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$EVWUDFW
Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains com-

pared to proportional-integral-derivative (PID) controllers. This research paper proposes
a design procedure and a tuning procedure that carries tuning rules from the PID domain
over to fuzzy single-loop controllers. The idea is to start with a tuned, conventional PID
controller, replace it with an equivalent linear fuzzy controller, make the fuzzy controller
nonlinear, and eventually fine-tune the nonlinear fuzzy controller. This is relevant when-
ever a PID controller is possible or already implemented.

�� ,QWURGXFWLRQ

When the control problem is to regulate the process output around a setpoint, it is natural
to consider HUURU as an input, even to a fuzzy controller, and it follows that the integral
of the error and the derivative of the error may be useful inputs as well. In a fuzzified
PID controller, however, it is difficult to tell the effect of each gain factor on the rise time,
overshoot, and settling time, since it is most often nonlinear and has more tuning gains
than a PID controller. The objective in this paper is to find a systematic tuning procedure
by carrying PID tuning rules over to the fuzzy domain. A systematic tuning procedure
would make it easier to install fuzzy controllers, and it might pave the way for auto-tuning
of fuzzy controllers.

PID controllers may be tuned in a variety of ways, including hand-tuning, Ziegler-
Nichols tuning, loop shaping, analytical methods, by optimisation, pole placement, or auto-
tuning (Smith, 1979; Åström & Hägglund, 1995). Furthermore, fuzzy controllers show
similarities with PID controllers under certain assumptions (Siler & Ying, 1989; Mizu-
moto, 1992; Qiao & Mizumoto, 1996; Tso & Fung, 1997). But there is still a gap, it seems,
between the PID tuning methods and a design strategy for fuzzy controllers of the PID type.

This paper proposes a design strategy, which makes use of known PID design tech-
niques, before implementing the fuzzy controller:

1. Tune a PID controller
2. Replace it with an equivalent linear fuzzy controller
3. Make the fuzzy controller nonlinear

� Technical University of Denmark, Department of Automation, Bldg 326, DK-2800 Lyngby, DENMARK.
Tech. report no 98-H 871 (fpid), 30 Sep 1998.
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Figure 1: Proportional control with load o and noise q.

4. Fine-tune it

It seems sensible to start the controller design with a crisp PID controller, maybe even
just a P controller, and get the system stabilised. From there it is easier to go to fuzzy
control. Each step will be investigated in the following.

�� 7XQLQJ D 3,' FRQWUROOHU

The first step in the design strategy is to install and tune a PID controller. The ideal contin-
uous PID controller

x @ Ns

�
h.

4

Wl

] w

3

h � g� . Wg
gh

gw

�
(1)

returns the controller output x, the constant Ns is the SURSRUWLRQDO JDLQ, Wl is the LQWHJUDO
WLPH, Wg the GHULYDWLYH WLPH, and h is the HUURU between the reference and the process output
| +h @ Uhi � |,. We are concerned with digital control, and for small sampling periods Wv,
the equation may be approximated by a discrete approximation. Replacing the derivative
term by a backward difference and the integral by a sum using rectangular integration, an
approximation is

xq @ Ns

3
Chq .

4

Wl

q[
m@4

hmWv . Wg
hq � hq�4

Wv

4
D (2)

Index q refers to the time instant. By WXQLQJ we shall mean the activity of adjusting the
parameters Ns> Wl> and Wg=

Several tuning aspects may be illustrated by static considerations (Åström & Hägglund,
1995). For purely proportional control+Wg @ 3 and4@Wl @ 3,, the control law (2) reduces
to

xq @ Nshq (3)
Consider the feedback loop in Fig. 1, where the controller has the proportional gainNs and
the process has the gainN in steady state. The process output{ is related to the reference
Uhi> the loado> and the measurement noiseq by the equation

{ @
NsN

4 .NsN
+Uhi � q, .

N

4 .NsN
o (4)
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Controller Ns Wl Wg

P 3=8Nx

PI 3=78Nx Wx@4=5
PID 3=9Nx Wx@5 Wx@;

Table 1: The Ziegler-Nichols rules (frequency response method)

If q and o are zero, then Ns should be high in order to ensure that the process output { is
close to the reference Uhi= Furthermore, if o is nonzero, a high value will make the system
less sensitive to changes in the load o= But if q is nonzeroNs should be moderate, otherwise
the system will be too sensitive to noise. If the process dynamics are considered, the closed
loop system will normally be unstable if Ns is high. Obviously the setting of Ns is a
balance between the control objectives: stability, noise sensitivity, and load regulation. A
PID controller may be tuned using the =LHJOHU�1LFKROV IUHTXHQF\ UHVSRQVH PHWKRG (Ziegler
& Nichols in Åström & Hägglund, 1995).

3URFHGXUH Ziegler-Nichols.

(a) Increase the proportional gain until the system oscillates; that gain is the ultimate gain
Nx.

(b) Read the time between peaksWx at this setting.
(c) Table 1 gives approximate values for the controller gains.

