting line, as shown in Fig. 1(b). Note
that a trust relationship between two sensors is established if
and only if they trust each other. The trust relationship graph
in Fig. 1(b) is based on the measurements of the same test
in Fig. 2. We can see that only S1, S2, and S3 are directly
trusted by CU, and only S3 and S5 are trusted by S4. With

authentication transitivity, between any pair of OBSs, at least
one multihop path of trust relationship can be found. This can
be easily obtained by strategically deploying extra OBSs as
“hubs” that link all OBSs and CU together. By this means,
authentication range is extended to cover the whole body.

B. Theoretical Explanation

Direct path (DP) loss, multipath, shadowing, and other fac-
tors are known to contribute to radio wave propagation. The
time-variant on-body propagation channels are more compli-
cated due to effects of the human body. On different body parts,
whether LOS or NLOS, received signals are further affected
by body shape, human movements, device placement, and sur-
rounding environment [24], [25]. For LOS channels, among
different factors affecting radio propagation over on-body LOS
channels, it is well understood that the DP plays a dominant role
if devices are at very close range. Unsurprisingly, correspond-
ing channel fading remains relatively stable as long as devices
are kept static at their positions. For NLOS channels, obstructed
by the device placement or body movements, fading of NLOS
channels is more unpredictable. In BANs, channel fading is
also affected by creeping wave diffracted from human tissue
and trapped along the body surface [26]. Therefore, NLOS
channels tend to be more fluctuating in terms of amplitude
and rate.

V. MAIN DESIGN OF MASK-BAN

To reconcile the paradox of achieving effective authenti-
cation and efficient key extraction simultaneously only with
wireless channel measurements, our authenticated key extrac-
tion scheme, MASK-BAN, introduces a “win–win” strategy
based on the channel characteristics with body motions shown
in Section IV. With the help of trusted relay sensors, multihop
authentication is proposed to remarkably reduce false positive
rate, especially when OBSs are sparsely distributed. Contrarily,
multihop paths with larger RSS variations are exploited for fast
secret key extraction between each valid OBS and CU during
the authentication.

A. MASK-BAN Protocol

1) Initial Authenticated Pairwise Key Generation: For each
pair of sensors, an authenticated shared secret key kij is gener-
ated between sensors Si and Sj (kij = kji). Our pairwise key
generation solution is derived from the adaptive secret bit gen-
eration (ASBG) technique [19], which builds secret keys from
RSS measurements, and provides high key bit rate by utilizing a
modified version of Mathur’s quantizer [18] in conjunction with
Cascade’s information reconciliation [27] and privacy ampli-
fication [28]. While ASBG only uses the measured RSSs for
extracting secret key bits, MASK-BAN also uses them for
device authentication at the same time by evaluating ARVs for
the devices as in BANA [9], i.e., based on the RSSs, each node
calculates ARVs for all the other sensors and applies the two-
group classification; only those in the group with a smaller ARV
mean are accepted and others are rejected.
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The combination of secret key extraction and device authen-
tication is nontrivial. In particular, different from ASBG which
only considers pairwise key establishment between two nodes,
MASK-BAN needs to efficiently generate n(n+ 1)/2 pairwise
keys among n+ 1 nodes including CU. Naive application of
ASBG would result in n(n+ 1)/2 rounds of key generation,
which could be unacceptably inefficient. To solve this problem,
a time division duplex (TDD) method is applied in MASK-
BAN in order to aggregate the communication. Specifically,
within time t (where t shall be no larger than the channel
coherence time) each node broadcasts in turn for an equal
amount of time ttx, such that within t: 1) every node has a
chance to transmit and 2) each pair of nodes is measuring the
same channel (i.e., their respectively measured RSSs of the

