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a b s t r a c t

Supervisory Control and Data Acquisition (SCADA) systems are a core part of industrial

systems, such as smart grid power and water distribution systems. In recent years, such

systems become highly vulnerable to cyber attacks. The design of efficient and accurate

data-driven anomaly detection models become an important topic of interest relating to

the development of SCADA-specific Intrusion Detection Systems (IDSs) to counter cyber

attacks. This paper proposes two novel techniques: (i) an automatic identification of

consistent and inconsistent states of SCADA data for any given system, and (ii) an auto-

matic extraction of proximity detection rules from identified states. During the identifi-

cation phase, the density factor for the k-nearest neighbours of an observation is adapted

to compute its inconsistency score. Then, an optimal inconsistency threshold is calculated

to separate inconsistent from consistent observations. During the extraction phase, the

well-known fixed-width clustering technique is extended to extract proximity-detection

rules, which forms a small and most-representative data set for both inconsistent and

consistent behaviours in the training data set. Extensive experiments were carried out both

on real as well as simulated data sets, and we show that the proposed techniques provide

significant accuracy and efficiency in detecting cyber attacks, compared to three well-

known anomaly detection approaches.

Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved.
1. Introduction

SCADA systems control and monitor industrial and infra-

structure processes such as transportation, oil and gas

refining and energy andwater distribution networks (Yu et al.,

2011; Fahad et al., 2013). In recent years, the incorporation of

Commercial-Off-The-Shelf (COTS) products such as standard

hardware and software platforms have begun to be used in
, dr.alharthi.fahad@gma
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SCADA systems. This incorporation allowed various products

from different vendors to be integrated with each other to

build a SCADA system at low cost. In addition, the integration

of standard protocols (e.g. TCP/IP) into COTS products has

increased their connectivity, thereby increasing productivity

and profitability. However, this shift from proprietary and

customized products to standard ones exposes these systems

to cyber threats (Oman et al., 2000). Undoubtedly, any attack

targeting SCADA systems could lead to high financial losses
il.com (A. Fahad).
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Fig. 1 e Compromised FEP sends undesired command and falsifies the feedback information.
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and serious impacts on public safety and the environment.

The attack on the sewage treatment system inMaroochy Shire

(Australia) is an example of such attacks on critical in-

frastructures (Slay and Miller, 2007), where the attacker took

over the control devices of a SCADA system. The Stuxnet

(Falliere et al., 2011) worm, which was designed to damage

nuclear power plants in Iran, is a recent example of threats

targeting control systems. Both of the aforementioned attacks

are classified as man-in-the-middle (MITM) attacks, where

control devices are compromised to perform malicious ac-

tions, and meanwhile false information is sent to the Master

Terminal Unit (MTU) to avoid detection. Such cyber threats

allow attackers to perform high-level control actions (Wei

et al., 2011; Queiroz et al., 2011; Nicholson et al., 2012), and

pose potential threats to SCADA systems.

An awareness of the potential threats to, as well as the

need to reduce the various vulnerabilities of SCADA systems

have recently become an important research focus in the area

of security. A number of (security) measures have been used

in traditional IT systems, including management, filtering,

encryption and intrusion detection. However, such measures

cannot be directly applied to SCADA systems without

considering their specific characteristics. Additionally, none

of these traditional IT security solutions can completely pro-

tect SCADA systems from potential cyber attacks. However,

properly adapting/extending such IT solutions can create

robust protection of SCADA systems against cyber attacks. IDS

(Intrusion Detection System) is one of the security solutions

that has showed promising results in detecting malicious
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activities in traditional IT systems, and this is one of the rea-

sons for using and adapting it to SCADA environments.

1.1. Problem statement

To illustrate the intrusion detection problem, two well-known

scenarios (Verba and Milvich, 2008) are considered. Fig. 1 il-

lustrates an attacker compromising the front end processor

(FEP) by carrying out three actions: (i) initialising a connection

with a remote terminal unit (RTU1.1) and sending a command

without receiving a corresponding command from the appli-

cation server; (ii) dropping the command sent from the

application server to RTU1.1, and frogging feedback informa-

tion sent back to the application server tomeet the attack; and

(iii) frogging the command sent from the application server to

RTU1.1, as well as frogging feedback information sent back

from RTU1.1 to the application server. All commands sent to

RTU1.1 will be trusted, as they are syntactically valid and sent

from an FEP.

Two inconsistent data can be identified in this scenario: an

inconsistent network traffic pattern and (ii) an inconsistent

SCADA data. The former relates to the following: (i) an FEP is

not an intelligent device that can make a decision and send a

command to RTU1.1 without receiving a corresponding com-

mand; (ii) and the dropped command at FEP will be shown up

in the network stream from the application server to the FEP,

but not in the network stream from the FEP to the RTU1.1,

while the frogged commands between the application server

and RTU1.1 can be identified by the inconsistent SCADA data.
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For example, the command in the network stream from the

application server to the FEP shows that the status of pump1 is

ON, while in the network stream from the FEP to the RTU1.1, it

is OFF. Clearly, the inconsistencies in this scenario shows that

the aforementioned MITM attacks are performed by the FEP.

In what follow, however, we show a scenario where the

monitoring of inconsistencies fails to detect MITM attacks.

Let's consider the example shown in Fig. 2. This example il-

lustrates an attacker compromising an intelligent application

server that can initiate independent actions. It drops com-

mands sent from the operator, and therefore an unsafe situa-

tion could be created. An attacker initialises a command from

the application server to turn off pump1, and it can be seen that

both the network traffic stream and the SCADA data between

RUT2.1 and the application server are consistent for this com-

mand. However, the SCADA data, such as the speed and the

status of pump1, could be inconsistent with the sensory node of

thewater level inRTU2.2, as theyare set tovalues thatviolate the

specifications of the system from the operational perspective.

The evolution of SCADA data can reflect the system's state:
consistent or inconsistent. Therefore, the monitoring of the

SCADA data has been proposed as an efficient tailored IDS for

SCADA environments. The detection methods are broadly

categorized into two types: signature-based and anomaly-

based. The former can detect only an attack whose signa-

ture is already known, while the latter can detect unknown

attacks by looking for activities that deviate from an expected

patterns (or behaviours). Learning the anomaly-based detec-

tion models can be performed via three modes, namely
supervised, semi-supervised and unsupervised. The class labels

must be available for the first mode; however, this type of

learning is costly and time-consuming because domain ex-

perts are required to label hundreds of thousands of data

observations. The second mode is based on the assumption

that the training data set represents only one behaviour,

either normal or abnormal. There are a number of issues

pertaining to this mode. The system has to operate for a long

time under normal conditions in order to obtain purely

normal data that comprehensively represent normal behav-

iours. However, there is no guarantee that any anomalous

activity will occur during the data collection period. On the

another hand, it is difficult to obtain a training data set that

covers all possible anomalous behaviours that could occur in

the future. Alternatively, the unsupervised mode can be an

appropriate solution to address the aforementioned issues,

where the anomaly detection models can be learned from

unlabelled data without prior knowledge about normal/

abnormal behaviours. However, the poor efficiency and low

accuracy this type of learning are challenging.

1.2. Contributions

This paper proposes a novel unsupervised SCADA data-driven

anomaly detection approach intended to be used as a passive

SCADA IDS. That is, it only raises alarms when suspicious ac-

tivities are detected, and the appropriate responses will be left

for a system administrator. The SCADA data, which are gener-

ated by sensors/actuators, are used as valuable information in

the proposed approach. Fig. 3 shows the two main steps of the

proposed approach: the identification of consistent/inconsis-

tent states from unlabelled SCADA data, and the extraction of

proximity-based detection rules for each behaviour.

