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Abstract

Sincefuzzy controllersare nonlinear, it ismore difficult to set the controller gains com-
pared to proportional-integral-derivative (PID) controllers. This research paper proposes
adesign procedure and a tuning procedure that carries tuning rules from the PID domain
over to fuzzy single-loop controllers. The ideaisto start with a tuned, conventiona PID
controller, replace it with an equivalent linear fuzzy controller, make the fuzzy controller
nonlinear, and eventually fine-tune the nonlinear fuzzy controller. Thisis relevant when-
ever aPID controller is possible or already implemented.

1. Introduction

When the control problem isto regulate the process output around a setpoint, it is natural
to consider error as an input, even to a fuzzy controller, and it follows that the integral
of the error and the derivative of the error may be useful inputs as well. In a fuzzified
PID controller, however, it is difficult to tell the effect of each gain factor on the rise time,
overshoot, and settling time, since it is most often nonlinear and has more tuning gains
than a PID controller. The objective in this paper isto find a systematic tuning procedure
by carrying PID tuning rules over to the fuzzy domain. A systematic tuning procedure
would make it easier to install fuzzy controllers, and it might pave the way for auto-tuning
of fuzzy controllers.
PID controllers may be tuned in a variety of ways, including hand-tuning, Ziegler-
Nicholstuning, loop shaping, analytical methods, by optimisation, pole placement, or auto-
tuning (Smith, 1979; Astrém & Hagglund, 1995). Furthermore, fuzzy controllers show
similarities with PID controllers under certain assumptions (Siler & Ying, 1989; Mizu-
moto, 1992; Qiao & Mizumoto, 1996; Tso & Fung, 1997). But there is still a gap, it seems,
between the PID tuning methods and a design strategy for fuzzy controllers of the PID type.
This paper proposes a design strategy, which makes use of known PID design tech-
nigues, before implementing the fuzzy controller:

1. Tune a PID controller
2. Replace it with an equivalent linear fuzzy controller
3. Make the fuzzy controller nonlinear
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Figure 1: Proportiona control with load [ and noise n.

4. Fine-tuneit

It seems sensible to start the controller design with acrisp PID controller, maybe even
just a P controller, and get the system stabilised. From there it is easier to go to fuzzy
control. Each step will beinvestigated in the following.

2. Tuning a PID controller

Thefirst step in the design strategy isto install and tune a PID controller. Theideal contin-
uous PID controller
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returns the controller output v, the constant K. » isthe proportional gain, T; isthe integral
time, Ty the derivative time, and e isthe error between the reference and the process output
y (e = Ref — y). Weareconcerned with digital control, and for small sampling periods T,
the equation may be approximated by a discrete approximation. Replacing the derivative
term by a backward difference and the integral by a sum using rectangular integration, an
approximation is

un, = K, en—l—%jzlest—&-Td% @)
Index n refers to the time instant. By funing we shall mean the activity of adjusting the
parameters K, T;, and T}.

Several tuning aspects may beillustrated by static considerations (Astrom & Hagglund,
1995). For purely proportional contr@l; = 0 and1/T; = 0), the control law (2) reduces
to

un = Kpep 3

Consider the feedback loop in Fig. 1, where the controller has the proportion& gaimd

the process has the galfiin steady state. The process outplis related to the reference

Ref, the loadl, and the measurement noisdy the equation
K,K K
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Controller K, T; Ty
P 0.5K,
Pl 045K, T,/1.2
PID 0.6K, T./2 T./8

Table 1: The Ziegler-Nichols rules (frequency response method)

If » and [ are zero, then K, should be high in order to ensure that the process output = is
closeto thereference Re f. Furthermore, if [ is nonzero, ahigh value will make the system
lesssensitiveto changesintheload [. But if n isnonzero K, should be moderate, otherwise
the system will betoo sensitiveto noise. If the process dynamics are considered, the closed
loop system will normally be unstable if K, is high. Obviously the setting of K, is a
balance between the control objectives: stahility, noise sensitivity, and load regulation. A
PID controller may betuned using the Ziegler-Nichols frequency response method (Ziegler
& Nicholsin Astrém & Hagglund, 1995).

Procedure Ziegler-Nichols.

(a) Increase the proportional gain until the system oscillates; that gain is the ultimate gain
K,.
(b) Read the time between pedKksat this setting.