Algorithm 1. Authenticated Secret Capacity Broadcast

for i = 1 to n+ 1 do
for j = 1 to n+ 1 And j �= i do

Si broadcasts a secret capacity message
Mij = (IDi, IDj , T/F,Cij);
each sensor than Si stores Mij , measures RSS;

end
end
for each node Si do

set trusted group TG← ∅;
compute ARV s for all the other sensors;;
perform classification on all the ARV s;
for j = 1 to n+ 1 And j �= i do

if Sj is valid then TG← TG ∪ {Sj};
end
set V G← TG;
While V G �= ∅ do

for each Sj ∈ V G do
for k = 1 to n+ 1 And Sk /∈ TG do

if Mjk indicates T then TG← TG ∪ {Sk},
V G← V G ∪ {Sk};

end
end
V G← V G\{Sj};

end
save TG as the trust table;
construct a security capacity topology based on all the
capacity messages of nodes in TG;

end

channel in between shall be approximately the same) in order
to extract the same key bits. This process lasts for t0 seconds
until adequate number of bits are extracted. Parameters t, t0
and ttx are chosen and broadcast by CU at the beginning of the
process based on empirical results and the number of devices
participating in the process. Note that every node shall report
its unique identification number ID immediately after receiving
the initialization message from CU.

However, this TDD-based approach opens the door for the
attacker to impersonate as an OBS: within transmission rounds
of time t each, if a device A always transmits before the
attacker (who claims to be OBS and joins the authenticated key

generation process), the latter is able to measure the channel
between A and itself; with the knowledge of the channel and the
received RSS from A, the attacker can adjust its transmission
power during broadcasting to manipulate the received RSSs on
A to be relatively less fluctuating (thus a small ARV) in order
to pass the authentication.1 To mitigate such attack, MASK-
BAN requires devices reverse their order of broadcasting for
any two consecutive time slots (each of t), i.e., if in time slot x
the devices broadcast in order ID1, ID2, . . . , IDn+1, the order
will be IDn+1, IDn, . . . , ID1 in slot x+ 1. In this way, for any
device, the attacker only has the chance to measure the channel
in half of the time slots. Consequently, our ARV-based authenti-
cation solution is modified such that for each device two ARVs
are calculated by others, one for odd time slots 1, 3, 5, . . . , and
the other for even time slots 2, 4, 6, . . . . If any one of the two
ARVs fails the classification process, the corresponding device
is denied.

At the end of this process, in addition to the pairwise secret
keys, each node records its authentication decision to all the
others for each of which it stores an entry, i.e., a tuple of 〈IDi,
T (trust)/F (rejection)〉, in a trust relationship table.

2) Authenticated Secret Capacity Broadcast: Secret capac-
ity (or capacity for brevity) denotes the number of bits with
each pairwise secret key generated in Step (1). Each sensor Sk

broadcasts a capacity message (IDk, IDl, T/F,Ckl) containing
ID of the endpoints of the channel with each of its neighbors,
say Sl, trust relationship learned from previous steps, and chan-
nel secret capacity C. Sensors that receive capacity messages
store the messages in the buffer temporarily. Meanwhile, each
of Sk’s neighbors measures RSSs of the channel and calcu-
lates Sk’s ARVs for later authentication. In this step, capacity
broadcast shall also last for t0 seconds, in the TDD manner
with possibly repeated broadcasting, and the same technique
of reversing broadcasting order as in step 1) is applied.

Every node assumes a null trusted group in the beginning.
After all sensors broadcasting their own capacities and getting
capacity from others, each performs two-group classification
on the collected ARVs, and adds the sensors whose ARV val-
ues (for both odd and even time slots) are in the group with
smaller ARV means into the trusted group. The capacity mes-
sages of trusted neighbors will be processed to add the nodes
that are trusted by these neighbors into the trusted group, i.e.,
those with a T in the neighbors’ capacity message. This process
is repeated until all the other nodes with trust paths to this node
are added to the trusted group. At the end of this phase, each
node has the knowledge of all the channel capacity information
as well as the set of trusted neighbors. An undirected weighted
graph of capacity topology can be derived based on the capac-
ity messages, with the weight of each edge representing the
capacity on the channel. Algorithm 1 summarizes the process
above. Since previous authentication is memoryless, MASK-
BAN performs authentication along with broadcasting capacity
information.