The use of control data has attracted the attention of many

researchers studying SCADA data-driven anomaly detection

models that are able to learn the mechanistic behaviour of

SCADA systems without knowledge of the physical behaviour

of such systems (Rrushi, April 2009; Marton et al., 2013; Gao

et al., 2010; Zaher et al., 2009). Such studies however can

operate only in two learning modes: supervised and semi-su-

pervised. Despite the promising results of these learning

modes, there are a number of issues that restrict their use (see

the previous Section 1.1). This paper proposes an unsupervised

learning approach, which consists of two novel techniques.

The first one is used to identify consistent/inconsistent states

from unlabelled data. This is performed by giving an incon-

sistency score to each observation using the density factor for

the k-nearest neighbours of the observation. An optimal

inconsistency threshold is later computed to separate incon-

sistent from consistent observations. The second proposed

technique extracts proximity-based detection rules for each

behaviour, whether inconsistent or consistent. During this

phase, the fixed-width clustering technique (Eskin et al., 2002)

is used to cluster each behaviour individually into micro-

clusters with a constant fixed width, which is statistically

determined. The centroids of all the created micro-clusters

are used as the proximity-detection rules that are assumed

to form a small and most representative data set for both

inconsistent and consistent behaviours in the training data

set.
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The proposed approach is evaluated on both real and

simulated data sets; two are generated by a simulation of a

SCADA system that uses well-known models as discussed in

Section 4.1, while the third is real and consists of consistent/

inconsistent observations. In particular, we compared the

effectiveness of our unsupervised approach with existing

unsupervised and semi-supervised anomaly detection

approaches.

1.3. Organization of the paper

This paper is organised as follows. Section 3 provides a char-

acterisation of consistent/inconsistent observation states for

SCADA data, as well as the details of the proposed approach.

Section 4 presents the experimental setup, followed by results

and analysis in Section 5. Finally, we conclude the work in

Section 6.
2. Related work

In the design of an IDS, two main processes are often

considered. First is the selection of the information source

(e.g. network-based, application-based) to be used, through

which anomalies can be detected. Second is the development

of a learning (or analysis) method that is used to efficiently

build the detection model using the specified information

source. SCADA-specific IDSs can be broadly grouped into three

categories in terms of the latter process: misuse (signature-

based) detection (Digitalbond, 2013), anomaly detection (Linda

et al., 2009; Kumar et al., 2007; Valdes and Cheung, 2009; Yang

et al., 2006; Ning et al., 2002; Gross et al., 2004) specification-

based detection (Cheung et al., 2007; Carcano et al., 2011;

Fovino et al., 2010; Fernandez and Larrondo-Petrie, 2010;

Alcaraz and Lopez, 2014a, 2014b). Recently, several other

signature-based rules (Digitalbond, 2013) have been proposed

to specifically detect particular attacks on SCADA protocols.

These rules can perfectly detect known attacks at the SCADA

level.

To detect unknown attacks at the SCADA network level, a

number of approaches have been proposed. O. Linda et al.

(Linda et al., 2009) suggested a window-based feature extrac-

tion technique to extract important features of SCADA

network traffic, and then used a feed-forward neural network

with a back propagation training algorithm for modelling the

boundaries of normal behaviours. This approach requires,

however, substantial execution time during the training

phase, in addition to the need for re-learning the boundaries

of normal behaviours upon receiving new behaviours. The

model-based detection approach proposed by A. Valdes and S.

Cheung (Valdes and Cheung, 2009) learns about the commu-

nication patterns. This is based on the claim that such pat-

terns are regular and predictable because SCADA has specific

services as well as interconnected and communicating de-

vices that are already predefined. This approach is useful in

providing a border monitoring of the requested services and

devices. Similarly, P. Gross et al. (Gross et al., 2004) proposed a

collaborative approach, named selecticast, which uses a cen-

tralised server to dispatch among ID sensors information

about activities coming from suspicious IPs. In essence, all
these approaches fail to detect high-level control attacks,

which are the most difficult threats to defend against (Wei

et al., 2011). Furthermore, SCADA network-level approaches

are not concernedwith the operationalmeaning of the SCADA

data, which are carried by SCADA protocols, as long as they

are not violating the specifications of the protocol being used,

or a broader picture of the monitored system.

Thus, analyticalmodels based on full system specifications

have been proposed in the literature. Fovino et al. (Fovino

et al., 2010) came up with an analytical approach to identify

critical states for specific-correlated process parameters. Such

a detection model is used to detect malicious actions (e.g.

high-level control attacks) that transform the targeted system

into a critical state. In the same direction, Fovino et al. (Fovino

et al., 2012) and Carcano et al. (Carcano et al., 2011) extended

this idea by identifying critical states for specific-correlated

process parameters. Each critical state is represented by a

multivariate vector, where a vector being a reference point to

measure the degree of criticality of a system. For example,

when the distance of a system's state is close to any critical

state, it shows that it is approaching a critical state. However,

critical state-based approaches require full specifications of

all correlated process parameters, and this in addition to their

respective acceptable values. Moreover, the analytical identi-

fication of critical states for a large number of correlated

process parameters is time-expensive and difficult. This is

because the complexity of the inter-relationships amongst

parameters is proportional to their number. Additionally, any

change made by either adding or removing process parame-

ters would require making the same effort again. Obviously,

human errors are highly expected in the identification process

of critical system states.

Due to the aforementioned issues relating to analytical

models, SCADA data-driven models have been proposed to

capture themechanistic behaviour of SCADA systemswithout

any knowledge of their physical behaviour. It was experi-

mentally shown by Wenxian and Jiesheng (Wenxian and

Jiesheng, 2011) that operational SCADA data for wind turbine

systems are useful if they are properly analysed to indicate the

condition of the system that is being supervised. A number of

SCADA data-drivenmethods for anomaly detection have been

proposed in the literature. Jin et al. (Jin et al., 2006) extended

the set of invariant models using a value range model to detect

anomalous data in the values for a particular process

parameter. A pre-determined threshold is proposed for each

parameter, and any value exceeding this threshold is

considered as anomalous. This approach can detect anomalous

values of individual parameters, while it fails to detect values

whose abnormality is caused by a certain value of another

parameter. Such types of parameters are called multivariate

parameters, and are assumed to be directly (or indirectly)

correlated. Rrushi et al. (Rrushi, April 2009) applied probabi-

listic models to estimate the normalcy of the evolution of

values of multivariate process parameters. Similarly, Marton

et al. (Marton et al., 2013) proposed a data-driven approach to

detect abnormal behaviour in industrial equipments, where

two multivariate analysis techniques, namely principal

component analysis (PCA) and partial least squares (PLS), are

combined to design the detection models. Neural network-

based approaches have also been proposed to model the

http://dx.doi.org/10.1016/j.cose.2014.07.005
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normal behaviour of various SCADA systems. For example,

Gao et al. (Gao et al., 2010) proposed a neural network-based

intrusion detection system for a water tank control system,

which was later extended by Zaher et al. (Zaher et al., 2009) to

build model of the normal behaviour for a wind turbine to

identify faults (anomalies).
3. The proposed intrusion detection
approach

This section describes consistent/inconsistent states of

SCADA data, as well as the techniques that contribute to the

development of an unsupervised intrusion detection method

to detect SCADA-based integrity attacks. Specifically, the

proposed approach consists of (i) a technique that identifies

consistent and inconsistent multivariate SCADA data, and (ii)

a technique that extracts proximity-based detection rules

used to perform a near-real-time monitoring of integrity at-

tacks. Fig. 3 illustrates the different steps of the proposed

approach. This approach is based on density-based outlier
detection during the identification phase and a fixed-width

clustering technique for extracting detection rules. The time

complexity related to data dimensionality is not an issue, as

the proposed approach performs both phases in an off-line

mode. Our approach also uses the concept of distance

ranking instead of absolute distance (Angiulli and Pizzuti,

2005) during the identification of consistent/inconsistent

SCADA data.

