
Tema 2

Basics of Algorithm Analysis
Conceptos básicos de Análisis de algoritmos

Course

Analysis and design of algorithms

Instructor

Acosta Bermejo Raúl et al.

Lecture notes
Instituto

Politécnico
Nacional

Centro de
Investigación en

Computación

2025-B
10 de septiembre del 2025

2.1. Computational tractability
2.2. Asymptotic order of growth
2.2.1. Asymptotic notation
2.2.2. Standard notation and common functions
2.3. A survey of common running times
2.4 Exercises
2.5 Tipos de problemas
2.6. Algorithm design paradigm.
 NO está en el temario pero son necesarios.

2

Table of contents (outline)
 Tabla de contenido

What is an efficient algorithm?
Our usual measure of efficiency is speed, but it dependes of
computer (processor)?

Introdution
 Introducción

3

In general we can analysis algorithms in the following scenarios:

1. Worst-case (Peor caso) Most used.
2. Average-Case (caso promedio)
3. Best-case (Mejor caso)

Are there other types of analysis?

Computational tractability
 Estudio

4

Teoría
Ejercicios

2.2 Asymptotic order of growth
Crecimiento asintótico

⚫ Tha idea is study the behavior of algorithms when data grouths, i.e.
when data (n) go to infinit.

⚫ Little growth data is for Real time and in that case time really
matters, not Growth.

⚫ Remember to THINK BIG when working with asymptotic rates of
growth.

Asymptotic order of growth
 Orden asintótico de crecimiento

6

Definiciones

2.2.1 Asymptotic notation
Notación asintótica

Lista
1. https://en.wikipedia.org/wiki/Big_O_notation
2. https://en.wikipedia.org/wiki/Best,_worst_and_average_c

ase.
3. https://en.wikipedia.org/wiki/Master_theorem

Bibliography
 Referencias

8

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation

The most common notationes are:

1. Big-Oh, O. Worst case / upper bound
2. Big-Omega, Ω lower bound
3. Big-Theta, Θ. Average case

But there are also:
1. Little-Oh, o.
2. Little-Omega, ω

And for some algorithms you use Probabilistic analysis.

Asymptotic notation
 Notación asintótica

9

⚫ Knuth traces the origin of the O-notation to a number-theory text
by P. Bachmann in 1892.

⚫ The o-notation was invented by E. Landau in 1909 for his
discussion of the distribution of prime numbers.

⚫ The Ω and Θ notations were advocated by Knuth to correct the
popular, but technically sloppy, practice in the literature of using
O-notation for both upper and lower bounds.

⚫ Further discussion of the history and development of asymptotic
notations can be found in Knuth and Brassard and Bratley.

Edmund Landau
Aleman

No es Lev Landau

Historical notes
 Notas históricas

Mathematical definition

O(g(n)) =
{ f(n): there exist positive constants c and n0 such that /
 0 ≤ f(n) ≤ c g(n) for all n ≥ n0 }

Big-Oh notation, O notation
 Notación O

11

Instead of x we use n.

Acota por arriba

T(n) = 1 => O(1) Constante

T(n)= log2 n => O(log n) Logarítmico
T(n)= an + b => O(n) Lineal

T(n)= n log2n => O(n log n) Logarítmico

T(n)= an2 + bn + c => O(n2) Cuadrático
T(n)= an3 + bn2 + cn + d => O(n3) Cúbico

T(n)= nm , m=0,1,2,3... => O(nm) Polinomial
T(n)= cn , c > 1 => O(nn) Exponencial

T(n)= n! => O(n!) Factorial
Otro son O(nn) Potencial Exponencial
 O(n) Sublineal, O (nc) Potencial

Algebraic examples
 Ejemplos algebraicos

12

Orden

Código:

i=4;

printf("hello word");

t(n) = 0.00245 segundos?
 => O(1)

 = c g(n) = 0.00245 * 1 “se dice que la” C absorve la constante
 g(n) = 1

Practical examples
 Ejercicios practicos de código

13

⚫ Ejemplo 4
 2100 es O(1)

⚫ Ejemplo 5
5/n es O(1/n)

⚫ nk es ?

