STAMBA: Security Testing for Android
Mobile Banking Apps

Sriramulu Bojjagani and V.N. Sastry

Abstract Mobile banking activity plays a major role for M-Commerce (Mobile-
Commerce) applications in our daily life. With the increasing usage on mobile
phones, vulnerabilities against these devices raised exponentially. The privacy and
security of confidential financial data is one of the major issues in mobile devices.
Android is the most popular operating system, not only to users but also for com-
panies and vendors or (developers in android) of all kinds. Of course, because of
this reason, it’s also become quite popular to malicious adversaries. For this, mobile
security and risk assessment specialists and security engineers are in high demand.
In this paper, we propose STAMBA (Security Testing for Android Mobile Banking
Apps) and demonstrate tools at different levels. These supported tools are used to
find threats at a mobile application code level, communication or network level, and
at a device level. We give a detailed discussion about vulnerabilities that help design
for further app development and a detailed automated security testing for mobile
banking applications.

1 Introduction

Android mobile application and operating system security has been clearly explained
in [1, 8, 9], but some improvements are are to be made to the implementation of
android security because versions of android operating system was started with the
Cupcake 1.5, now KitKat 4.4, expected in future is KeyLimePie 5.0 [7]. Recent de-
velopments in android mobile operating system have been tested and demonstrated
by drozer framework [14] and wire shark packet analyzer [5]. Android work based on

S. Bojjagani(X) - V.N. Sastry

Centre for Mobile Banking (CMB), Institute for Development and Research in Banking
Technology (IDRBT), Hyderabad, India

e-mail: sriramulubojjagani @ gmail.com, vnsastry @idrbt.ac.in

S. Bojjagani
School of Computer and Information Sciences, University of Hyderabad, Hyderabad, India

© Springer International Publishing Switzerland 2016 671
S.M. Thampi et al. (eds.), Advances in Signal Processing and Intelligent Recognition Systems,
Advances in Intelligent Systems and Computing 425,

DOL: 10.1007/978-3-319-28658-7_57

672 S. Bojjagani and V.N. Sastry

Linux kernel operating system and its mobile applications are written in an eclipse of
Java language run with built-in Application Programming Interfaces (API'S) [34].
Android uses a security framework that consists of application sandboxing, secure
inter-application communication, cryptographic API’s, application signing [8]. But
these countermeasures for security against vulnerability may not be effective. Even
though we have existing malware detection mechanisms, they are failed to elimi-
nate the android mobile threats totally. These android malware threats change with
a timeline, some common examples of malware threats found in android devices
in 2014 are Torec, DroidPack, DriveGenie, OldBoot [7]. Android intents and per-
missions framework for security mechanism provides a guard between software and
hardware resources. Intents in android is a communication model for launching the
activities and services, but we should take care about the applications exported and
services exported [4, 21]. Intent spoofing attack is the most common found in an-
droid, it leads to the broadcast receivers, exported applications and exported services
[20], we examine the mobile applications not only at android application level, but
also we examine the android applications at network level and device level. Many
security threats have been found including confidential information shared unautho-
rized parties because of poor SSL (Secure Socket Layer) encryption, and insufficient
transport layer protection, improper session handling these threats are well described
in OWASP (or Open Web Application Security Project) [16]. And other unexpected
behavior.

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 considers threat scenario and vulnerability analysis for mobile banking
apps. Section 4 describes the proposed testing strategy. Finally, Section 5 concludes
the paper.