3.1. A state of SCADA data

SCADA data, such as sensor measurements and actuator

control data, are data sources for the proposed IDS. The con-

sistency of such data represents the normal system state,

while any inconsistency indicates a malicious action.

Consistent data are defined by the specifications which

describe the valid/acceptable data in terms of the system's
operational perspective. From the simulation presented in

Section 4.1, Fig. 4 depicts the (normal) operation producing

consistent SCADAdata observations of the physical nodes Pst1 ,

Pst2 , Pst3 , Psp1 , Psp2 , Psp3 and T1, where Psti and Pspi represent the

status and the speed of Pumpi, and Tj represents the water

level in the Tankj.

Definition 1. (State). A state represents a combination of SCADA

data produced by nodes at a certain period of time t. A state for n

nodes can be represented by a vector p2 Rn. States can be finite if the

values of the nodes are discrete, or infinite when at least one of the

node data is continuous.

Definition 2. (Consistent/Inconsistent state). A consistent state

is a state that statistically has the higher likelihood of being gener-

ated by the same mechanism that generated the majority of states.

An inconsistent state is any state that statistically deviates from the

majority of the states.
3.2. Identification of consistent/inconsistent states

The identification step, as depicted in Fig. 3, is the first phase in

separating inconsistent SCADA data observations from the

consistent ones. To perform this with unlabelled data, two

assumptions are made: (i) the number of consistent SCADA

data observations vastly outperform the inconsistent ones,

and (ii) the inconsistent SCADA data observations must be

statistically different from the consistent ones. Therefore, the

proposed approach would be inappropriate for any situation

that does not satisfy the two mentioned assumptions. The

preliminary investigations show that inconsistent SCADAdata

observations have a similar definition of outliers in n-dimen-

sional space, and are sparsely distributed in an informal way.

That is, they could take various densities of n-dimensional

space. Two steps are involved in identifying consistent/

inconsistent SCADA data observations, as detailed below.

3.2.1. Inconsistency scoring
We propose an inconsistency scoring technique using a

hybrid of local and global outlier detection approaches

(Breunig et al., 2000, 1999; Vydunas, 2004; Arning et al., 1996).

In the local outlier detection approach (Breunig et al., 2000,

http://dx.doi.org/10.1016/j.cose.2014.07.005
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1999), only local outliers are detected. This works well in a

particular application domain whose normal behaviour forms

a number of clusters that have different densities. In partic-

ular, the global approach (Vydunas, 2004; Arning et al., 1996)

does not work well when the outliers are contained in the

reference points. Since the initial investigation revealed

different densities in inconsistent SCADA data observations,

neither local nor global approaches are appropriate solutions

for our problem. The choice of the best approach should not be

predominantly influenced by either local or global ap-

proaches. Therefore, the proposed inconsistency scoring

technique will need to rely on an average of similarity of the

nearest neighbours and the number of neighbours k that play

a major role in the influence of local and global approaches.

The larger the value of k is, the stronger the influence of the

global approach. For example, when k equals the size of the

data set DS, the inconsistency score for SCADA data obser-

vation si is the average similarity from si to all observations in

DS. This is similar to the global approaches proposed in

Vydunas (2004); Arning et al. (1996).

Let Dpoints be monitored SCADA data observations, where

Dpoints¼ {d1,/,dn}. LetX be a vector of values of di, in the form of

X ¼ {x1,x1,/,xm}. Let Si denotes an observation of Dpoints,

Si¼ {si,1,si,2,/,si,j}, i¼ 1,/,m, j¼ 1,/,nwherem is the number of

observations, and n the number of nodes. Any observation Si
can be either consistent or inconsistent. Given a data set of m

observations, DS ¼ {s1,s2,/,sm}. In the identification phase, a

set of consistent observations, say R ¼ {r1,r2,/,rk}, and a set of

inconsistent observations, say O ¼ {okþ1,okþ2,/,om}, are iden-

tified, where R 4 DS, O 4 DS, R∪O ¼ DS, R ∩ O ¼ f.

To compute the inconsistency score for each observation

Si, which is expected to consist of hundreds of dimensions, we

use the cosine similarity metric, which can work with sparse

numeric data and high dimension space. This metric is used

to measure the similarity between two vectors of n-di-

mensions, and it is widely used in document clustering and

information retrieval (Steinbach et al., 2000). Let U be the

function of cosine similarity between two observations

s ¼ (s1,….,sn) and p ¼ (p1,….,pn), defined as follows:

Uðs;pÞ ¼ cosðqÞ ¼
Pn

i¼1

�
si � pi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðsiÞ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

�
pi

�2q (1)

Let k be a positive parameter such that 2 � k � jDSj, and J

and Y be the functions of an inconsistency score and the k-

nearest neighbours for the observation si respectively. The

inconsistency score for an observation is defined as follows:

Jðsi;DS; kÞ ¼ 1
k

Xk

i¼0

Uðsi;Yðsi;DS=si; kÞÞ (2)

Let us consider Fig. 5, where a data set D of eleven obser-

vations of ℝ2 is shown. Let k ¼ 4. In this example, the incon-

sistency score for the observation O1, based on the Euclidean

distance, is computed as follows. We first find the 4-nearest

neighbours of O1 using the function Y

YðO1;D=O1;4Þ ¼ fs3; s5; s6; s7g
Then, the inconsistency score for the observation O1 is

computed as the average distance from O1 to {s3, s5, s6, s7}.
JðO1;D;4Þ ¼ 27:7þ 22:4þ 24:6þ 20:3
4

¼ 95
4

¼ 79:775

where, the numerators represent the Euclidean distances of

the 4-nearest neighbours of O1.

Fig. 5 shows the k-nearest neighbours of the observation si.

For example, the k-nearest neighbours of the observation 1,

which is a consistent observation with respect to k ¼ 5, are

2,/, 5. This represents a cluster c1 whose centre and size are

observations 1 and k respectively. The inconsistency score of

observation 1 is measured by the average distance of all ob-

servations 2,/, 5 in c1 to observation 1. It can be seen that

clusters c1, c2 and c3 in Fig. 5 have similar radii, and this sug-

gests that their centroid observations may have a similar

inconsistency score. In fact, this is not always true because the

inconsistency score is computed by the inter-compactness of

the cluster, and not by reachability-distance (Ankerst et al.,

1999). Since observations 2 and 5 are the centroids of clus-

ters whose radii are larger than c1, c2 and c3, they will obtain

higher inconsistency scores. The radii of clusters c6 and c7,

whose centroids are given by the inconsistent observations O1

and O2 respectively, are clearly the largest radii, and are

considered as the inconsistent observations because they

have relatively large radii that can significantly deviate from

the mean of the radii of other observations. Algorithm 1

summarises the calculation steps of inconsistency scores for

each observation si.
3.2.2. Separation cut-off score
Since all observations are assigned with inconsistency scores,

an appropriate cut-off score is required to determine whether

the observation is consistent or inconsistent. Clearly, labelling

consistent observations as inconsistent will result in a high

false positive rate. Based on our assumption that consistent

observations constitute a large portion of the training data set,

they will also have very similar inconsistency scores. On the

other hand, inconsistent observations are assumed to

constitute a tiny portion of all observations, with high

inconsistency scores, which are also assumed to be greater

than the inconsistency scores of consistent observations.

