Centro de
Investigacion en
Computacion

Basics of Algorithm Analysis
Conceptos basicos de Analisis de algoritmos

Tema 2
Course

Analysis and design of algorithms

Instructor

Acosta Bermejo Raul et al. . itha)
Instituto me=7es
Politécnico i jinte

Lecture notes 2025-B Nacional SIS
10 de septiembre del 2025 CANE)

Table of contents (outline)
Tabla de contenido

2.1.
2.2.
2.21.
2.2.2.
2.3.
2.4
2.5
2.6.

Computational tractability

Asymptotic order of growth

Asymptotic notation

Standard notation and common functions
A survey of common running times
Exercises

Tipos de problemas

Algorithm design paradigm.

NO esta en el temario pero son necesarios.

Introdution

Introduccion

What is an efficient algorithm?

Our usual measure of efficiency is speed, but it dependes of
computer (processor)?

Memoria ’EIS Comuni-
i jﬁ caciones
N e 16 mas

Odmas ——

__——~ALGORITMO ——

entradas salidas

Computational tractability
Estudio

In general we can analysis algorithms in the following scenarios:
1. Worst-case (Peor caso) Most used.
2. Average-Case (caso promedio)

3. Best-case (Mejor caso)

Are there other types of analysis?

2.2 Asymptotic order of growth
Crecimiento asintotico

Teoria
Ejercicios

Asymptotic order of growth

Orden asintotico de crecimiento

e Tha idea is study the behavior of algorithms when data grouths, i.e.
when data (n) go to infinit.

e Little growth data is for Real time and in that case time really
matters, not Growth.

e Remember to THINK BIG when working with asymptotic rates of
growth.

2.2.1 Asymptotic notation

Notacion asintoética

Definiciones

Bibliography

Referencias

Lista
1. https://en.wikipedia.org/wiki/Big_O_notation

2. https://en.wikipedia.org/wiki/Best, worst _and_average c
ase.

3. https://en.wikipedia.org/wiki/Master theorem

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation

Asymptotic notation

Notacidon asintotica

The most common notationes are:

1. Big-Oh, O. Worst case / upper bound
2. Big-Omega, Q lower bound
3. Big-Theta, ©O. Average case

But there are also:
1. Little-Oh, o.

2. Little-Omega, w

And for some algorithms you use Probabilistic analysis.

Historical notes
Edmund Landau

Notas historicas Aleman

No es Lev Landau RNHE

e Knuth traces the origin of the O-notation to a number-theory text
by P. Bachmann in 1892.

e The o-notation was invented by E. Landau in 1909 for his
discussion of the distribution of prime numbers.

e The Q and © notations were advocated by Knuth to correct the
popular, but technically sloppy, practice in the literature of using
O-notation for both upper and lower bounds.

e Further discussion of the history and development of asymptotic
notations can be found in Knuth and Brassard and Bratley.

Big-Oh notation, O notation

Notacion O

Mathematical definition

Instead of x we use n.
O(g(n)) =
{ f(n): there exist positive constants ¢ and n, such that /
0 <f(n) <c g(n) foralln>n, }

Acota por arriba

}Decir que f(n) es de 6rden O(g(n)), significa:

ca@)
" M

M)

Algebraic examples

Ejemplos algebraicos

T(n) =1 => O(1) Constante

T(n)=log, n => O(log n) Logaritmico
T(n)=an+b => O(n) Lineal

T(n)=nlog,n => O(n log n) Logaritmico
T(n)=an?+bn +c => O(n?) Cuadratico

T(n)= an® + bn2 + cn + d => O(n%) Cubico Orden
T(n)=n™m, m=0,1,2,3... => O(nM) Polinomial

T(n)=c",c>1 => O(n") Exponencial

T(n)=n! => O(n!) Factorial

Otro son O(n") Potencial Exponencial
O(n) Sublineal, O (n°) Potencial

Practical examples

Ejercicios practicos de codigo

Codigo:

1=4;

printf ("hello word");

t(n) = 0.00245 segundos?
=>0(1)

=cg(n)=0.00245 *1 “se dice que la” C absorve la constante
g(n) =1

Algebraic examples

Ejemplos algebraicos

e Ejemplo 1 e Ejemplo 4
T(n)=7n-3 es O(n) 2100 es O(1)
C=7n,=1 e Ejemplo 5
/n-3<=7n 5/n es O(1/n)

e Ejemplo 2 e nkes?
20+ 10logn+5 esO(nd)

e Ejemplo 3

3 log n + log(log(n)) es O(log n)