2 Related Work

Mobile banking applications based on Android, i0S, Windows platforms, have been
tested by others in the last few years. Chakraborti et al. [3] proposed a security
framework for mobile apps for any enterprise. This paper provides the only literature
review on possible threats and vulnerabilities. Marforio et al. [18] described secu-
rity indicators for detecting threats against phishing attacks in mobile platforms and
possible countermeasures. This proposed framework describes application phishing,
web phishing but doesn’t deal with vulnerabilities in the code or app level, and com-
munication level. Kathuria et al. [15] deals with the challenges in android application
development. This proposed app mainly focuses on the user-centric level, without
giving details about mobile security testing. Felt et al. [11] clearly describes android
permissions and applied some automated testing techniques to android version 2.2
for determining the maximum permissions that are needed for an application and
compares those permissions with actually required permissions. Likewise, he exam-
ined 940 Android apps using the tool of Stowaway and detected that 1/3rd of them
are over privileged. He et al. [12] analyzes forty-seven: Android, iOS mobile apps

STAMBA: Security Testing for Android Mobile Banking Apps 673

in survey regarding SD cards, logging, Bluetooth, content provider, usage of cloud
services, The internet.

Related work closest to our mobile banking applications from [6, 10, 13, 17]. Hu
etal. [13] propose a set of six criteria for identifying and evaluating killer apps for mo-
bile payment, banking, emerging mobile commerce applications and services. This
paper doesn’t achieve certain challenges of privacy and security concerns in mobile
banking, and incompatible of mobile communication. Fahl et al. [10] examine vari-
ous most popular free apps and investigation of the current state of SSL/TLS (Secure
Socket Layer/Transport Layer Security) for android, he used a tool MalloDroid that
detect potential threats against MITM (Man-In-The-Middle) attacks. Lee at el. [17]
describes the complete literature review on the investigation of features and security
in mobile banking. This framework of design helps and recommends for security and
privacy issues involved in current mobile banking services. However, this framework
doesn’t analyze the real time scenarios possible in mobile banking services. Delac
et al. [6] develop an attacker-centric model for different mobile platforms such as
Android and i0S. The designed threat model addresses 3 key features of mobile
device security, 1. Goals of attacker’s, 2. Attack vectors, 3. Mobile malware.

Apart from other studies, we focus on examining several mobile banking An-
droid applications by static code analysis and dynamic analysis using the tools of
ApkAnalyser [22], Mercury [23] or (Drozer) [24] for static analysis, Wireshark [5,
27], Burp Suite [28] for dynamic analysis and found 356 exploitable vulnerabili-
ties. Our testing approach moves further than previous related work: because others
have tested with a dynamic testing strategy with one tool, but we focus on code or
app level, communication level, and device-level testing. This makes a novel study
for security in mobile banking applications and it is helpful for code developers for
further enhancing the security measurements.

3 Threat Scenario and Vulnerability Analysis for Mobile
Banking Apps

Before testing the mobile banking app’s, initially we define the context. Mobile bank-
ing apps are more securable, user-friendly, and immediate mobile payment system.

3.1 Threat Scenario

A complete modeling of threat and vulnerability analysis is beyond the scope of
our effort, but we suggest some points that bring out a neat framework for secure
mobile banking. We concerned on apps for code level and network level, device level,
because they are most important for the banker side and at customer’s point of view.

674 S. Bojjagani and V.N. Sastry

e Untrusted party learning of bank data: Unauthorized persons gain the bank
information belonging to an individual customer. They access not only secure
data but also monitor the network.

e Tampering with bank data: An adversary tamper or alters the bank data, by
performs replay and man-in-the-middle attacks in the communication media or
network.

e Customer chooses wrong bank app Here the end user or customer chooses a
wrong app, that app is installed in his/her mobile phone and giving valid credentials
to the untrusted bank. Then the adversary plays all attacks on to the original bank
and end user. This type of threat is called as a phishing attack.

The above three types of threats represent the violation of the security features such
as data integrity, confidentiality, authorization, authentication, and non-repudiation.

3.2 Identifying the Attack Surface and Analysis
of Vulnerabilities

Figure 1 shows a typical threat scenario for mobile banking apps, initially we install
mobile banking apps in a mobile device (smartphone). The smartphone stores the
bank apps data internally in a file system, database backups.

i]; |

Social Engineering e.g. Twitter, FB Mobile App 's Server External Storage e.g. Google App Web Browser

Drive, Droubox /

Internet HTTP/S V1-V4

_

Short Range
Communication e.g.