3) Deciding Maximum Entropy: In the authentication
above, CU might directly accept some OBSs, but whose

1Note that this problem does not exist with BANA in which the transmission
of each device is one-way.
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Fig. 3. (a) Max-flow path from Sensor 3 to CU. (b) Max-flow multipath
merging scenario.

channels to CU are stable with low-entropy keys between. Even
if the sensor is authenticated by multihop authentication, it can-
not guarantee that the direct unstable channel between itself
and CU has the highest entropy. Therefore, MASK-BAN finds
out the maximum size of secret key, in terms of bit number,
between each sensor and CU based on the channels of differ-
ent capacities. As a generalization of single-source single-sink
maximum-flow problem [29], each sensor runs the maximum-
flow algorithm on the capacity topology to seek the path(s)
through which the entropy of the key information transmitted
from itself to CU can be maximized.

4) Key Aggregation Broadcast: After finding the max-flow
path(s) in between, the sensor node securely exchanges its
secret key(s) obtained along the path(s) to construct the final
shared secret key of maximum size between itself and CU. For
this purpose, each intermediate sensor on the path(s) broad-
casts the XORed value of the keys shared with its previous-
hop and next-hop sensors in turn. The broadcast message
is accepted if and only if its sender is in the trust table.

Algorithm 2. Key Aggregation Broadcast

Each node runs the max-flow algorithm for source and CU with
thesecrecycapacitygraph;
for each node Sj other than source and CU do

for each max-flow path Px that Sj belongs to do
determine the keys k′ij and k′jk from kij and kjk for
neighbor Si and Sk respectively;
broadcast Mxj = (j, pij , pjk, k′ij ⊕ k′jk);
// pij /pjk are positions of k′ij /k′jk in kij /kjk.
source and CU store Mxj if j is trusted;

end
end
for each max-flow path Px do

source and CU derive a shared key kx using Mxj’s;
end
source and CU derive the final shared key as the
concatenation of kx’s;

With the accepted broadcast messages and keys possessed by
itself, the sensor node gets the key(s) along the path(s) by XOR

operations. For example, in Fig. 3, if there is a max-flow path
3-2-5-CU between node 3 and CU, intermediate nodes 2 and

5 broadcast k23 ⊕ k25 and k25 ⊕ k5CU, respectively. Note that
if two keys are not of the same length, the longer one will be
truncated in the XOR operation. Only knowing k23 with node
2, node 3 derives k25 from the k23 ⊕ k25 broadcast thereby
obtaining k5CU from k25 ⊕ k5CU. Likewise, CU derives k23
and k25 from the broadcast messages. On this max-flow path,
the key between node 3 and CU will be either k23 or k5CU, trun-
cated to the same length as the shorter one of k23 and k5CU. If
multiple max-flow paths exist between a node and CU, their
final shared secret key is the concatenation of the keys from
individual max-flow paths obtained as above.

Of particular note is the case of paths merging or splitting
on the nodes. As the topology graph is undirected, merging and
splitting can be treated in the same way. Assume two max-flow
paths 3-2-5-CU and 3-5-CU in Fig. 3, e.g., which join at node
5. As the secret key extracted from different paths are required
to be independent, overlapped bits shall not be used by the
XORed value sent from node 5 for the two paths. Specifically,
in k′25 ⊕ k′5CU and k′35 ⊕ k′′5CU for respective paths, k′5CU and
k′′5CU shall be nonoverlapped segments of k5CU, where k′25
and k′35 are bits drawn from k25 and k35 separately. Therefore,
besides, the XORed value of neighboring keys, the broadcast
message shall include the bit segment starting position of each
key used by the XOR operation. That is, k′5CU may start from
bit position P1 in k5CU with length L1 and k′′5CU with posi-
tion P2 length L2, where P1 + L1 ≤ P2. Note that lengths are
not necessary to be broadcast, because the receiving node can
infer this information for each path after running the same max-
flow algorithm. But the broadcast message shall point out which
max-flow path the message is for, e.g., k′25 ⊕ k′5CU is for path
3-2-5-CU. In implementation, such information can be repre-
sented by bit maps to save space. The processing method above
is also applicable to n-to-1 merge where n > 2. More generally,
it can be easily applied to n-to-m cases wherein both merging
and splitting happen on the same node. Algorithm 2 combines
Steps 3) and 4).