Under these assumptions, and in addition to the experimental

results shown in Fig. 6, the probability density of inconsis-

tency scores for observations is approximately normal and

skewed to the right. Moreover, we assume that the inconsis-

tency scores of a large enough number of observations

(greater than 30) satisfy the Central Limit theorem (Johnson

and Wichern, 2002) and can be approximately normally

distributed. Since inconsistent observations are assumed to

have significant inconsistency scores, they are considered to

be beyond m þ 3s.

http://dx.doi.org/10.1016/j.cose.2014.07.005
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Where, m and s are the mean and standard deviation of

inconsistency scores for all observations in the training data

set DS respectively, and they are defined as follows:

m ¼ 1

jDSj
X
si2DS

Jðsi;DS=si; kÞ (3)

s ¼ 1

jDSj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
si2DS

ðJðsi;DS=si; kÞ � mÞ2
s

(4)

Therefore, the status of any observation si in the training

data DS set is determined as follows:

StatusðsiÞ ¼
�
Jðsi;DS; kÞ � mþ 3s consistent
Otherwise inconsistent

(5)

Here, J(si, DS, k) is defined by Equation (2), which computes

the inconsistency score for the observation si. See the illus-

trative example in Section 3.2.1 that shows how the score is

computed.

3.3. Extracting proximity-detection rules

The various constraints of SCADA systems (e.g. real-time

nature, lack of memory resources, limited computation

power) require a tailored IDS that monitors a target system in

at least near real-time and operates in a resource-constrained

environment. In practice, feeding an IDS with the identified

consistent and inconsistent observations for monitoring

purposes is not a practical approach because (i) a large

memory capacity is needed to store all learned observations,

and (ii) it is time-consuming to calculate the similarity be-

tween the current observation and each learned observation

during the monitoring phase. In this section, a detection rule

extraction technique is proposed to extract a few detection

rules which fully represent the entire identified observations.

From these detection rules, the essential requirements of the

SCADA-based IDS (e.g. a small memory capacity and low

computation time) are met.
As shown in Fig. 3, detection rule extraction comes after the

identification phase of consistent and inconsistent observa-

tions. The set of consistent observations is denoted as R ¼ {r1,

r2,/, rk} and the set of critical states is denoted as O ¼ {okþ1,

okþ2,/, om}, where R ∩ O ¼ f. It is assumed that the consistent

observations of a number of nodes will form dense areas and

will constitute a large portion of a training data set, while the

inconsistent observations will be sparsely distributed in the n-

dimensional space and constitute a tiny portion. Hence, R has

one ormore high density clusters. As we are interestedmainly

in extracting a few detection rules which can represent the

learned model, we adopted the fixed-width clustering tech-

nique (Eskin et al., 2002) to cluster the consistent and incon-

sistent observations intomicro-clusters with a constant fixed-

width. However, choosing the appropriate fixed-width value is

a challenging task. This is because a large width will degrade

the model accuracy, while a small width will result in many

rules that need to be checked in the detection phase. Since an

inconsistency score for each observation is the average area of

the neighbourhood of that observation, the mean of inconsis-

tency scores is proposed as an appropriate value of the fixed-

width parameterw, and this is defined as follows:

Let X be a vector of inconsistency scores of the training

data set Dpoints, X ¼ {x1, x2,….xn}, where n is the number of

observations. Then:

w ¼ 1
n

Xn
i¼1

XðiÞ (6)

Algorithm 2 summarises the steps that are necessary to

extract proximity-based detection rules for both consistent

and inconsistent behaviour.
3.4. Inconsistency detection

The proximity-based detection rules, whereby each rule is

represented by a cluster's centroid, are used to monitor any

http://dx.doi.org/10.1016/j.cose.2014.07.005
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observation for the target system to asses whether the current

observation is consistent or inconsistent. Therefore, a current

observation is labelled with the label of the closest micro-

cluster. Let si be the current observation, C ¼ {c1, c2,…, cn} be

the centroids of consistentmicro-clusters andO¼ {o1, o2,…, on}

be the centroids of inconsistent clusters. The closest consis-

tent and inconsistent micro-clusters to si are determined by

the following equations respectively:

cmax ¼ max
c2C

Uðsi; cÞ (7)

omax ¼ max
o2O

Uðsi; oÞ (8)

where U is Equation (1), which computes the cosine similarity

between two observations. In this case, the cosine similarity

between the current (testing) observation si and all micro-

clusters that represent the consistent behaviours, are

computed. Then, the maximum cosine similarity degree is set

to the variable cmax. Similarly, the computation of cosine

similarity between si and all micro-clusters that represent the

inconsistent behaviours is performed, and the maximum

cosine similarity degree is set to the variable omax. Afterwards,

as defined in the following, the status of the current obser-

vation si is judged as consistent when the cosine similarity

degree cmax is greater than omax. Otherwise, it is judged as

inconsistent.

StateTypeðsiÞ ¼
�

cmin > omin Consistent
Otherwise Inconsistent

(9)

3.5. Complexity analysis

We analyse the time complexity for each phase of the pro-

posed approach, namely, (i) the calculation of the inconsis-

tency score for each observation based on its neighbourhood

density, (ii) the extraction of detection rules and (iii) the

inconsistency detection phase. As previouslymentioned, both

first and second phases are assumed to be preformed in an

off-line mode.

During the inconsistency scoring phase, k-nearest neigh-

bours for each observation are required to be located in order

to calculate the inconsistency factor based on neighbourhood

density. To find the k-nearest neighbours for an observation,

all observations in the training data set have to be checked. Let

n be the number of observations in the training data set. The
computational time for this process is O (n2). Obviously, this

process is expensive, especially with a large training data set.

However, it is efficient compared to expert's involvement for

labelling observations. Moveover, the computational time can

be significantly reduced when tree-based spatial algorithms

such as KD-tree (Sproull, 1991), Ball tree (Fukunaga and

Narendra, 1975) and Cover tree (Beygelzimer et al., 2006) are

implemented, where the observations are structured in a way

that can efficiently accelerate the search for k-nearest neigh-

bours. For instance, the use of Ball tree algorithm can effi-

ciently reduce processing time to O (n logn).

The second phase uses the fixed-width clustering

approach to extract proximity-detection rules. A single pass is

required over the data to individually partition the observa-

tions for each behaviour (whether inconsistent or consistent)

into micro-clusters with constant-width w. The cosine simi-

larity between each observation belonging to a particular

behaviour, and all existing micro-clusters which are created

from that behaviour, is computed. Hence, the computational

complexity for partitioning each behaviour is O (mc), where m

is the number of observations for that behaviour, while c (≪m)

is the number of the micro-clusters created from that

behaviour as well.

Finally, we analyse the computational and memory

complexity of the inconsistency detection phase. Since the

centroids of micro-clusters of both inconsistent and consis-

tent behaviours are only used as proximity detection rules,

the computational and memory complexity of these rules is

O (Cn þ Oc), where Cn and On are the number of micro-clusters

of inconsistent and consistent behaviours respectively. For

the inconsistency detection process, the proposed approach

does not need to keep all data in memory, but it only keeps

the centroids of the micro-clusters that will be scanned in

one pass for each testing observation, and therefore the

detection phase is linear with the size of the proximity-

detection rules.
4. Experimental setup

The main focus of this section is to set up an experimental

environment to evaluate the robustness of the proposed

approach. In what follows, we describe the simulation system

used and two integrity attacks. We also describe the data sets

http://dx.doi.org/10.1016/j.cose.2014.07.005
http://dx.doi.org/10.1016/j.cose.2014.07.005
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used and the experimental parameters chosen for this

evaluation.
4.1. Simulation system setup

As the proposed detection approach is intended to monitor

control systems using SCADA data, a supervised infrastruc-

ture (e.g. power energy grids or water supply network) needs

to be built to evaluate the proposed approach. However,

building a real SCADA lab is too expensive in terms of cost,

time and space, especially when supervised infrastructures

need to be analysed and assisted against SCADA-based at-

tacks. Therefore, we opted to implement a full virtual SCADA

lab and simulate a water distribution system (WDS) as the

supervised infrastructure. In practice, we used visualization

features to represent the key parts of the SCADA system. For

example, the field remote terminal units (RTU), Master Ter-

minal Unit (MTU) and humanemachine interface (HMI) are

represented by a number of virtual machines after installing

the library (Team, 2012) of the widely used Modbus protocol

(IDA, 2013). The virtualized network is used as the commu-

nication infrastructure at all SCADA network levels (e.g. field

and control levels).