((.))? NFC, RFID, Bluetooth
. viv4

vio
Stolen Devices | . _.--- =

Loss/Theft of Devices

Alternative
Delivery Channels
e.g. SMS, USSD,
Vi-v4
«
- V6-v9
T Malware In

Code

Mobile Phone Malware in App

Fig. 1 A Typical Threat Scenario for mobile banking app in context. The heart represents fine-
grained banking data

In Figure 1 shows several types of individual servers that are connected to the
network. Some apps connect to the social engineering server such as Twitter, Face-
book (FB) etc. Many fake mobile banking apps are connected directly to the payment

STAMBA: Security Testing for Android Mobile Banking Apps 675

gateway to a dedicated app web server for allowing the transactions of upload valid
credentials to the bank server, backup, and data synchronization. The app’s connect
to external storage services e.g.Google Drive, Dropbox. Finally, app web browser
is used to search the rate and amount payable for apps. This framework of threat
scenario helps to identify the attack surface for various threats and suggests where
attacker look for loopholes existing in the network. The mobile risks or vulnerabilities
(denoted as V1-V10) are:

e V1. Masquerade: This attack is caused because of not establishing a secure con-
nection between client and server, and improper SSL/TLS i.e., poor transport layer
protection. Because of this reason the adversary performs session hijacking, and
stealing session ID’s.

e V2. Man-In-The-Middle: He is able to tap the secure data, manipulate, integrate
with own data on a network and send to victims.

e V3. Replay: Attacker sends subsequent retransmission or delayed messages in the
network.

e V4. Traffic Analysis, Wi-Fi Sniffing: The attackers always monitor the network
traffic and observe packets are in encrypted format or not, sometimes they capture
the packets.

e V5. Browser Exploits: It is also called as SSL. BEAST (Browser Exploit Against
SSL/TLS), he will be able to leverage weaknesses implemented in cipher block
chaining to exploit the SSL protocol. Based on this reason the attacker easily read
the encryption form data in plain text.

e V6. SQL Injection: The attacker identifies weak tables in the database possibly
by SQLite can be subject to inject in web applications.

e V7. Lack of binary protection: Typically, an attacker will analyze and apply
some reverse engineering tools for getting the original source code, then modify
that code and perform hidden functionality.

e V8. Broken Cryptography: The code contains weak cryptography algorithms,
easily breakable passwords, and poor key management process leads adversary
easily steal the algorithms and theft secure data.

e V9. Data Leakage: Agents easily exploit the vulnerabilities by malware exist in
the mobile of legitimate apps, or physical access of the device by an adversary
from the victim’s mobile device.

e V10. Insecure Data Storage: An Attacker that has attained a theft of mobile
device, malware or another re-modified app acting on the attacker’s behalf that
executes on the smartphone.

Other possible attacks such as DoS (Denial of Service), phishing, pharming, protocol
attacks, etc.) are currently not included.

676 S. Bojjagani and V.N. Sastry

4 Testing Strategy

Our testing mechanisms is divided into 4 parts: i. Static analysis ii. Dynamic analysis
iii. Web app server security, iv. Device forensic. Apart from the four mechanisms of
testing, we consider three levels of security testing 1. App Level, 2. Communication
Level, and 3. Device Level. Table 1 shows how our testing three levels addresses
four mechanisms. The possible vulnerabilities from V1-V10 represented in the pre-
vious section are shown in a table. For each vulnerability, the countermeasures or
precautions to be taken by the developer, end-user, and banker is shown in Table 1.

e Application Level or App Level: This level identifies the vulnerabilities in code,
for android applications all the files are .apk only, so we put this .apk file on
ADB (Android Debugging Bridge) and possible vulnerabilities identified at at-
tack surface. For this level, we consider both static and dynamic analysis testing
mechanism.

e Network or Communication Level: An attacker captures or alters the packets in
the network. So in this level we used dynamic analysis.

e Device Level: Sometimes the devices e.g. mobile device, SD card, personal log
files stolen by an adversary, compromised devices, and physical threats comes
under this category.

