
446 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 1, FIRST QUARTER 2013

A Survey on Security for Mobile Devices
Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra

Abstract—Nowadays, mobile devices are an important part of
our everyday lives since they enable us to access a large variety
of ubiquitous services. In recent years, the availability of these
ubiquitous and mobile services has significantly increased due
to the different form of connectivity provided by mobile devices,
such as GSM, GPRS, Bluetooth and Wi-Fi. In the same trend, the
number and typologies of vulnerabilities exploiting these services
and communication channels have increased as well. Therefore,
smartphones may now represent an ideal target for malware
writers. As the number of vulnerabilities and, hence, of attacks
increase, there has been a corresponding rise of security solutions
proposed by researchers. Due to the fact that this research field
is immature and still unexplored in depth, with this paper we
aim to provide a structured and comprehensive overview of the
research on security solutions for mobile devices.
This paper surveys the state of the art on threats, vulnerabili-

ties and security solutions over the period 2004-2011, by focusing
on high-level attacks, such those to user applications. We group
existing approaches aimed at protecting mobile devices against
these classes of attacks into different categories, based upon the
detection principles, architectures, collected data and operating
systems, especially focusing on IDS-based models and tools. With
this categorization we aim to provide an easy and concise view
of the underlying model adopted by each approach.

Index Terms—Mobile Security, Intrusion Detection, Mobile
Malware, Trusted Mobile.

I. INTRODUCTION

CURRENT mobile devices (henceforth, called smart-
phones) provide lots of the capabilities of traditional

personal computers (PCs) and, in addition, offer a large selec-
tion of connectivity options, such as IEEE 802.11, Bluetooth,
GSM, GPRS, UMTS, and HSPA. This plethora of appealing
features has led to a widespread diffusion of smartphones
that, as a result, are now an ideal target for attackers. In
the beginning, smartphones came packaged with standardized
Operating System (OS): less heterogeneity in OS allowed
attackers to exploit just a single vulnerability to attack a large
number of different kinds of devices by causing major security
outbreaks [1]. Recently, the number of OSes for smartphones
(Symbian OS, Windows Mobile, Android and iPhone OS) has
increased [2]: as shown in Table I, each mobile OS has now
gained a significant market share.
Even if global sales of smartphones will pass 420 million

devices in 2011 (according to a recent report by IMS research
[3]), the number of mobile malware is still small compared to
that of PC malware [4]. Nonetheless, we can expect malware
for smartphones to evolve in the same trend as malware
for PCs: hence, in the next incoming years we will face a
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growing number of malware. As an example, as more users
download and install third-party applications for smartphones,
the chances of installing malicious programs increases as well.
Furthermore, since users increasingly exploit smartphones for
sensitive transactions, such as online shopping and banking,
there are likely to be more threats designed to generate profits
for the attackers. As a proof that attackers are starting to focus
their efforts on mobile platforms, there has been a sharp rise
in the number of reported new mobile OS vulnerabilities [5]:
from 115 in 2009 to 163 in 2010 (42% more vulnerabilities).
In the same trend, there has been an increase in attention to
the security issues from security researchers.
To help understanding the current security problems affect-

ing smartphones, we review threats, vulnerabilities and attacks
specific to smartphones and examine several security solutions
to protect them. In particular, we survey the literature over
the period 2004-2011, by focusing our attention on high-level
attacks.
The paper is organized as follows. Section II introduces

some background notions on mobile technologies, both for
wireless telecommunication and networking standards. Section
III describes different types of mobile malware, along with
some predictions on future threats, and outlines the differences
among security solutions for smartphones and traditional PCs.
Section IV discusses current threats targeting smartphones:
firstly, it analyzes the different methodologies to perform an
attack in a mobile environment; then, it investigates how
these methodologies can be exploited to reach different goals.
In Sec. V we present security solutions, focusing on those
that exploit intrusion detection systems and trusted platform
technologies. Finally, Sec. VI draws some conclusions.

II. MOBILE TECHNOLOGIES

In this section, we briefly recall some background notions
on wireless and networking technologies that, even if not
originally created for a mobile environment, have favored the
increasing usage of smartphones.

A. Wireless Telecommunication Technologies

The most important wireless technologies targeted at mobile
communications are GSM, GPRS, EDGE and UMTS.
1) GSM: Global System for Mobile communications

(GSM) is the first and most popular standard in Europe for
mobile telecommunication system and is part of the second-
generation (2G) wireless telephone technology. Developed in
1990 by Group Special Mobile, a group created in 1982
by Conférence Européenne des administrations des Postes et
des Télécommunications (CEPT), this standard enables the
creation of cellular networks where mobile phones (called
mobile station in the standard) communicate with each other
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TABLE I
WORLDWIDE SMARTPHONE SALES TO END USERS BY OPERATING SYSTEM IN 3Q10 [2]

Company 3Q10 Units/1k 3Q10 Market Share (%) 3Q09 Units/1k 3Q09 Market Share (%)
Symbian 29,480.1 36.6 18,314.8 44.6
Android 20,500.0 25.5 1,424.5 3.5
iOS 13,484.4 16.7 7,040.4 17.1
Research In Motion 11,908.3 14.8 8,522.7 20.7
Microsoft Windows Mobile 2,247.9 2.8 3,259.9 7.9
Linux 1,697.1 2.1 1,918.5 4.7
Other OS 1,214.8 1.5 612.5 1.5
Total 80,532.6 100.0 41,093.3 100.0

through base stations, networks and switching subsystems.
Compared to its predecessor (TACS standard), telecommuni-
cation operators can offer new services by exploiting these
technologies: for instance, data transmission, digital fax, e-
mail, call forwarding, teleconferencing service and Short Mes-
sage Service (SMS).
2) GPRS and EDGE: These standards stem as an evolution

of GSM; General Packet Radio Service (GPRS), also referred
as 2.5 generation, was developed to improve performances
of GSM network to enable users to achieve higher data rates
and lower access time compared with previous GSM standard.
GPRS uses packet switching mechanism (as in IP protocol)
to enable the exchange of data between users. Moreover,
services such as Wireless Application Protocol (WAP) and
Multimedia Messaging Service (MMS) are also introduced. In
this way, a variety of packet-oriented multimedia applications
and services can be offered to mobile users.
Enhanced Data rates for GSM Evolution (EDGE) standard

was developed in 2000 to improve the features offered by
GPRS by supporting higher transmission rate and higher
reliability.
3) UMTS: The Universal Mobile Telecommunications Sys-

tem (UMTS) was introduced in Europe in 2002. This standard
represents the third-generation (3G) on cellular system. The
transmission rate is higher than 2G and 2.5G by providing
a transmission speed up to 2Mbps. Circuit switching con-
nections are supported simultaneously with packet switching
connections and users can exploit multiple services and dif-
ferent classes of services, such as conversational, streaming,
interactive and background.

B. Networking Technologies

During the last few years, due to ease of installation and the
increasing popularity of laptop computers,Wireless Local Area
Network (WLAN) has become very popular. This technology
enables devices to be linked together through wireless distri-
bution methods and allows users to move in a local coverage
area without losing their connection to the network. There are
different standards that regulate communications in a WLAN.
In the mobile environment, the most popular are Bluetooth
and IEEE 802.11.
1) Bluetooth: Bluetooth is a standard that enables devices

to exchange data over a small area through short wavelength
radio transmissions. Bluetooth is a personal networking tech-
nology that enables the creation of Personal Area Networks
with high levels of security. This standard, developed by
Bluetooth Special Interest Group (SIG) in 1999, is aimed

TABLE II
BLUETOOTH CLASSES

Class Power (dBm) Distance (m)
Class 1 20 100
Class 2 4 10
Class 3 0 1

TABLE III
802.11B AND 802.11G PROTOCOLS

Technology Bandwidth (GHz) Bitrate (Mbit/s) Modulation
802.11b 2.4 5.5, 11 CCK

802.11g 2.4 6, 9, 12, 18, OFDM
24, 26, 48, 54

at providing communication between devices having these
features:

• lower consumptions;
• short range of communications (1-100 meters);
• small production costs.

As shown in Table II, there are three different classes of
Bluetooth devices according to the power consumption and
range of communication.
SIG defines several profiles to indicate different services

(e.g. Generic Access Profile, GAP, or Headset Profile, HSP)
and to describe the service’s implementation.
2) Wireless LAN IEEE 802.11: IEEE 802.11 is a family

of standards for WLAN that includes several protocols for
communicating at different frequencies (2.4, 3.6 and 5 GHz).
These standards can be used in two operation mode:
1) in the infrastructure mode, a device, referred as Access

Point (AP), plays the role of the referee: an AP regulates
the network access and coordinates the devices that are
part of the network;

2) in the infrastructure-less mode (ad hocmode), no referee
exists and devices monitor the spectrum to gain network
access.

The most popular protocols included in this standard are
defined by the 802.11b and 802.11g protocols. As shown in
Table III, the differences between these protocols are related to
bandwidth, bit-rate and type of modulation (Complementary
Code Keying, CCK, for 802.11b, Orthogonal Frequency-
Division Multiplexing, OFDM, for 802.11g).

III. MOBILE MALWARE

This section provides a comprehensive overview of mobile
malware and some predictions on future threats. Moreover, it
describes the differences among security solutions targeting
smartphones and PCs.
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Malware is any kind of hostile, intrusive, or annoying
software or program code (e.g. Trojan, rootkit, backdoor)
designed to use a device without the owner’s consent. Malware
is often distributed as a spam within a malicious attachment
or a link in an infected websites. Malware can be grouped in
the following main categories, according to its features (e.g.,
the vector that is used to carry the payload):

• virus;
• worm;
• Trojan;
• rootkits;
• botnet.
A virus is a piece of code that can replicate itself. Different

replica of a virus can infect other programs, boot sector, or
files by inserting or attaching itself to them.
A worm is a program that makes copies of itself, typically

from one device to another one, using different transport
mechanisms through an existing network without any user
intervention. Usually, a worm does not attach to existing pro-
grams of the infected host but it may damage and compromise
the security of the device or consume network bandwidth.
Malware can also come packaged as a Trojan, a software

that appears to provide some functionalities but, instead,
contains a malicious program.
Rootkits achieve their malicious goal by infecting the OS:

usually, they hide malicious user-space processes and files or
install Trojans, disable firewalls and anti-virus. Rootkits can
operate stealthily since they directly apply changes to the OS
and, hence, can retain longer control over the infected devices.
Finally, a botnet is a set of devices that are infected by

a virus that gives an attacker the ability to remotely control
them. Botnets represent a serious security threat on the Internet
and most of them are developed for organized crime doing
attacks to gain money. Example of such attacks are sending
spam, Denial-of-Service (DoS) or collecting information that
can be exploited for illegal purposes (DoS attacks targeting
smartphones are described in detail in Sec. IV-B3).
Mobile malware can spread through several and distinct

vectors, such as an SMS containing a link to a site where a
user can download the malicious code, an MMS with infected
attachments, or infected programs received via Bluetooth. The
main goals of malware targeted at smartphones include theft
of personal data stored in the phone or the user’s credit.

Examples: [6] details a Trojan for Android smartphones,
named Trojan-SMS.AndroidOS.FakePlayer.b, which masquer-
ades as a media player and requires the user to manually install
it. This fake application is downloaded from an infected web-
page in order to view adult content videos. The installation file
is very small in size and during installation the application
asks the user permissions to send SMS messages. Once
the installation has finished, if the user launches the fake
application, the Trojan begins sending SMS messages to a
premium rate number without the user’s knowledge. These
messages result in costly sums being transferred from the
user’s account to that of the cybercriminals.
[7] develops a kernel-level Android rootkit in the form of a

loadable kernel module that can open a shell for the attacker
(using a reverse TCP connection over 3G/Wi-Fi) upon the
reception of an incoming call from a trigger number. This

results in full root access on the Android device. In this way,
an attacker can read all SMS messages on the device, incur
the owner with long-distance costs or even potentially pinpoint
the mobile device’s exact GPS location.
[8] analyzes three sample rootkits to show how smartphones

are as vulnerable as traditional computers to rootkits. In fact,
smartphone rootkits can access several distinctive interfaces
and information that are unique to smartphones, such as GPS,
battery, voice and messaging, which provide rootkits writers
with new attack vectors to compromise either the privacy or
the security of end users. The first proposed sample rootkit
allows a remote attacker to stealthily listen into (or record)
confidential GSM conversation using the user’s infected smart-
phone. The second attack aims at compromising the victim’s
location privacy by requiring the infected smartphone to send
a text message to the remote attacker including the user’s
current GPS location. The final sample attack exploits power-
intensive smartphone services, such as those offered by GPS
and Bluetooth, to exhaust the battery on the smartphone.
As an example of smart malware, recently a multifarious

malware for iOS devices has been designed and implemented
by [9] (iSAM). iSAM incorporates six different features of
malware:

1) propagation logic;
2) botnet control logic;
3) collect confidential data stealthily;
4) send a large number of malicious SMS;
5) denial of application services;
6) denial of network services.