To simulate a supervised infrastructure, we used the li-

brary of the well-known and free hydraulic and water quality

model, called EPANET (Lewis, 2011). A WDS server acts as a

surrogate for a real WDS. The EPANET model involves three

modules, namely hydraulic, water quality and water
consumption modules. We fed the consumption module with

a specific model (i.e. the 2010 Melbourne water consumption

(Melbourne Water, 2009)) so as to simulate the realistic

behaviour of a water distribution system. One virtualmachine

is assigned to theWDS server. This server feeds the simulated

data to virtualized field devices, and receives the Modbus/TCP

control messages via a proxy. This proxy is used as an inter-

face between virtualized field devices and theWDS server. For

realistic simulation, the WDS server reads and controls pro-

cess parameters such as water flow, pressure and valve status

in response to message commands from a field device. The

manipulated process parameters in the WDS server are:

� Water flow, pressure, demand and level.

� Valve status and setting.

� Pump status and speed.
4.2. A Water Distribution System (WDS) scenario

Fig. 7 depicts an example of a simple WDS for a small town.

This town is divided into three areas, namely A, B and C. Each

area has an elevated tank to supply it with water at a satis-

factory pressure level. The supplied water is pumped out by

three pumps from the treatment system into Tank1. The water

is also delivered to Tank2 by two pumps. Tank3 is supplied

through gravity because of the elevation of Tank2 which is

higher than Tank3. Tank1 is twice as big as Tank2 and Tank3

http://dx.doi.org/10.1016/j.cose.2014.07.005
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because it is considered to be the main water source for areas

B and C.

The water network is monitored and controlled by the

SCADA system. In this scenario, four RTUs, namely RTU1, …,

RTU4, are used. The MUT server plays a key role in sending

command messages, in addition to storing the acquired data

in the Historian. TheMUT server sends commandmessages to

the RTUs to functionally perform the following tasks:

� RTU1 opens and closes valve V1 according to the water level

reading of Tank3, and reads the water level of Tank2.

� RTU2 reads the water level of Tank3.

� RTU3 controls the status and speed of the pumps P4 and P5
according to the water level reading of Tank2, and to read

the water level of Tank1.

� RTU4 controls status and speed of the pumps P1, P2 and P3
according to the water level reading of Tank1.
4.3. Scenario of attacks

The purpose of this scenario is to affect the normal behaviour

of WDS. The public network (e.g. Internet) is used to inter-

connect all theWDS's components through Ethernetmodules.

The Modbus/TCP application protocol is set up as a commu-

nication protocol. However, all TCP vulnerabilities are

inherited and therefore the system is susceptible to external

attacks such as DoS (Denial of Service) and integrity attacks.

Refer to previous work (Queiroz et al., 2011; Almalawi et al.,

2013; Fahad et al., 2014) for such attack scenarios on SCADA

systems.

We have opted to simulate man-in-the-middle attacks. Such

attacks require a prior knowledge of the target system, and

this can be obtained from the specifications, or by correlation

analysis for the network traffic of that system. By looking at

the specifications, RTU4 controls the status and the speed of

pumps P1, P2 and P3 in accordancewith the water level reading

of Tank1. This is automatically performed by the MUT server.

We compromised the MUT server and performed two mali-

cious actions. Firstly, we sent 100 successive command mes-

sages to RTU4 to turn off pump2 and pump3, and randomly

change the speed of the pump1 between 0.1 and 1. Secondly,

we performed a similar malicious action on RTU4 to turn off

pump2 and randomly change speed of pump1 and pump2 be-

tween 0.1 and 1. These types of attacks can be launched in a

number of ways, and RTU4 will trust such commands, as they

are sent from the MUT server.

4.4. The data sets

To provide quantitative results for the proposed approach, we

evaluated its performance using three different data sets: one

is a publicly available, real data set (Frank and Asuncion, 2013)

and two are generated by the aforementioned simulation

system. The data sets contain raw records of SCADA data with

an associated label to indicate whether the record was part of

a consistent or inconsistent observation.

The simulated data sets consist of twenty-three nodes.

Each data set consists of approximately 10,500 observations.

The first data set has 100 inconsistent observations since
pump2 and pump3 were turned off, although the water level in

tank1 was low; moreover, the speed of pump1 was not properly

adjusted according to the water level in Tank1. Similarly, the

second data set also had 100 inconsistent observations, since

pump3 was turned off although the water level in Tank1
required this pump to be ON; in addition, the speeds of pump1
and pump2 were not properly adjusted according to the water

level in Tank1. The simulated data sets are denoted as Sim-

Data1 and SimData2 .

The real data set comes from the daily measuring of sen-

sors in an urban waste water treatment plant (referred to as

DUWWTP), and it consists of 38 data nodes (Frank and

Asuncion, 2013). This data set consists of approximately 527

observations, 14 of which are labelled as inconsistent.

To improve the accuracy and efficiency of the proposed

approach, the normalization technique is applied to all testing

data sets to scale features in the range between 0.0 and 1.0.

This prevents those features with a large scale from out-

weighing features with a small scale. As the actual minimum/

maximum of features are already known, and because the

identification process is performed in static mode, the min-

emax normalization technique is used to map the values of

features. A given feature A would have a value in the range

[0.0, 1.0]. Let us denote by minA and maxA the minimum and

maximum value of A respectively. Then, to produce the

normalized value of v (v 2 A) using the minemax normali-

zationmethod,whichwe denote as v
0
, the following formula is

used:

v0 ¼ v�minA

maxA �minA
(10)

One parameter is required for the proposed approach. The

k-nearest neighbours parameter is the influencing factor for

the inconsistency scoring technique. However, this value

could be application-dependent. Therefore, the value of k can

be heuristically determined by setting this value at 5% of the

representative data set, as it is assumed to be the maximum

percentage of anomalies in a data set (Eskin et al., 2002).
5. Results and analysis

This section evaluates the accuracy of anomaly detection of

the proposed unsupervised approach, and in addition, a

comparison between this approach and two existing unsu-

pervised and semi-supervised anomaly detection approaches is

carried out. The detection accuracy for each approach is

separately evaluated because the existing approaches that

have been chosen as a basis for comparisonwith the proposed

approach are inherently different in terms of the required

parameters for learning anomaly detection models.