Table 1 Strategy for Security Testing of Mbank Apps

Testing Levels Testing Mechanism | Supported Tools| Vulnerabilities | Countermeasures
Drozer
App Level Static and Dynamic | ApkAnalyser V6-V9 |Check Uniform Resource Locator (URL)
virustotal Caching for both HTTP request and re-

sponse, Application backgrounding, Use
strong cryptography algorithms with ap-
propriate key lengths.

Drozer

Dynamic Analysis WireShark
Web app server security| Burp Suite
TCPDUMP

Communication Level VI-V5 |Apply SSL/TLS for transport channels.
Use digital certificates signed by a trusted
Certificate Authority (CA) provider. Do
not send confidential data over alternate
delivery channels (e.g, SMS, MMS, or no-
tifications).

Device Level Device Forensic Sleuth Kit V10 |Neverstore personal credentials on the SD
card, For databases concern SQLeipher for
SQLite data encryption mechanism.

4.1 Static Analysis

Static analysis does not involve opening a file, or running the code or reverse engi-
neering it is based on data contained in the APK (Android application package file).
Static analysis involves identifying and querying cryptographic hash values, such as
MD5 (Message Digest), metadata, strings, extract the apps permissions. The tools
virustotal [30], androguard [25] is used for this analysis.

e Antivirus Scans and Aliases: Antivirus scans and aliases help to analyze a threat,
identify date and time, comments, votes, and a list of aliases. Aliases acknowledge
that stamp are other common related names attributed to the same code. Antivirus

STAMBA: Security Testing for Android Mobile Banking Apps 677

scan results, samples, blogs, and so on. In our test of various apps, the results are
shown in Figure 3 and Figure 4 respectively. In Figure 4 reveals one Trojan horse
detected out of 54 engines.

e Broadcast Receivers: Attackers often hold needed data about an apps attack
surface and offer attackers to perform many wrong things, from arbitrary code
execution to proliferating information. Broadcast receivers respond for both soft-
ware and hardware-level events. They get notifications for these events through
intents. The Drozer [24] tool identifies these receivers at the attack surface.

e Activities and Services These are the application components, and services that
facilitate user interaction. It is useful for identifying which application, services
can be released without permissions during an application security assessment
because any of them provide access to confidential data or cause an app to crash
if launched in the wrong context.

e Content Providers (V6, V8, V9) : In any database architecture, content providers
have the ability to perform malicious operations into their SQLite databases or any
file stores. They identify weak URI (Uniform Resource Identifier) in the database
and perform all Structure Query Language (SQL) operations. For this content
providers, we use the same tool drozer. The test app results on the attack surface
of activities, broadcast receivers, content providers, services exported is shown in
the Figure 2.

e Certificate Information (V1-V5): All apps must be signed because android uses
x.509 certification otherwise apps will not install. And tester verifies the given
certificates valid by the CA (Certification Authority), time period, and serial no.
To verify these certificate procedures we use [29].

activities exported
broadcast receivers exported
content providers exported
seprvices exported

Fig. 2 An attack surface contains vulnerabilities in the app

4.2 Dynamic Analysis

Dynamic or behavioral analysis is mostly manual testing. In this analysis we create a
dummy account for testing the credentials of user Account no, MPIN (Mobile PIN),
user ID, Password, OTP (One Time Password) all these are invalid. From this account
details, we can perform transactions of transferring an amount from one account to
another account.

e Insufficient Transport Layer Protection (V1-V5, V9) : When designing any
application, the information is exchanged in a client and server environment. To
transmit data, it must traverse the device carrier or network devices (intermediate

678 S. Bojjagani and V.N. Sastry

YRS

-

Detailed results

0 of 56 antivirus vendors
detected this application

TheHacker

(a) Scan Results (b) Detailed Results
Fig. 3 Virus total scan without virus results and detailed tesults
VB EEE N Tl & 1400