(c) Table 1 gives approximate values for the controller gains.
O

The sample period may be related to the derivative @airstrom and Wittenmark
(1984) suggest that the sample period should be betiyd@randl /2 of T;. In connection
with the Ziegler-Nichols rules, this implies th&f should approximately equal-5 percent
of the ultimate period’,. Another rule says that it should be chosen somewhat smaller than
the dominating time constant in the process, for instance betiydérand1/5 of that time
constant.

Ziegler and Nichols also give another method called¢hetion curve or step response
method (see for example Astrém & Hagglund, 1995). That method uses the open loop step
response to find the gains, and this is an advantage if oscillations in the closed loop system
cannot be tolerated.

Example 1 (Z-N tuning) Assume the process in Fig. 1 has the transfer function

1
G(s) = ———
)= G
Insert a PID controller with differential and integral action removed by setting Ty = 0 and
1/T; = 0. Gradually increase the proportional gain until it reaches a stable oscillation

(Fig. 2). This gainis K,, = 8 and the ultimate period is approximately T,, = 15/4.  There
is a load on the system (cf. Fig. 1), therefore the controller must contain an integrator The
third row in Table 1 implies K,, = 0.6 « K,, =48, T; =1T,/2 =15/8,and Ty = T, /8 =
15/32. Figure 3 shows the closed loop response after a step in the reference (at time equal
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Figure 2: Ziegler-Nichols oscillation of process 1/ (1 + s)* .
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Figure 3: PID control of 1/(1 + s). A reference step at 0 seconds is followed by a load
step at 20 seconds; Ziegler-Nichols tuning.



Action Risetime Overshoot Stability

Increase K,  faster increases  getsworse
Increase Ty dower decreases  improves
Increase1/T; faster increases  getsworse

Table 2: Rules of thumb for tuning PID controllers.

to zero) and the load (after 20 seconds).

Ziegler and Nichols derived the rules for alinear system with atime lag and an inte-
grator. Their design criterion is to obtain a decay ratio of one quarter; decay ratio isthe
ratio between two consecutive peaks of the error after a step change in reference or load.
Thusin aquarter-decay response the second overshoot is 25 % of thefirst — acompromise
between afast response and a small overshoot. The results are poor for systems where the
timelag ismuch greater than the dominating time constant. 1n general, the rules often result
in rather poor damping, but they do provide the right magnitude of the gains.

A related, more accurate method is Kappa-Tau tuning based on the dimensionless para-
meters: relative gain x and relative deadtime ~ (Astrom & Hagglund, 1995; Astrém, Hang,
Persson & Ho, 1992).

The gains found by either method, must sometimes be regarded as approximate values,
a starting point for a hand-tuning. Hand-tuning is based on certain rules of thumb used by
experienced process engineers (Table 2). The tuning is a compromise between fast reaction
and stability. There are exceptions to the rules in the table. If, for example, the process
contains an integrator, an increasefp often results in more stable control. The rules of
thumb may also be illustrated ianing maps (see, e.g., Astréom & Hagglund, 1995). The
following is a hand-tuning procedure adapted from Smith (1979).

Procedure Hand-tuning.

(a) Remove all integral and derivative action by setfiihg= 0 and1/T; = 0.

(b) Tune the proportional gaiff,, to give the desired response, ignoring any final value
offset from the setpoint.

(c) Increase the proportional gain further and adjust the derivativelgamdampen the
overshoot.

(d) Adjust the integral gaim/T; to remove any final value offset.

(e) Repeat until the proportional galf, is as large as possible.

O

The procedure adjusts the derivative gain before the integral gain, but in practice the
sequence may be reversed. The advantage of hand-tuning is that a process engineer can
use the procedure right away, on-line, and develop a feel for how the closed loop system
behaves. A disadvantage is that it may take a long time to develop this feel, and it is difficult
to sense whether the final settings are optimal.

Example 2 In a laboratory water rig the control objective is to adjust the water level in
a tank after a step in the reference. The rig consists of a feed pump, a tank, and an outlet.
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Figure 4: Example of acontrol surface.

(a) Assume first that the outlet is closed. For this problem a P controller is sufficient.
As soon as the water reaches the setpoint level, the error becomes zero, and the controller
will stop the feed pump (provided the rule base is sensible).