�
The sample period may be related to the derivative gainWg= Åström and Wittenmark

(1984) suggest that the sample period should be between4@43 and4@5 of Wg. In connection
with the Ziegler-Nichols rules, this implies thatWv should approximately equal4�8 percent
of the ultimate periodWx= Another rule says that it should be chosen somewhat smaller than
the dominating time constant in the process, for instance between4@43 and4@8 of that time
constant.

Ziegler and Nichols also give another method called theUHDFWLRQ FXUYH or VWHS UHVSRQVH
method (see for example Åström & Hägglund, 1995). That method uses the open loop step
response to find the gains, and this is an advantage if oscillations in the closed loop system
cannot be tolerated.

([DPSOH � �=�1 WXQLQJ� $VVXPH WKH SURFHVV LQ )LJ� 1 KDV WKH WUDQVIHU IXQFWLRQ

J+v, @
4

+v. 4,6

,QVHUW D 3,' FRQWUROOHU ZLWK GLIIHUHQWLDO DQG LQWHJUDO DFWLRQ UHPRYHG E\ VHWWLQJ Wg @ 3 DQG
4@Wl @ 3= *UDGXDOO\ LQFUHDVH WKH SURSRUWLRQDO JDLQ XQWLO LW UHDFKHV D VWDEOH RVFLOODWLRQ
�)LJ� 2�� 7KLV JDLQ LVNx @ ; DQG WKH XOWLPDWH SHULRG LV DSSUR[LPDWHO\ Wx @ 48@7� 7KHUH
LV D ORDG RQ WKH V\VWHP �FI� )LJ� 1�� WKHUHIRUH WKH FRQWUROOHU PXVW FRQWDLQ DQ LQWHJUDWRU� 7KH
WKLUG URZ LQ 7DEOH 1 LPSOLHVNs @ 3=9 �Nx @ 7=;� Wl @ Wx@5 @ 48@;> DQG Wg @ Wx@; @
48@65� )LJXUH 3 VKRZV WKH FORVHG ORRS UHVSRQVH DIWHU D VWHS LQ WKH UHIHUHQFH �DW WLPH HTXDO
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Figure 2: Ziegler-Nichols oscillation of process 4@ +4 . v,6 =

Figure 3: PID control of 4@+4 . v,6. A reference step at 3 seconds is followed by a load
step at 53 seconds; Ziegler-Nichols tuning.
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Action Rise time Overshoot Stability
Increase Ns faster increases gets worse
Increase Wg slower decreases improves
Increase 4@Wl faster increases gets worse

Table 2: Rules of thumb for tuning PID controllers.

WR ]HUR� DQG WKH ORDG �DIWHU �� VHFRQGV��

Ziegler and Nichols derived the rules for a linear system with a time lag and an inte-
grator. Their design criterion is to obtain a decay ratio of one quarter; GHFD\ UDWLR is the
ratio between two consecutive peaks of the error after a step change in reference or load.
Thus in a quarter-decay response the second overshoot is 25 % of the first � a compromise
between a fast response and a small overshoot. The results are poor for systems where the
time lag is much greater than the dominating time constant. In general, the rules often result
in rather poor damping, but they do provide the right magnitude of the gains.

A related, more accurate method is.DSSD�7DX WXQLQJ based on the dimensionless para-
meters: relative gain � and relative deadtime � (Åström & Hägglund, 1995; Åström, Hang,
Persson & Ho, 1992).

The gains found by either method, must sometimes be regarded as approximate values,
a starting point for a hand-tuning. Hand-tuning is based on certain rules of thumb used by
experienced process engineers (Table 2). The tuning is a compromise between fast reaction
and stability. There are exceptions to the rules in the table. If, for example, the process
contains an integrator, an increase inNs often results in more stable control. The rules of
thumb may also be illustrated inWXQLQJ PDSV (see, e.g., Åström & Hägglund, 1995). The
following is a hand-tuning procedure adapted from Smith (1979).

3URFHGXUH Hand-tuning.

(a) Remove all integral and derivative action by settingWg @ 3 and4@Wl @ 3.
(b) Tune the proportional gainNs to give the desired response, ignoring any final value

offset from the setpoint.
(c) Increase the proportional gain further and adjust the derivative gainWg to dampen the

overshoot.
(d) Adjust the integral gain4@Wl to remove any final value offset.
(e) Repeat until the proportional gainNs is as large as possible.

�
The procedure adjusts the derivative gain before the integral gain, but in practice the

sequence may be reversed. The advantage of hand-tuning is that a process engineer can
use the procedure right away, on-line, and develop a feel for how the closed loop system
behaves. A disadvantage is that it may take a long time to develop this feel, and it is difficult
to sense whether the final settings are optimal.

([DPSOH � ,Q D ODERUDWRU\ ZDWHU ULJ WKH FRQWURO REMHFWLYH LV WR DGMXVW WKH ZDWHU OHYHO LQ
D WDQN DIWHU D VWHS LQ WKH UHIHUHQFH� 7KH ULJ FRQVLVWV RI D IHHG SXPS� D WDQN� DQG DQ RXWOHW�
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Figure 4: Example of a control surface.