-

Detailed results

(a) Scan Results (b) Detailed Results

Fig. 4 Virus total scan with virus results and detailed results

routers or nodes, proxy’s, cell towers etc.). Threat agents might exploit vulner-
abilities such as monitor Wi-Fi (Wi-Fi Sniffing), compromised network, capture
sensitive data or malware in mobile etc. These threats are because of insufficient
transport layer protection. So we test this by Wireshark [27], tPacketCapture [31],
Burp Suite [28]. The results are shown in Figure 5, and Figure 6 respectively. These
two figures shows that the highlighted with yellow color data is not in encrypted
format, all the sensitive information is represented as a plain text.

e Secure backup directories, files, and logging: Here we test backup directories,
files or log information contained encrypted data or not using the tool of adb [26].

STAMBA: Security Testing for Android Mobile Banking Apps 679

A Follow TCP Stream (tcp.stream eq 2) & = -

Stream Content

POST http://115. 111 85.242/ */serviet/Nativeservlet017t5=1436517901126 HTTP/1.1
Content-Length:

Content-Type apprcatwan/x ~wwi-Form-ur Tencoded

Host: 115.111.85.242

connection: Keep-Alive

BUTLD_VERSTON=1.0&USER_TD=&IMET=&MOBILE_PIN=&FRM_OS=ANDROTD&MOBTLE_NUMBER=EMETHOD_NAME=
checkIMEI&IMEI_NUMBER=&UNO=POST http://115.111.85.242/ /serviet/Nativeserviet0l?
T5=1436517907875 HTTP/1.1

Content-Length: 120

Content-Type: application/x-www-form-urlencoded

Host: 115.111.85. 242

Connection: Keep-al

Cookie: I5ESSTONTD=CA3219BB60B7F27CCAB2345E637268FF

Cookie2: §Version=1

BUILD_VERSTON=1.0&USER_TD-&MOBILE PIN—&FRM _0S-ANDROTD&MOBTLE_NUMBER=9432664101&METHOD_N
AME=getUserLiSt&IMEI_NUMBER=&UNO=POST http://115.111.85.242/ /serviet/
NativeServ]let01?t5=1436517920055 HTTP/l 1

content-Length: 191

content-Type: application/x-www-form-urlencoded

Host: 115.111.85. 242

Connection: Keep-Al

Cookie J5ESSIONID=(4SZIQBBGQB7F27CC4823452637268FF

Cookie2: $version=:

BUILD_VERSION=1.0&TRAN_AMOUNT=100000&USER_ID=&MOBILE_PIN=&FRM_05=ANDROID&ACCOUNT_NUMBER
=1234567890&TRAN_TYPE=DE&MOBILE ! NUMEEK—943ZGG4IOIEMETHOD NAME=geTCusTID&IMEI_NUMBER=353
327052271798&UNO=POST http://115.111.85.242/ /servlet/Nativeserviet01?
©5-1436517948744 HTTP/.

Content-l enath: 195

Entire conversation (76024 bytes) v

Eind Save As Print (O ASCH O EBCDIC ©) Hex Dump. O CArays ® Raw

e Fiter ot This s

Fig. 5 TCP Stream in unencrypted format: Amount, Mobile no, Account no

| Follow TCP Stream (tcp.stream eq 2) = =l -

Stream Content
BULLU_VEKS [UN=L . USUSER_ LU=SUB LLE_F L N=&F K _US=ANURU LDGHUB LLE_NUVBER="5% 5200 LULSHE | FOU_N
AME=getUser ID&IMET_NUMBER=357629064209831&UNO=POST http://115.111.85.242/ /serviet/
Nativeservlet0l?ts=1436517994756 HTTP/1.1

content-Length: 247

Content-Type: application/x-www—form-urlencoded

Host: 115.111.85. ZAZ

connection: Keep-ali

(uutwe SSESSTONID~CA 321 9BB6OR7F27CC48234 SE637268FF

Cookie

>

: $version=1

EUILD_VERSION=1,0SUSER_ID=200019554&MOBILE_PIN=S8HASHED_MPINPWD=C5fl4lacfad23f612b4617d1
3c9897 53bc336a3860ec4d67dal28ca3bf849190&FRM_OS—ANDROIDEMOBILE_NUMBER=9432664101®_RE
QD=0&METHOD_NAME=val1 datelser 80TP_REQD=1&IMEI_NUMBER=357629064 209831&UNO=POST
http://115.111. 85. ZAZ/ /servlet/Nativeservlet017ts=1436518005356 HTTR/1.1
content-Length: 17