Ifthere is overshoot, for example if the feed pump reacts sluggishly, the controller should
start braking before the water reaches the setpoint. A PD controller is then necessary.

(b) Assume now that the outlet is open. The controller must try and reach the setpoint
and keep pumping while the water runs out of the outlet. A sustained control signal in
steady state is necessary to balance the outflow. Integral action is necessary and a PI or
PID controller will be appropriate.

3. Linear fuzzy controllers

The second step in the design procedure is to replace the summation in PID control by a
linear fuzzy controller acting like a summation. The closed loop system should thus show
exactly the same step response; thisis a check that the implementation is correct.

Control Surface  With two inputs and one output the input-output mapping is asurface.
Figure 4 is a mesh plot of an example relationship between error E and change in error
CFE on the input side, and controller output « on the output side. The plot results from a
rule base with ninerules, and the surfaceismore or lessbumpy. The horizontal plateausare
due to flat peaks on the input sets. The plateau around the origin implies alow sensitivity
towards changesin either error or change in error near thereference. Thisisan advantage
if noise sensitivity must be low when the processis near the reference. On the other hand,
if it is difficult to keep the process on the reference, as with an inverted pendulum, it is
necessary to have alarger gain around the origin.
There are three sources of nonlinearity in afuzzy controller.

e The rule base. The position, shape and number of fuzzy sets aswell as nonlinear input
scaling cause nonlinear transformations. The rules often express a nonlinear control



strategy.
e The inference engine. |f the connectives and and or are implemented as for example
min and max respectively, they are nonlinear.

e The defuzzification. Several defuzzification methods are nonlinear.

It is possible to construct a rule base with alinear input-output mapping that acts like
a summation (Siler & Ying, 1989; Mizumoto, 1992; Qiao & Mizumoto; 1996; Jantzen,
1998).

Input universes  The input universes must be large enough for the inputs to stay within
the limits (no saturation). Each input family should contain a number of terms, designed
such that the sum of membership valuesfor each input is 1. This can be achieved when the
sets are triangular and cross their neighbour sets at the membership value 1 = 0.5; their
peaks will thus be equidistant. Any input value can thus be a member of at most two sets,
and its membership of each isalinear function of the input value.

Number of rules  The number of termsin each family determines the number of rules,
as they must be the and combination (outer product) of al terms to ensure compl eteness.
The output sets should preferably be singletons s; equal to the sum of the peak positions
of the input sets. The output sets may also be triangles, symmetric about their peaks, but
singletons make defuzzification simpler.

Connective  To ensurelinearity, we must choose the algebraic product for the connective
and. Using the weighted average of rule contributions for the control signal (correspond-
ing to centre of gravity defuzzification, COG ), thedenominator vanishes, becauseall firing
strengths add up to 1.

What has been said can be generalised to input families with more than two input sets
per input, because only two input sets will be active at atime. The following checklist
summarises the general design choices for achieving afuzzy rule base equivalent to asum-
mation:

O Usetriangular input setsthat crossat ;» = 0.5;

O usethe algebraic product (*) for the and connective;

O therule base must be the outer and product of al input families;

O useoutput singletons, positions determined by the sum of the peak positions of theinput
sets;

O use COG defuzzification.

With these design choices the control surface (Fig. 4) degenerates to a diagonal plane.
A flexible fuzzy controller, that allows these choices, istwo controllersin one so to spesk.
When linear, it has atransfer function and the usual methods regarding tuning and stability
of the closed loop system apply.
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Figure 5: Fuzzy proportional controller (FP).

4. Transferring gains from PID to fuzzy

The third step in the design procedure is to transfer the PID gains to the linear fuzzy con-
troller.

Proportional control  Input to a fuzzy proportional (FP) controller is error and the
output is the control signal, cf. the block diagram in Fig. 5. This isthe simplest fuzzy
controller there is. It is relevant for state- or output-feedback in a state space controller.
Compared to crisp proportional control the fuzzy P controller has two gainsGE and GU
instead of just one. As a convention, signals are written in lower case before gains and
upper case after gains, for instance £ = GE x e. The gains are mainly for tuning the
response, but since there are two gains, they can also be used for scaling the input signal
onto the input universe to exploit it better.
The controller output isthe control signal U,,, anonlinear function of e,,,

Un = [(GE x en) x GU ©®)

The function f is the fuzzy input-output map of the fuzzy controller. Using the linear
approximation f(GE x e,,) = GFE * e, then