⚫ Ejemplo 1
T(n) = 7n-3 es O(n)
C=7 no=1
7n-3 <= 7n

⚫ Ejemplo 2
20n3 + 10 log n + 5 es O(n3)

⚫ Ejemplo 3
3 log n + log(log(n)) es O(log n)

Algebraic examples
 Ejemplos algebraicos

14

A program is made of two parts:
Code (instructions) + Data (variables)

Instructions
1. Expressions (arithmetic, logic)
2. Flow control structures

i. Control structures
ii. Control statements

Decision-making
Repetition or Jumping

Practical examples
 Estructuras de control

15

1. Conditions
If-else
Switch, case

2. Loops
while
For
Do-while, repeat-until

3. Jumps
Goto
Break, continue
Return, exit

Nested Statements

Sentence if

Peor caso
O(max(f(n), g(n)))

Mejor caso
O(min(f(n), g(n)))

Practical examples
 Estructuras de control

16

O(1)

O(f(n)) O(g(n))

true false

condición

cuerpo
del if

if(condición)
 instrucción_cuerpo

if(condición){
 instruccionES_cuerpo
}else{
}

Practical examples
 Estructuras de control

17

Sentence while

O(1 * g(n) * f(n))

Que pasa si la condición no es O(1)?

O(1)

O(f(n))

true
false

O(g(n))

condition

condition
 var == valor
 var == fun(param)

O(cond(n) g(n) f(n))

while(condición){
 cuerpo
}

Sentence for

O(g(n) f(n))
Que pasa si el incremento/decremento no es una asignación?

Practical examples
 Estructuras de control

18

O(1)

O(1)

true

false

O(g(n)) O(f(n))

incremento, ej. i++

O(1) Inicialización de la variable
 i=0;

condition

for(i=1; i<=n; i++){
 cuerpo
}

Sentence switch

O(max(f(n), g(n), .., h(n)))

Practical examples
 Estructuras de control

19

O(1)

O(f(n))

true false

O(1)

O(g(n)) O(...)

true false

If(cond_1){

}else if(cond_2){

}else{
 //default
}

Facilidad sintáctica
Semántica

Poder cómputo

switch(var){
 case valor1:
 inst1;
 break;
 case valor2:
 inst2;
 break;

The value of n is a parameter
If n = 8

i = {1,2,3,4,5,6,7}
There are n-1 instructions.

Algebraic examples
 Ejemplos prácticos

21

i=1;
while(i<n){

i++;
}

Similar code
for(i=1; i<n; i++;){

} for(i=1; i<n; i++;){
for(k=1; k<n; k++;){

;
} codigo = O(n)

} code = O(n) * O(n)
= O (n2)

for(i=1; i<3; i++;){
for(k=1; k<n; k++;); O(n)

}

Basic calculations (loops)

string = “cadena”;
for(cnt=1; cnt <= strlen(string); cnt++){
 printf(“%d”, cnt);
}

scanf(“%s”, &string);
for(cnt=1; cnt <= strlen(string); cnt++){
 printf(“%d”, cnt);
}

var_lim = strlen(string);
for(cnt=1; cnt <= var_lim; cnt++){
 printf(“%d”, cnt);
}

Practical examples
 Estructuras de control

22

O(1)

O(ini) = O(1)
O(cond) = O(n)
O(cuerpo) = O(1)
O(modif_cnt)

O(f(n)) = O(cuerpo)= O(1)
O(g(n)) = O(n)

= O(1) + [O(n) O(1) O(1) O(n)]
= O(n2)

O(n)

Basic calculations (loops)

Algebraic operations
Times

T1(n) * T2(n) = O(f(n)*g(n))
Particular case
 O(c * f(n)) = O(f(n))
 By the definition of O it is said that it absorbs c.
Example
 O(n2/2) = O(1/2 n2) = O(n2)
But also:
 O(n2+n), O(4n2+7n), O(n2-7n+13), etc.