Moreover, iSAM is able to connect back to its botmaster server
to update the programming logic, to implement commands,
and to perform a synchronized, distributed, attack.
Table IV reports some notable examples of mobile malware.

A. Evolution of Mobile Malware

Several papers discuss the evolution of mobile malware:
for instance, [10] describes the evolution of malware on
smartphones from 2004 to 2006. For an overview on the state
of the art of mobiles viruses and worms up to 2006, see
Hypponen [11]. In the period 2004-2008, the number of types
of mobile malware has increased significantly: as of March
2008, F-Secure has categorized 401 distinct types of mobile
malware worldwide, whereas McAfee has counted 457 kinds
of mobile malware [12]. In the period 2004-2010, 517 families
of mobile viruses, worms and Trojans have been categorized
by F-Secure [13]. For a complete list of mobile malware in
the period 2000-2008 see [14]; see [15] for mobile malware
that spread from January 2009 to June 2011.
The first virus (a Trojan) for mobile phones, developed

for Palm devices [16], was discovered in 2000 by F-Secure
[17]. In June 2004, the first worm that could spread through
mobile phones with Symbian OS appeared: this worm, called
Cabir [18], was only a prototype developed by the 29A
Eastern European hacker group. Cabir is considered the first
example of malicious code that can spread itself exploiting
the networking technologies on mobile devices (in this case,
Bluetooth) to infect other devices.
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TABLE IV
MOBILE MALWARE EXAMPLES

Name Time Type Method of Infection Effects OS
Liberty Crack 2000 Trojan Pretend to be a hack Remove third-party software Palm OS

Cabir 2004 Worm Bluetooth connection and copies itself Continuous scan of Bluetooth, drain phone’s battery Symbian OS
Dust 2004 Virus File Infector Infect all executables in root DIR Windows Mobile
Brador 2004 Trojan Copy itself in to the startup folder Open a backdoor Windows Mobile

Mosquitos 2004 Trojan Embedded in a game Send SMS to premium-rate numbers Symbian OS
Skulls 2004 Trojan Vulnerability in overwriting system files DoS Symbian OS

MetalGear 2004 Trojan Vulnerability in overwriting system files Disable virus scanner Symbian OS
CommWarrior 2005 Worm Replicates via Bluetooth and MMS MMS charging Symbian OS
Doomboot 2005 Trojan horse Doom 2 video game Prevents booting and installs Cabir and CommWarrior Symbian OS
Lasco 2005 Virus File infection Add itself to install packages Symbian OS
Locknut 2005 Trojan Vulnerability in OS Create entries for a new application Symbian OS
Feakk 2005 Worm SMS message Send SMS to all contacts Symbian OS

Cardblock 2005 Virus Fake SIS application Encrypt memory card with a random password Symbian OS
CardTrap 2005 Cross-Platform Virus Auto-start of removable storage Copy Wukill on the phone Symbian/Windows OS
Blankfont 2005 Trojan Replace font files Fonts not displayed Symbian OS
Crossover 2006 Cross-Platform Virus CIL vulnerabilities Copy to/from mobile/PC Windows/Mobile OS
Letum 2006 Worm E-Mail spreading Infect registry Windows Mobile
Fontal 2006 Trojan Vulnerability in overwriting system files Device not restart after reboot Symbian OS
Mobler 2006 Cross-Platform Worm Dropping Mechanisms Disable antivirus and infect removable storage Symbian/Windows OS

Redbrowser 2006 Trojan Fake Browser Send SMS continuously OS-Independent (J2ME)
Wesber 2006 Trojan Fake Browser Send SMS to premium-rate numbers (Russia only) OS-Independent (J2ME)
Acallno 2006 Spyware Fake Commercial Software Gather and send information about user’s activities Symbian OS
Lasco 2007 Worm A worm that spreads over Bluetooth networks Searching and infecting other phones Symbian OS
Feak 2007 Worm Proof-of-concept worm Sending SMS to contact list with URL Symbian OS
Flocker 2007 Trojan It claims to be an ICQ application to trick the user Sending SMS to a hard coded phone number Symbian OS
Beselo 2008 Worm Via MMS and Bluetooth fake application MMS charging Symbian OS
InfoJack 2008 Trojan Attach itself to installation packages Disable security settings Windows Mobile
Pmcryptic 2008 Worm Memory card spreading Dialing premium-rate numbers Windows Mobile
Yxe 2009 Worm SMS containing malicious URL Send contact lists to external server Symbian OS
Yxes 2009 Worm/Botnet SMS containing malicious URL Send contact lists to external server Symbian OS
Ikee 2009 Worm Scanning a IP ranges and SSH Alter wallpaper iPhone

FlexiSpy 2009 Spyware Fake Application Tracking/log of device’s usage Symbian
Curse of Silence 2009 SMS Exploit Vulnerabilities in e-mail parsing Disable SMS functionalities Symbian OS
ZeuS MitMo 2010 Worm Fake SMS Steal bank account information Cross-Plafrom
iSAM 2011 Multifarious malware Scanning IP and connecting to SSH Collect private information, send malicious SMS, DoS iPhone

Recently, a growing number of viruses, worms, and Trojans
that target smartphones have been discovered. As we have
already pointed out, the reason of the growing number of
mobile malware is due to the widespread use of smartphones.
Furthermore, we have to consider that most of the smartphones
lack any kind of security mechanisms and are not well
prepared against new threats. Within the 2006-2008 period,
security issues exploiting several attack vectors have increased
[19], and there has been a dramatic escalation of complex at-
tacks targeting lower-level device functionality: early security
threats have turned into sophisticated, profit-oriented, attacks
driven by experienced criminals.
A discussion of mobile malware, based on OSes and in-

fection routes, is presented in Töyssy and Helenius [20] that
describe and cluster mobile malware with respect to:

• the OS: Symbian, Palm OS, Linux, Windows Mobile;
• the infection routes: MMS, Bluetooth, IP connections via
GPRS/EDGE/UMTS, WLAN, copying files, removable
media.

The authors propose some prevention solutions and counter-
measures, by considering:

• the users, which have to be educated to utilize the device
in a secure way;

• the software developer, which can develop security pro-
tection targeted at smartphone;

• the network operator, which can enhance the network
infrastructure with mechanisms to avoid intrusions;

• the phone manufacturers, which should update the de-
vices automatically so that for attackers it would be
harder to exploit security holes;

• new epidemiological models, to forecast if an already
detected virus can initiate an epidemic.

Similar solutions are also proposed in [21], where the authors
remark that the protection from malicious code should be
implemented at every possible entry point to the network.
For a comprehensive discussion on evolution of mobile

malware, see [22].

B. Predictions and Future Threats

Since the first smartphone, discussions about threats tar-
geting these devices have proliferated: the first threat against
Symbian and Palm (such as Liberty Crack Trojan [23]) never
became widespread and remained just a proof-of-concept.
Even if security experts foresee massive attacks to come out
at any time, yet they never seem to happen: nonetheless,
McAfee Labs [24] predicts that 2011 will be a turning point
for threats to smartphones. In fact, in the last months, several
new threats to smartphones have emerged: rootkits for the
Android platform, remote jail-breaking exploits for the iPhone,
and the arrival of ZeuS [25], a largely distributed banking
Trojan/botnet. The widespread adoption of smartphones into
business environments combined with these attacks is likely
to cause the explosion that experts have long anticipated.
According to [26], in the near future cybercriminals will

focus their attention on iPhone and Android platforms (this
is also confirmed by Cisco [27] and Panda [28]). Symantec
[5] explains the state of cybercrime on smartphones by its
return on investment: firstly, the installed base of smartphones
has grown to an attractive size and they run sophisticated OSes
that come with the inevitable vulnerabilities; secondly, Trojans
hiding in legitimate applications sold on application stores
provides a simple and effective propagation method. Hence,
what is currently missing is the ability to turn all this into a
profit center.
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In March 2011, Google reported [29] that it had removed
several malicious Android applications from the Android
Market and, in some cases, deleted them from users’ smart-
phones remotely. The Android marketplace is not very closely
monitored, since it adopts the “anything goes” philosophy.
This, combined with the current buzz around new smartphones
running Android, may make the platform more attractive to
cybercriminals [30]. Gostev [26] believes there is also a strong
probability that malware may soon be found in products
available through Android Market. As an example, many
legitimate applications can ask for, and typically be granted,
access to a user’s personal data and authorization to send
SMSs and make calls. Hence, this places the reliability of the
entire Android security concept in doubt. This is confirmed by
Juniper Networks [31] that reports that, since Summer 2010,
Android malware has increased by 400%.
As [26] points out, no significant malware events occurred

that targeted iPhone and which could be compared to the Ikee
worm incident of 2009. However, several concept programs
were created for this platform in 2010 that demonstrated tech-
niques that could be used by cybercriminals. As an example,
SpyPhone allows unauthorized access to information about the
user’s iPhone device, such as her location, interests, friends,
preferred activities, passwords and web search history. This
data can then be sent to a remote server without the user’s
knowledge or consent. This functionality can be hidden within
an innocuous-looking application.
[27] reveals that in July 2010 the U.S. Library of Congress

added jailbreaking to its list of actions that do not violate
copyright protections, hence leaving iPhone users free to
unlock their devices and download applications not authorized
by Apple. Only a week after, JailbreakMe 2.0 appeared, a tool
that makes it easier for users to jailbreak their phones. The
advent of this tool also revealed a significant security flaw in
the iOS 4 that could leave users with jailbroken phones more
likely to be attacked by hackers willing to take control of the
smartphones.
As pointed out by [32], another feature to consider is

the spreading of mobile virus to desktop platforms, e.g. due
to devices that are already compromised or tampered with
coming off the shelves. As an example, USB devices are
responsible for the spread of auto-run malware, while the
Conficker/DOWNAD worm contained a propagation capability
that used removable drives to increase spread.
It is important to underline that evolution of malware is a

continuous race between attackers and defenders: both use the
same programming methods, tools and resources either to cre-
ate a malware or to develop an intelligent malware detection
mechanism. A further aspect to be considered concerns the
observation of new forms of malware in a testbed environment
to predict their behavior: as an example, [33] presents Mobile
Agent Malware Simulator (MAISim), a framework that uses the
technology of mobile agents for simulation of various types
of malicious software (viruses, worms, malicious mobile code)
for smartphones.
Furthermore, since the risks at which smartphones are

exposed depend also on how they are used, we have to
distinguish strictly personal use of a device from uses that
also involve business. As suggested in [34], future threats in

a mobile environment may affect different assets, such as:

• personal data;
• corporate intellectual property;
• classified information;
• financial assets;
• device and service availability and functionality;
• personal and political reputation.

Finally, Milligan and Hutcheson [35] discuss some risks,
threats and countermeasures for smartphones. Some examples
of future risks associated with a smartphone include:

• data leakage resulting from device loss or theft;
• unintentional disclosure of data;
• attacks on decommissioned devices;
• phishing attacks;
• spyware attacks;
• network spoofing attacks;
• surveillance attacks;
• diallerware attacks;
• financial malware attacks;
• network congestion.

C. Mobile Security Versus Personal Computer Security

Despite the similarities between smartphones and PCs, there
are several notable differences concerning security. Firstly,
we have to consider that malware authors can make money
from their illicit activities more easily on smartphones than in
desktop environments, e.g. due to premium-rate numbers (Felt
et al. [36] classify premium-rate calls/SMS as the second most
common behavior found in nearly 50% of recent malware1).
Secondly, since any event generated by the smartphone has
(usually) a cost invoiced by the network operator, from the
point of view of the user, the network operator is considered
responsible of charging costs even if the event is generated by
malware.
We also have to consider the user’s point of view in a

mobile environment: to this end, Botha et al. [37] explore the
availability of security mechanisms from the perspective of a
user who wishes to use desktop-based security mechanisms
in a mobile environment. The authors remark that a main
difference between smartphones and PCs is that the former
is usually a personal device and some issues, such as user
authentication, device configuration and content protection,
need to be dealt differently. As an example, in the case of user
authentication, users face several difficulties when moving
from desktop to smartphone. Furthermore, there is a trade-
off between security and usability, since many solutions that
are used on PCs cannot be applied on smartphones.
Compared to common PCs, the basic security principles

of smartphones are quite different. The security problem
on smartphones originates particularly from the integration
process: nowadays, a single device hosts multiple technologies
that allow users to access the Internet from any place at any
time. Furthermore, smartphone-specific services often require
complex software and infrastructures and expose these devices

1Two further common behaviors are stealing/selling users’ information and
sending SMS spam, which are found in, respectively, 60% and 17% of the
analyzed malware.
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to attacks. As described in [38], five key aspects distinguish
mobile security from conventional computer security:

• mobility: each device comes with us anywhere we go and;
therefore, it can be easily stolen or physically tampered;

• strong personalization: usually, the owner of device is
also its unique user;

• strong connectivity: a smartphone enables a user to send
e-mails, to check her online banking account, to access
lot of Internet services; in this way, malware can infect
the device, either through SMS or MMS or by exploiting
the Internet connection;

• technology convergence: a single device combines differ-
ent technologies: this may enable an attacker to exploit
different routes to perform her attacks;

• reduced capabilities: even if smartphones are like pocket
PCs, there are some characteristic features that lack on
smartphones, e.g. a fully keyboard.