U, =GE xe, x GU = GE « GU x e, (6)

Compared with (3) the product of the gain factors is equivaent to the proportiona gain,
i.e,

GExGU = K, 7
The accuracy of the approximation depends mostly on the membership functions and the
rules. The approximation is best, however, if we choose the same universe on both input
and output side, for example [—100, 100]. The rule base

1. If EisPosthen v is100
2. If EisNegthenuis-100

with Pos and Neg triangular as defined previoudly, is equivalent to a P-controller. Given
atarget K, for example from the Ziegler-Nichols rules, equation (7) helps to choose the
gains. The equation has one degree of freedom, since the fuzzy P controller has one more
gain factor than the crisp P controller. This is used to exploit the full range of the input
universe. If for example the maximal reference step is 1, whereby the maximal error e, is
1, and the universe for E is [—100, 100], then fix GE at 100. Since GE is now fixed, GU
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Figure 6: Fuzzy PD controller (FPD).

is determined by (7).

Because of the process dynamics it will take some time before a change in the control
signal is noticeable in the process output, and the proportional controller will be more or
lesslate in correcting for an error.

Proportional and derivative control  Derivative action helps to predict the error and
the proportional-derivative controller uses the derivative action to improve closed-loop sta-
bility. The basic structure of aPD controller is

u, = K, (en + ﬂ%) )

The control signal isthus proportional to an estimate of the error T;; seconds ahead, where
the estimate is obtained by linear extrapolation. For T;; = 0 the control is purely propor-
tional, and when T is gradually increased, it will dampen oscillations. If T; becomes too
large the system becomes overdamped and it will start to oscillate again.

Input to the fuzzy proportional-derivative (FPD) controller is the error and the deriv-
ative of the error (Fig. 6). In fuzzy control the latter term is usualy called change in
error,

ce, = e”}ﬁ )
This is a discrete approximation to the differential quotient using a backward difference.
Other approximations are possible, asin crisp PD controllers. Notice that this definition

deviates from the straight difference ce,, = e, — e,,_1 used in the early fuzzy controllers.
The controller output isanonlinear function of error and change in error

U, = f(GE x e, GCE * ce,) * GU (10)

Again the function f is the input-output map of the fuzzy controller, only thistimeitisa
surface. Using the linear approximation GE x e,, + GCE * ce,,, then

U, = (GExe,+ GCE xcey,) * GU (1)
= GExGU % (e, + %cen) (12)

By comparison, the gainsin (8) and (11) are related in the following way,
GE+«GU = K, (13)
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Theapproximation correspondsto replacing the fuzzy input-output surfacewith aplane.
The approximation is best if we choose the output universe to be the sum of the input
universes. Assume, for example, that the input universes are both [—100, 100] and we
choose output singletons on [—200, 200], then the input-output map will be the plane v =
E + CE. Therefore, by that choice, we can exploit (13) and (14).

The fuzzy PD controller may be applied when proportional control isinadequate. The
derivative term reduces overshoot, but it may be sensitive to noise as well as an abrupt
change of the reference causing a derivative kick. The usua counter-measures may over-
come these problems: in the former case insert afilter, and in the latter use the derivative
of the process output y,, instead of the error.

= Tq (14)

Incremental control  If thereisasustained error in steady state, integral action is nec-
essary. Theintegral action will increase the control signa if thereisasmall positive error,
no matter how small the error is; the integral action will decreaseit if the error is negative.
A controller with integral action will aways return to zero in steady state.

It is possible to obtain a fuzzy Pl controller using error and change in error as inputs
to the rule base. Experience shows, however, that it israther difficult to write rules for the
integral action. Problemswith integrator windup aso haveto be dealt with. Windup occurs
when the actuator has limits, such as maximum speed for amotor or maximum opening of
avave. When the actuator saturates, the control action stays constant, but the error will
continue to be integrated, the integrator winds up. The integra term may become very
large and it will then take along time to wind it down when the error changes sign. Large
overshoots may be the consequence. There are methods to avoid it (Astrém & Hagglund,
1995).