�D� $VVXPH ILUVW WKDW WKH RXWOHW LV FORVHG� )RU WKLV SUREOHP D 3 FRQWUROOHU LV VXIILFLHQW�
$V VRRQ DV WKH ZDWHU UHDFKHV WKH VHWSRLQW OHYHO� WKH HUURU EHFRPHV ]HUR� DQG WKH FRQWUROOHU
ZLOO VWRS WKH IHHG SXPS �SURYLGHG WKH UXOH EDVH LV VHQVLEOH��

,I WKHUH LV RYHUVKRRW� IRU H[DPSOH LI WKH IHHG SXPS UHDFWV VOXJJLVKO\� WKH FRQWUROOHU VKRXOG
VWDUW EUDNLQJ EHIRUH WKH ZDWHU UHDFKHV WKH VHWSRLQW� $ 3' FRQWUROOHU LV WKHQ QHFHVVDU\�

�E� $VVXPH QRZ WKDW WKH RXWOHW LV RSHQ� 7KH FRQWUROOHU PXVW WU\ DQG UHDFK WKH VHWSRLQW
DQG NHHS SXPSLQJ ZKLOH WKH ZDWHU UXQV RXW RI WKH RXWOHW� $ VXVWDLQHG FRQWURO VLJQDO LQ
VWHDG\ VWDWH LV QHFHVVDU\ WR EDODQFH WKH RXWIORZ� ,QWHJUDO DFWLRQ LV QHFHVVDU\ DQG D 3, RU
3,' FRQWUROOHU ZLOO EH DSSURSULDWH�

�� /LQHDU IX]]\ FRQWUROOHUV

The second step in the design procedure is to replace the summation in PID control by a
linear fuzzy controller acting like a VXPPDWLRQ. The closed loop system should thus show
exactly the same step response; this is a check that the implementation is correct.

&RQWURO 6XUIDFH With two inputs and one output the input-output mapping is a surface.
Figure 4 is a mesh plot of an example relationship between HUURU H and FKDQJH LQ HUURU
FH on the input side, and controller output x on the output side. The plot results from a
rule base with nine rules, and the surface is more or less bumpy. The horizontal plateaus are
due to flat peaks on the input sets. The plateau around the origin implies a low sensitivity
towards changes in either HUURU or FKDQJH LQ HUURU near the reference. This is an advantage
if noise sensitivity must be low when the process is near the reference. On the other hand,
if it is difficult to keep the process on the reference, as with an inverted pendulum, it is
necessary to have a larger gain around the origin.

There are three sources of nonlinearity in a fuzzy controller.

� 7KH UXOH EDVH� The position, shape and number of fuzzy sets as well as nonlinear input
scaling cause nonlinear transformations. The rules often express a nonlinear control
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strategy.
� 7KH LQIHUHQFH HQJLQH� If the connectives DQG and RU are implemented as for example

PLQ and PD[ respectively, they are nonlinear.
� 7KH GHIX]]LILFDWLRQ. Several defuzzification methods are nonlinear.

It is possible to construct a rule base with a linear input-output mapping that acts like
a summation (Siler & Ying, 1989; Mizumoto, 1992; Qiao & Mizumoto; 1996; Jantzen,
1998).

,QSXW XQLYHUVHV The input universes must be large enough for the inputs to stay within
the limits (no VDWXUDWLRQ ). Each input family should contain a number of terms, designed
such that the sum of membership values for each input is 1. This can be achieved when the
sets are triangular and cross their neighbour sets at the membership value � @ 3=8> their
peaks will thus be equidistant. Any input value can thus be a member of at most two sets,
and its membership of each is a linear function of the input value.

1XPEHU RI UXOHV The number of terms in each family determines the number of rules,
as they must be the DQG combination (RXWHU SURGXFW ) of all terms to ensure completeness.
The output sets should preferably be singletons vl equal to the sum of the peak positions
of the input sets. The output sets may also be triangles, symmetric about their peaks, but
singletons make defuzzification simpler.

&RQQHFWLYH To ensure linearity, we must choose the algebraic product for the connective
DQG. Using the weighted average of rule contributions for the control signal (correspond-
ing to FHQWUH RI JUDYLW\ defuzzification, &2* ), the denominator vanishes, because all firing
strengths add up to 1.

What has been said can be generalised to input families with more than two input sets
per input, because only two input sets will be active at a time. The following checklist
summarises the general design choices for achieving a fuzzy rule base equivalent to a sum-
mation:

� Use triangular input sets that cross at � @ 3=8>

� use the algebraic product (*) for the DQG connective;
� the rule base must be the outer DQG product of all input families;
� use output singletons, positions determined by the sum of the peak positions of the input

sets;
� use &2* defuzzification.

With these design choices the control surface (Fig. 4) degenerates to a diagonal plane.
A flexible fuzzy controller, that allows these choices, is two controllers in one so to speak.
When linear, it has a transfer function and the usual methods regarding tuning and stability
of the closed loop system apply.
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Figure 5: Fuzzy proportional controller (FP).

�� 7UDQVIHUULQJ JDLQV IURP 3,' WR IX]]\

The third step in the design procedure is to transfer the PID gains to the linear fuzzy con-
troller.