The limited resources of a smartphone are the most obvious
difference with a PC. The main limiting factors are CPU and
memory. These two factors limit the sophistication of possible
security solutions: for example, complex intrusion detection
algorithms that work for real-life applications on PCs cannot
be easily transferred to smartphones in the near future (see
[39] for a distributed solution that tries to circumvent this
problem). In addition, a unique characteristic of smartphones
is the battery, which severely limits the resources available
for a security solution; therefore, it is highly important that a
security solution does not constantly drain large portions of
available CPU time to avoid battery exhaustion [40].
As an example of the limited resources of a smartphone,

according to [41], the ClamAV antivirus engine available for
Nokia device requires about one minute of processing time to
initialize the signature database and at least 40 MB of memory.
To reduce this overhead, the paper proposes a model where
mobile antivirus functionalities are moved to an off-device
network service hosting several malware detection engine.
This architecture make it possible to significantly reduce on-
device CPU, memory and, most importantly, power-resource.
As [42] points out, since smartphones have strict resource

constraints both in computational capabilities and power con-
sumption, some computationally expensive algorithms for
detecting sophisticated threats, such as those implemented
by behavioral detection engines, are simply infeasible to be
deployed on current smartphones due to their heavy-weight
resource requirements. This means that adapting traditional
approaches for malware detection might be infeasible for
mobile environments as they consume a significant amount
of resources and power.
Moreover, a further security threat for smartphones stems

from the fact that wireless medium is, by nature, prone to
eavesdropping and, therefore, communication confidentiality
cannot be taken for granted. Threats to user privacy in a
mobile environment are different from those performed on
PCs because, on smartphones, sensors (e.g. microphones) are
not optional and can be used illicitly to sniff user’s private
data. In addition, since mobile applications extensively use,
and depend on, sensors and users carry smartphones wherever
they go, this increase the opportunities to compromise the
privacy of mobile users. Using access control techniques, like

those used in PC environments, is not appropriate because it
is necessary to take into account also the context in which
sensors are used. Furthermore, these attacks work even when
the user is not interacting with the mobile phone.
Further discussions on the subject can be found in [43].

IV. ATTACKS ON MOBILE DEVICES

In the following sections, we discuss several kinds of
attacks against smartphones. We firstly detail the possible
methodologies to perform an attack in a mobile environment
and, for each kind of attack, we provide a real example.
Secondly, we show how these methodologies can be exploited
to reach different goals.

A. Methodologies of the Attacks

The distinct methodologies to perform attacks against
smartphones are categorized using the following classes:

• wireless;
• break-in;
• infrastructure-based;
• worm-based;
• botnet;
• user-based.

1) Wireless Attacks: There are many different kinds of
wireless attacks against smartphones, especially those target-
ing personal and sensitive data. The most common attack is
eavesdropping on wireless transmissions to extract confiden-
tial information, such as usernames and passwords. Wireless
attacks can also abuse the unique hardware identification (e.g.,
wireless LAN MAC address) for tracking or profiling the
owner of the device. Finally, malware often exploits Bluetooth
as a medium to speed up its propagation.
[44] discusses security problems in wireless environments

and presents the current research activities. A comprehensive
review of Bluetooth attacks affecting smartphones can be
found in [45]. Some studies for preventing this class of attacks
are proposed in [44, 46, 47, 48].

Example - Cabir: Cabir is a worm that propagates
through Bluetooth. This worm consists of a message con-
taining an application file, caribe.sis, that seems like
a Security Manager utility. If installed, the worm uses the
device’s native Bluetooth functionality to search for other
Bluetooth-discoverable devices. Then, the worm attempts to
send infected SIS files to the discovered devices as well.
2) Break-in Attacks: Break-in attacks enable the attacker

to gain control over the targeted device by exploiting either
programming errors, e.g. to cause buffer overflows, or format
string vulnerabilities. Typically, these attacks are used as a
stepping stone for performing further attacks, such as over-
billing attacks or data/identity theft.
Some studies for preventing this class of attacks are pro-

posed in [49, 50].
Example - Doomboot.A: This Trojan installs corrupted

system binaries into the C:\ drive of the device. The corrupted
binaries contain further Trojans, as CommWarrior, which are
also installed on the device.
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3) Infrastructure-based Attacks: Since the services pro-
vided by the infrastructure are the basis for essential smart-
phone functionalities, such as placing/receiving calls, SMS
and e-mail services, the economic and social impact of these
attacks may be very large, such as the one discussed in [51].
[52] evaluates the security impact of the SMS interface on the
availability of the cellular phone network. As an example, if an
attacker is able to simultaneously send messages through the
several available portals into the SMS network, the resulting
aggregate load can saturate the control channels and, therefore,
block legitimate voice and SMS communications. The authors
demonstrate that an attacker that injects text messages from the
Internet can deny voice service in a metropolitan area using
hit-lists containing as few as 2,500 targets with little more
than a cable modem.

a) GPRS: Since the GPRS architecture is built on the
GSM infrastructure, it uses a security architecture based upon
the security measures already adopted by GSM (for a review of
DoS attacks and confidentiality threats in GSM networks, see
[53]). Attacks against GPRS can target the device, the radio
access network, the backbone network, and the interfaces con-
necting GPRS networks with each other or with the Internet.
The results of these attacks can be the compromise of end-
users security, over bill users, the disclosure or alteration of
critical information, the services unavailability, or the network
breakdown. We have also to consider that GPRS is more
exposed to attackers compared to GSM because it uses the
IP technology, which is rather vulnerable.
Attacks against GPRS can be active and passive: active

attacks requires a direct intervention of the attacker to listen,
modify, and inject data into the communication channel. Fur-
thermore, if the attacker is not part of the GPRS, the attack can
be defined external; on the other hand, the attack is defined as
internal. A passive attack happens when an attacker taps on a
communication channel between two nodes without disturbing
the communication to discover some valuable information
about the data or control messages.
As described in [54], there are five sensitive area in GPRS

security that can be exploited to perform an attack:

1) the mobile station (MS) and the SIM-card: the results
of these attacks may be the monitoring of the MS
usage, the downloading of unwanted files, the placing
of unwanted calls. Attacks on the SIM-card are primary
based upon the secret key, which is stored in the SIM-
card of the MS. When an attacker retrieves this key, she
can intercept data exchanged, or clone the original SIM
card;

2) the interface between the MS and the SGSN (Serving
GPRS Support Node): an attacker can perform attacks
like DoS or Man-in-the-Middle2. In DoS a malicious
third party can jam user data and signaling traffic
using special devices called jammer, or induce specific
protocol failures, or masquerade as network elements;

3) the GPRS backbone network: they refer to both IP and
Signaling System 7 (SS7) technologies, which convey

2In Man-in-the-Middle attacks, an attacker can impersonate both a false
base station to a victim MS and, at the same time, the victim to the base
station.

user data and signalling information. Once a malicious
MS gets access to the GPRS network may perform
various attacks, such as DoS, IP spoofing, compromise
of privacy or send large amounts of data to users;

4) the packet network that connects different operators:
the Gp Interface provides connectivity between GPRS
networks that belong to different operators and supports
users roaming. The security targets are the availability
of resources and services, the authentication and au-
thorization of users and actions, and the integrity and
confidentiality of the data transferred;

5) the Internet: the Gi interface connects the GPRS net-
work to the Internet and service providers that provide
services to mobile subscribers. Due to the fact that the
Gi interface may carry any type of traffic, the GPRS
network elements and the mobile subscribers can be
exposed to a variety of threats found on Internet;

Another type of attacks against the SIM-cards of GSM/GPRS
is side-channel attacks that allow an attacker to obtain sensitive
information from side-channels, as described in [55].

b) UMTS: The UMTS security architecture defines a set
of procedures to achieve increased message confidentiality
and integrity during their communication. At the kernel of
its security architecture lies the user authentication mecha-
nism, known as Authentication and Key Agreement (AKA).
Authentication in UMTS is based on a 128-bit symmetric
secret key, namely Ki, which is stored in the user’s tamper-
resistant Universal Integrated Circuit Card (UICC) and in the
corresponding Home Location Register (HLR) of the user’s
Home Network (HN).
[56] discusses several vulnerabilities of the UMTS security

architecture that can be exploited by malicious attackers to
launch DoS attacks. Typically, an attacker tries to access
unprotected control messages in order to manipulate specific
procedures. The expected results varies from lower Quality of
Service to DoS. Some examples of such an attack are:

• dropping ACK signal: an attacker monitors for TMSI
Allocation Command messages and then drops any fol-
lowing TMSI Allocation Complete message to repeatedly
force the creation of new TMSIs that, eventually, will
cause DoS to all the users in that area;

• modification of unprotected Radio Resource Control
(RRC) messages: an attacker substitutes a valid RRC
Connection Setup Complete with a RRC Connection
Reject message to cause a lower Quality of Service or
a DoS for the end-users;

• modification of the initial security capabilities of MS: an
attacker modifies a RRC Connection Request message to
trigger the termination of the connection. For example,
she can cause a serious damage by creating a very large
number of simultaneous connection requests;

• modification of periodic authentication messages: this
happens if the Radio Network Controller (RNC), on
receiving a tampered message, releases the connection,
disconnecting the MS;

• SQN synchronization: an attacker can ask for a resyn-
chronization procedure to be executed simultaneously
for large numbers of users, and repeatedly, to greatly
overstress the HLR;
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• EAP-ALA originated DoS: an attacker could spoof an
EAP-Response/AKA-Client-Error message and send it to
the EAP-Server to force it into halting the protocol or she
could spoof an EAP-Response/AKA-Synchronization-
Failure notification to force the server to trigger the costly
resynchronization procedure.

Some studies for detecting infrastructures-based attacks are
discussed in [57, 58, 59].

Examples: [60] describes an attack where a malicious
user impersonates a valid GSM base station to a UMTS
subscriber and, as a result, she can eavesdrop on all mobile-
station-initiated traffic. [61] investigates the feasibility of a
DoS attack by taking advantage of a particular flow found in
the UMTS security architecture. The proposed attack involves
the modification of the RRC connection Request Message
that includes the user’s equipment security capabilities. This
message is not integrity-protected: in case of mismatch, the
connection will terminate, but during this process enough
resources will have been already consumed at both sides.
[51] characterizes the impact of large scale compromise

and coordination of mobile phones in attacks against core
networks, by demonstrating that a botnet composed of about
12,000 compromised nodes can degrade the service of an area-
code sized regions by 93%. The sample attack attempts to
prevent legitimate users of a cellular network from sending or
receiving calls or text messages: the attack is carried by an
attacker that can control a set of compromised smartphones
and overwhelm a specific HLR with a large volume of traffic,
so that legitimate users relying on the same HLR are unable
to receive service as their requests are dropped.
[62] discusses the types of damage that can be caused

to smartphones, such as privacy violation, identity theft and
emergency call center distributed DoS attacks.
4) Worm-Based Attacks : The main features that character-

ize attacks based upon worms are:
• transmission channel;
• spreading parameters;
• user mobility models.
a) Transmission Channel: Smartphones are usually

equipped with several connectivity options and, hence, offer
many possible routes for infection vectors, such as:

• downloading infected files while surfing the Internet;
• transferring malicious files between smartphones using
the Bluetooth interface;

• synchronizing a smartphone with an infected computer;
• accessing an infected memory card;
• opening infected files attached to MMS messages.
In the last years, Bluetooth has become one of the most

popular wireless protocols and the class of malware that uses
Bluetooth connection to infect devices is growing. Bluetooth
worms are different from other classes of worms: the most
notable difference is that, to spread the worm, a Bluetooth
infection requires that the infection source and the victim are
located very close to each other, i.e. in a diameter of 20/30
meters.

b) Spreading Parameters: In addition to infecting the
device, worms can also attack the communication network
itself. In this scenario, worms not only compromise users’
ability to use their smartphones but the networks as well.

Worms that exploit messaging services (SMS/MMS), as
their preferred infection routes, are potentially more virulent,
in terms of speed and area of propagation, than Bluetooth
ones. In fact, these worms can be easily sent out using just
one click and can infect any smartphone in any part of the
world with a larger chance of success of propagation.

c) User Mobility Models: Compared with the Internet,
mobile phone networks have very different characteristics
in terms of topologies, services, provisioning and capacity,
devices and communication patterns. These features also
characterize the way new types of mobile worms propagate:
the most important one is that they do not require Internet
connectivity for their propagation and, therefore, can spread
without being detected by existing security systems. Hence,
mobile worms can infect several devices using proximity
attacks against vulnerable devices that are physically nearby.
To model the propagation of these worms, two steps are

required:

1) build a model that precisely describes how devices meet
each other;

2) understand how malicious code exploits both the mobil-
ity of the users and the capacities of the networks.