Any quadratic polynomial.

O's algebra (some rules)
 Deduciendo algunas reglas

23

i=1; n=8
while(i<n){ 1<8 2<8 4<8 8<8 => 20, 21,..
 i=i*2; i=2 i=4 i=8
}

20, 21, 22, 23, 2x ... In general the loop behaves like 2x

 The condition i<n has the limit of 2x

2x < n
log2 2x < log2 n
x < log2 n

The programe is O(log n)

Algebraic examples
 Ejemplos prácticos

24

i=n*2;
while(i>2)
{
 instrucción 1;
 for(j=0; j<n/2; j++)
 instrucción 2;
 for(k=n; k>1; k--) {
 for(m=1; m<10; m++)
 instrucción 3;
 }
 i=i/3;
}

Algebraic examples
 Ejemplos prácticos

25

i=n*2;
while(i>2)
{
 instrucción 1;
 for(j=0; j<n/2; j++)
 instrucción 2;
 for(k=n; k>1; k--) {
 for(m=1; m<10; m++)
 instrucción 3;
 }
 i=i/3;
}

Algebraic examples
 Ejemplos prácticos

26

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)
O(n)

O(n)

O(n)
O(n)+O(n)

O(n log3n)
O(n)*O(log3n)

Twhile= Ti1+ Tfj+ Tfk+ Ti
 = c1 + (c2n +c) + (c3n +c) + c4
 = c5n + C6

if(n > 1000){
 i=n*100;
 while(i>2){
 j=1;
 while(j<n){

 j=j*3;
 }

 i=i/9;
 }
}

Algebraic examples
 Ejemplos prácticos

27

Calculate the time complexity:

• O for the worst case.

• O for the best case.

Paradigm of the language: imperative
The instructions are executed in a sequential order.

Unless the flow of the program is modified the order using Flow control
sentences.

instruction-1; => O(i1), i1 is a function
Instruction-2; => O(i2)

a=5;
function(parametres);

...
Instruction-N; => O(iN)

Practical examples
 Estructuras de control

28

Oprograme = O(i1) + O(i2) + ... O(iN)
 = O(i1 + i2 + ... + iN)

If the times are contantes:
 = O(0.001+0.002+...+0.003)= O(0.006)=O(C*1)
 C=3

Review of logarithms

logb y =X bx=y
 Inverse Operation

Propiedades
⚫ log nm = log n + log m
⚫ log n/m = log n – log m
⚫ log nr = r log n
⚫ loga n = logb n / logb a (a y b enteros)

⚫ logb
𝑦 𝑥 = log𝑏 𝑥

𝑦

⚫ logbx = 1
log𝑥 𝑏

Algebraic examples
 Ejemplos prácticos

29

• En cualquier caso, y para todo valor apropiado
de la base b, la gráfica de la función logarítmica
corta al eje de las abscisas en el punto (1,0).

• El logaritmo de n en distintas bases, está
relacionado por una constante (que es
logaritmo de una base en la otra).

• Así que análisis de complejidad que se hacen
en una base de logaritmos, pueden fácilmente
traducirse en otra, simplemente con un factor
de proporcionalidad.

• El valor de e es la base del algoritmo natural
ln n = loge n

No todas las bases y números son
posibles. La base b tiene que ser

positiva y distinta de 1.

e0 = 1
ln 1 = 0
ln e = 1
ln en = n

Review of Quadratic function

Algebraic examples
 Ejemplos prácticos

30

Niveles (iteraciones)
log2 8 + 1 = log2 23 +1 = 3+1 = 4

31

Algebraic examples
 Ejemplos algebraicos

Nodos Altura

23=8 3 8
22=4 2 4 4
21=2 1 2 2 2 2
20=1 0 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

Is comon to write:
 f(n) = O(g(n))

but we have:
 función = Conjunto de funciones
 f = { f, g, h, ... }
that is, they are not equivalent/comparable.
The correct way is f(n)  O(g(n))

So it is an abuse of the notation that in some cases gives us problems:
Investigar y dar ejemplos

32

Problems notation
 Problemas de notación

La comparación =
tambien es un operador con sus propiedades

la cual suele ser reflexiva, pero para O ...