B. Security Analysis

1) Node Authentication: Hampered by artificially simple
body movements, we claim that for one-hop authentication, i.e.,
direct authentication between two devices without any relay
node, off-body devices have a very low probability, denoted as
p, to falsely get accepted by OBSs. With k-hop relay nodes, the
chance of off-body devices being accepted mistakenly increases
from p to kp. However, p ≤ 1 and p is generally very small.
In practice, a user will not wear too many OBSs, implying
a small value of k in real-world applications. With small kp,
off-body devices actually do not get more chances to be authen-
ticated. From another perspective, due to extra relay nodes in
MASK-BAN, legitimate OBSs has more opportunities to be
accepted. Therefore, multihop authentication would not result
in a significant false positive rate in reality.

2) Secrecy of the Extracted Key: As attackers are off-body
and their channels to OBSs are uncorrelated to on-body chan-
nels, they are not able to derive the secret key bits generated by
OBSs. It is remarkable that Step 4) does not impose any require-
ment for RSS-based authentication. In particular, broadcasting
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XORed value of its own keys or other random strings does not
help the attacker obtain the keys between OBSs, nor does it
reduce the entropy of the final key shared with CU. In fact, this
kind of behavior only causes DoS attack, which is out of the
scope of this paper. Also, we point out that broadcasting XORed
values of each node dose not cause losing entropy of the key
on each max-flow path between the node and CU as discussed
in [20], nor does it result in losing entropy of another OBS’s
secret key as long as on-body channels are not correlated with
off-body channels. Moreover, the secret keys between different
OBSs and CU are not required to be independent since they
trust each other.

3) Man-in-the-Middle (MITM) Attacks: During key gener-
ation between two devices A and B, an MITM attacker’s goal
is to impersonate both of the devices to each other, and estab-
lish keys shared between itself and both A and B, respectively,
through actively disrupting/injecting messages. There are two
possible types of MITM adversaries against our scheme, cat-
egorized by whether the attacker extracts all key bits or only
parts of the key.

The first type of MITM adversary proceeds as follows. Upon
receiving every ith probing message from A to B, the attacker
(M) measures the received signal strength indicator (RSSI)
from A to itself (rAM (i)), reactively jams the packet at the same
time so that B will not receive it,2 and then sends a probing
reply packet to A. M first sets a target RSSI value as rt. M
then calculates the difference rd = rAM (i)− rt, and transmits
the reply with power r0 − rd + rδ(i), where r0 is the default
transmission power used by A and B, and rδ(i), 1 ≤ i ≤ N is
a sequence of RSSIs to induce excursions (1 or 0 bits, either
above q+ or lower than q−, the decision thresholds which are
set by M). The excursion RSSI sequence can be pregenerated
by M such that the ARV of it is small, so as to pass the authen-
tication at node A. This attack relies on channel reciprocity and
manipulation of transmission power.

However, the above attack would require M to possess either
a full-duplex transceiver or a directional antenna (which are
costly), in order to measure the RSSI from A while simultane-
ously jam B. Moreover, our scheme can easily defend against
it. First, the above attack exploits that A always send probes
before B such that M always gets a measurement of the chan-
nel before itself sends probes to A. We can require the order of
probing to change (in the case of two devices A and B, A and B
can take turns to send probes first), such that half of the time M
cannot predict the channel between A and itself. Second, in our
design each device sends probes immediately after each other,
so there is no time gap between them. Any attempt to jam a
probing packet will be detected as that incurs a time gap that a
node treats as noise.