The dynamics of proximity propagation depend upon the
mobility dynamics of a population in a specific geographic
region. Unfortunately, an ideal methodology for modeling user
mobility does not exist: traces of mobile user’s contacts reflect
actual behavior, but they are difficult to generalize and only
capture a subset of all contacts due to a lack of geographic
coverage.
To model epidemic spreading of malware via proximity-

based, point-to-point wireless links, Mickens and Noble [63]
introduce a framework called probabilistic queuing to deal
with node mobility. To capture the skewed connectivity dis-
tributions of mobile networks, the model represents different
connectivity levels as distinct queues. Each queue represents a
separate epidemiological population. A probabilistic queuing
model is proposed to explicitly account for both node veloc-
ities and the non-homogeneous connectivity patterns induced
by mobility of devices.
The problem of proximity attacks of smartphone is also

discussed in [64] where the authors introduce an individual-
based model and build analytical expressions for contact-rate
calculation and worm transmission. In [65], an event-driven
simulator that captures the characteristics and constraints of
mobile phone networks is proposed. The simulator models
realistic topologies and provisioned capacities of the network
infrastructure. The goals of this model are:

• model malware propagation in networks under realistic
scenarios to characterize its speed and severity;

• understand how network provisioning impacts propaga-
tion and how propagation impacts the network;

• highlight the implications for network-based defenses
against malware.

Some further solutions to withstand worm attacks, which are
based upon mobility models for Bluetooth worm propagation,
are also studied in [66, 67, 68]. See also [69] for analytical
models for epidemics in mobile networks.
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Examples: [70] and [71] investigate whether a large-scale
Bluetooth worm outbreak is viable in practice. The authors use
trace-driven simulations to examine the propagation dynamics
of a Bluetooth worm in a large population, by showing that
the worm outbreak’s start time is very important (e.g., during
week-end). Their results suggest that a worm exploiting a
Bluetooth could spread very quickly. As defense solution,
the authors suggest to locate monitoring points in high-traffic
locations.
[72] investigates the effort required to port a smartphone

worm for Windows Mobile. The authors were able to build a
prototype worm that could spread autonomously if a vulnera-
bility exists in a Windows Mobile service reachable over the
network. The authors state that the lower bound of the time
required to both build a worm toolkit and find a vulnerability
in the network protocol stack of Windows Mobile requires
approximately 14 weeks of full time work.
[73] analyzes in detail the first polymorphic worm that

affects smartphones running Windows CE platform on ARM
processors, known as WinCE.Pmcryptic.A. The worm
spreads by generating new polymorphic copies of itself each
time and can execute several unwanted actions on a compro-
mised smartphone, including calls to toll numbers.
5) Botnets: Until recently, mobile networks have been

relatively isolated from the Internet, so there has been little
need for protecting them against attackers trying to create bot-
nets. However, this situation is rapidly changing since mobile
networks are now well integrated with the Internet. Hence,
threats on the Internet will migrate over the mobile networks
(and vice-versa), including botnets, since smartphones can be
infected by malware they can be turned into a botclient easily
[74].

a) Command-and-Control: The command-and-control
(C&C) network, used to remotely propagate messages, tasks,
updated payload among the bots and the botmasters (and vice-
versa), can be built out using Bluetooth, SMS messages, the
Internet (e.g., HTTP), peer-to-peer (P2P) or any combination
of them.

Bluetooth C&C: [75] investigates the challenges of con-
structing and maintaining mobile-based botnets communicat-
ing via Bluetooth. By using simulations on publicly available
Bluetooth traces, the authors demonstrate that C&C messages
can propagate to approximately 66% of infected nodes within
24 hours of being issued by the botmaster. To reduce the
amount of traffic observable by the provider to achieve stealth-
iness, in the developed framework only a small subset of bots
(those with the highest degree) communicate directly with
the botmaster through cellular channels (e.g., SMS, cellular
data). These nodes are selected via their relative frequency
of contact with other infected devices: whenever infected
smartphones pass within range of each other, they record the
identity of the other device. After reaching some threshold set
by the botmaster, nodes with a high degree of connectivity
send their contact logs to the botmaster which is informed
of (i) which devices are under his control (ii) which nodes
can help disseminating commands rapidly. The botmaster also
disseminates commands and updated payloads through this
hierarchical structure by contacting the seed nodes. Due to
their high degree of connectivity, these nodes can deliver the

payload to the largest number of infected nodes directly and
no interaction with the botmaster is required.

SMS C&C: [76] proposes the design of a proof-of-
concept mobile botnet resilient even to disruption. The botnet
is built out of three components:
1) vectors to spread the bot code to smartphones;
2) a channel to issue commands;
3) a topology to organize the botnet.

Within the testbed mobile botnet, all C&C communications
are carried out using SMS messages. To hide the identity
of the botmaster, there are no central servers dedicated to
command dissemination, since they could be easily identified
and removed. Instead, a P2P topology is exploited to allow
botmasters and bots to publish and search for commands in
a P2P fashion, making their detection and disruption much
harder.

Hybrid C&C: [77] shows that it is easy to create a
fully functional mobile phone botnet out of Apple’s jailbroken
iPhone by discussing the design, implementation and evalu-
ation of an iPhone-based mobile botnet. The authors firstly
discuss an SMS-based botnet that is then improved with HTTP
to reduce the number of SMS messages that need to be sent for
controlling the bots. Finally, the authors show how powerful
such a botnet could be if attackers combine P2P (namely,
Kademlia) with SMS-HTTP hybrid approach.

Examples: Porras et al. [78] recall how, at the end of
2009, some users of jailbroken iPhones began seeing pop-
up windows that redirected the victim to a website where
a ransom payment was demanded to remove the malware
infection. The vulnerability affected several jailbroken iPhones
that have been configured with a SSH service with a known
default root password. By scanning some IP addresses from
the Internet for vulnerable SSH-enabled iPhones, an attacker
could upload a very simple ransomware application to several
iPhone users. By exploiting this vulnerability, some weeks
after, a second iPhone malware (iKee.A) converted the iPhone
into a self-propagating worm to infect other iPhones. This
time, the worm succeeded in infecting more than 20,000
victims within a week. Some time later, a new malware
(iKee.B), similar to iKee.A, was found: in addition to self-
propagation, the iKee.B bot client application introduces a
C&C check-in service that enables the botmaster to upload
and execute shell commands on all infected iPhone bot clients.
This service allows the bot to evolve or to redirect infected
iPhones to new C&Cs located anywhere on the Internet. The
iKee.B also incorporates a feature to exfiltrate the entire SMS
database from the victim’s iPhone.
[79] provides an overview of Yxes, one of the first malware

for Symbian OS 9 and a first step towards a mobile botnet.
Once installed, using a valid signed certificate, the main tasks
of the malware include getting the IMEI and the IMSI of the
mobile phone, parsing contacts, killing unwanted applications
and propagating. To this end, the malware begins its propa-
gation phase by sending an SMS to each new victim with a
link to a malicious server where the victim can download the
malware. One of the main issues concerning Yxes is that its
code does not exploit any particular Symbian OS vulnerability,
but only uses functions of its API in a smart way. For this
reason, the author concludes by remarking that the concept
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of capabilities, introduced by Symbian, fails to stop malicious
intents, for two reasons: (i) cybercriminals manage to have
their malware signed whatever capability they request; (ii)
capabilities only grant authorizations for given actions but
cannot take into account a context or an intent.
Attackers have also taken a popular legitimate application

and added additional code to it, such as with Pjapps [80].
Several users noticed that something was wrong when the
application was requesting more permissions than should have
been necessary: Pjapps attempted to create a bot network out
of compromised Android devices. This attack clearly demon-
strates that attackers are definitely considering smartphones as
a platform for cybercrime.
6) User as an Attack Vector: User-based attacks contain

every exploit that is not of technical nature. Many of today’s
mobile malware samples are not based on a technical vul-
nerability, but trick the user into overriding technical security
mechanisms [40]. This is an important class of vulnerabilities
and several studies have been performed to evaluate the secu-
rity knowledge of the average user; in particular they discuss
the purpose of all the security mechanisms implemented by
the smartphones if the average user does not understand them.
Quite often, if the user clearly understands how to use one
specific mechanism, she might find it difficult to understand
another, possibly new and updated, mechanism.
As [81] points out, very often social engineering attacks

trick a user to override technical security mechanisms, as in
the case of abuse of trust relationships, which might happen
when a malware access the address book of the victim and
send itself to the contacts that trust the infected user. In another
scenario, a user cannot distinguish if a feature is a legitimate
functionality or an imitated one, e.g. in case of a Bluetooth
message with malicious content.
A survey conducted by Sophos [30] asked users whether

their smartphone was encrypted: 26% percent of users replied
that their data was encrypted, 50% said they were not protected
in the event of theft or loss of the device, and 24% of users
were not sure whether their smartphone was encrypted. These
results show that further education on the security dangers of
smartphones is required.

Examples: Trojan-SMS.AndroidOS.FakePlayer.b is a
Trojan for Android that requires the user to manually install
it [6] and asks the user permissions to send SMS messages.
Hence, the user has to activately participate in the installation
process. Once the installation has finished, if the user launches
the fake application, the Trojan begins sending SMS messages
to a premium rate number without the user’s knowledge.
ZeuS MitMo [25] exploits social engineering to infect

smartphones and performs online banking operations. To this
end, an attacker sends an SMS with a link to a malicious
mobile application to the user: then, if the user installs it,
the attacker can read the SMS message used as a second
authentication factor by the online banking service to access
the user’s account.

B. Goals of the Attacks

In this section, we discuss in detail the goals of the attacker,
which can be:

• privacy;
• sniffing;
• denial of service;
• overbilling.

Moreover, for each class of attack we give some pointers to
related works (which will be discussed in detail in Section V)
that propose either a model or a mechanism to defend against
these attacks.
1) Privacy: Privacy attacks of smartphones concern sit-

uations in which integrity and confidentiality are corrupted,
e.g. when they get lost or stolen. In fact, due to their small
dimensions, smartphones can be stolen or lost more often than
laptop computers. During the period in which the device is not
available for the legal owner, it may be possible that someone
installs a spyware on the phone; furthermore, someone can
read personal data, as contact list or messages.
[82] announces that a researcher has detailed a proof-of-

concept method to steal data from an Android smartphone
using a combination of cross-site scripting and Javascript. [83]
reports how Apple is being sued for allegedly letting mobile
apps on the iPhone and iPad send personal information to
advertising networks without the consent of users. Finally,
[84] presents an overview of recent iPhone privacy issues and
considers the unmodified devices by examining what sensitive
data may be compromised by an application downloaded from
the App Store. Next, it explains how a malicious application
could be crafted to fool Apple’s mandatory reviews in order
to be accepted on the App Store. Finally, it discusses several
attack scenarios, suggesting improvements and basic recom-
mendations.
A further issue, related to Digital Right Manager (DRM)

protection, is discussed in [85]. The authors propose a frame-
work for personal DRM for Motorola smartphones, where
the user can place DRM protection and keeps control over
her personal content. To this end, the personal DRM system
enables users to define control and generate licenses on custom
content and to securely transfer them to other smartphones. A
user is then able to define and restrict the intended audience
and ensure expiration of the content as desired. Moreover,
compatible DRM devices are able to automatically detect each
other and exchange credentials.
Another fundamental topic related to privacy is location

awareness, i.e. the ability to determine geographical position.
Even if this feature has significant benefits, it raises some
important privacy implications for users of smartphones. A
comprehensive survey on several privacy issues related to
location-aware smartphones is presented in [86].
Some studies for preventing this class of attacks are pro-

posed in [87, 88]. An approach for designing anti-theft solu-
tions for smartphones is described in [89].

Examples: The target of the theft performed by ZeuS
MitMo [25] is information about online banking account.
Exploiting some social engineering techniques and the fact
that many companies use SMS as a second authentication
factor, ZeuS MitMo infects the smartphones and performs
online banking operations in place of the legal owner of the
account. To accomplish its tasks, first of all, an SMS with a
link to the malicious mobile application is sent to an owner of
an online banking account. If the user installs the application,
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the attacker gains control of the infected smartphone and can
read all the SMS messages that are being delivered. If the user
logs into the online banking account, she is asked to enter
her mobile number. This number is used by the company to
improve verification system: in fact, the customer receives on
her number a text message with the transaction details and a
code to enter back into the website. Then, the following steps
performed by this attack are, in order:
1) the attacker logs in with the stolen credentials using the
user’s device and performs a specific banking operation
that needs SMS authentication;

2) an SMS with the authentication code is sent to the
user’s mobile device from the verification system. The
malicious software running in the device forwards the
SMS to a system controlled by the attacker;

3) the attacker fills in the authentication code and com-
pletes the operation.