⚫ Is used in math & algo for symbolically expressing the
asymptotic behavior of a given function.

⚫ Definition for functions. It is what we have seen.
⚫ Definition for sucesiones:
 No es tema del curso sin embargo ...
Tarea optativa
⚫ Investigar la notación Landau y entregar resumen en no más

de 3 cuartillas.

33

Landau Notation
 Notación Landau

• Una sucesión puede definirse como una función sobre el conjunto de los
números naturales (o un subconjunto del mismo, y es por tanto una función
discreta) y su codominio es cualquier otro conjunto, generalmente de números,
figuras geométricas o funciones.

• No confundir con una serie matemática, que es la suma de los términos de
una sucesión.

Sea E  R, sean f1:E→R, g1:E→R , f2:E→R, g2:E→R funciones y k un
real. Entonces los siguientes enunciados son ciertos:

1. Si f1 = O(g1) y g1 = O(g2), entonces f1 = O(g2)
2. Si f1 = O(g1) y f2=O(g2), entonces f1f2 = O(g1g2) Producto

3. f2 O(g1) = O(f2g1) Igualdad entre conjuntos. Producto

4. Si f1 = O(g1) y f2=O(g2), entonces f1+f2 = O(|g1| + |g2|) Suma

5. Si f1 y g1 son funciones positivas, f1+O(g1) = O(f1 + g1) Suma

6. Si f1= O(g1), entonces k f1=O(g1) Multiplicación
7. Si k ≠ 0 entonces O(kg1) = O(g1) Igualdad entre conjuntos. Mult.

Properties of O
 Propiedades de O

34

Mathematical definition

Ω(g(n)) =
{ f(n): there exist positive constants c and n0 such that
 0 ≤ cg(n) ≤ f(n) for all n ≥ n0 }

Acota por debajo

Big-Omega notation, Ω notation
 Notación Ω

35

Mathematical definition

Θ(g(n)) =
{ f(n) : there exist positive constants c1, c2, and n0 such that
 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0 }

Big-Theta notation, Θ notation
 Notación Θ

36

Acota por arriba y debajo
Cota ajustada

In orther words:

f(n) = Θ(g(n)) si y solo si
 f(n) = O(g(n)) y
 f(n) = Ω(g(n))

Big-Theta notation, Θ notation
 Notación Θ

37

1. Dualidad
𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 ⇔ f(n) ∈ Ω(𝑔(𝑛))

2. Clasificación
𝑔 𝑛 ∈ Θ 𝑓 𝑛 ⇔ f(n) ∈ Θ(𝑔(𝑛))

3. Eliminación de términos de menor peso
𝑆𝑖 𝑐 ≥ 0, 𝑑 > 0, 𝑔 𝑛 ∈ O 𝑓 𝑛 𝑦 ℎ(𝑛) ∈ Θ 𝑓 𝑛 , entonces

𝑐𝑔 𝑛 + 𝑑ℎ(𝑛) ∈ Θ 𝑓 𝑛
4. Límite

Properties of Θ
 Propiedades de Θ

38

Mathematical definition

o(g(n)) =
{ f(n): there exist positive constants c > 0 and n0 > 0 such that
 0 ≤ f(n) < cg(n) for all n ≥ n0 }

The value of n0 must not
depend on n, but may
depend on c.

Little-o notation
 Notación o

39

estrictamente menor

Definition with limits:

For some problems its useful to use this definition.

Little-o notation
 Notación o

40

lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= 0 lim
𝑛→𝑛0

𝑓(𝑛)
𝑔(𝑛)

= 0

Notation Definition Analogy

f(n) = O(g(n)) see slides <=
f(n) = o(g(n)) see slides <
f(n) =Ω (g(n)) g(n)=O(f(n)) >=
f(n) =ω(g(n)) g(n)=o(f(n)) >
f(n) = Θ(g(n)) f(n)=O(g(n)) and g(n)=O(f(n)) =

Analogy
 Analogias

41

Many of the relational properties of real numbers apply to asymptotic
comparisons as well:

– Transitivity
– Reflexivity
– Symmetry
– Transpose symmetry

But Trichotomy does not carry over to asymptotic notation.