The second type of MITM attack only extracts parts of the
key bits between A/B and M using off-the-shelf hardware,
introduced by [31]. This attack is launched by impersonating
both A and B and injecting M’s own packets during the quanti-
zation phase, which is used by A and B as parts of their secret
key. The idea is to exploit occasional opportunities, which

2Previous work showed that reactive jamming is quite realistic with high-
success rates [30].

happen when the RSSIs from both A and B to M are simi-
lar, upon which M jams packets between A and B and then
inserts his reply packets to both A and B, so similar RSSIs
can be expected such that a bit known by M will be agreed
between A and B. One might think that M can also manipulate
its transmission power of reply packets to create more stable
RSSI sequences at both A and B. However, this attack requires a
setup phase to correctly estimate the quantization thresholds q+

and q− used by A and B, during which M sends out probes with-
out any prior knowledge of these thresholds. Using our scheme,
the attacker’s existence can be detected at this phase, because
M has no way to correctly manipulate his transmission power
without knowing the thresholds. In other words, either M will
be detected by our ARV-based authentication scheme, or M will
not correctly estimate the thresholds during setup if he tries to
manipulate its transmission power. Moreover, the timing-based
jamming detection method mentioned in the above paragraph
also applies to this case.

4) Beam-Forming Attacks: Theoretically, a powerful far-
away attacker might form a special beam by advanced devices
(e.g., directional antenna), attempting to create relatively sta-
ble channels to OBSs to spoof the authentication algorithm.
However, in BANs, we believe that it is extremely hard to
implement this type of attack in practice.

First, due to many factors such as communication angle,
node orientation, and link asymmetry, deploying nodes with
directional antennas are different from with omnidirectional
antennas. Nodes with omnidirectional antennas enjoy sym-
metricity in 360◦ without considering the factors above. But in
the case of directional antennas, the antenna beam is required to
continuously and precisely steer in the direction of the targeted
BAN device in motion, which is very challenging. On one hand,
the angle-of-arrival (AoA) of the targeted device needs to be
tracked and the beam-forming algorithm be updated based on it
in real time. But the attacker needs to obtain the signals sent by
the targeted device to be able to compute the AoA [32]. While
in our scheme, it is not always the case that the targeted device
sends packets before the attacker (in fact the order of transmis-
sion among all devices should rotate periodically), such that
AoA measurement is not always feasible. On the other hand,
the width of the main lobe beam is inversely proportional to the
antenna array size. To successfully launch this attack, a large
antenna is required since the distance between every two OBSs
is no more than 1–2 m. In most real-life scenarios, large antenna
array will probably raise suspicion. For NLOS antenna arrays,
such an attack becomes even more difficult since attackers can
hardly direct the antennas accurately toward the patient who is
randomly moving during the whole process. Furthermore, shad-
owing effects caused by walls and indoor obstacles will also
attenuate the directed beam in a random way.

A possible countermeasure to the beam-forming attack is
to equip the CU with multiantennas (now many smartphones
have MIMO capability), and take the AoA measurements from
all the devices into consideration as additional information in
our authentication protocol. The intuition is that, since the
OBSs are close to and relatively static w.r.t. CU, their AoAs
should remain stable over time no matter how the body moves.
However, it is difficult for an off-body attacker to maintain
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the same AoA to an OBS, because not only the physical
AoA changes but also the CU’s antenna orientation changes,
which affect the antenna gain. Implementing and evaluating this
defense will be part of our future work.

C. Discussion

1) Node Deployment: In MASK-BAN, extra sensor nodes
might be strategically deployed as “hubs,” such that there
are both stable (trust) path(s) and unstable path(s) between
every sensor to CU. Our experiments show that this kind of
placement is effective and easy-to-use. Extra nodes are not
required to measure physiological features; they could be gen-
eral devices with the basic communication and forwarding
ability. Therefore, using extra nodes would not increase the
costs greatly. In addition, as MASK-BAN relies less on the
strict relative positioning between CU and each BAN sensor,
it relaxes the requirements on controlling body movements.