[90] discusses a drive-by download attack, i.e. when a user
inadvertently downloads a malware (usually a spyware) on
visiting a website, against an iPhone 3GS that enables an
attacker to steal the SMS database from the phone.
2) Sniffing: Sniffing attacks on smartphones are based upon

the use of sensors, e.g. microphone, camera, GPS receiver.
These sensors enable a variety of new applications but they
can also seriously compromise users’ privacy. If a smartphone
is compromised, an attacker can access the data stored in the
device and also use the sensors to sniff and record all of the
user’s actions.
A defense system against sniffing attacks is proposed in

[91].
Examples: [92] describes the design and implementation

of Stealthy Video Capturer (SVC), a spyware that can secretly
activate the built-in camera on smartphones to compromise the
users’ privacy by recording private video information, with
little power consumption and is stealth to commercial anti-
virus.
Soundminer [93] is a proof-of-concept Trojan targeting

Android devices that is able to extract private data from
the audio sensor. Sensitive data, such as credit card number
or PIN number, can be sent out by analyzing both tone
and speech-based interaction with the phone menu system.
As an example, Soundminer can infer the destination phone
number by analyzing audio and reporting this data remotely
to a malicious party. Few permissions are requested by the
Trojan during installation, specifically that it is granted access
to the microphone. Other permissions, in particular network
connection or intercepting phone calls, are not requested.
For this reason, since Soundminer cannot directly access the
Internet, transmissions need to be carried out through a second
application, either a legitimate network application or through
a program with the networking permission. This allows Sound-
miner to circumvent mechanisms aimed at mediating explicit
communications between two untrusted applications, such as
those proposed in [94, 95].
3) Denial-of-Service: With a Denial-of-Service (DoS), an

attacker denies availability of a service or a device. DoS
attacks against smartphones are mostly due to strong connec-
tivity and reduced capabilities: due to the limited hardware,
attacking a smartphone can be accomplished with a small

effort; even the traffic generated by only one attacker may
be enough to make a device unusable. Specific DoS could
quickly drain the batteries, shutdown or dramatically limit the
operation time and perform CPU intensive tasks that require
a lot of energy or force the device to shut-down. Another
type of DoS sends a huge amount of SMS/MMS to the
same phone number to either deny users to perform their
tasks or degrade the service of an area. [96] shows that by
using only SMS communications, i.e. messages sent between
smartphones, low-end phones can be forced to shut down. To
this purpose, the SMS protocol can be used to transmit small
programs that run on a smartphone. Network operators use
these files to change the settings on a device remotely. The
same approach has been exploited to attack smartphones.
Some studies for preventing this class of attacks are pro-

posed in [97, 59].
Examples: In [98], the authors examine current security

mechanisms on smartphones, by identifying some critical
vulnerabilities of existing security models. Moreover, they
show how such vulnerabilities can be exploited to launch
Distributed DoS (DDoS) attacks to public service infrastruc-
tures by diverting phone calls. This is achieved by injected a
crafted shell code through a buffer overflow: in fact, in many
Linux-based mobile phone the system single-user can easily
access root privileges to invoke ptrace() to inject code
in any other process. The authors demonstrate that, by only
leveraging 1% of Linux-based mobile systems, the service
of an emergency-call center, in a region with millions of
population, can be disabled.
The battery exhaustion attacks targets a unique resource

bottleneck in smartphones, namely the battery power. [99]
discusses attacks against smartphones that drains the device’s
battery power up to 22 times faster, thus rendering a device
useless in short time. To do this, first an attacker has to build
a “hit-list” of all the users with an active Internet connection
by taking advantage of the insecure MMS protocol, which
automatically downloads MMS messages upon receiving no-
tification through HTTP requests. Secondly, the attacker has
to periodically send UDP packets to the target smartphone
and exploit PDP context retention and the paging channel.
The authors show that if a phone is connected to the Internet
continuously, its battery life would be completely drained in
less than 7 hours.
The water torture attack [100] is another example of battery

exhaustion attack that is carried out at the PHY layer. This is
achieved by forcing the subscriber station (SS) to drain its
battery, or consume computing resources, by sending bogus
frames.
An example of attack that targets several Symbian S60

smartphones and that prohibits victims from receiving SMS
messages is called Curse of Silence [101]. This attack tries
to set the Messages Protocol Identifier to “Internet Electronic
Mail” so that an SMS can be used to send e-mails. This attack
exploits a vulnerability with some smartphones that cannot
handle correctly e-mail address with more than 32 characters:
by exploiting this vulnerability, the attacker sends a crafted
e-mail in such a way that the device is not able to receive any
other SMS message. At the end of the attack, the smartphone
displays a warning reporting that the memory is not enough to
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receive further messages and that some data should be deleted
first.
[102] presents a novel method for vulnerability analysis of

SMS-implementation by injecting short messages locally into
the smartphone and analyzing and testing all the SMS-based
services implemented in the smartphone software stack. The
vulnerability analysis is conducted by fuzzing various fields
in a standard SMS message including elements such as the
sender address, user data and various flags, or by fuzzing the
UDH header. Another test concatenates various SMS messages
in such a way to force messages to arrive out of order or sends
large payloads. The authors state that through the use of the
testing tools, they were able to identify several vulnerabilities
that can be exploited to launch DoS attacks.
4) Overbilling: The overbilling attacks charge additional

fees to the victim’s account and may transfer these extra fees
from the victims to the attackers. Since many wireless services
are regulated by pay-per-use contracts, these attacks are very
specific to wireless smartphones.

Example: A characteristic of GPRS networks is the
“always on” mode: users are billed by the amount of traffic
instead of the usage time. A typical example of overbilling
attack in this network is the one where an attacker, in
cooperation with a malicious server located outside of the
GPRS network, hijacks the IP address of the target device and
starts a download session from the malicious server. Hence,
the legitimate user gets charged for traffic that never requests
[110].

V. SECURITY SOLUTIONS FOR MOBILE DEVICES

In this section we survey existing mechanisms that are
developed to prevent different type of threats for smartphones.
We present, first of all, intrusion detection systems for smart-
phones, then trusted mobile-based solutions. All the solutions
are presented in chronological order.
Table V includes some conventional approaches typically

implemented by off-the-shelf smartphone applications to pro-
vide basic security; instead, table VII lists, in chronological
order, the research security solutions (described in the follow-
ing sections) that provides a prototype. These solutions are
classified according to their detection principles, architecture
(distributed or local), reaction (active or passive), collected
data (OS event, keystrokes), and OS.

A. Intrusion Detection Systems

In this section, we present the state of the art of models and
tools that implement Intrusion Detection Systems (IDSes) on
smartphones.
IDSes can be based upon two complementary approaches:

1) prevention-based approaches: using cryptographic al-
gorithms, digital signatures, hash functions, important
properties such as confidentiality, authentication or in-
tegrity can be assured; in this scenario, IDSes have to
be running online and in real-time;

2) detection-based approaches: IDSes serve as a first line
of defense by effectively identifying malicious activities.

Furthermore, there are two main types of detection:

1) anomaly-based (alternative names: anomaly detection,
behavior-based), which compares the “normal” behavior
with the “real” one;

2) signature-based (alternative names: signature detection,
misuse-based, knowledge based, detection by appear-
ance), based upon patterns of well-known attacks.

There exist also hybrid approaches which combine the
aforementioned types of detection. With signature-based ap-
proaches, the advantage is the false alarm rate that is usually
very low. The disadvantage is that they can detect only known
attacks. On the other hand, with an anomaly-based IDS we can
detect variations of known attacks and even new attacks, but
the amount of false alarms is usually quite high. Some of the
metrics used to measure their effectiveness are true positive
rate, accuracy and response time. [111] provides a general
introduction to IDSes in cellular mobile networks.
In the following, we partition existing IDS solutions using

these features:

• detection principles:

– anomaly detection:

∗ machine learning;
∗ power consumption.

– signature-based:

∗ automatically-defined;
∗ manually.

• architecture:

– distributed;
– local.

• reaction:

– active;
– passive.

• collected data:

– system calls;
– CPU, RAM;
– keystrokes;
– SMS, MMS.

• OS:

– Symbian;
– Android;
– Windows Mobile;
– Apple iOS.

First of all, we cluster mobile IDSes based upon the
detection principles used to find anomalies: anomaly detection
(which includes machine learning and power consumption),
signature-based (automatically or manually defined) and run-
time policy enforcement. Then, we consider both local and dis-
tributed architectures. Next, we distinguish tools that perform
any kind of reaction from those that only detect anomalies.
We further classify IDSes by considering what kind of data
are used as input and by the OS. For each feature, all the
solutions discussed are presented in chronological order.
1) Detection Principles: We partition existing IDSes using

the following detection principles:

• anomaly detection;
• signature-based;
• run-time policy enforcement.
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TABLE V
SECURITY APPLICATIONS FOR SMARTPHONES

Product Features OS License Reference

WaveSecure

Lock and Wipe Android Commercial [103]
Backup and Restore BlackBerry
Localization and SIM Tracking Symbian

Windows Mobile
J2ME

Norton Mobile Security Lite

Theft of Private Stuff Android Commercial [104]
Unauthorized Access
Mobile Viruses Malware and Threats
Harmful Downloads

iCareMobile
Parental Control Symbian Free [105]
Automatic Pornographic Content Detection Android

BullGuard Mobile Security 10

Antivirus and Anti-spyware Android Commercial [106]
Anti-theft BlackBerry
Parental Control Symbian
Firewall Windows Mobile
Spam-filter
Basic Backup

Kaspersky Mobile Security 9

Privacy Protection Android Commercial [107]
Anti-theft BlackBerry
Parental Control Symbian
Encryption Windows Mobile
Anti-Spam
Anti-Malware
Firewall

ESET Mobile Security

Antivirus Symbian Commercial [108]
Firewall Windows Mobile
SMS/MMS Anti-spam
Anti-theft

Lookout Mobile Security

Lock Wipe Android Free [109]
Backup iPhone
Wipe
Privacy of Data

a) Anomaly Detection: An anomaly detection system
compares the “expected” behavior of the smartphone with
the “real” behavior (the actions executed at run-time by the
device). The solutions included in this section either monitor
distinct activities on the mobile, e.g. SMS or MMS services
or Bluetooth connections, or analyze the power consumption
model of the phone to detect anomalies. Moreover, we detail
frameworks that adopt run-time monitoring of the activities.
As discussed in [112], we can split the architecture of a

generic smartphone in the following layers:
• user;
• application;
• virtual machine or guest OS;
• hypervisor;
• physical.

For each functional layer, the authors propose several distinct
features that should be collected for measuring the phone’s
behavior and used by an anomaly detection IDS. Table VI
lists some of the capabilities that can be measured at each
distinct layer.
Anomaly-based approaches for smartphones are either

based upon machine learning techniques or upon monitoring
power consumption.

Machine Learning: The paper [57], from the same au-
thors of [59], proposes Proactive Group Behavior Contain-
ment (PGBC), a framework aimed at containing malicious
software spreading in messaging networks such as IM and
SMS/MMS. The primary components of PGBC are service-
behavior graphs generated from client messaging patterns and
behavior clusters that partition the service-behavior graph into

clusters of similar behavior. The authors present an algorithm
that, in the presence of a malicious attack, automatically
identifies the most vulnerable clients based upon interactions
among them. Moreover, they describe a proactive contain-
ment framework that applies two commonly-used mechanisms
(namely, rate-limiting and quarantine) to the dynamically-
generated list of vulnerable clients in a messaging network
whenever a worm or virus attack is suspected.
Ho and Heng [46] attempt to identify generic behavioral

patterns in mobile malware to build a generic defense model.
To slow down the spread of mobile malware, the authors intro-
duce an extended model (which incorporates the works of [47]
and [48]), which is a Java-based engine that is independent
from the platform. In addition to previous solutions, this model
includes a feature for blocking the silent automated transmis-
sion attempts of virus installation files from a compromised
mobile smartphone via MMS, Bluetooth, Infrared, e-mail and
Instant Messaging.
Schmidt et al. [48] exploit the monitoring process of smart-

phones to extract features that can be used in a machine learn-
ing algorithm to detect anomalies. The framework includes
a monitoring client, a Remote Anomaly Detection System
(RADS) and a visualization component. The monitoring client,
which represents the main goal of this paper, is a client that
runs on a smartphone and includes three main components:

• user interface;
• communication module, which manages connection with
RADS;

• Feature Extractor, which implements measurements and
observation of resources and other components.
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TABLE VI
ANOMALY DETECTION CAPABILITIES AT DISTINCT LAYER

Layer Features

Hypervisor

address spaces
data types, data constructors and data fields
system parameters
virtual registers
system calls
communication protocols

Application

application manager framework
security framework
messaging framework
multimedia framework

User

SIM/phone password
key-stroke/T9 usage/spelling analysis
top-n called/texted numbers/contacts based on hour, day, week, month
frequently executed smartphone applications
smartphone application usage analysis
Bluetooth/Wi-Fi usage analysis