Content-Type: app'hcatwn/x www-Form-urlencoded

Host: 115.111.85. 24

Connection: Keep-A

cookie: JsEssmNIlkSlst@Sz/ SE3EG7GE0242B47882ABAA;

LSNONCETD-b687 cd8d99a3T0f 5cd22 527 3¢839fbadccdobsecy 3237ac848801 eab3ge2f02f

Cookie2: $version=1

BUILD_VERSION=1,0&USER_ID=200019554&MOBILE_PIN=&FRM_OS=ANDROID&MOBILE_NUMBER=9432664101
|SMETHGD_NAVE va'hdateuTP&IMEI NUYBER—3 576280642098 STEUNO- 087497874 3336398429260 TP—12345
1.85.242/ . /Servier/Nativeserv]eto1?ts=1436518007883 HTTP/1.

Content-Length: 157

content-Type: appTwcatwun/x —www-TForm-urlencoded
HosT: 115.111.85. 2

Cornection: Keep-A

Cookie: 1555510N15:91EDDA99375535676502A25A7882A5aA

LSNONCETD-b687 ci8d99a370F 5cd22 5273829 badccdObGecy 3237ac848801eab3862F02F v
Entire conversation (76024 bytes) v
Find SaveAs pint | O Ascl O EBCDIC O HexDump O CArmays ® Raw
Hep | Filter Qut This Stream

Fig. 6 TCP Stream in unencrypted format: OTP

4.3 Web App Server Connection

In this testing mechanism apps are directly connected to dedicated web server to
backup files or synchronize bank data. For this analysis again we used a dummy
account of customer on the web site.

680 S. Bojjagani and V.N. Sastry

e Web server connection (V1-V4): Normal HTTP connection allows an adversary
easily read the customer sensitive data; by history of URLs (Uniform Resource
Locater) check the connection with secure transport of (HTTPS:)

e Web server authentication and authorization (V1-V2): Further we investigate
the effectiveness of the server, e.g. an attacker understands how the authentication
procedure is vulnerable, they create bypass or fake authentication by submitting
transaction service requests to the mobile application backend server and bypass
any direct interaction with the mobile application. This submission process is
typically done via mobile malware within the device or botnets owned by the
attacker. For this analysis we use again, Wireshark [27], and tPacketCapture [31].

4.4 Device Forensic

Using this testing mechanism, suggests a complete investigation of file structures
of the android operating system, services, data storage, and external devices [32].
For complete forensic analysis, no tool extracts all the possible information when
the device is locked [33]. We conduct forensic analysis on mobile devices using the
sleuth kit [2].

5 Case Study

Case study section deals with an overview of our testing for android mobile banking
apps. For testing the bank apps we need a .apk files. And these apps which are directly
available from the Google’s Play Store.The mobile devices for testing on two mobile
platforms, android and J2ME.

5.1 Test Bed and Other Tools Used

For Android Environment

Mobile Phone Used: HTC Desire X (1.2 GHz Dual Core, 768 MB RAM)
Samsung Galaxy wave- II (1GHz Dual Core, | GB RAM)

Android version "KitKat"

Eclipse ADT IDE integrated with Android SDK

Drozer Agent [24], VirusTotal, ApkAnalyser, androguard

Wireshark, Burp Suite, TCPDUMP, tpacketcapture, Sleuth Kit

We connect a mobile device with the laptop running Ubuntu operating system version
12.04. Install above static tools on mobile device and for dynamic testing, tools
installed on the laptop.