3URSRUWLRQDO FRQWURO Input to a IX]]\ SURSRUWLRQDO (FP) controller is HUURU� and the
output is the control signal, cf. the block diagram in Fig. 5. This is the simplest fuzzy
controller there is. It is relevant for state- or output-feedback in a state space controller.
Compared to crisp proportional control the fuzzy P controller has two gains JH and JX
instead of just one. As a convention, signals are written in lower case before gains and
upper case after gains, for instance H @ JH � h. The gains are mainly for tuning the
response, but since there are two gains, they can also be used for scaling the input signal
onto the input universe to exploit it better.

The controller output is the control signal Xq> a nonlinear function of hq>

Xq @ i+JH � hq, �JX (5)

The function i is the fuzzy input-output map of the fuzzy controller. Using the linear
approximation i+JH � hq, @ JH � hq> then

Xq @ JH � hq �JX @ JH �JX � hq (6)

Compared with (3) the product of the gain factors is equivalent to the proportional gain,
i.e.,

JH �JX @ Ns (7)
The accuracy of the approximation depends mostly on the membership functions and the
rules. The approximation is best, however, if we choose the same universe on both input
and output side, for example ^�433> 433`. The rule base

1. If H is Pos then x is 100

2. If H is Neg then x is -100

with Pos and Neg triangular as defined previously, is equivalent to a P-controller. Given
a target Ns, for example from the Ziegler-Nichols rules, equation (7) helps to choose the
gains. The equation has one degree of freedom, since the fuzzy P controller has one more
gain factor than the crisp P controller. This is used to exploit the full range of the input
universe. If for example the maximal reference step is 1, whereby the maximal error hq is
1, and the universe for H is ^�433> 433`, then fix JH at 433. Since GE is now fixed, JX
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Figure 6: Fuzzy PD controller (FPD).

is determined by (7).
Because of the process dynamics it will take some time before a change in the control

signal is noticeable in the process output, and the proportional controller will be more or
less late in correcting for an error.

3URSRUWLRQDO DQG GHULYDWLYH FRQWURO Derivative action helps to predict the error and
the proportional-derivative controller uses the derivative action to improve closed-loop sta-
bility. The basic structure of a PD controller is

xq @ Ns

�
hq . Wg

hq � hq�4

Wv

�
(8)

The control signal is thus proportional to an estimate of the error Wg seconds ahead, where
the estimate is obtained by linear extrapolation. For Wg @ 3 the control is purely propor-
tional, and when Wg is gradually increased, it will dampen oscillations. If Wg becomes too
large the system becomes RYHUGDPSHG and it will start to oscillate again.

Input to the IX]]\ SURSRUWLRQDO�GHULYDWLYH (FPD) controller is the HUURU and the GHULY�
DWLYH RI WKH HUURU (Fig. 6). In fuzzy control the latter term is usually called FKDQJH LQ
HUURU,

fhq @
hq � hq�4

Wv
(9)

This is a discrete approximation to the differential quotient using a backward difference.
Other approximations are possible, as in crisp PD controllers. Notice that this definition
deviates from the straight difference fhq @ hq � hq�4 used in the early fuzzy controllers.

The controller output is a nonlinear function of HUURU and FKDQJH LQ HUURU >

Xq @ i+JH � hq> JFH � fhq, �JX (10)

Again the function i is the input-output map of the fuzzy controller, only this time it is a
surface. Using the linear approximation JH � hq .JFH � fhq> then

Xq @ +JH � hq .JFH � fhq, �JX (11)

@ JH �JX � +hq .
JFH

JH
fhq, (12)

By comparison, the gains in (8) and (11) are related in the following way,

JH �JX @ Ns (13)
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JFH

JH
@ Wg (14)

The approximation corresponds to replacing the fuzzy input-output surface with a plane.
The approximation is best if we choose the output universe to be the sum of the input
universes. Assume, for example, that the input universes are both ^�433> 433` and we
choose output singletons on ^�533> 533`, then the input-output map will be the plane x @
H .FH. Therefore, by that choice, we can exploit (13) and (14).

The fuzzy PD controller may be applied when proportional control is inadequate. The
derivative term reduces overshoot, but it may be sensitive to noise as well as an abrupt
change of the reference causing a GHULYDWLYH NLFN� The usual counter-measures may over-
come these problems: in the former case insert a filter, and in the latter use the derivative
of the process output |q instead of the error.

,QFUHPHQWDO FRQWURO If there is a sustained error in steady state, integral action is nec-
essary. The integral action will increase the control signal if there is a small positive error,
no matter how small the error is; the integral action will decrease it if the error is negative.
A controller with integral action will always return to zero in steady state.

It is possible to obtain a fuzzy PI controller using error and change in error as inputs
to the rule base. Experience shows, however, that it is rather difficult to write rules for the
integral action. Problems with LQWHJUDWRU ZLQGXS also have to be dealt with. Windup occurs
when the actuator has limits, such as maximum speed for a motor or maximum opening of
a valve. When the actuator saturates, the control action stays constant, but the error will
continue to be integrated, the integrator winds up. The integral term may become very
large and it will then take a long time to wind it down when the error changes sign. Large
overshoots may be the consequence. There are methods to avoid it (Åström & Hägglund,
1995).