The RADS is a web service that receives, from the monitoring
client, the monitored features and exploits this information,
stored in a database, to implement a machine learning algo-
rithm.
Some other solutions use a probabilistic approach to trace

behavior’s profiles on smartphones. For example, [49] devises
a behavior-based malware detection system (pBMDS) that
adopts a probabilistic approach through the correlation of
user’s inputs with system calls to detect anomalous activities.
pBMDS observes unique behaviors of the applications and
the user’s input and leverages hidden Markov model to learn
application and users’ behavior through process state transi-
tions and user behavioral patterns. This statistical approach is
used to learn the behavioral difference between applications
initiated by user and applications initiated by malware. The
most distinguishing feature of the proposed solution is that
its malware detection capability focuses on recognizing non-
human behavior instead of relying on known attack signa-
tures to identify malware. Therefore, in the training process,
pBMDS does not require the number of negative samples
to be equivalent to that of the positive ones. The system
exploits behavior graphs, which reflect intermediate process
states towards each key system call based on user operational
patterns, e.g. keystrokes.
In [113], time-stamped security data are continuously mon-

itored within the target smartphone and then processed by
the Knowledge-Based Temporal Abstraction (KBTA) method-
ology. Using KBTA, continuously measured data (e.g., the
number of sent SMSs) and events (e.g., software installation)
are integrated with a smartphone security domain knowledge-
base, which is an ontology for abstracting meaningful patterns
from raw and time-oriented security data. These patterns are
used to create higher level, time-oriented concepts and pat-
terns, called temporal abstractions. Automatically-generated
temporal abstractions are then monitored to detect suspicious
temporal patterns and to issue an alert. These patterns are
compatible with a set of predefined classes of malware as
defined by a security expert employing a set of time and value
constraints.
Damopoulos et al. [114] use a large dataset of iPhone

users’ data log with four machine learning algorithms, namely
Bayesian Networks, Radial Basis Function, K-Nearest Neigh-

bors and Random Forest, to detect illegal use of a smartphone.
They classify the behavior of users through telephone calls,
SMSs and, differently from earlier research, on Web browsing
history. To preserve users’ anonymity, each record is hashed
through SHA-1. Then, the data are examined either indepen-
dently or in combination in a Multimodal fashion: in the first
case, Random Forest was the most promising classifier with
a true positive rate above 99.8% and accuracy of 98.9%; in
the second case, the best results were given by K-Nearest
Neighbors with 99.8% true positive rate and 99.5% accuracy.
Andromaly [115] is a general and modular framework for

detecting malware on Android smartphones using a supervised
anomaly detection technique. The framework is based upon a
host-based IDS that sample numerous system metrics, such
as CPU consumption, number of sent packets, number of
running processes. The framework is composed of four main
components, namely the feature extractors, processors, main
service and the graphical user interface. The classifiers used to
evaluate the framework are k-means, logistic regression, his-
tograms, decision tree, Bayesian networks and Naı̈ve Bayes;
furthermore, a filter approach has been used for feature selec-
tion. A total of 88 features were collected for each monitored
application. Experiment results show that Naı̈ve Bayes and
logistic regression were superior over the other classifiers in
most of the testbed configurations and fisher score was the
best setting for feature selection.
[116] presents a framework to dynamically analyze applica-

tions behavior to detect malware on Android by collecting sys-
tem traces from several real users through crowdsourcing and
a central server. An application client, Crowdroid, monitors
Linux system calls and, after preprocessing, sends them to a
central server, which then parses data and creates a system call
vector. Finally, each dataset is clustered through a partitional
clustering algorithm, namely 2-means.

Power Consumption: An example of monitoring power
consumption is presented in [117], where the authors propose
a battery-based IDS. This solution performs the sensing of
abnormal battery behavior and energy patterns to detect a
variety of attacks and includes two modules:

• Host Intrusion Detection Engine (HIDE), which measures
energy consumed over a period of time (established
according to an algorithm);
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• Host Analyzed Signature Trace Engine (HASTE), which
matches frequency patterns of attacks based upon power
signature and compares these signatures with a short list
of know attack signatures.

Similarly to the previous solution, Kim et al. [97] propose
a power-aware malware detection framework that monitors,
detects, and analyzes energy-greedy malware. The framework
is composed of a power monitor, to collect power samples
and to build a power consumption history from the collected
samples, and of a data analyzer, to generate a power signature
from the constructed history.
Another example of monitoring power consumption is

proposed in [118], which bases its observations on the fact
that any malware activity on a smartphone consumes battery
power. Hence, the proposed solution (VirusMeter) performs
malware detection using state machine and power consump-
tion model by comparing the actual measured power consump-
tion with the power that could have been consumed, according
to the predefined power consumption model. The user-centric
power model characterizes power consumed as a function of
common user operations and relevant environmental factors
(e.g., calls, SMS, MMS). To collect data, for each user
operation a state machine is constructed. This state machine
describes the evolution of internal events related to user’s
operations.
Even if power consumption is often considered as a limita-

tion, Yan et al. [119] consider its positive impact on preventing
and suppressing mobile malware. Even if no specific solutions
are implemented, three potential techniques, based upon lim-
itations of smartphone, are proposed:

• monitoring power consumption, which concerns the abil-
ity to detect an attack depending on battery usage on
smartphone;

• enforcing hardware sandbox, in which all the hardware
modules that are not used frequently and that can be
used for malware propagation (e.g. GPS or Bluetooth)
are switched off;

• increasing platform diversity, in which different APIs are
used to develop and execute an application.

b) Signature-Based: This paragraph discusses mecha-
nisms that detect anomaly on smartphones using signatures.
The signature-based approach checks if each signature derived
from an application matches any signature in a malware
database. The database of malware signature can be automat-
ically or manually defined.

Automatically-Defined: Venugopal et al. [120] apply
Bayesian decision theory to the dynamic-link library (DLL)
usage of a program to detect viruses. In fact, since most
mobile viruses have common functionalities (e.g., deleting
system files, sending MMS), these programs need to use
DLLs. By exploiting the common patterns of DLL usage
among viruses, the proposed approach can detect old and new
viruses: a classifier takes as input a binary vector specifying
the occurrence (or not) of each DLL function in the feature
set.
In [121, 122] the authors propose to adopt a twofold

approach to block the spreading of worms on smartphones:

• at the terminal level, where a graphic Turing test and

identity-based signatures block unauthorized messages
from leaving compromised phones;

• at the network level, where a push-based automated
patching scheme clean compromised phone. This means
that network providers automatically push software
patches to compromised terminals.

In [123] the signatures to be compared are automatically
generated by analyzing the device’s activities. The authors
discuss the dynamics of mobile malware that propagate by
proximity contact and explore three strategies to detect and
mitigate proximity malware, namely:

• local detection, in which devices detect when they be-
come infected and disable further propagation;

• proximity signature dissemination, in which devices cre-
ate content-based signatures of malware and disseminate
them via proximity communication as well;

• broadcast signature dissemination, in which a centralized
server aggregates observations from individual devices,
detects propagating malware, and broadcasts signatures
to smartphones.

Bauckhage et al. [124] present a probabilistic diffusion
scheme for detection anomalies indicating malware, which is
based upon the device’s usage patterns. The basic idea is to
model dependencies of samples and features by means of a
bipartite graph, which then serves as the domain of a Markov
process. The algorithm is applied to two separate data sets
obtained from smartphones during normal daily usage.

Manually-Defined: These mechanisms to detect anomaly
extract the signatures of mobile malware by manually analyz-
ing the malware and its behavior.
Ellis et al. [125] present a new approach for the auto-

matic detection of worms on smartphones using behavioral
signatures, which are manually defined to represent common
features across a family of worms. The presented approach
focuses on detecting patterns at a higher level of abstraction,
where a pattern may be:

• sending similar data between devices;
• tree-like propagation and reconnaissance;
• changing a server device into a client.

Ideally, a pattern is a specific behavior of a spreading worm
and should be distinct from normal network traffic. The
frequency of and interrelationships between behaviors improve
the accuracy of the detection. To evade a behavioral signature
requires a fundamental change in the behavior and this task
is rather challenging.
In [47], the authors present a behavioral detection frame-

work for viruses, worms and Trojans that extracts key behavior
signatures of mobile malware by applying Temporal Logic
of Casual Knowledge (TLCK) on a set of atomic steps. The
authors have generated a database of malware signatures based
upon a review of mobile malware: every signature corresponds
to the description of the behavior of a family of malware. The
run-time monitoring is implemented on the Symbian emulator
through a proxy DLL to monitor API calls. To distinguish
malicious behavior from partial signatures, the framework
exploits support vector machines to train a classifier from
normal and malicious data.
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c) Run-Time Policy Enforcement: The basic idea of these
models is that mobile code consumers essentially accept the
code “as-is” and exploit a supporting mechanism to enforce
the policy associated with the code to detect and stop anoma-
lies.
Nowadays, several smartphones are able to run Java appli-

cations, which can also create Internet connections, send SMS
messages, and perform other expensive or dangerous opera-
tions on the smartphone. Hence, an adequate security support
is required to meet the needs of this scenario. To this end,
[126] proposes an approach to enhance the security support of
Java Micro Edition (J2ME), based upon the monitoring of the
usage of the smartphone’s resources performed by MIDlets.
A process algebra-based language defines the security policy
whereas a reference monitor is exploited to check the resource
usage.
Security-by-contract [127, 128] is a run-time policy enforce-

ment solution based upon a digital signature that:

• certifies the origin of the code;
• binds the code with a contract.

A contract contains a description of the relevant features of an
application and the relevant interactions with its host platform.
A mobile platform can specify platform contractual require-
ments (a policy), which should be matched by the application’s
contract. The authors also propose some algorithms to verify
contract-policy matching.
[129] enhances the security-by-contract architecture by

adding new modules and configurations for managing con-
tracts. At deploy-time, the proposed system selects the run-
time configuration depending upon the credentials of the
contract provider; at run-time, the system can both enforce a
security policy and monitor the declared contract. According
to the actual behavior of the running programs, the architec-
ture can update the trust level associated with the contract
provider. The main advantage of the proposed architecture is
the automatic management of the level of trust of software
and contract releasers.
Finally, [94, 95] propose Kirin security service for An-

droid, which performs lightweight certification of applications
to mitigate malware at install time. Kirin certification uses
security rules that match undesirable properties in security
configuration bundled with applications.
2) Architecture: Local or Distributed: In this section, we

partition mechanisms for intrusion detection that use a local
architecture from solutions that exploit a distributed architec-
ture.
In a local architecture, both the collecting phase and the

analysis phase are locally performed on the device and no
interactions with an external server is required. Examples of
local solutions are presented, for instance, in [130, 118, 94,
95]. On the other hand, a distributed architecture usually
requires a distinct and separated component (i.e., a server)
to analyze the activities collected and sent by each device. In
this architecture, the external security component can perform
all the analysis on the activities monitored on the smartphones
without having problems of:

• power consumption;
• small screen size;

• limited resource.

[39] discusses a framework to detect attacks against smart-
phones using a separate, loosely-synchronized, security server,
which hosts one or more exact replicas of the smartphone
and applies distinct detection mechanisms. In this way, sev-
eral expensive detection techniques, which cannot be easily
implemented on the smartphone, can be applied on the server
to prevent attacks on the phone software. The architecture
includes a tracer on the phone itself, to intercept both system
calls and signals of a set of protected processes, whereas a
replayer on the security server later replays the execution trace
and looks for anomalies.
3) Reaction: Passive or Active: In this section, we consider

whether existing mechanisms for intrusion detection react or
not whenever a new threat is found, e.g. by trying to prevent
the attacks to damage the smartphone.
A reaction can be a strategy, to contain the virus or malware

propagation, or a mechanism, like alerting the user of the
infection. An example of a reaction strategy is presented in
[57], where the alerts about potential attacks are collected
before starting the reaction strategy. The proposed framework
is implemented at the messaging service center where logs of
client communication are kept. These logs can be analyzed to
generate a service-behavior graph for the messaging network:
this graph is then further processed to generate behavior
clusters, i.e., groups of clients whose behavior patterns are
similar with respect to a set of metrics, namely:

• interaction frequency;
• attachment and message size distributions;
• number of messages;
• number of outgoing connections to other clients;
• list of traced contacts.