STAMBA: Security Testing for Android Mobile Banking Apps 681

Mobile Security Threats

App Level Communicational Level Device Level
Impro}:er Session Insufficient Transport SllM l
Handling (v4) Layer Protection (V1-V3) .
Side Channel Data SQLite DB
Leak Vo Lack of Binary
eakage (V9) Protections (V7) SD Card Mobile 0S
Poor Authorization and
Authentication Insecure Data Storage (V10)
Broken Cryptography (V8) SQL Injection (V6)

Weak server side controls (V5)

Fig. 7 Coverage vulnerabilities with OWASP

5.2 App Preparation

We tested several financial institute apps like banking and other apps. For static anal-
ysis testing, verify the vulnerabilities at attack surface but for dynamic analysis test
banks create dummy accounts with some amount. These dummy account credentials
are same for the original account, in the sense if customer account no is 9 digits, then
dummy account no is also nine digits. Other valid information for doing transactions
such as OTP (One Time Password), login id, password, and an amount in payer’s
account.

5.3 Discussion

The verification and validation of our testing strategy are demonstrated by identi-
fying several cryptographic parameters, and privacy issues. Our testing strategy is
compared with OWASP (Open Web Application Security Project) [19] and it covers
entirely or partly 6 of 8 static and 4 of the 7 dynamic categories. This cross compare
testing mechanism is shown in Figure 7.

6 Conclusions and Future Work

Our security testing strategy for mobile banking applications gives clear evidence
of cryptography features such as authentication, data integrity, confidentiality, non-
repudiation. We test and analyze many apps and found 356 exploitable vulnerabil-
ities. This paper is helpful for those who are in the android app development and

682 S. Bojjagani and V.N. Sastry

android malware threat analysis. The contribution of our work suggests, the app de-
veloper should concern the cryptography features, then implement the app in a secure
environment. Our work shows that automated security testing for mobile banking
applications is expensive, because the large amount of manual work is needed. Some
tools for automated security testing cover only a minimum number of vulnerabili-
ties, and every year the new versions of device OS launch into the market. So, many
updations are needed and fully automated testing is desirable.

As future work, we will focus on testing mobile banking apps in the environment
of i0S, Windows. Enhancing the security and safety parameters for mobile banking
apps will be needed to concern the fully automated spectrum of issues.

References

—

Blasco, J.: Introduction to android malware analysis (2012)

2. Carrier, B.: The sleuth kit (TSK) (2010). http://www.sleuthkit.org/sleuthkit/

3. Chakraborti, S., Acharjya, D., Sanyal, S.: Application security framework for mobile app

development in enterprise setup (2015). arXiv preprint arXiv:1503.05992

4. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application communication in

android. In: Proceedings of the 9th International Conference on Mobile Systems, Applications,

and Services, pp. 239-252. ACM (2011)

Combs, G.: Wireshark: Go deep (2009). homepage for wireshark

6. Delac, G., Silic, M., Krolo, J.: Emerging security threats for mobile platforms. In: MIPRO,
2011 Proceedings of the 34th International Convention, pp. 1468-1473. IEEE (2011)

7. Dunham, K., Hartman, S., Quintans, M., Morales, J.A., Strazzere, T.: Android Malware and
Analysis. CRC Press (2014)

8. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application security. In:
USENIX Security Symposium, vol. 2, p. 2 (2011)

9. Enck, W., Ongtang, M., McDaniel, P.: Understanding android security. IEEE Security & Privacy
1, 50-57 (2009)

10. Fahl, S., Harbach, M., Muders, T., Baumgirtner, L., Freisleben, B., Smith, M.: Why eve and
mallory love android: an analysis of android ssl (in) security. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security, pp. 50-61. ACM (2012)

11. Felt, A.P,, Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified.
In: Proceedings of the 18th ACM Conference on Computer and Communications Security,
pp. 627-638. ACM (2011)

12. He, D.: Security threats to android apps. Ph.D. thesis, Masters thesis, University of Illinois at
Urbana-Champaign (2014)