All observations in the three data sets are used to

demonstrate the accuracy of the identification process for

consistent/inconsistent observations in each data set. To

evaluate the robustness of each approach, the k-fold-cross

validation technique is applied to each data set for each

experimental parameter. This technique divides the data set

into K equal size subsets. Each time, one of the subsets is used

as the validation data to test the model, while the remaining

K � 1 subsets are used to train the model. In this evaluation, K

http://dx.doi.org/10.1016/j.cose.2014.07.005
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is set to 10 as suggested by Kohavi (Kohavi, 1995) to reliably

demonstrate the appropriateness of a proposed predictive

model. All experiments are conducted in Matlab v12 on a PC

with 2.53 GHz CPU and 4 GB memory.
5.1. Accuracy metrics

Severalmetrics have been used to evaluate anomaly detection

approaches. In this evaluation, the precision, recall and F-score

well-known metrics are used to quantitatively measure the

performance of a system, as they are not dependent on the

size of the training and testing data set. The metrics used are

defined as follows:

Recall ðDetection rateÞ ¼ TP
TPþ FN

(11)

False positive rate ¼ FP
FPþ TN

(12)

Precision ¼ TP
TPþ FP

(13)

F� score ¼ 2� precision� recall
precisionþ recall

(14)

where TP is the number of inconsistent observations that are

correctly detected, FN is the number of inconsistent observa-

tions that have occurred but have not been detected, FP is the

number of consistent observations that have been incorrectly

flagged as inconsistent, and TN is the number of consistent

observations that have been correctly classified. The recall

(detection rate) represents the proportion of correctly detected

inconsistent observations to the actual size of the inconsistent

observations in the testing data set, while false positive rate is

the proportion of the consistent observations incorrectly

classified as inconsistent to the actual size of the consistent

observations in the testing data set. The precision metric is

used to demonstrate the robustness of the IDS in minimizing

the false positive rate. However, the system can obtain a high

precision score even though a number of inconsistent obser-

vations have been missed. Similarly, the system can obtain a

high recall score although the false positive rate is higher.

Therefore, the F-score, which is the harmonic mean of preci-

sion and recall, would be a more appropriate metric to

demonstrate the accuracy of anomaly detection approaches.
Table 1 e The accuracy results in identifying consistent/
inconsistent observations on the three data sets.

Data set Detection
rate

False positive Precision F-score

DUWWTP 92.86% 0.19% 92.86% 92.86%

SimData1 98.04% 0.17% 84.75% 90.91%

SimData2 100.00% 0.15% 86.21% 92.59%
5.2. Performance evaluation

Two parts are discussed this section: the first part is the ac-

curacy of the identification of consistent and inconsistent

observations as a first phase to extract detection rules, while

the second part is the detection accuracy of these extracted

detection rules, and the impact of the number of learned rules

on detection accuracy and the time elapsed for calculating the

cosine similarity of a test observation against these rules.

5.2.1. Identification accuracy
As previously discussed, the proposed approach initially

identifies the inconsistent observations from the training data

set to form two data sets, inconsistent and consistent, from
which the detection rules are generated. Due to the incon-

sistency score for each observation based on its neighbour-

hood density in this phase, the value of k-nearest neighbours

needs to be given. In this evaluation, the value of k-nearest is

set to be 5% of the representative data set, as this value is

assumed as the maximum percentage of anomalies in a data

set (Eskin et al., 2002). Therefore, this value is assumed to

discriminate between inconsistent observations and consis-

tent ones in terms of neighbourhood density. Table 1 shows

promising results when identifying the inconsistent obser-

vations from the consistent ones on all data sets.

5.2.2. Detection accuracy and efficiency
Firstly, the proposed approach gives an inconsistency score

for each observation in the training data set using Algorithm1,

and then separates the inconsistent observations from

consistent ones. Secondly, it adopts the fixed-width clustering

algorithm to individually cluster the inconsistent and

consistent observations into micro-clusters with constant-

width w as discussed earlier in Section 3.2. The clusters

created from consistent observations are labelled as normal,

while the clusters created from the inconsistent observations

are labelled as abnormal. The cluster-width parameter w is

statistically determined and calculated as in Equation (6). In

the proposed approach, one parameter is required, which is

the k-nearest-neighbours. However, this parameter can be

heuristically determined as discussed earlier in Section 4. The

value of parameterw (as discussed in Section 3.3) controls the

number of learned rules. A small value of the parameterwwill

result in many rules and, consequently, a high similarity

computation is required in the detection phase, while, a large

will result in few rules that may not mostly represent the

learning data set, and therefore the detection accuracy of the

proposed approachmay be degraded. Tables 2e4 demonstrate

the detection accuracy of learned rules, and the impact of

their sizes on detection accuracy and the amount of time

required to calculate the cosine similarity of a test

observation.

As can be seen in Tables 2e4, the various values of the

cluster width parameter w are used to learn the proximity-

detection rules, where these rules are assumed to represent

the behaviours (either consistent or inconsistent) of the

training data set. Each table demonstrates the detection ac-

curacy results for a particular data set, where each row of the

table represents detection accuracy results of the learned

proximity-detection rules for a specific value of the parameter

w, and also shows how this parameter controls the size of

rules of which detection accuracy and the amount of time

required to judge any observations against these rules are

affected positively or negatively. For instance, the first row in

http://dx.doi.org/10.1016/j.cose.2014.07.005
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Table 2 e The accuracy results of the proposed approach on the real SCADA data set (DUWWTP).

w #Obs #Rules Avg.Time (ms) Detection rate False positive Precision F-score

m ¼ 0.7491 476 67 0.1237 85.71% 0.00% 100.00% 92.31%

mþ0.5s ¼ 0.8551 476 42 0.1355 78.57% 0.00% 100.00% 88.00%

mþs ¼ 0.9612 476 26 0.0555 71.43% 0.00% 100.00% 83.33%

mþ1.5s ¼ 1.0672 476 18 0.0434 57.14% 0.00% 100.00% 72.73%

mþ2s ¼ 1.1732 476 17 0.0415 50.00% 5.88% 70.00% 58.33%

mþ2.5s ¼ 1.2793 476 14 0.0434 50.00% 7.84% 63.64% 56.00%

mþ3s ¼ 1.3853 476 10 0.0316 42.86% 13.73% 46.15% 44.44%

mþ3.5s ¼ 1.4913 476 9 0.0313 42.86% 15.69% 42.86% 42.86%

mþ4s ¼ 1.5973 476 7 0.0251 42.86% 17.65% 40.00% 41.38%

mþ4.5s ¼ 1.7034 476 5 0.0232 35.71% 23.53% 29.41% 32.26%

mþ5s ¼ 1.8094 476 5 0.0223 35.71% 29.41% 25.00% 29.41%

w: The cluster width parameter, m and s are themean and standard deviation of inconsistency scores for all observations in the training data set

respectively.

Obs: The number of observations in the training Data set.

Avg.Time: the time spent for calculating the cosine similarity of a test observation against learned rules.
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Table 2 indicates that the value of the parameter w is set to

0.7506, that is the mean of inconsistency scores of all training

observations, to create micro-clusters for both consistent/

inconsistent observations. In this example, 67 micro-clusters

are created whose centroids are then used for the proximity-

detection rules.

Overall, the accuracy of proximity-detection rules on the

three data sets (the real and simulated ones) demonstrate

promising results when the value of parameter w is set to the

mean of inconsistency scores. It is important to note that the

learned proximity-detection rules mostly represent both

consistent/inconsistent behaviours in the training data sets.

In addition, the small size of these rules significantly reduces

the time required in the detection phase to judge whether an

observation is consistent or inconsistent. It can be seen in

Table 3 that from 9461 observations, 348 proximity-detection

rules are learned, and less than 1 millisecond is required to

predict the behaviour of the coming observation.

5.3. Performance evaluation of unsupervised
approaches

As the proposed approach is based on the unsupervisedmode,

we chose K-means (MacQueen, 1967) and fixed-width (Eskin

et al., 2002), clustering-based algorithms (Jianliang et al.,

2009; Münz et al., 2007; Oldmeadow et al., 2004; Eskin et al.,
Table 3 e The accuracy results of the proposed approach on th

w #Obs #Rules Avg.Time (ms) D

М ¼ 0.1455 9461 348 0.5033

М þ0.5s ¼ 0.2141 9461 211 0.3110

М þs ¼ 0.2827 9461 145 0.2262

М þ1.5s ¼ 0.3513 9461 108 0.1621

М þ2s ¼ 0.4199 9461 81 0.1271

М þ2.5s ¼ 0.4885 9461 60 0.1067

М þ3s ¼ 0.5571 9461 37 0.0657

М þ3.5s ¼ 0.6257 9461 30 0.0563

М þ4s ¼ 0.6943 9461 19 0.0420

М þ4.5s ¼ 0.7629 9461 16 0.0365

М þ5s ¼ 0.8315 9461 13 0.0331
2002), as they are promising techniques for learning unsu-

pervised clustering-based anomaly detection models.