2) Scalability: The number of nodes may impact the per-
formance since MASK-BAN utilizes TDD for message broad-
cast. A large number of nodes would cause a long duration
for each round of TDD, thereby probably resulting in RSS
measurements in difference coherence time periods for some
channels. Key generation rate will also be affected due to the
high error rate for inaccurate RSS measurements. To eliminate
these potential effects, we can either limit the number of sensor
nodes to a reasonable range, or force the nodes to cluster into
groups of fixed size. For example, while node 1 just measur-
ing nodes {1, 2, . . . , k}, node 2 measures nodes {2, . . . , k, k +
1}, . . . , and node n measures nodes {n, 1, 2, . . . , k − 1}.
The corresponding algorithm will not vary except that
each node needs to set the capacity of nodes outside its
set as 0.

3) Authentication Transitivity: Based on the observations
of channel characteristics in Section IV, it is safe to apply
authentication transitivity in our scheme since the probability
of an attacker having stable channels to OBSs is small. During
the process, OBSs and CU are moving but keeping relative
static to each other to produce less channel variations. Even
if the attacker follows the same movement in the same room
as the user, a channel to the same extent of stability is diffi-
cult to be achieved in practice. Therefore, the assumption of
authentication transitivity is valid in our scheme.

VI. EVALUATION

To evaluate MASK-BAN, experiments are conducted under
different settings. Various factors that may affect the perfor-
mance of the scheme are considered, including room size, type
of body motion, OBSs placement, and differences between sub-
jects. The evaluation mainly focuses on effectiveness of node
authentication and efficiency of secret key extraction.

A. Experimental Setup

Experiments were conducted on ten Crossbow TelosB motes
(TRP2400): eight motes as OBSs, one as CU and one as the
off-body attacker. Real-time RSSs are measured and sent by

TABLE I
FALSE POSITIVE RATES FOR MMASK-BAN AND BANA

motes to the computer for analysis and simulation. We also
varied the ratio of OBS number to off-body attacker number.
To show the advantage of MASK-BAN, its authentication per-
formance is compared with BANA. Three locations—a small
room, a medium-sized room, and a large indoor corridor—
are used in the tests. Involved subjects include two males
and one female. Three body movement options suggested in
Section III-A are studied: 1) walking randomly; 2) sitting-
and-rotating; and 3) sitting-and-rolling, which can be easily
self-performed or helped even with limited mobility. According
to the usual positions of COTS OBSs in real applications, motes
are placed on chest, arms, back, waist, and thighs. Note that
we do not have stringent requirements on the movements. For
example, subjects are allowed to walk normally rather than very
slowly. Also, CU is not required to be strictly fixed. CU can
either be put away from the body or be hang on the body.
In addition, OBSs can be placed on both the back and the
front of the body without affecting the performance of MASK-
BAN, while BANA only tested the cases wherein sensors are
all placed in front of the body and facing CU.

B. Results and Evaluation

1) Node Authentication: 33 experiments were conducted
with the random combination of location, type of body move-
ment, mote placement, and subject. RSSs are sampled every
200 ms. For some scenarios, we varied the ratio of OBSs to
off-body attackers from 8:1 to 1:1. Note that in the settings of
large corridor, the attacker is either static or following behind
the rolling wheelchair, whereas in the settings of small room
and medium room, the attacker is static inside/outside the room.

Results in Table I show that the overall false positive rate
in MASK-BAN is almost 16 times less than that of BANA,
reducing from 39.08% to 2.35%. Such a dramatic difference
can mainly be explained by the flexible sensor placement in the
experiments, in which some sensors do not have LOS channels
to CU. As BANA was designed for direct LOS OBS authen-
tication, it is not surprising that its false positive rate greatly
increases due to rejection of OBSs with NLOS channels to CU.
Aided by the trust relay sensors, MASK-BAN shows the advan-
tage of authenticating sensors with NLOS channels to CU over
BANA.

Interestingly, the false positives in MASK-BAN mainly hap-
pened in the small room and medium room scenarios, as well
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as the walking scenarios. This can partially be explained by
the fact that small rooms tend to have severer multipath effect
due to the close distance from the user to the walls during
random walking. In these experiments, the false negative rate
of MASK-BAN under different on-body to off-body node ratios
remains 0, which is the same as in BANA.