It is often a better solution to configure the controller as an incremental controller. An
incremental controller adds aFKDQJH in control signal�x to the current control signal,

xq @ xq�4 .�xq , (15)

�xq @ Ns

�
hq � hq�4 .

4

Wl
hqWv

�
(16)

using (2) withWg @ 3= It is natural to use an incremental controller when for example a
stepper motor is the actuator. The controller output is an increment to the control signal,
and the motor itself performs an integration. It is an advantage that the controller output
is driven directly from an integrator, then it is easy to deal with windup and noise. A
disadvantage is that it cannot include D-action well.

The IX]]\ LQFUHPHQWDO (FInc) controller in Fig."" is almost the same configuration as
the FPD controller except for the integrator on the output The output from the rule base
is therefore calledFKDQJH LQ RXWSXW +fxq, and the gain on the output has changed name
accordingly toJFX . The control signalXq is the sum of all previous increments,

Xq @
[
l

+fxl �JFX � Wv, (17)

Notice again that this definition deviates from the early fuzzy controllers, whereXq @
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Figure 7: Fuzzy incremental controller (FInc).

	+JFX � fxl,� the difference is the sampling period Wv. The linear approximation to this
controller is

Xq @
q[

l@4

+Hl . FHl, �JFX � Wv

@ JFX �
q[

l@4

�
JH � hl .JFH � hl � hl�4

Wv

�
� Wv

@ JFX �
%
JH �

q[
l@4

hl � Wv .JFH �
q[

l@4

+hl � hl�4,

&

@ JFH �JFX �
%

JH

JFH

q[
l@4

hl � Wv . hq

&
(18)

By comparing (8) and (18) it is clear that the gains are related in the following way,

JFH �JFX @ Ns

JH

JFH
@

4

Wl
(19)

Notice that the proportional gain now depends on JFH. The gain on the integral action
is determined by the ratio between the two input gains, and it is the inverse of the derivative
gain in FPD control. It is as if JH and JFH have changed roles.

The controller is really a PI controller, compare (2) and (18). The usual problem of
LQWHJUDWRU ZLQGXS can be overcome by simply limiting the integrator.

3URSRUWLRQDO� LQWHJUDO DQG GHULYDWLYH FRQWURO It is straight forward to envision a IX]]\
3,' FRQWUROOHU with three input terms: HUURU, LQWHJUDO HUURU, and GHULYDWLYH HUURU. A rule
base with three inputs, however, easily becomes rather big and, as mentioned earlier, rules
concerning the integral action are troublesome. Therefore it is common to separate the
integral action as in the IX]]\ 3'�, (FPD+I) controller in Fig. 8. The integral error is
computed as,

lhq @
[
l

+hl � Wv, (20)
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Figure 8: Fuzzy PD+I controller (FPD+I).

The controller is thus a function of the three inputs

Xq @ ^i+JH � hq> JFH � fhq, .JLH � lhq` �JX (21)

Its linear approximation is

Xq @ ^JH � hq .JFH � fhq .JLH � lhq` �JX (22)

@ JH �JX �
�
hq .

JFH

JH
� fhq .

JLH

JH
lhq

�
In the last line we have assumed a nonzero JH. Comparing (2) and (22) the gains are
related in the following way,

JH �JX @ Ns (23)
JFH

JH
@ Wg (24)

JLH

JH
@

4

Wl
(25)

This controller provides all the benefits of PID control, but also the disadvantages re-
garding derivative kick and integrator windup.

([DPSOH � :H ZLOO WU\ IX]]\ 3'�, FRQWURO RQ WKH SURFHVV IURP ([DPSOH �� :H VHWJH @
433 VLQFH� DFFRUGLQJ WR WKH SORW LQ )LJ� 3� WKH PD[LPDO HUURU LV 4= %\ ���� JX LV QRZ IL[HG
E\ WKH UHODWLRQ

JX @ Ns@JH @ 7=;@433
7KH JDLQ RQ WKH FKDQJH LQ HUURU LV WKHQ IL[HG E\ �����

JFH @ JH � Wg @ 433 � 48@65
7KH ODVW JDLQ LV� E\ �����

JLH @ JH � 4@Wl @ 433 � ;@48
7KH VWHS UHVSRQVH ZLWK D OLQHDU )3'�, LV H[DFWO\ LGHQWLFDO WR )LJ� 3� $ FKHFN RQ WKH LQSXW
XQLYHUVHV VKRZHG WKDW mHpd{m � 433 DQG mFHpd{m � 88� WKXV WKHUH ZDV QR VDWXUDWLRQ�
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Controller Advantage Disadvantage
FP Simple Maybe too simple
FPD Less overshoot Noise sensitive,

derivative kick
FInc Removes steady state error, Slow

smooth control signal
FPD+I All in one Windup, derivative kick

Table 3: Quick reference to controllers

6XPPDU\ Advantages and disadvantages of all four fuzzy controllers are listed in Table
3. The fuzzy P controller may be used in state space models or for practising. To improve
the settling time and reduce overshoot, the fuzzy PD is the choice. If there is a problem
with a steady state error, a fuzzy incremental controller or a fuzzy PD+I is the choice.