Tarea optativa
– Investigar la Tricotomia y entregar resumen en no más de

3 cuartillas.

Properties of Asymptotic notation
 Propiedades de las notaciones asintóticas

42

Definiciones

2.2.2

Standars notation & common functions
 Notación estándar y funciones típicas

Monotonicity
⚫ A function f(n) is monotonically increasing

if m ≤ n implies f(m) ≤ f(n)
⚫ Similarly, it is monotonically decreasing

if m ≤ n implies f(m) ≥ f(n)
⚫ A function f(n) is:

– Strictly increasing if m < n implies f(m) < f(n)
– Strictly decreasing if m < n implies f(m) > f(n)

⚫ For any real number x, we denote the greatest integer less than or
equal to x by ⌊x⌋ (read "the floor of x"), and

⚫ The least integer greater than or equal to x by ⌈x⌉ (read "the ceiling
of x"). For all real x.

Standars notation & common functions
 Notación estándar y funciones típicas

44

For some of the calculations you might find L'Hôpital's rule
helpful. Considere:

lim(n ➔∞) f(n)/ g(n) = 0
this gives you Θ(f(n)) < Θ(g(n))

lim(n ➔∞) f(n)/ g(n) = c; c > 0
this gives you Θ(f(n)) = Θ(g(n))

lim(n ➔∞) f(n)/ g(n) = ∞
this gives you Θ(f(n)) > Θ(g(n))

Useful mathematical tools
 Herramientas matemáticas utiles

45

Regla que usa derivadas para ayudar a
evaluar límites de funciones que estén
en forma indeterminada: expresion que

involucra límites de la forma 0/0, ∞/∞, etc.

Gráfica y
Funciones (series)

2.3 A survey of common running times
Tiempos de ejecución típicos

1. Sublinear time, O(log n)
2. Linear time, O(n).
3. Linearithmic time, O(n log n)
4. Cuadratic time, O(n2)
5. Cubic time, O(n3)
6. Polynomial time , O(nk)
7. Exponential time, O(2n)

A survey of common running times
 Estudio de tiempos de ejecución típicos

47

Gráficas de las complejidades típicas:

A survey of common running times
 Estudio de tiempos de ejecución típicos

48

Gráficas de las complejidades típicas:

A survey of common running times
 Estudio de tiempos de ejecución típicos

49

Otras gráficas: Raíces

A survey of common running times
 Estudio de tiempos de ejecución típicos

50

Polinomios de Taylor

1 + 𝑥 = 1 +
𝑥
2

+
𝑥2

8
+

𝑥3

16

Otras gráficas: Hipérbolas

A survey of common running times
 Estudio de tiempos de ejecución típicos

51

Otras gráficas: Exponencial y = ax

A survey of common running times
 Estudio de tiempos de ejecución típicos

52

Leyes de los exponentes

Y tareas

Exercises
Ejercicios

⚫ Order the following expressions in increasing Θ-order.
⚫ If two functions are of the same order of growth, you should state this

fact.

E1: n log n, n−1, log n, nlog n, 10n + n3/2, πn, 2n, 2log n, 22log n, log n!
 1 2 3 4 5 6 7 8 9 10

E2: 22n, 2n2, n2logn, n, n2n

54

Basic problems 2
 Problemas básicos

Homeworks
 Tareas

Respuesta E1

Tiempo de 15 min para responder.

Demostrar

Si f(n) = O(s(n)) y g(n) = O(r(n)) entonces
 f(n) + g(n) = O(s(n)+r(n))

Si f(n) = O(s(n)) y g(n) = O(r(n)) entonces
 f(n) * g(n) = O(s(n)*r(n))

Usando las propiedades que definen el algebra llegar a la conclusión.