It is often a better solution to configure the controller as an incremental controller. An
incremental controller addsda&ange in control signalAw to the current control signal,

Up = Up-1+ Aun = (15)
Au, = K, (en —ep—1+ %enTs> (16)
using (2) withT; = 0. It is natural to use an incremental controller when for example a
stepper motor is the actuator. The controller output is an increment to the control signal,
and the motor itself performs an integration. It is an advantage that the controller output
is driven directly from an integrator, then it is easy to deal with windup and noise. A
disadvantage is that it cannot include D-action well.

Thefiizzy incremental (FInc) controller in Fig.?? is almost the same configuration as
the FPD controller except for the integrator on the output The output from the rule base
is therefore calledhange in output (cu,,) and the gain on the output has changed name
accordingly toGCU. The control signal/,, is the sum of all previous increments,

Un = (cui* GCU +Ty) (17)

Notice again that this definition deviates from the early fuzzy controllers, wligre

10
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Figure 7: Fuzzy incremental controller (FInc).

3(GCU * cu;)— the difference is the sampling period T;. Thelinear approximation to this
controller is

n

U = Y (Ei+CE;)GCU % T,

i=1

= GCU*Z{GE*@ZWLGCE*%] * T
i=1 s

= GCU *

GE*iei xT, + GCOE * i(ei —eil)]

i=1 i=1

GE <
= GCE*GCU GCE;ei*TSJren (18)
By comparing (8) and (18) it is clear that the gains are related in the following way,
GCE+GCU = K,
GE 1
GCE ~— T (19)

Noticethat the proportional gain now dependson GC'E. Thegainontheintegral action
isdetermined by the ratio between thetwo input gains, and it istheinverse of the derivative
gainin FPD contral. Itisasif GE and GCE have changed roles.

The controller is really a Pl controller, compare (2) and (18). The usual problem of
integrator windup can be overcome by simply limiting the integrator.

Proportional, integral and derivative control Itisstraight forward to envision afuzzy
PID controller with three input terms:. error, integral error, and derivative error. A rule
base with three inputs, however, easily becomes rather big and, as mentioned earlier, rules
concerning the integral action are troublesome. Therefore it is common to separate the
integral action as in the fuzzy PD+I (FPD+1) controller in Fig. 8. Theintegra error is
computed as,

1€, = Z(ei xTs) (20

3
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Figure 8: Fuzzy PD+I controller (FPD+I).

The controller is thus afunction of the three inputs

Up = [f(GE x e,, GCE x cey) + GIE *ie,| x GU (21)
Its linear approximation is
U, = [GExe,+ GCE xce,+ GIE xie,| « GU (22)
GCE GIE .
= GE*+QGU % en—f—ﬁ*cen—f—ﬁzen

In the last line we have assumed a nonzero GE. Comparing (2) and (22) the gains are
related in the following way,

GE+GU = K, (23)
GCFE
oE (29
GIE 1
TE T (25)

This controller provides al the benefits of PID control, but aso the disadvantages re-
garding derivative kick and integrator windup.

Example 3 We will try fuzzy PD+I control on the process from Example 1. We set GE =
100 since, according to the plot in Fig. 3, the maximal ervor is 1. By (23) GU is now fixed
by the relation
GU = K,/GE = 4.8/100

The gain on the change in error is then fixed by (24),

GCE =GE Ty =100 15/32
The last gain is, by (25),

GIE =GE x1/T; =100 8/15
The step response with a linear FPD+1 is exactly identical to Fig. 3. A check on the input
universes showed that | Epax| < 100 and |C Epax| < 55— thus there was no saturation.

12



Controller  Advantage Disadvantage

FP Simple Maybe too simple
FPD L ess overshoot Noise sensitive,
derivative kick
FInc Removes steady state error,  Slow
smooth control signal
FPD+I All inone Windup, derivative kick

Table 3: Quick referenceto controllers

Summary Advantagesand disadvantages of al four fuzzy controllersarelistedin Table
3. Thefuzzy P controller may be used in state space models or for practising. To improve
the settling time and reduce overshoot, the fuzzy PD is the choice. If there is a problem
with a steady state error, afuzzy incremental controller or afuzzy PD+l isthe choice.

The relationships between the PID gains and the fuzzy gains are summarised in Table
4. To emphasise, the controllerswith f replaced by a summation are linear approximations
to the corresponding fuzzy configurations; the relations hold for the approximations only.
They are valid when ce and cu are true difference quotients instead of just differences.
If these are implemented as differences anyway, (ce,, = Ae, = e, — ep—1 ad cu,, =
Au, = u, — un—1), the sample period must be taken into account in the equations, and
the table modified accordingly. Also, for fixed universe controllers, the output universe
must be the sum of the input universes. With input universes [—100, 100], for instance, the
output universe of an FPD controller should be [-200, 200].