The relationships between the PID gains and the fuzzy gains are summarised in Table
4. To emphasise, the controllers with i replaced by a summation are linear approximations
to the corresponding fuzzy configurations; the relations hold for the DSSUR[LPDWLRQV only.
They are valid when FH and FX are true difference TXRWLHQWV instead of just differences.
If these are implemented as differences anyway, (fhq @ �hq @ hq � hq�4 and fxq @
�xq @ xq � xq�4,, the sample period must be taken into account in the equations, and
the table modified accordingly. Also, for fixed universe controllers, the output universe
must be the sum of the input universes. With input universes ^�433> 433`, for instance, the
output universe of an FPD controller should be ^�533> 533`.

([DPSOH � :KDW LI ZH FRPH DFURVV RWKHU FRQWUROOHU LPSOHPHQWDWLRQV WKDQ WKH DERYH�
ZKDW DUH WKH DSSUR[LPDWLRQV WKHQ"

�D� ,Q D IX]]\ 3' FRQWUROOHU fh LV LPSOHPHQWHG DV D GLIIHUHQFH�h= &RPSDULQJ ��� DQG
���� LPSOLHV +JFH@JH, ��h @ Wg ��h@Wv� DQG WKLV LPSOLHV Wg @ +JFH@JH, � Wv�
6LPLODUO\ ZLWK WKH )3'�, FRQWUROOHU� 7KHQ WKH ODVW FROXPQ LQ 7DEOH 4 VKRXOG EH PXOWLSOLHG
E\ Wv� $V D FRQVHTXHQFH DQ LQFUHDVH LQ WKH VDPSOLQJ SHULRG ZLOO LQFUHDVH WKH GLIIHUHQWLDO
WLPH�

�E� ,Q D IX]]\ LQFUHPHQWDO FRQWUROOHU fh @ �h@Wv� EXW Xq @
S

xl �JFX �ZLWKRXW WKH
PXOWLSOLFDWLRQ E\ Wv,= 7KHQ ���� EHFRPHV

Xq @
JFH

Wv
�JFX �

%
JH

JFH

q[
l@4

hl � Wv . hq

&

7KH FRPSDULVRQZLWK ��� \LHOGVNs @ JFH�JFX@Wv> DQG WKH LQWHJUDO WLPH LV XQFKDQJHG�
$V D FRQVHTXHQFH DQ LQFUHDVLQJ VDPSOLQJ SHULRG LPSOLHV D GHFUHDVLQJ SURSRUWLRQDO JDLQ�

�F� $ IX]]\ 3' KDV WKH RXWSXW XQLYHUVH ^�433> 433`� :LWK D PD[LPXP YDOXH RI 433
RQ ERWK LQSXWV H DQG FH> WKH RXWSXW LV DW PRVW 433� ,W LV HTXLYDOHQW WR WKH XVXDO OLQHDU
DSSUR[LPDWLRQ ZLWK KDOI WKH RXWSXW JDLQ� 7KXV 7DEOH 4 PXVW EH XVHG ZLWK JX@5 LQVWHDG RI
JX � 7KH JHQHUDO UXOH LV WR XVH WKH WDEOH ZLWK JX@u �RU JFX@u � ZKHUH u LV WKH QXPEHU
RI LQSXWV ZKHQ WKH RXWSXW XQLYHUVH HTXDOV WKH LQSXW XQLYHUVHV�
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Controller Ns 4@Wl Wg

FP JH �JX
FInc JFH �JFX JH@JFH
FPD JH �JX JFH@JH
FPD+I JH �JX JLH@JH JFH@JH

Table 4: Relationship between fuzzy and PID gains

6DWXUDWLRQ� TXDQWLVDWLRQ� DQG QRLVH A few practical considerations are necessary at
this place. It is important to be aware whether the input signals saturate in their universes.
Take for example the third order process 4@ +v. 4,6 from Example 1. A suitable value of
the gain on HUURU is JH @ 433= For the sake of illustration Fig. 9 shows what happens if
the error signal saturates � the gain is now JH @ 733> and all other gains are according to
Table 4 whereby the proportional gain, differential time and integral time remain the same.
The error signal saturates early in the transient response as the phase plot clearly shows
(Fig. 10). The result is a larger overshoot, a slower response, and an irregular error signal.

If the input universes in a controller are discrete, it is always possible to calculate all
thinkable combinations of inputs before putting the controller into operation. In a WDEOH�
EDVHG FRQWUROOHU the relation between all input combinations and their corresponding out-
puts are arranged in a look-up table. The table implementation improves execution speed,
as the run-time inference is reduced to a table look-up which is faster, at least when the cor-
rect entry can be found without too much searching. In the table-based controller without
interpolation the quantisation in the table affects the performance.