2) Authenticated Secret Key Extraction: Efficiency of
MASK-BAN was validated in terms of secret key extraction
rate in our experiments. To obtain the precise key genera-
tion rate, we lasted the key extraction process for 30 s during
authentication. Based on the 30-s measurements, the final key
generation rate (b/s) is calculated as the total number of gen-
erated secret key bits during this process divided by 30. In
our experiments, the human movement speed is around 2 m/s,
which indicates an approximate channel coherence time of
62.5 ms or so. With a total of eight OBS nodes plus the CU,
we estimated that each node can transmit for no longer than
7 ms. In our experiments, we found that during each round of
TDD broadcast, a transmission time (ttx) of 6 ms for each mote
results in a near-perfect packet delivery ratio (PDR) for up to
3 byte data payload. When ttx is reduced to 4 ms, PDR dramat-
ically decreases by up to 30% for only one byte data payload.
In order to maximize the number of RSSs measured with the
hope of maximizing secret key bits, we tried both 5 and 6 ms in
the experiments. Note that the channel coherence time cannot
be accurately calculated due to the unstable human movement
speed. A shorter ttx (and hence smaller t) does not necessarily
result in more secret key bits though a larger number of RSSs is
measured. This is because RSSs measurements for consecutive
time slots could be less independent and thus, bear less entropy
if t is smaller than the channel coherence time.

As mentioned in Section V-A, ASBG, adopted for pairwise
key generation, is based on Mathur’s quantization. For Mathur’s
quantization, two thresholds q− and q+ are used such that
RSS values within [q−, q+] are dropped, where q− = mean
− α ∗ std_deviation and q− = mean + α ∗ std_deviation,
0 < α < 1. The range of remained RSS values is divided into
M intervals and then for each RSS value � rangeM 
 bits can be
extracted. During this process, appropriate choice of quanti-
zation parameters is critical to the final secret key rate. In
particular, the quantization thresholds and intervals play impor-
tant roles. Lower quantization thresholds and less intervals
would produce more bits, but possibly with higher bit error
rate as well as lower entropy. In the experiments, we varied
the parameters and attempted to find the best ones for future
reference. For this purpose, we picked RSS serials for the mea-
sured channels, including relatively stable and unstable ones,
and tried to extract keys based on single channel using ASBG
with varying α and M , respectively. Results show that α = 0.7
and M = 4 derive best key generation rate in general as shown
in Fig. 4, and we stick to these values for α and M in the rest
of the experiments.

Key Generation Rate of MASK-BAN: With eight OBSs, Fig. 5
presents results of small room and corridor settings. We found
that MASK-BAN is able to achieve an average secret key rate of
7.29 b/s in the corridor if t = 6 ms for each node. For the small
room scenarios, while the corresponding rate is about 8.03 b/s
with t = 5 ms, for t = 6 ms setting it is also about 8.03 b/s.

Fig. 4. Secret key rate versus quantization thresholds and intervals, based on
single channel.

Fig. 5. Comparison of secret key rate of MASK-BAN utilizing max-flow
algorithm, one-hop relay method, and direct generation.

To generate a 128-bit key, MASK-BAN only needs 15.9 s in
small room scenarios and 17.5 s in corridor scenarios, which
outperforms other BAN candidate solutions. On the other hand,
if the key extraction utilizes the direct channel to CU for each
node, the average bit rates are about 1.04, 0.90, and 0.94 b/s
for the settings of corridor-6 ms, small room-5 ms, and small
room-5 ms, respectively. This means that MASK-BAN boosts
the secret bit rate about eight times than that if using direct
channels to CU. Note that for t = 5 ms and t = 6 ms, the final
key rate is comparable.

For comparison, we also applied the collaborative secret key
generation method suggested in [20], in which all the available
sensors are selected as one-hop relay nodes. That is, multi-
ple paths, each with one relay node chosen from other nodes,
are built between every sensor and CU. From the comparative
results are shown in Fig. 5, it is easy to see that MASK-BAN is
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2 to 4 times faster than one-hop relay method. Meanwhile, we
noticed that the secret key bit rates in small rooms are slightly
larger than those in the corridor on average.