5.3.1. Fixed-width clustering algorithm
This algorithm creates a set of clusters of fixed width and the

various clustering steps of this algorithm are discussed in

Section 3.3. To evaluate the detection accuracy of this algo-

rithm, we used the approach in (Eskin et al., 2002) that per-

forms detection by clustering the training data set into a

number of clusterswith constantwidth, and label each cluster

as either normal or abnormal by taking a percentage N of the

largest clusters to be labelled as normal, while the rest are

considered as abnormal. In a slightly different way, we

labelled any cluster as abnormal when the proportion of the

observations associated with it to the actual number of the

observations in training data set, is less than the predefined-

percentage N; otherwise, the cluster is labelled as normal.

During the testing phase, an observation is judged by the label

of the closest cluster. Clearly, two main user-specified pa-

rameters are required: cluster-width and N. However, it is

challenging to directly determine the appropriate parameters

that produce a detection model that maximizes the detection

accuracy. Therefore, we attempted ten values of cluster-width

from 0.01 to 0.2 increased by 0.02, and each cluster-width is

tested with ten values of N from 1 to 10. For simplicity, we

chose the top ten F-scores, as shown in Tables 5e7.
e simulated SCADA data set (SimData1).

etection rate False positive Precision F-score

98.04% 0.48% 95.24% 96.62%

98.04% 0.77% 92.59% 95.24%

93.14% 1.25% 87.96% 90.48%

90.20% 1.25% 87.62% 88.89%

78.43% 1.63% 82.47% 80.40%

73.53% 1.92% 78.95% 76.14%

63.73% 2.40% 72.22% 67.71%

60.78% 2.60% 69.66% 64.92%

57.84% 2.88% 66.29% 61.78%

49.02% 3.56% 57.47% 52.91%

47.06% 3.85% 54.55% 50.53%

http://dx.doi.org/10.1016/j.cose.2014.07.005
http://dx.doi.org/10.1016/j.cose.2014.07.005


Table 4 e The accuracy results of the proposed approach on the simulated SCADA data set (SimData2).

w #Obs #Rules Avg.Time (ms) Detection rate False positive Precision F-score

М ¼ 0.1473 9461 351 0.5543 98.00% 0.19% 98.00% 98.00%

М þ0.5s ¼ 0.2183 9461 204 0.3102 95.00% 0.48% 95.00% 95.00%

М þs ¼ 0.2893 9461 142 0.2140 85.00% 0.77% 91.40% 88.08%

mþ 1.5s ¼ 0.3603 9461 103 0.1686 77.00% 0.96% 88.51% 82.35%

mþ 2s ¼ 0.4313 9461 83 0.1305 74.00% 1.25% 85.06% 79.14%

mþ 2.5s ¼ 0.5022 9461 58 0.1097 69.00% 1.54% 81.18% 74.59%

mþ 3s ¼ 0.5732 9461 37 0.0697 65.00% 1.92% 76.47% 70.27%

mþ 3.5s ¼ 0.6442 9461 24 0.0480 40.00% 2.31% 62.50% 48.78%

mþ 4s ¼ 0.7152 9461 21 0.0473 30.00% 2.40% 54.55% 38.71%

mþ 4.5s ¼ 0.7862 9461 15 0.0379 25.00% 2.69% 47.17% 32.68%

mþ 5s ¼ 0.8571 9461 13 0.0318 20.00% 2.88% 40.00% 26.67%
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As it can be seen in Tables 5e7, the fixed-width clustering

algorithm performs well in detecting inconsistent observa-

tions provided that the two main user-specified parameters,

as discussed, are appropriately chosen. However, determining

the best parameters with unlabelled data is impractical. In

addition, each data set has different parameters to maximize

the detection accuracy.

5.3.2. k-means algorithm
k-means (MacQueen, 1967) is a clustering algorithm which is

simple and commonly used to partition data into a number of

clusters, where the number of clusters must be specified in

advance. This algorithm involves several steps to cluster the

data:

1. Define the number of clusters C.

2. Randomly select C of the objects in the data set, and

consider them as the clusters' centroids.
3. Assign each object in the data set to the nearest cluster.

4. Recalculate the new centroid for each cluster by computing

the mean for all objects in each cluster.

5. Repeat step 3 until the change of centroids is stable.

Similarly, with k-means, we used the samemethod as was

used with the fixed-width clustering algorithm to build the

detection model, although the number of clusters is specified

instead of cluster-width. We used ten different values of the
Table 5 e The accuracy results of fixed-width clustering
based approach on the real SCADA data set (DUWWTP).

w N Detection rate False positive Precision F-score

0.03 1 98.10% 8.51% 62.85% 76.15%

0.05 1 75.71% 2.79% 80.53% 76.07%

0.05 2 77.62% 5.00% 72.35% 72.24%

0.07 1 59.52% 1.10% 89.92% 69.56%

0.07 4 59.05% 1.11% 89.45% 69.18%

0.09 2 60.00% 1.50% 86.21% 68.54%

0.09 6 60.00% 1.56% 85.02% 68.31%

0.09 10 60.00% 1.56% 85.76% 68.26%

0.09 8 60.00% 1.62% 83.39% 68.17%

0.09 5 60.00% 1.63% 84.91% 68.12%

w: The cluster width parameter.

N: The percentage of the data in a cluster to be assumed as

malicious.
number of clusters C, from 1 to 10, and each different value is

tested with ten values of N from 1 to 10. Again, for simplicity,

we demonstrated the top 10 F-scores, as shown in Tables

11e13.

The top ten accuracy results of k-means in Tables 11e13

demonstrate that the k-means algorithm performs worse

than the fixed-width clustering algorithm. Similar to the fixed-

width algorithm, k-means requires two main user-specified

parameters: the number of clusters C and the percentage of

the number of observations in each cluster to be labelled as

abnormal N. Moreover, it can be seen that all data sets have

different parameters so as to maximize the detection

accuracy.

5.4. Performance of the semi-supervised approach

A supervised anomaly detection learning approach requires

class labels for both normal and abnormal behaviours to learn

anomaly detection models, but, by contrast, a semi-

supervised learning approach can learn such models using

either normal or abnormal behaviour. For instance, if the

training data set is assumed to represent the normal behav-

iour, the artificial data can be generated to take the role of the

abnormal behaviour. In this evaluation, following the work of

Hempstalk et al. (Hempstalk et al., 2008), artificial data are

generated by using a density estimator to form a reference

distribution from the training data, that represents one

behaviour. Then, the reference distribution is used to generate

artificial data that represents the other behaviour. Afterwards,

we a Naive Bayes (John and Langley, 1995) is used to learn the
Table 6 e The accuracy results of fixed-width clustering
based approach on the real SCADA data set (DUWWTP).