13. Hu, X., Li, W., Hu, Q.: Are mobile payment and banking the killer apps for mobile commerce?
In: Proceedings of the 41st Annual Hawaii International Conference on System Sciences,
pp. 84-84. IEEE (2008)

14. Hunt, R.: Security testing in android networks-a practical case study. In: 2013 19th IEEE
International Conference on Networks (ICON), pp. 1-6. IEEE (2013)

15. Kathuria, A., Gupta, A.: Challenges in android application development: A case study (2015)

16. King, J.: Android application security with owasp mobile top 10 2014. Ph.D. thesis, Masters
thesis, Luled University of Technology (2014)

17. Lee, H., Zhang, Y., Chen, K.L.: An investigation of features and security in mobile banking
strategy. Journal of International Technology and Information Management 22(4), 2 (2013)

18. Marforio, C., Masti, R.J., Soriente, C., Kostiainen, K., Capkun, S.: Personalized security

indicators to detect application phishing attacks in mobile platforms (2015). arXiv preprint

arXiv:1502.06824

e

http://www.sleuthkit.org/sleuthkit/
http://arxiv.org/abs/1503.0599
http://arxiv.org/abs/1502.0682

STAMBA: Security Testing for Android Mobile Banking Apps 683

19.

20.

21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.

33.

34.

Mobile Security Testing Guide: https://www.owasp.org/index.php/OWASP_Mobile_
Security_Project#tab=M-Security_Testing//

Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and enforce-
ment with user-defined runtime constraints. In: Proceedings of the Sth ACM Symposium on
Information, Computer and Communications Security, pp. 328-332. ACM (2010)

Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically rich application-centric
security in android. Security and Communication Networks 5(6), 658-673 (2012)
https://github.com/sonyxperiadev/ Apk Analyser
https://www.labs.mwrinfosecurity.com/tools/2012/03/16/mercury
https://www.mwrinfosecurity.com/products/drozer/

https://code.google.com/p/androguard//

https://developer.android.com/tools/help/adb.html

https://www.wireshark.org (accessed February 20, 2015)

https://portswigger.net/burp/ (accessed February 20, 2015)

https://www.opnessl.org/ (accessed March 11, 2015)

https://www.virustotal.com/ (accessed May 10, 2015)
https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetcapture
(accessed May 10, 2015)

Walnycky, D., Baggili, I., Marrington, A., Moore, J., Breitinger, F.: Network and device forensic
analysis of android social-messaging applications. Digital Investigation 14, S77-S84 (2015)
Wang, Y., Alshboul, Y.: Mobile security testing approaches and challenges. In: 2015 First
Conference on Mobile and Secure Services (MOBISECSERV), pp. 1-5. IEEE (2015)

Wei, X., Gomez, L., Neamtiu, ., Faloutsos, M.: Permission evolution in the android ecosystem.
In: Proceedings of the 28th Annual Computer Security Applications Conference, pp. 31-40.
ACM (2012)

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=M-Security_Testing//
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=M-Security_Testing//
https://github.com/sonyxperiadev/ApkAnalyser
https://www.labs.mwrinfosecurity.com/tools/2012/03/16/mercury
https://www.mwrinfosecurity.com/products/drozer/
https://code.google.com/p/androguard//
https://developer.android.com/tools/help/adb.html
https://www.wireshark.org
https://portswigger.net/burp/
https://www.opnessl.org/
https://www.virustotal.com/
https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetcapture

	STAMBA: Security Testing for Android Mobile Banking Apps
	1 Introduction
	2 Related Work
	3 Threat Scenario and Vulnerability Analysis for Mobile Banking Apps
	3.1 Threat Scenario
	3.2 Identifying the Attack Surface and Analysis of Vulnerabilities

	4 Testing Strategy
	4.1 Static Analysis
	4.2 Dynamic Analysis
	4.3 Web App Server Connection
	4.4 Device Forensic

	5 Case Study
	5.1 Test Bed and Other Tools Used
	5.2 App Preparation
	5.3 Discussion

	6 Conclusions and FutureWork
	References