55

Basic problems 3
 Problemas básicos

Homeworks
 Tareas

⚫ In mathematics, the Law of Trichotomy states that every real
number is either positive, negative, or zero.

⚫ More generally, trichotomy is the property of an order relation < on
a set X that for any x and y, exactly one of the following holds:

 x<y, x=y, or x>y

Trichotomy
 Mathematics

56

Introducción

Types of Problems
Tipos de Problemas

Una clasificación informal es:

❖ Problemas triviales
❖ Problemas de búsqueda
❖ Problemas de conteo o enumeración
❖ Problemas de optimización
❖ Problemas de decisión

Types of Problems
 Introducción

58

Dificultad
Complejidad

Problemas de conteo o enumeración

⚫ Permutations
⚫ Combinations
⚫ Power Set

Types of Problems
 Introducción

59

Librerías que ya lo hacen
https://docs.python.org/3/library/itertools.html

Problemas de conteo o enumeración
⚫ Permutations

o The number of permutations of n numbers is n!.
o There are six possibilities for three objects: 3! = 6.
o This is manageable, but as the number of objects increases, the

number of permutations increases exponentially.

Types of Problems
 Introducción

60

Problemas de conteo o enumeración
⚫ Combinations
⚫ Given an array of size n, generate and print all possible

combinations of r elements in array.
For example, if input array is {1, 2, 3, 4} and r is 2, then

Output should be {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 4}

⚫ Create a program that generates all combinations of C(n,r).

Types of Problems
 Introducción

61

Problemas de conteo o enumeración
⚫ Power Set

o Power set P(S) of a set S is the set of all subsets of S.
o For example S = {a, b, c} then

P(s) = {{}, {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a, b, c}}
o If S has n elements in it then P(s) will have 2n elements.

For the previous example 23=8.
⚫ Create a program that generates all combinations of

Types of Problems
 Introducción

62

Intento de solución
Tomaremos 10 min para que cada quien intente solucionar un
problema como pueda.

o Puede ser fuerza bruta.
o Puede ser iterativo o recursivo.
o Que sean funciones con parámetros.

Luego veremos las soluciones conocidas!

Types of Problems
 Introducción

63

Soluciones
Resumen

Types of Problems
 Introducción

64

Sol Permutations Combinations Power Set

1
Heap’s algorithm

1963
decrease and conquer

Fix Elements and
Recursion

Generating all binary
numbers

2 Steinhaus–Johnson–
Trotter

Include and Exclude
every element Sorted by cardinality

3 Backtrack

Soluciones
⚫ Permutations
⚫ Heap’s algorithm is used to generate all permutations of n objects.

The idea is to generate each permutation from the previous
permutation by choosing a pair of elements to interchange, without
disturbing the other n-2 elements.

⚫ Example
– Input: 1 2 3
– Output: 1 2 3

1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

Types of Problems
 Introducción

65

It was first proposed by B. R. Heap in 1963.
https://en.wikipedia.org/wiki/Heap’s_algorithm

Soluciones
⚫ Heap’s algorithm / permutations.

void heapPermutation(int a[], int size, int n)
{

if (size == 1) { printArr(a, n); return; }

for (int i = 0; i < size; i++) {
heapPermutation(a, size - 1, n);
if (size % 2 == 1)

swap(a[0], a[size - 1]);
else

swap(a[i], a[size - 1]);
}

}

Types of Problems
 Introducción

66 It was first proposed by B. R. Heap in 1963.
https://en.wikipedia.org/wiki/Heap’s_algorithm

Revisar la
Versión
iterativa.

Problemas de conteo ...
⚫ Permutations

Leer una explicación
amplia:

– https://www.baeldung.com/cs/array-generate-all-permutations.
– Presenta 5 algoritmos

⚫ The principle of Heap’s algorithm is decrease and conquer.