When the number of alerts in a particular behavior cluster
reaches a threshold, the messages belonging to that cluster
are first rate-limited to slow down a potential malware. When
the alerts reach a second threshold, the containment algorithm
applies proactive quarantine, i.e., it blocks messages from sus-
picious clients of these behavior clusters. This step essentially
enables the behavior clusters to enter into a group defense
mode against the spreading malware.
In [130], the proposed system detects viruses running on

smartphones using a proxy that performs the analysis of the
phone’s behavior and, when a potential virus is detected, sends
targeted alerts to both infected devices and a subset of the
uninfected devices to prevent the spreading. These devices are
chosen based upon the users’ contact list and mobility profiles,
to locate those devices they may be in direct contact with an
infected device.
A further example of a reaction-strategy is given in [58]

where, to limit the spread of MMS- and SMS-based worms,
the authors propose a methodology based upon a graph
partitioning approach. The problem is tackled by using a social
relationship graph where the devices are divided into multiple
partitions based upon the social relationship among them. Each
partition includes smartphones that closely interact with each
other. Communication patterns are extracted using a network
trace and, from these patterns, a social relationship graph of
smartphones is built so that an optimal set of phones to be
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patched can be located firstly. In this way, the system can
locate the phones that have the capability to infect the highest
number of other phones. The authors propose two patching
schemes, namely:

• balanced partitioning, where the significance level of
each partition are chosen to be as similar as possible so
that the worm damage to each partition can be balanced;

• clustered partitioning, where edges within each partition
have higher weights compared to the edges between the
two partitions, so that smartphones that are socially close
to each other are in the same partition and nodes that are
not close are into different partitions.

Ruitenbeek et al. [131] study the propagation of smart-
phone viruses based upon MMS and propose several response
mechanisms to quantify the effectiveness of virus mitigation
techniques. The authors present four MMS virus scenarios: in
every scenario the virus on the phone sends MMS messages
with an infected attachment file to other phones, which are
selected from the contact list of the infected phone or by
dialing a random phone number. After receiving this new
MMS message, if the user accepts the infected attachment
file, the virus is installed, the target phone becomes infected
and under control of the attacker. The evaluated response
mechanisms for each of the four scenarios are:

• scan of all MMS attachments in MMS gateways to detect
viruses;

• user education;
• immunization using software patches;
• monitoring for anomalous behavior;
• blacklist of phones that are suspected of infection.

The experimental results revealed that any response mecha-
nism must be agile enough to quickly react to rapidly propa-
gating viruses and discriminating enough to detect stealthier,
slowly propagating, viruses.
4) Collected Data: As suggested in [132], monitoring data

in a mobile environment can be a challenge due to adminis-
trative, technical and conceptual limitations. The visibility of
the data can be limited by explicit agreements on exchange of
monitored data because, for example, the call records can be
under administrative control. Furthermore, we have to consider
that due to the integration of several communication interfaces,
a smartphone can be connected, at the same time, to different
access points (such as Bluetooth, Wi-Fi) and thus the amount
of collected data on the communication interfaces can be huge.
Finally, we have to take into account that there are some
kinds of attacks, e.g. Trojans, not involved in communication
activities, so that they are invisible to the network.
Due to the fact that all the solutions based upon intrusion

detection need to access several features of a smartphone,
we should carefully consider the problem of privacy of the
data accessed. By accessing a smartphone, several pieces of
information can be retrieved, such as the user’s location,
communications, and personal contacts. All these kinds of
information are, obviously, private and should not be shared to
third parties: hence, any tool for intrusion detection should be
run only with the user’s explicit authorization in case it may
access private data. Private data should never be carried out
of the smartphone by any mechanisms, including system that

have to protect the mobile. Therefore, an intrusion detection
system should be designed so that:

• the private data used during the intrusion detection pro-
cess are not transferred out of the device;

• the communication of the intrusion detection function-
alities on the smartphone should be restricted to the
generated intrusion alarms.

In [91] the authors focus on threats and attacks that violate
user’s privacy by sniffing on the sensors on smartphones. The
authors develop a threat model based upon the use of sensors
and design a general framework for a defense system. This
framework consists of three modules: (i) policy engine, (ii)
interceptor, (iii) user interaction. The policy engine, based
upon the input from user interaction and application moni-
toring/profiling, determines access: these decisions are based
mainly upon application monitoring and profiling without
requiring much user intervention. Several policies are consid-
ered, such as white-listing, blacklisting and information-flow
tracking. The interceptor is interposed between the application
and the sensors, and/or between the application and the
network, and it enforces the decision of the policy engine. The
user interaction is not a mandatory component, since it simply
notifies the user by asking her decision. For each module,
different mechanisms are explored and discussed but no real
implementations are presented.
In the following paragraphs, we discuss solutions that

analyze different kinds of data available in a smartphone,
namely:

• OS events (e.g., system calls);
• measurements (e.g., CPU, RAM, I/O activities);
• keystrokes;
• communication events (e.g., SMS/MMS).

a) Operating System Events: These events indicate those
activities related to the normal functioning of the OS, which
can be used to retrieve relevant information about the behavior
of the smartphone, and include:

• system calls;
• function calls;
• network operations.

Data from these events can be obtained by exploiting some
built-in OS mechanisms. However, in many cases the OS
events cannot be monitored because there is no direct access
interface. Therefore, in these cases some extensions to the OS
are required.
The solution presented in [133] monitors the system calls

executed by running processes and labels executing code based
upon its access to the network interfaces (e.g., wireless, GSM,
Bluetooth). The labels are then transferred between processes
and system resources as a consequence of either access or
execution. During sensitive operations, the labels collected in
this way are compared to a set of rules that allow users to
specify fine-grained access control to services and data. The
labeling process, which can involve processes and resources,
as well as the enforcement of the policies, are performed by a
kernel-level reference monitor. The framework is independent
of the OS because it uses a policy language that allows users
to express what actions are allowed by specific classes of
programs with respect to specific classes of resources.
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Another mechanism, MobileSandbox [50], monitors the
system calls issued by the software that a user is going to
install on its smartphone. MobileSandbox is a background
system that samples and translates an operation in a sequence
of API calls that the program has issued during its execution.
The proposed system can either use the device emulator or an
actual device. To perform mobile dynamic malware analysis,
the proposed solution includes three steps, namely:

• collecting the software samples as complete as possible;
• analyzing the samples as complete as possible;
• taking certain actions as a response to the analysis.
In [134], the authors discuss in details the implementation

of system call interception for Windows CE. Two solutions
that analyze these events are proposed: the first one exploits
a sandbox approach to analyze malware, whereas the second
solution implements the concept of a reference monitor at the
OS level.
There are also some solutions to detect anomalies that

monitor function calls rather than system calls. One of these
solutions is presented in [135] where the authors apply static
analysis of function calls to detect malicious applications.
Centroid Machine is the name of the light-weight algorithm
developed according to common clustering methods. The
algorithm can detect Symbian OS malware on the basis of
function calls according to the requirements of smartphones,
e.g. efficiency, speed and limited resource usage.
A similar solution specific to Android platform is presented

by Schmidt et al. [136]: the discussed framework performs
static analysis on the executables to extract their functions
calls using readelf command. This command returns de-
tailed information on relocation and symbol tables of each
Executable and Linking Format (ELF) object file. The output
of this analysis is the static list of referenced function calls for
each system command. Then, these calls are compared with
malware executables for classification.

b) Measurements: A set of measurements includes sev-
eral performance indicators of a smartphone, such as CPU
activity, memory consumption, file I/O activity and network
I/O activity. The key idea is that, supposing that changes in the
usage of a smartphone are gradual, the normal usage remains
constant over time. Therefore, we can extract behavioral
profiles and use them for comparison with normal behaviors in
order to detect anomalies. Some of these features (e.g., RAM
free, user inactivity time, process count, CPU usage, SMS sent
count), which are used for anomaly detection, are discussed
in [48, 115].

c) Keystrokes: Some solutions exploit keystroke logging
(keylogging) techniques to detect anomalies. These techniques
track the keys struck on a keyboard to monitor the actions of
the user. Typically, the logging is provided in a covert manner
so that the user is unaware of the monitoring. The conventional
technique of behavior-based anomaly detection focuses on
the rhythm of keystroke patterns or transition probability of
commands.
In [137], keylogging is applied to smartphones to detect

illegal user operations using a scheme that uses a background
process to records keystrokes. Keystrokes are divided into
long-term and short-time: using the frequency of long-term
keystrokes, an anomaly detection algorithm constructs a user

profile; then, the short-term keystrokes are compared with the
user profile to detect illegal users.
[138] demonstrates that keystroke dynamics of a user can be

translated into a set of features for accurately identifying users.
To this end, keystroke data of twenty-five smartphone users are
collected and analyzed: based upon them, six distinguishing
keystroke features are extracted and used for user identifica-
tion. The results show that the proposed user identification
system has an average error rate of 2% after the detection
mode and the error rate of rejecting legitimate users drops to
zero in the PIN verification mode.

d) Communication Events: Communication events in-
dicate a particular class of events that happen in a device
at the application level, such as high-level actions (e.g.
sending/receiving of SMS, files). Typically these actions are
composed of several elementary actions that cannot be auto-
matically generated by the smartphone’s OS. Communication
events include operations such as sending and receiving of
messages, or file downloads/uploads.
[139] discusses threats on smartphones mirrored from PCs

and proposes a detector application that monitors SMS sent
without user authorization. Bose and Shin [59] investigate the
propagation of mobile worms and viruses that spread primarily
via SMS/MMS messages and short-range radio interfaces (e.g.
Bluetooth). Each smartphone is modeled as an autonomous
mobile agent capable of sending SMS messages and of dis-
covering other devices equipped with Bluetooth. To identify a
set of common behavior vectors, and to develop mobile virus
detection and containment algorithms, the existing mobile
viruses are investigated. The authors study the vulnerabilities
of Bluetooth and SMS/MMS messaging systems in depth and
identify the vulnerabilities that may be exploited by future
mobile viruses. Finally, they develop the state diagram of
a generic mobile virus that can spread via SMS/MMS and
Bluetooth. The discovery, infection and replication states of
the generic virus are implemented in an agent-based malware
modeling framework to study its propagation and containment
strategies.
[140] presents a novel approach to the security testing of

MMS user agents by taking into account the effects of the
infrastructure on the delivery of MMS messages and then by
using a virtual infrastructure to speed up the testing phase.
As in [102], the paper exploits fuzzing to deliver fuzzed
MMS messages to the user agents, by finding several string-
length buffer overflows. SmartSiren [130] is a collaborative
virus detection and alert system for smartphones that collects
communication activity information and performs analysis to
detect abnormal behaviors. To halt potential virus outbreaks
the authors try to minimize the number of smartphones that
can be infected by a new released virus. A light-weight agent
runs on each smartphone, while a centralized proxy assists the
virus detection and alert process. Each agent keeps track of
the communication activities on the device and periodically
reports a summary of these activities to the proxy. The proxy
performs joint analysis on the reports and detects any single-
device or system-wide viral behaviors.
Finally, [141] proposes a lightweight scheme that can detect

anomalous SMS behaviors with high accuracy. The authors
start analyzing an SMS trace collected within a five-month
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period and, according to the analyzed results, four detection
schemes are proposed. Each scheme builds normal social
behavior profiles for each SMS user and then uses them to
detect SMS anomalies in an on-line and streaming fashion.
Since a scheme stores only a few states in memory for
each SMS user, it imposes very low overhead during on-line
anomaly detection. Finally, the authors evaluate these four
schemes and also two hybrid approaches with realistic SMS
traces by showing that the proposed approach can detect more
than 92% of SMS-based attacks with a false alarm rate of 8.5%
and 66% of attacks without generating any false alarm.
5) Operating Systems: In this section, existing IDSes are

clustered based upon the OS for which they are developed or
studied, namely:

• Symbian;
• Android;
• Windows Mobile;
• iPhone OS.

a) Symbian: Symbian is the Nokia’s open source OS
and software platform designed for smartphones. The latest
Symbian platform includes a user interface component based
on S60 5th Edition. Originally developed by Symbian Ltd,
Symbian OS is now at the third version, Symbianˆ3, released
in the fourth semester of 2010. Devices based on Symbian
accounted for 43.5% of worldwide smartphone sales in the
first two semesters of 2010 [142].
Schmidt et al. [48] introduces an approach to monitor

Symbian-based smartphones to extract features that can be
used by a machine learning algorithm to detect anomalies. In
[143], the authors test vulnerabilities on smartphones based
upon the Symbian 9.1 OS. Several attacks have been experi-
mented to test the stability of the network stack of the Symbian
OS. Some vulnerability has been found that can render the
devices unusable.
Further discussions can be found in [144, 145].
b) Android: Android is a mobile OS based upon a

modified version of the Linux kernel. The applications are
written by a large community of developers to extend the
functionality of the devices.
[146] and [147] present a set of results on the evaluation

of the security of Android smartphones. Firstly, the authors
analyze the Android framework and the Linux Kernel to check
security functions, by also surveying some known security
tools and mechanisms to increase the smartphones security.
Then, the authors analyze the possibilities of applying malware
detection mechanisms at the kernel-level, i.e. by monitoring
key-kernel events (log file, file system activities). Finally,
they apply static function call analysis to detect malware on
ELF executables, by exploiting a decision tree for deciding
if a new application is suspicious compared to previously
analyzed applications (both good and bad ones). [148] presents
a collaborative architecture to detect anomalies on Android
platforms. [149] presents a review of current security solutions
for Android platforms.
In [150], the authors provide a security assessment of the

Android framework: firstly, they discuss the current security
mechanisms incorporated in Android (namely, Linux mech-
anisms, environmental features and Android-specific mech-

anisms); secondly, they propose some security solutions for
mitigating threats on Android, using five “threat cluster”:

1) threats that compromise availability, confidentiality, or
integrity by maliciously using the permissions granted
to an installed application;

2) threats that compromise availability, confidentiality, or
integrity threats that happen when an application ex-
ploits a vulnerability in the Linux kernel or system
libraries;

3) threats that compromise the availability, confidentiality,
or integrity of private or confidential content: e.g., appli-
cations that can read the SD card’s contents or attackers
eavesdropping on wireless communication remotely;

4) attackers draining a smartphone’s resources: e.g., since
applications for Android have neither disk storage nor
memory quotas hogging memory or CPU is possible;

5) threats that compromise internal or protected networks:
as an example, attackers can use Android devices to
compromise other devices, computers, or networks by
running network or port scanners, SMS/MMS/e-mail
worms, and various other attacks.