Example 4 What if we come across other controller implementations than the above;
what are the approximations then?

(a) In a fuzzy PD controller ce is implemented as a difference Ae. Comparing (2) and
(11) implies (GCE/GE) x Ae = Ty * Ae/Ts, and this implies Ty = (GCE/GE) x Ts.
Similarly with the FPD+I controller Then the last column in Table 4 should be multiplied
by Ts. As a consequence an increase in the sampling period will increase the differential
time.

(b) In a fuzzy incremental controller ce = Ae /Ty, but U, = > u; * GCU (without the
multiplication by Ts). Then (18) becomes

GCE GE <
U, = T * GCU = @;ei*Ts+en
The comparisonwith (2) yields K, = GCE+«GCU /T, and the integral time is unchanged.
As a consequence an increasing sampling period implies a decreasing proportional gain.

(c) A fuzzy PD has the output universe [—100,100]. With a maximum value of 100
on both inputs E and C'E, the output is at most 100. It is equivalent to the usual linear
approximation with half the output gain. Thus Table 4 must be used with GU /2 instead of
GU. The general rule is to use the table with GU /v (or GCU /1 ) where 1 is the number
of inputs when the output universe equals the input universes.

13



Controller K, 1/T; Ty

FP GE+GU
Finc GCE+GCU GE/GCE
FPD GE » GU GCE/GE

FPD+l  GE+GU GIE/GE GCE/GE

Table 4: Relationship between fuzzy and PID gains

Saturation, quantisation, and noise A few practica considerations are necessary at
this place. It isimportant to be aware whether the input signals saturate in their universes.
Take for example the third order process 1/ (s + 1)° from Example 1. A suitable value of
the gain on error isGE = 100. For the sake of illustration Fig. 9 shows what happens if
the error signal saturates — thegainisnow GE = 400, and all other gains are according to
Table 4 whereby the proportional gain, differential time and integral time remain the same.
The error signal saturates early in the transient response as the phase plot clearly shows
(Fig. 10). Theresult isalarger overshoot, a slower response, and an irregular error signal.

If the input universes in a controller are discrete, it is always possible to calculate all
thinkable combinations of inputs before putting the controller into operation. In atable-
based controller the relation between al input combinations and their corresponding out-
puts are arranged in alook-up table. The table implementation improves execution speed,
astherun-timeinferenceisreduced to atablelook-up which isfaster, at least when the cor-
rect entry can be found without too much searching. In the table-based controller without
interpolation the quantisation in the table affects the performance.

With GE = 100 and a quantum size of 20 in the input universes corresponding to a
resolution of 10% of full range, Fig. 11 shows the effect. The overshoot is the same, but
there are now /imit cycles, i.e., stable oscillations in steady state. The controller alowsthe
process to drift within a cell in the look-up table until it shiftsto another cell with another
control action. Thisisespecially noticeablein steady state. The amplitude of thelimit cycle
is affected by the input gains, and with GE = 400 the limit cycle diminishes (Fig. 12),
whilethe overshoot increases. There arethree waysto reducethelimit cycle: 1) toincrease
GE, 2) to make the discretisation finer, and 3) to use interpolation. Thefirst option makes
the controller more sensitive to small deviations from the setpoint, and may also cause
saturation that changes the dynamics. A variant of the second option isto use a new table
with afiner resolution when the process gets near the setpoint. The third option gets rid of
the quantisation effect al together, but the second is a good dternative if interpolation is
too time consuming and if computer memory space permits.

Measurement noise also affects the performance. With alinear control tableand GE =
100 asin the original example, Fig. 13 shows the response with noise added. The control
signal is drastically affected. The system is till stable, but it shows more oscillation with
noise. Theinitial overshoot is also slightly higher.

If the noise is bad enough it will drive the phase plot to the edges of the change in error
universe; beyond that the input universe will limit how bad it gets. If the noise causes
instability or disturbsthe control, afilter may be necessary.