Types of Problems
 Introducción

67

Soluciones
⚫ Permutations
⚫ Steinhaus–Johnson–Trotter algorithm is .
⚫ Johnson y Trotter descubrieron el algoritmo independientemente al

inicio de los 60s. Un libro de Steinhaus, publicado en 1958 y
traducido al inglés en 1963, describe un rompecabezas relacionado .

– https://es.wikipedia.org/wiki/Algoritmo_de_Steinhaus-Johnson-
Trotter

⚫ Example

Types of Problems
 Introducción

68

Soluciones
⚫ Combinations

There are two Methods
1. Fix Elements and Recursion
2. Include and Exclude every element.

Ambos métodos no consideran elementos repetidos pero
pueden ser adaptados.

Types of Problems
 Introducción

69

Soluciones
⚫ Combinations.

Methods-1: Fix Elements and Recursion
Time Complexity: O(n2)

Types of Problems
 Introducción

70

Soluciones
⚫ Combinations. Methods-1: Fix Elements and Recursion

Types of Problems
 Introducción

71

def combinationUtil(arr, data, start, end, index, r):
if (index == r):

for j in range(r):
print(data[j], end = " ");

print();
return;

i = start;
while(i <= end and end - i + 1 >= r - index):

data[index] = arr[i];
combinationUtil(arr, data, i + 1, end, index + 1, r);
i += 1;

arr = [1, 2, 3, 4, 5];
r = 3;
printCombination(arr, len(arr), r);

def printCombination(arr, n, r):
data = [0]*r;
combinationUtil(arr, data, 0, n - 1, 0, r);

Soluciones
⚫ Combinations. Methods-2: Include and Exclude every element.

o This method is mainly based on Pascal’s Identity. The idea here is
similar to Subset Sum Problem.

o We one by one consider every element of input array, and recur
for two cases:

1. The element is included in current combination
We put the element in data[] and increment next available index
in data[]

2. The element is excluded in current combination
We do not put the element and do not change index. When
number of elements in data[] become equal to r (size of a
combination), we print it.

Types of Problems
 Introducción

72

Soluciones
⚫ Combinations. Methods-2: Include and Exclude every element.

Types of Problems
 Introducción

73

def combinationUtil(arr, n, r, index, data, i):
 if (index == r):
 for j in range(r):
 print(data[j], end = " ")
 print()
 return

 if (i >= n):
 return

 data[index] = arr[i]
 combinationUtil(arr, n, r, index + 1, data, i + 1)
 combinationUtil(arr, n, r, index, data, i + 1)

arr = [1, 2, 3, 4, 5]
r = 3
printCombination(arr, len(arr), r)

def printCombination(arr, n, r):
data = [0]*r;
combinationUtil(arr, n, r, 0, data, 0);

Soluciones
⚫ Power Set
⚫ Hacer un programa que genere el P(S), donde S es el

conjunto de datos de entrada.
⚫ Geek for Geeks

1. Generating all binary numbers.
2. Sorted by cardinality
3. Backtrack

Types of Problems
 Introducción

74

Soluciones
⚫ Power Set. Metodo-1

For a given set[] S, the power set can be found by:
– Generating all binary numbers between 0 and 2n-1, where n is

the size of the set.
– For example: for the set S {x, y, z}

⚫ Generate all binary numbers from 0 to 23-1 and
⚫ For each generated number, the corresponding set can be

found by considering set bits in the number.

⚫ Time Complexity: O(n2n)
⚫ Auxiliary Space: O(1)

Types of Problems
 Introducción

75

Soluciones
⚫ Power Set. Metodo-2

In auxiliary array of bool set all elements to 0. That represent an
empty set.
Set first element of auxiliary array to 1 and generate all
permutations to produce all subsets with one element.
Then set the second element to 1 which will produce all subsets
with two elements, repeat until all elements are included.

⚫ Time Complexity: O(n2n)
⚫ Auxiliary Space: O(n)

Types of Problems
 Introducción

76

Soluciones
⚫ Power Set. Metodo-3

Use backtrack, we have two choices:
– First consider that element then
– Don’t consider that element.