[151] proposes a security solution for Android-based smart-
phones that exploits Security-Enhanced Linux.
TaintDroid [87] is an extension to Android that tracks

the flow of sensitive data through third-party applications.
TaintDroid assumes that downloaded third-party applications
are not trusted, and monitors how these applications access
and manipulate users’ personal data. TaintDroid automatically
labels data from sensitive sources and transitively applies
labels as sensitive data propagates through program variables,
files, and interprocess messages. When tainted data are trans-
mitted over the network, TaintDroid logs the data’s labels, the
application responsible for transmitting the data, and the data’s
destination. The tested performance overhead is 14%.
Enck et al. [152] study 1,100 popular free Android applica-

tions using a decompiler to recover Java application source
code from its Dalvik installation image and by statically
analyzing more than 20 million lines of code. The study shows
that several applications misuse privacy sensitive information,
in particular phone identifiers (IMES, IMSI and ICC-ID) and
geographic location, such as leaking phone identifiers through
plaintext requests (such as HTTP GET/POST), tracking users
through their phone identifier.

c) Windows Mobile: Windows Mobile is an OS devel-
oped by Microsoft for use in smartphones. Based upon the
Windows CE 5.2 kernel, Windows Mobile was designed to be
similar to desktop versions of Windows and is now superseded
by Windows Phone 7. Third-party software development is
also available and users can purchase software applications
via the Windows Marketplace for Mobile.
Windows Mobile Malware Detection system (WMMD)

[153] is a behavior-based malware detection system for Win-
dows Mobile platform. WMMD uses API interception tech-
niques to dynamic analyze application’s behavior and compare
it with malicious behavior characteristics library using model
checking. The results show that it can effectively detect the
obfuscated or packed malware variants that cannot be detected
by other main stream anti-virus products.
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An example of anomaly detection system developed for the
Advanced RISC Machine (ARM) architecture, is discussed
in [154]. The proposed system analyze the relation between
system calls and their return address to describe the software
behavior on ARM architectures. To this end, during a training
phase, the system builds a model using an array of system
calls and return addresses and produces a score. Then, at run-
time the system freezes the software execution each time a
system call is issued, obtains stack information and compares
the software behavior with the model using an anomaly score.

d) iPhone OS: iOS (previously known as iPhone OS) is
the Apple’s mobile OS that was originally developed for the
iPhone, but now it has been extended to support other devices,
such as iPad.
To protect its users from malicious applications, Apple

has introduced a vetting process, which should ensure that
all applications conform to Apple’s rules before they can
be offered via the App Store. Unfortunately, this vetting
process is not well documented, and there have been cases
where malicious applications had to be removed from the
App Store after user complaints. To this purpose, Egele et al.
[88] study the privacy threats that applications for Apples
iOS pose to users. The authors present a novel approach
to automatically create comprehensive control-flow graphs
from binaries compiled from Objective-C code and perform
reachability analysis to identify possible leaks of sensitive
information from a smartphone to third parties.
Finally, [155] discusses ten ways to keep user data on

iPhone and Android-based devices safe from insecure apps.

B. Trusted Mobile

Trusted Computing Group (TCG) has published a set of
specifications to measure, store, and report hardware and
software integrity through a hardware root-of-trust, which
is the Trusted Platform Module (TPM) and Core-Root-of-
Trust-Measurement (CRTM). On a TPM-enabled platform, the
CRTM measures the bootloader of the system before it is
executed, and then stores the measured value into one of the
Platform Configuration Registers (PCRs) inside the TPM. The
bootloader then loads OS image, measures it, stores via PCR
extension and then executes it [159]. In turn, the OS measures
the loaded applications and stores their integrity values in
PCRs before executing them. Upon an attestation challenge
from a third party, the TPM signs a set of PCR values with
an Attestation Identity Key (AIK) and sends back the result.
The challenger then can make decisions on the trust status
of the platform by verifying the integrity of these values and
comparing with the corresponding known-good values.
There are also specifications for mobile phone platforms

released by the TCG Mobile Phone Working Group, i.e. the
Mobile Trusted Module (MTM) [160]. TCG advocates using
MTM to increase the security of smartphones by provid-
ing basic cryptographic capabilities, such as random number
generation, hashing, protected storage of sensitive data (e.g.
secret keys), asymmetric encryption, as well as generation of
signatures. These cryptographic primitives can be exploited to
implement hardware-based security services, such as device
authentication, integrity measurement, secure boot, and remote

attestation. The MTM provides a root-of-trust for smartphones
in the same way as the TPM does for personal computers. In
principle, the MTM is an adaption of the TPM for smartphones
and, hence, its specification is similar to that of the TPM,
which facilitates interoperability within the existing trusted
computing framework for personal computers.
There are two different types of integrity measurement for

any application binary: load-time and dynamic measurements.
The TCG only specifies load-time integrity measurement,
when a piece of code or data is measured or when it is
mapped/loaded into main memory. Dynamic measurements
refer to the act of measuring the integrity of critical ap-
plications at run-time, i.e. when they are executing. In the
Integrity Measurement Architecture (IMA) framework [161],
measurements are invoked in several system call functions
when code or kernel modules are loaded but before they are
executed. After a code is mapped into memory and during run-
time, it is very difficult to measure the integrity of the process
considering very dynamic and nondeterministic behaviors of
typical applications, such as loading active code, receiving
external inputs, and allocating dynamic memory.
In addition to trusted boot and load-time integrity mea-

surement, integrity protection for mobile phones raises the
following extra requirements [158]:

• secure boot: a set of mandatory engines [160] reside on
a single mobile platform and provide critical and indis-
pensable services that have to be running in known-good
states, i.e. their integrity must be verified to assure their
trustworthiness. Therefore TCG Mobile Phone Reference
Architecture [159] states that secure boot is mandatory
for MTM;

• low booting and run-time overhead: most smartphones
are still limited in computing power. This requires any
security solution to be very efficient and integrity mea-
surement during boot and in post-boot state should not
degrade the performance and user experience too much;

• run-time integrity assurance: although run-time integrity
measurement is not practical in both PC and mobile
platforms, there should be some mechanism to preserve
the integrity level of critical applications and resources
during run-time, e.g., phone related services (telephony
server) and platform management agents. Both TCG and
IMA do not propose any mechanism for this purpose.

[156, 158] discuss a framework for mobile integrity mea-
surement and attestation mechanisms, by proposing a secure
boot mechanism. The proposed mechanism ensures that a
mobile platform can boot into a secure state by exploiting a
flow integrity model to achieve high integrity for the system.
The solution leverages SELinux MAC mechanisms and adds
some SELinux security policy extensions. The framework
requires a root-of-trust, such as the MTM. [157] tries to
protect the integrity of critical applications from potentially
untrusted functionality and develop a small SELinux policy
to measure the integrity of a mobile phone using the PRIMA
approach [162]. The resulting SELinux policy enables the
phone system to be attested to remote parties and protects
critical applications from untrusted code, thus allowing users
to install and run trusted applications in a safe way: the policy
is 90% smaller than a custom SELinux reference policy.
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TABLE VII
CLASSIFICATION OF THE IMPLEMENTED SOLUTIONS

Reference Year Detection Principles Architecture Reaction Collected Data Operating Systems
[125] 2004 Signatures (Manually) Local Passive All OS-Independent
[139] 2005 Anomaly Detection Local Passive Communication Events Symbian
[117] 2006 Power Consumption Local Passive All OS-Independent
[57] 2006 Machine Learning Distributed Reactive Communication Events OS-Independent
[59] 2006 Machine Learning Local Passive Communication Events OS-Independent
[120] 2006 Signatures (Automatically) Local Passive OS Events Symbian
[133] 2006 Run-Time Policy Enforcement Local Passive OS Events OS-Independent
[127] 2007 Run-Time Policy Enforcement All Active All OS-Independent
[156] 2007 Integrity Verification Local Passive OS Events SELinux
[130] 2007 Machine Learning Local Active All OS-Independent
[47] 2008 Signatures (Manually) Distributed Passive Applications Symbian
[157] 2008 Integrity Verification Local Passive OS Events SELinux
[97] 2008 Power Consumption Distributed Passive Measurements Windows Mobile
[121] 2008 Signatures (Automatically) Distributed Active Communication Events Symbian
[137] 2008 Anomaly Detection Local Passive Keystrokes OS-Independent
[148] 2008 Anomaly Detection Distributed Passive All Android
[154] 2008 Signatures (Automatically) Local Active OS Event Windows Mobile
[58] 2009 Machine Learning Local Passive Communication Events OS-Independent
[46] 2009 Machine Learning Local Active Communication Events OS-Independent
[48] 2009 Machine Learning Distributed Passive Measurements OS-Independent
[118] 2009 Power Consumption Local Passive Communication Events OS-Independent
[123] 2009 Signatures (Automatically) Local Active All OS-Independent
[39] 2009 Machine Learning Distributed Passive OS Events OS-Independent
[138] 2009 Machine Learning Local Passive Keystrokes OS-Independent
[141] 2009 Machine Learning Local Passive Communication Events OS-Independent
[143] 2009 Machine Learning Local Passive All Symbian
[147] 2009 Signatures (Manually) Local Passive OS Events Android
[158] 2009 Integrity Verification Local Passive OS Events LIMO
[122] 2009 Signatures (Manually) Distributed Active Communication Events Linux
[94] 2009 Run-Time Policy Enforcement Local Active All Android
[95] 2009 Run-Time Policy Enforcement Local Active All Android
[134] 2009 Interception Local Passive OS Events Windows Mobile
[135] 2009 Signatures (Manually) Local Passive OS Events Symbian
[136] 2009 Signatures (Manually) Local Passive OS Events Android
[151] 2010 Run-Time Policy Enforcement Local Active OS Event Android + SELinux
[153] 2010 Anomaly Detection Local Passive OS Event Windows Mobile
[124] 2010 Signatures (Automatically) Local Passive Keystrokes OS-Independent
[49] 2010 Machine Learning Local Passive OS Events Linux
[113] 2010 Machine Learning Local Passive All Android
[115] 2011 Machine Learning Local Passive All Android

In [163] the authors propose a practical approach for the
design and implementation of trusted mobile platform. The
approach, based upon the concept of a trusted platform as a
set of trusted engine, defines a method for the take-ownership
of a device by the user and the migration (i.e., portability) of
user credentials between devices.
[164] identifies three specific problems in the MTM spec-

ification and provides some possible solutions. The first one
concerns the need of balancing some contrasting goals at the
system-level designs, such as performance and power con-
sumption. A suggested solution integrates some TPM features
directly into a processor core as opposed to a monolithic
implementation of all the functions in a separate module. The
second problem considers which cryptographic algorithms a
MTM must support: some algorithms, namely RSA and SHA-
1, can either have bad performances or security weaknesses.
The suggested solution considers elliptic curve cryptography
as a viable alternative. Finally, the third problem is related
to the implementation of cryptographic primitives: the au-
thors propose a hardware/software solution as opposed to a
hardware-based solution, which suffers from poor flexibility.
Further solutions can be found in [165].

VI. CONCLUSIONS

With the rapid proliferation of smartphones equipped with
a lot of features, as multiple connections and sensors, the
number of mobile malware is increasing. Differently from PC
environment, solutions aimed at preventing the infection and
the diffusion of malicious code in smartphone have to consider
multiple factors: the limited resources available, including the
power and the processing unit, the large number of features
that can be exploited by the attackers, such as different kinds
of connections, services, sensors and the privacy of the user.

In this work, first of all we have discussed the current
scenario of mobile malware, by summarizing its evolution,
along with some notable examples; we have also outlined
likely future threats and reported some predictions for the near
future. Secondly, we have categorized known attacks against
smartphones, especially at the application level, focusing on
how the attack is carried out and what is the goal of the
attacker. Finally, we have reviewed current security solutions
for smartphones focusing on existing mechanisms based upon
intrusion detection and trusted mobile platforms.
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