Another option is to use the fuzzy incremental controller. The integrator in the out-

14
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Figure 12: FPD+I control of 1/(1 + s)? with quantisation and G E = 400.
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Figure 13: FPD+I control of 1/(1 + s)? with noise.

1.5 T T T T T T T
2 1t
=
[=]
@ 05¢ 1
€D
2 _
S O 1
o
,05 1 L 1 1 1 L 1
) 5 0 15 20 25 30 35 40
Time [secs]
3
=
S2f
ol
i
iy
[
0 . , , , . ,
0 5 10 15 20 25 30 35 40

Time [secs]

Figure 14: FInc control of 1/(1 + s)? with noise.
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Figure 15: Linear surface (top left) and steep surface (top right) with the input families that
generated them (bottom left and right respectively).

put end smooths the control signal, but it performs somewhat differently. With an Finc
controller the Ziegler-Nichols rules give poor results, but after hand-tuning to GE =
100, GCE = 200, GCU = 0.005 the response is rather good (Fig. 14). Therisetime
is dlower than FPD+I, and the dip from the load change is larger, but it has less overshoot.
Noise makes the system less stable, but the noise in the control signal is dampened com-
pared to FPD+I control.

The similarity with the PID controller implies some traditional PID problems. The
change in error issensitiveto noise, although afinite universemay limit spikesand outliers.
Often some sort of filter will be necessary. The integral error may cause integrator windup
when the control signa U is limited by the actuator equipment. It is possible, though, to
overcome these problems with the known PID techniques (see e.g., Astrom & Hagglund,
1995).

5. Making the fuzzy controller nonlinear

The fourth step in the design procedure is to gradually make the linear fuzzy controller
nonlinear. It is common practice to build a rule base fienms such as Pos, Zero, and
Neg, representinfpbels of fuzzy sets. Annput family may consist of those three terms.
Consequently, with two inputs it is possible to bulldx 3 = 9 rules. Nine rules is a
manageable amount often used in practice.

The shape of the sets and the choice of rules affect the control strategy and the dynamics
of the closed loop system. There are essentially four characteristic shapes of the control
surface.
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Figure 16: Gently doping surface (top left) and bumpy surface (top right) with the input
families that generated them (bottom left and right respectively).

e A linear surface (Fig. 15, left) results from the rules below with triangular input sets,

. If error isNeg and change in error is Neg then output is — 200

. If error isNeg and change in error is Zero then output is — 100

. If error isNeg and change in error is Pos then output is0

. If error is Zero and change in error is Neg then output is — 100

If error is Zero and change in error is Zero then output is0 (26)
If error is Zero and change in error is Pos then output is 100

. If error isPos and change in error is Neg then output is 0

. If error isPos and change in error is Zero then output is 100

. If error isPos and change in error is Pos then output is 200

©CO~NOOUAWNR

The surface in the figure is actually equivaent to a summation of the two inputs (cp.
the values on the axes). Since the surface is equivalent to a summation, the controller
is equivalent to a PD controller.

e The steep surface (Fig. 15, right) is built using only rules 1, 3, 7, and 9 together with
the input sets shown in the figure; they are segments of cosine functions. Notice the
absence of the centrerule (no. 5) with zero error and zero change in error. That surface
has a steeper dope, or higher gain, near the centre of the table than the linear surface
has, but they have the same values pairwise in the four corners.

e Thegentle surface (Fig. 16, left) isbuilt using the same four rules 1, 3, 7, and 9 but the
input sets have been reflected. They are based on inverse trigonometric functions, i.e.,
Pos(x) = 0.5 4 sin~!(x/100) /7, and Neg(z) = cos™!(x/100) /7. That surface has
amore gentle slope, or lower gain, near the centre of the table than the linear surface
has; but it too has the same values pairwise in the four corners.
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e The bumpy surface (Fig. 16, right) is a blend of the previous two surfaces. It is built
using the set of nine rules (26) with nonlinear input sets as shown inthefigure. Thisis
often the default. It hasaflat plateau near the centre and bumpsin several other places.
Even this surface has the same values as the other surfacesin the four corners.

It is difficult to make a stringent, fair and objective comparison of their control char-
acteristics. For a study of how the response reacts to the various nonlinear surfaces, see
Jantzen (1997).