⚫ Time Complexity: O(n2n)
⚫ Auxiliary Space: O(n)

Types of Problems
 Introducción

77

Introducción

Algorithm design paradigm
Paradigmas de diseño de algoritmos

Definiciones
⚫ El término paradigma tiene varios significados derivados de su

evolución. Nosotros usaremos: “El conjunto de prácticas y teorías
que definen algo”. La parte de teorias incluye los términos de:
modelos y conceptos; la parte de prácticas incluye métodologias y
procedimientos. Y “algo” en nuestro caso es Algoritmo.

– Lean: https://es.wikipedia.org/wiki/Paradigma

⚫ Paradigmas principales
– Graph
– Greedy
– Divide and Conquer
– Dynamic Programming

Referencias
– https://en.wikipedia.org/wiki/Branch_and_bound
– https://en.wikipedia.org/wiki/Branch_and_cut

Algorithm design paradigm
 Introducción

79

Otras taxonomias
• Backtracking
• Branch and bound.
• Branch and cut / prunnig.

https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound

Mapa conceptual

Algorithm design paradigm
 Introducción

80

Algoritmos
• Iterativos
• Recursivos

Programación
• Secuencial
• Paralela o concurrente

Paradigmas de la programación
• Imperativo
• Funcional
• Lógico
• OO

Programación
y

Algoritmia

Problemas combinatorios y de optimización
• State space search
• Backtracking => Greedy y DP => Heurística
• Constraint programming and
 Operations Research

Paradigmas de diseño
• Greedy
• Divide and Conquer
• Dynamic Programming

Linear programmig
Network flow

Material

Temas Slides
1. Grafos 83 / 17.18%
2. Greedy 130 / 26.91%
3. Divide and Conquer 155 / 32%
 97 ejemplos + 66 math
4. Dynamic Programming 115 / 23.8%
 483

Como todos son importantes los veremos concurrentemente.
Aprox. 2 semanas y cambio de tema.

Algorithm design paradigm
 Introducción

81

Notas históricas
Problemas abiertos

Tareas
URLs

A recordar

Several topics
Varios temas

⚫ Similar notatios of asintotic funcions are defined in number theory,
example:

The vinogradov notation (operator <<)

⚫ Number theory is a branch of pure mathematics devoted primarily to
the study of the integers.

⚫ It is sometimes called "The Queen of Mathematics" because of its
foundational place in the discipline.

⚫ Number theorists study prime numbers as well as the properties of
objects made out of integers (e.g., rational numbers) or defined as
generalizations of the integers (e.g., algebraic integers).

⚫ Criptography is nowadays based on prime numbers.

Open problemes or Further topics
 Problemas sin resolver

83

Lo más importante es:

• La forma de las curvas asintóticas.
• Saber manipular algebraicamente las funciones O, etc.
• Calcular la complejidad de algoritmos ("típicos").

Recomendable:

• Poder demostrar algunas manipulaciones algebraicas.

To remember
 A recordar

Raúl Acosta Bermejo

http:www.cic.ipn.mx
http://www.ciseg.cic.ipn.mx/

racostab@ipn.mx
racosta@cic.ipn.mx

57-29-60-00
Ext. 56652

85

The end
 Contacto

mailto:racostab@ipn.mx
mailto:racostab@ipn.mx
mailto:racostab@ipn.mx
mailto:racosta@cic.ipn.mx

i=n*2;
while(i>2)
{
 instrucción 1;
 for(j=0; j<n/2; j++)
 instrucción 2;
 for(k=n; k>1; k--) {
 for(m=1; m<10; m++)
 instrucción 3;
 }
 i=i/3;
}

Algebraic examples
 Ejemplos prácticos

26

O(1)

O(1)

O(1)

O(1)

O(1)

O(1)
O(n)

O(n)

O(n)
O(n)+O(n)

O(n log3n)
O(n)*O(log3n)

Twhile= Ti1+ Tfj+ Tfk+ Ti
 = c1 + (c2n +c) + (c3n +c) + c4
 = c5n + C6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