With JH @ 433 and a quantum size of 53 in the input universes corresponding to a
resolution of 43( of full range, Fig. 11 shows the effect. The overshoot is the same, but
there are now OLPLW F\FOHV, i.e., stable oscillations in steady state. The controller allows the
process to drift within a cell in the look-up table until it shifts to another cell with another
control action. This is especially noticeable in steady state. The amplitude of the limit cycle
is affected by the input gains, and with JH @ 733 the limit cycle diminishes (Fig. 12),
while the overshoot increases. There are three ways to reduce the limit cycle: 1) to increase
JH> 2) to make the discretisation finer, and 3) to use interpolation. The first option makes
the controller more sensitive to small deviations from the setpoint, and may also cause
saturation that changes the dynamics. A variant of the second option is to use a new table
with a finer resolution when the process gets near the setpoint. The third option gets rid of
the quantisation effect all together, but the second is a good alternative if interpolation is
too time consuming and if computer memory space permits.

Measurement noise also affects the performance. With a linear control table and JH @
433 as in the original example, Fig. 13 shows the response with noise added. The control
signal is drastically affected. The system is still stable, but it shows more oscillation with
noise. The initial overshoot is also slightly higher.

If the noise is bad enough it will drive the phase plot to the edges of the FKDQJH LQ HUURU
universe; beyond that the input universe will limit how bad it gets. If the noise causes
instability or disturbs the control, a filter may be necessary.

Another option is to use the fuzzy incremental controller. The integrator in the out-
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Figure 9: FPD+I control of 4@+4 . v,6 when JH @ 733 causing saturation.

Figure 10: Phase plot showing saturation along the edges of the look-up table.
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Figure 11: FPD+I control of 4@+4 . v,6 with quantisation.

Figure 12: FPD+I control of 4@+4 . v,6 with quantisation and JH @ 733.
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Figure 13: FPD+I control of 4@+4 . v,6 with noise.

Figure 14: FInc control of 4@+4 . v,6 with noise.
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Figure 15: Linear surface (top left) and steep surface (top right) with the input families that
generated them (bottom left and right respectively).

put end smooths the control signal, but it performs somewhat differently. With an FInc
controller the Ziegler-Nichols rules give poor results, but after hand-tuning to JH @
433> JFH @ 533> JFX @ 3=338 the response is rather good (Fig. 14). The rise time
is slower than FPD+I, and the dip from the load change is larger, but it has less overshoot.
Noise makes the system less stable, but the noise in the control signal is dampened com-
pared to FPD+I control.

The similarity with the PID controller implies some traditional PID problems. The
FKDQJH LQ HUURU is sensitive to noise, although a finite universe may limit spikes and outliers.
Often some sort of filter will be necessary. The LQWHJUDO HUURU may cause integrator windup
when the control signal X is limited by the actuator equipment. It is possible, though, to
overcome these problems with the known PID techniques (see e.g., Åström & Hägglund,
1995).

�� 0DNLQJ WKH IX]]\ FRQWUROOHU QRQOLQHDU

The fourth step in the design procedure is to gradually make the linear fuzzy controller
nonlinear. It is common practice to build a rule base fromWHUPV such as Pos, Zero, and
Neg, representingODEHOV of fuzzy sets. AnLQSXW IDPLO\ may consist of those three terms.
Consequently, with two inputs it is possible to build6 � 6 @ < rules. Nine rules is a
manageable amount often used in practice.

The shape of the sets and the choice of rules affect the control strategy and the dynamics
of the closed loop system. There are essentially four characteristic shapes of the control
surface.
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Figure 16: Gently sloping surface (top left) and bumpy surface (top right) with the input
families that generated them (bottom left and right respectively).

� A OLQHDU surface (Fig. 15, left) results from the rules below with triangular input sets,

1. If HUURU is Neg and FKDQJH LQ HUURU is Neg then output is � 533
2. If HUURU is Neg and FKDQJH LQ HUURU is Zero then output is � 433
3. If HUURU is Neg and FKDQJH LQ HUURU is Pos then output is 3
4. If HUURU is Zero and FKDQJH LQ HUURU is Neg then output is � 433
5. If HUURU is Zero and FKDQJH LQ HUURU is Zero then output is 3
6. If HUURU is Zero and FKDQJH LQ HUURU is Pos then output is 433
7. If HUURU is Pos and FKDQJH LQ HUURU is Neg then output is 3
8. If HUURU is Pos and FKDQJH LQ HUURU is Zero then output is 433
9. If HUURU is Pos and FKDQJH LQ HUURU is Pos then output is 533

(26)

The surface in the figure is actually equivalent to a summation of the two inputs (cp.
the values on the axes). Since the surface is equivalent to a summation, the controller
is equivalent to a PD controller.

� The VWHHS surface (Fig. 15, right) is built using only rules 1, 3, 7, and 9 together with
the input sets shown in the figure; they are segments of cosine functions. Notice the
absence of the centre rule (no. 5) with zero HUURU and zero FKDQJH LQ HUURU. That surface
has a steeper slope, or higher gain, near the centre of the table than the linear surface
has, but they have the same values pairwise in the four corners.

� The JHQWOH surface (Fig. 16, left) is built using the same four rules 1, 3, 7, and 9 but the
input sets have been reflected. They are based on inverse trigonometric functions, i.e.,
Srv+{, @ 3=8 . vlq�4+{@433,@�> and Qhj+{, @ frv�4+{@433,@�. That surface has
a more gentle slope, or lower gain, near the centre of the table than the linear surface
has; but it too has the same values pairwise in the four corners.
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� The EXPS\ surface (Fig. 16, right) is a blend of the previous two surfaces. It is built
using the set of nine rules (26) with nonlinear input sets as shown in the figure. This is
often the default. It has a flat plateau near the centre and bumps in several other places.
Even this surface has the same values as the other surfaces in the four corners.