w N Detection rate False positive Precision F-score

0.11 1 96.47% 0.01% 99.80% 98.11%

0.13 1 96.47% 0.01% 99.80% 98.11%

0.13 3 96.47% 0.01% 99.80% 98.11%

0.15 1 96.47% 0.01% 99.80% 98.11%

0.15 2 96.47% 0.01% 99.80% 98.11%

0.15 3 96.47% 0.01% 99.80% 98.11%

0.11 2 96.47% 0.01% 99.80% 98.10%

0.11 3 96.47% 0.01% 99.80% 98.10%

0.13 2 96.47% 0.01% 99.80% 98.10%

0.09 2 96.47% 0.10% 97.98% 97.21%

http://dx.doi.org/10.1016/j.cose.2014.07.005
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Table 7 e The accuracy results of fixed-width clustering
based approach on the real SCADA data set (DUWWTP).

w N Detection rate False positive Precision F-score

0.11 1 100.00% 0.01% 99.80% 99.90%

0.11 2 100.00% 0.01% 99.80% 99.90%

0.11 3 100.00% 0.01% 99.80% 99.90%

0.11 4 100.00% 0.01% 99.80% 99.90%

0.13 2 99.67% 0.01% 99.80% 99.73%

0.09 4 100.00% 0.12% 97.70% 98.83%

0.09 2 100.00% 0.12% 97.69% 98.82%

0.09 1 100.00% 0.12% 97.51% 98.73%

0.09 3 100.00% 0.13% 97.47% 98.70%

0.07 3 100.00% 0.14% 97.15% 98.54%

Table 9 e The accuracy results of semi-supervised
approach on the simulated SCADA data set (SimData1)
with consistent rejection rate ¼ 0.05.

N InC Detection rate False positive Precision F-score

0% 0 98.04% 5.39% 78.13% 86.96%

10% 10 40.22% 5.67% 55.22% 46.54%

20% 20 36.59% 8.16% 40.54% 38.46%

30% 31 23.94% 9.27% 25.00% 24.46%

40% 41 8.20% 9.29% 8.77% 8.47%

Table 10 e The accuracy results of semi-supervised
approach on the simulated SCADA data set (SimData2)
with consistent rejection rate ¼ 0.15.

N InC Detection rate False positive Precision F-score

0% 0 75.00% 13.46% 34.88% 47.62%

10% 10 67.78% 13.90% 29.47% 41.08%

20% 20 58.75% 14.43% 23.50% 33.57%

30% 30 54.29% 13.83% 20.43% 29.69%

40% 40 46.67% 13.52% 16.09% 23.93%
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anomaly detection model, as it provides the most accurate

results among a number of classifiers that have been inves-

tigated in this evaluation.

For this evaluationWEKA data mining software (Developer

version 3.7.10 (Hall et al., 2009)) is used. This is because the

artificial data generation approach (Hempstalk et al., 2008)

and a number of supervised classifiers such as, Naive Bayes

(John and Langley, 1995), are implemented in this software.

The population of inconsistent observations is set to 50%. The

consistent rejection rate, where a new observation is consid-

ered as consistent, is experimentally determined and the

optimal value is found to be different for each data set.

A semi-supervised learning approach appears to be a time-

and cost-efficient technique, since domain experts are not

required to label a hundred thousand of data observations.

With this technique, only the targeted system is required to

operate for a long time under normal condition in order to

obtain purely normal data that comprehensively represent

normal behaviours. However, it cannot be guaranteed that no

anomalous activity will occur during the data collection

period. To demonstrate this issue, five anomaly detection

models are learned for each data set, as shown in Tables 8e10.

The first model is learned from a training data set containing

only consistent observations, while the others are learned

from the same training data set, but each time a number of

inconsistent observations are introduced into the training

data set as consistent in order to observe their impact on the

detection accuracy of a learned model. It is important to note,

as shown in Tables 8e10 that the detection accuracy degraded

in semi-supervised learning when some inconsistent
Table 8 e The accuracy results of semi-supervised
approach on the real SCADA data set (DUWWTP) with
consistent rejection rate ¼ 0.002.

N InC Detection rate False positive Precision F-score

0% 0 92.86% 1.18% 95.59% 94.20%

10% 1 90.71% 1.76% 93.38% 92.03%

20% 3 77.62% 0.78% 96.45% 86.02%

30% 4 71.79% 0.59% 97.10% 82.55%

40% 6 64.57% 0.47% 97.41% 77.66%

N: The percentage of inconsistent observations that are labelled as

consistent at the training time.

InC: The number of inconsistent observations that are added into

the training data set as consistent ones.
observations are learned as consistent during the training

phase. Clearly, the rate of degradation increased, as the

amount of inconsistent observations that are added into the

training data as consistent is increased.
6. Conclusion

In this paper, we proposed an innovative unsupervised

SCADA data-driven anomaly detection approach to detect

integrity attacks tailored to SCADA systems. This has been

done by initially identifying the consistent and inconsistent

states of SCADA data automatically, and then also automati-

cally extracting proximity-based detection rules from the

identified states to detect inconsistent states. Experimental

results show the ability of the proposed approach to auto-

matically identify consistent and inconsistent states, with

significant accuracy. Moreover, the automatically extracted

proximity-based detection rules show promising detection
Table 11 e The accuracy results of k-means clustering
based approach on the real SCADA data set (DUWWTP).

C N Detection rate False positive Precision F-score

10 7 71.43% 6.05% 62.75% 65.40%

8 10 70.95% 6.83% 65.46% 64.42%

10 8 72.86% 9.51% 58.37% 61.19%

15 4 66.67% 7.29% 58.43% 60.93%

13 4 58.10% 3.77% 71.02% 60.56%

13 5 67.62% 6.69% 59.41% 60.56%

9 9 74.76% 10.77% 53.19% 60.48%

12 7 72.86% 9.96% 54.10% 60.29%

15 5 74.76% 10.73% 51.52% 59.45%

14 5 67.62% 8.06% 55.26% 59.40%

C: The number of created clusters.

N: The percentage of the data in a cluster to be assumed as

malicious.

http://dx.doi.org/10.1016/j.cose.2014.07.005
http://dx.doi.org/10.1016/j.cose.2014.07.005


Table 12 e The accuracy results of k-means clustering
based approach on the real SCADA data set (DUWWTP).

w N Detection rate False positive Precision F-score

4 5 99.61% 4.12% 54.60% 70.43%

3 10 99.61% 4.12% 54.50% 70.39%

3 8 99.61% 4.12% 54.50% 70.38%

4 6 99.61% 4.12% 54.48% 70.38%

6 6 99.61% 4.12% 54.49% 70.38%

5 6 99.61% 4.12% 54.47% 70.37%

6 5 99.54% 4.55% 53.45% 69.27%

5 5 99.61% 4.58% 53.40% 69.23%

7 6 99.61% 4.70% 52.97% 68.76%

4 10 99.61% 5.05% 52.43% 68.12%

Table 13 e The accuracy results of k-means clustering
based approach on the real SCADA data set (DUWWTP).

C N Detection rate False positive Precision F-score

15 4 32.07% 7.02% 20.06% 23.50%

15 2 23.67% 0.63% 23.00% 23.23%

15 3 28.13% 2.22% 19.96% 22.59%

14 3 21.00% 1.11% 17.80% 18.84%

13 1 16.67% 0.02% 16.60% 16.63%

15 1 16.67% 0.04% 16.54% 16.60%

14 1 16.67% 0.04% 15.98% 16.28%

15 6 57.47% 33.33% 7.92% 13.87%

9 2 13.33% 0.12% 13.33% 13.33%

12 1 13.33% 0.01% 13.33% 13.33%
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accuracy results compared to three existing anomaly detec-

tion approaches, two of which are based on unsupervised

learning, while the third is based on semi-supervised learning.

However, the proposed approach is based on the k-nearest

neighbour technique, which is computationally expensive

when computing an inconsistency score for each observation.

Thus, the reduction of computational time will be studied in

the future. Moreover, we will evaluate this approach with

further anomaly detection approaches in various application

domains.
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