6. Fine-tuning the nonlinear fuzzy controller

The fifth step in the design procedure is to fine-tune the gains, now the fuzzy controller is
nonlinear. The choice of gainsin thefine-tuning phaseistraditionally the result of intuition
and experience. A few rules of thumb can be derived from the linear approximations:

e The sample period. 1f the sample period is too short, the computation of ce,, will be-
come too sensitive to noise. This normally shows up as arestless control signal. If ce,,
happens to be implemented as a difference several gains depend on the sample period;
achange in sample period must then be followed by a compensation in a gain factor to
keep the proportional, integral and derivative gains intact.

e GE. If thecontroller issupposed to use the wholerange of its universe, then the maximal
FE should equal the limit of the universe, that is

|émax * GE| = |Universemax| (27)

With a unit reference step and the universe [—100, 100] the equation implies GE =
100. If GE istoo big, the incremental controller will become less stable, because the
integral gain istoo high. In an FPD controller, GE affects the proportional gain and
the derivative gain. One would like to have GF as large as possible to reduce noise
problems and till have a large proportional gain. In the FPD+I controller, one would
gtill prefer GE as large as possible to promote the proportional gain at the expense of
the integral gain and the derivative gain.

e GCE. A similar argument as above applies if change in error is supposed to use the
whole range of its universe,

|cemax * GCE| = |Universemax]| (28)

In an FPD controller, alarger GCE means a larger derivative gain with no effect on
the proportional gain. To keep noise problems to aminimum, one will therefore try and
keep GC'E assmall aspossible. IntheFInc controller anincreasein GC'E will decrease
the integral gain and increase the proportional gain; thus one would like to keep GCE
as large as possible to preserve stability. In the FPD+l controller, anincrease in GCE
will increase the derivative gain, so one would keep it as small as possible.

e GCU or GU. These affect the proportiona gain, so onewould liketo havethem aslarge
as possible without creating too much overshoot. If too small, the system will be too
slow, and if too large the system might become unstable.
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A procedure for hand-tuning an FPD+I controller is the following (with trivial modifi-
cations this procedure covers the FPD and FInc controllers as well):

1. Adjust GE according to stepsize and universe to exploit the range of the universe fully.

2. Removeintegral action and derivative action by setting GIF = GCE = 0. Tune GU
to give the desired response, ignoring any final value offset.

3. Increasethe proportional gain by means of GU, and adjust the derivative gain by means
of GC'E to dampen the overshoot.

4. Adjust theintegral gain by means of GI E to remove any final value offset.

5. Repeat the whole procedure until GU isaslarge as possible.

It seems plausible that the stability margins will be close in some sense to the linear
approximation. In simulation, at least, it is possible to experiment with different controller
surfaces and get arough idea of the gain margin and the sensitivity to dead times. Aswith
al nonlinear systems, however, the responses are amplitude dependent and thereby depend
on the step size.

7. Summary and conclusions

In summary, we can form atuning procedure for fuzzy controllersfor astep in the setpoint.
The following refers to an FPD+1 controller, because it is the most genera controller, but
it coversthe other controllers as well with straight forward modifications.

1. Insert acrisp PID controller, and tuneit (use Ziegler-Nichols, Kappa-Tau, optimisation,
hand-tuning, or another method, cf. e.g. Astrém & Hagglund, 1995).

2. Insert dinear FPD+I.

3. Transferk,, T, and1/T; to GE,GCE,GIE andGU using Table 4. If it does not
saturate in the universes, the response should be exactly the same.

4. Insert a nonlinear rule base.

5. Fine-tune using hand-tuning; u§4” to improve the rise timeg7/C E' to dampen over-
shoot, and7I E to remove any steady state error.

The FPD+I controller has one degree of freedom, since it has one more gain factor than
the crisp PID. This is used to exploit the full range of one input universe. If, for example,
the reference step is 1 and the universeHos [—100, 100], then fix GE at 100 in order
to exploit the full range. The free variable should®& or GCE, whichever signal has
the largest magnitude after multiplication by its gain factor.

The performance depends on the control table. With a linear control table the fuzzy
PID controller can be made to perform exactly like a crisp PID controller. Sometimes a
nonlinear control table can be made to perform better than conventional PID control, but
it depends on the process, and one has to be careful to select the right kind of nonlinear
control table.

Since a fuzzy PID controller contains a crisp PID controller as a special case, it is true
to say that it performs at least as well. It is comforting in process control systems to start
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inthe PID domain and gradually make it fuzzy.
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