It is difficult to make a stringent, fair and objective comparison of their control char-
acteristics. For a study of how the response reacts to the various nonlinear surfaces, see
Jantzen (1997).

�� )LQH�WXQLQJ WKH QRQOLQHDU IX]]\ FRQWUROOHU

The fifth step in the design procedure is to fine-tune the gains, now the fuzzy controller is
nonlinear. The choice of gains in the fine-tuning phase is traditionally the result of intuition
and experience. A few rules of thumb can be derived from the linear approximations:

� 7KH VDPSOH SHULRG� If the sample period is too short, the computation of fhq will be-
come too sensitive to noise. This normally shows up as a restless control signal. If fhq
happens to be implemented as a difference several gains depend on the sample period;
a change in sample period must then be followed by a compensation in a gain factor to
keep the proportional, integral and derivative gains intact.

� *(� If the controller is supposed to use the whole range of its universe, then the maximal
H should equal the limit of the universe, that is

mhpd{ �JHm @ mXqlyhuvhpd{m (27)

With a unit reference step and the universe ^�433> 433` the equation implies JH @
433. If JH is too big, the incremental controller will become less stable, because the
integral gain is too high. In an FPD controller, JH affects the proportional gain and
the derivative gain. One would like to have JH as large as possible to reduce noise
problems and still have a large proportional gain. In the FPD+I controller, one would
still prefer JH as large as possible to promote the proportional gain at the expense of
the integral gain and the derivative gain.

� *&(� A similar argument as above applies if FKDQJH LQ HUURU is supposed to use the
whole range of its universe,

mfhpd{ �JFHm @ mXqlyhuvhpd{m (28)

In an FPD controller, a larger JFH means a larger derivative gain with no effect on
the proportional gain. To keep noise problems to a minimum, one will therefore try and
keepJFH as small as possible. In the FInc controller an increase inJFH will decrease
the integral gain and increase the proportional gain; thus one would like to keep JFH
as large as possible to preserve stability. In the FPD+I controller, an increase in JFH
will increase the derivative gain, so one would keep it as small as possible.

� *&8 RU *8� These affect the proportional gain, so one would like to have them as large
as possible without creating too much overshoot. If too small, the system will be too
slow, and if too large the system might become unstable.
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A procedure for hand-tuning an FPD+I controller is the following (with trivial modifi-
cations this procedure covers the FPD and FInc controllers as well):

1. Adjust JH according to stepsize and universe to exploit the range of the universe fully.
2. Remove integral action and derivative action by setting JLH @ JFH @ 3. Tune JX

to give the desired response, ignoring any final value offset.
3. Increase the proportional gain by means ofJX , and adjust the derivative gain by means

of JFH to dampen the overshoot.
4. Adjust the integral gain by means of JLH to remove any final value offset.
5. Repeat the whole procedure until JX is as large as possible.

It seems plausible that the stability margins will be close in some sense to the linear
approximation. In simulation, at least, it is possible to experiment with different controller
surfaces and get a rough idea of the gain margin and the sensitivity to dead times. As with
all nonlinear systems, however, the responses are amplitude dependent and thereby depend
on the step size.

�� 6XPPDU\ DQG FRQFOXVLRQV

In summary, we can form a tuning procedure for fuzzy controllers for a step in the setpoint.
The following refers to an FPD+I controller, because it is the most general controller, but
it covers the other controllers as well with straight forward modifications.

1. Insert a crisp PID controller, and tune it (use Ziegler-Nichols, Kappa-Tau, optimisation,
hand-tuning, or another method, cf. e.g. Åström & Hägglund, 1995).

2. Insert aOLQHDU FPD+I.
3. TransferNs> Wg and4@Wl to JH>JFH>JLH andJX using Table 4. If it does not

saturate in the universes, the response should be exactly the same.
4. Insert a nonlinear rule base.
5. Fine-tune using hand-tuning; useJH to improve the rise time,JFH to dampen over-

shoot, andJLH to remove any steady state error.

The FPD+I controller has one degree of freedom, since it has one more gain factor than
the crisp PID. This is used to exploit the full range of one input universe. If, for example,
the reference step is 1 and the universe forH is ^�433> 433`, then fixJH at 433 in order
to exploit the full range. The free variable should beJH or JFH> whichever signal has
the largest magnitude after multiplication by its gain factor.

The performance depends on the control table. With a linear control table the fuzzy
PID controller can be made to perform exactly like a crisp PID controller. Sometimes a
nonlinear control table can be made to perform better than conventional PID control, but
it depends on the process, and one has to be careful to select the right kind of nonlinear
control table.

Since a fuzzy PID controller contains a crisp PID controller as a special case, it is true
to say that it performs at least as well. It is comforting in process control systems to start

21



in the PID domain and gradually make it fuzzy.
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