In summary, along with node authentication, MASK-BAN
can achieve up to 9 b/s for a single node. To update keys
over time, instead of regenerating from scratch, a complemen-
tary mechanism [33] can be combined with our scheme, which
utilizes dynamic secrets extracted from real-time communica-
tion to update the system secret by XOR operation.

Secrecy of On-Body Channel: To measure the secrecy of
on-body channels, we evaluated the mutual information (MI)
between on-body and off-body channels. Assume A and B are
OBSs and C is the off-body attacker. When A is broadcasting,
RSSs measured by B and C are denoted as RSSAB and RSSAC,
respectively. RSSBA and RSSBC represent the corresponding
values by A and C, respectively, when B is broadcasting. We
use MI I(RSSAB; RSSAC) and I(RSSBA; RSSBC) to estimate
the channel dependencies for AB–AC and BA–BC, separately.
I(RSSAB; RSSBA) is also used to estimate the dependency
between channels AB and BA. We selected channels on the
max-flow paths and examined their dependency values. Results
show that MI between on-body channels and off-body channels
is less than 0.5 on average for 6 to 7 bits RSS measurements,
indicating good independence between on-body channels and
off-body channels. MI for RSSs measured by the two endpoints
for each channel is around 1 on average. Endpoints that measure
the channel in consecutive time slots exhibit higher dependency
than in more distributed time slots.

3) Power Consumption: TelosB mote (TPR2400) inte-
grates TI MSP430 microcontroller and a RF radio transceiver
module CC2420, powered by two AA batteries. Energy con-
sumption of the device mainly consists of that caused by code
execution and that by data transmission. In MASK-BAN, data
transmission happens in three stages—step 1), 2), and 4), which
consume most of time spending on authenticated secret key
generation. Throughout these three steps, all the nodes transmit
in TDD manner with one node sending while all the rest receiv-
ing the message. Therefore, for coarse-grain estimation of the
energy consumption of each node, we can amortize the total
authenticated key generation time T as T

n+1 for transmission

and nT
n+1 for receiving data frames. According to [34], CC2420

uses the voltages of 2.92 and 2.88 V to transmit and receive the
data frames, respectively. The corresponding current consump-
tions are 17.4 mA (TX) and 19.7 mA (RX) [35]. To generate
a 128-bit secret key, MASK-BAN needs approximately 15.9 s
in small rooms and 17.5 s in corridor. Therefore, the estimated
energy consumption on communication for each node are about
891.6 and 981.4 mJ in the two settings, respectively. The energy
consumption on computation is approximately 85.9 and 94 mJ,
respectively according to TelosB mote specification (the cur-
rent draw is 1.8 mA in active mode) [36]. Therefore, the total
energy consumption for small room is about 977.5 mJ and that
for corridor is 1075.4 mJ or so. The capacity of an Alkaline
AA battery ranges from 1700 to 3000 mAh, indicating a total
energy of 18 360 000–32 400 000 mJ for a pair of AA batteries,
each with voltage of 1.5 V. Therefore, we believe that the energy
consumption of MASK-BAN is expected not to significantly

reduce the lifetime of battery if the frequency of authenticated
secret key generation is approximately configured, e.g., once
per day.

VII. CONCLUSION

In this paper, we have proposed MASK-BAN, a lightweight
authenticated secret key extraction scheme for BAN only based
on wireless channel measurements. We observe that the het-
erogeneous channel qualities among the collection of on-body
channels—those between LOS on-body devices are relatively
stable, whereas those for NLOS devices are more dynamic.
Utilizing this channel property, we solve the self-contradictory
paradox of achieving effective node authentication and fast
secret key extraction simultaneously. Our multihop authentica-
tion method greatly reduces the false positive rate compared
to previous work. To maximize the secret key generation rate, a
novel collaborative secret key extraction solution is given based
on the max-flow algorithm. Experimental and simulation results
show both authentication effectiveness and secret key extraction
efficiency in MASK-BAN.
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