Practical examples

Estructuras de control

A program is made of two parts:
Code (instructions) + Data (variables)

Instructions 1. Conditions
1. Expressions (arithmetic, logic) If-else
2. Flow control structures Switch, case
i. Control structures 2. LOOPS
ii. Control statements while
For
Decision-making Do-while, repeat-until
Repetition or Jumping 3. Jumps
Goto
Nested Statements Break, continue

Return, exit

Practical examples

Estructuras de control

G, cise
}

Sentence if

cuerpo

Peor caso

Mejor caso

del if

condicion

O(1)
J true false

O(f(n))

2!

if(condicion)

instruccion_cuerpo

if(condicion){

instruccionES_cuerpo

O(g(n))

O(max(f(n), g(n)))

O(min(f(n), g(n)))

while(condicion){

Practical examples | cuermo

Estructuras de control

Sentence while
condition

false

O(g(n))

O(f(n)) condition
var == valor
var == fun(param)

O(1*gn) * f(n))
O(cond(n) g(n) f(n))

Que pasa si la condicion no es O(1)?

for(i=1; i<=n; i++){
Practical examples yooo

Estructuras de control l

i=0;

Sentence for condition
O(1)
true
false
O(g(n)) O(fin))
O(1) incremento, ej. i++
O(g(n) f(n))

Que pasa si el incremento/decremento no es una asignacion?

2!

If(cond_1)X

}else if(cond 2 ¥

Practical examples swich(var
lelse{ casevalort:
Estructuras de control faefaut e

Facilidad sintactica break;

Semantica
Poder computo

Sentence switch

true false

Algebraic examples

Ejemplos practicos

Basic calculations (loops)
i=1: Similar code
while(i<n){ for(i=1; i<n; i++;§
I++:

) }

The value of n is a parameter
fn=28

i1 ={1,2,3,4,5,6,7}
There are n-1 instructions.

for(i=1; i<3; i++; {
for(k=1; k<n; k++;); O(n)
}

for(i=1; i<n; i++;){
for(k=1; k<n; k++;){

} | codigo = O(n)
} code = O(n) * O(n)
=0 (n?)

Practical examples

Estructuras de control

Basic calculations (loops)
string = “cadena”; o(1)
for(cnt=1; cnt <= strlen(string); cnt++){
printf(“%d”, cnt);

! O(ini) = O(1)
O(cond) = O(n)
, O(cuerpo) = O(1)
scanf(“%s”, &string); O(modif _cnt)
for(cnt=1; cnt <= strlen(string); cnt++){
printf(“%d”, cnt); O(f(n)) = O(cuerpo)= O(1)
! O(g(n)) = O(n)

var_lim = strlen(string);

for(cnt=1; cnt <= var_lim; cnt++){
printf(“%d”, cnt); O(n)

}

O's algebra (some rules)

Deduciendo algunas reglas

Algebraic operations
Times
T1(n) * T2(n) = O(f(n)*g(n))

Particular case

O(c * f(n)) = O(f(n))

By the definition of O it is said that it absorbs c.

Example

O(n%/2) = O(1/2 n?) = O(n?)
But also:

O(n?+n), O(4n%+7n), O(n%-7n+13), etc.

Any quadratic polynomial.

Algebraic examples

Ejemplos practicos

i=1; n=8

while(i<n){ 1<8 2<8 4<8 8<8 =>20 21 .
i=i*2; i=2 i=4 =8

}

20, 21,22 23, 2% ... In general the loop behaves like 2%
The condition i<n has the limit of 2
2*X<n
log, 2% <log, n
X < log,n

The programe is O(log n)

Algebraic examples

Ejemplos practicos

I=Nn*2;
while(i>2)
{
instruccion 1;
for(j=0; j<n/2; j++)
instruccion 2;
for(k=n; k>1; k--) {
for(m=1; m<10; m++)
instruccion 3;
}
1=i/3;
}

Algebraic examples

Ejemplos practicos

Tunie= Tt Tyt Tpt T,

G - ¢ (cn o)+ (o o) + oy
i:n*2; 0(1) = Cgn + C6
while(i>2) 7
{

instruccion 1; 0(1)
for(j=0; j<n/2; j++)
instruccion 2; O(1) } O(n)
for(k=n; k>1; k--) { h - O(n)
for(m=1; m<10; m++) _ O(n) O(n)+0(n)
instruccion 3; O(1) } o)
} - —
i=i/3; O(1) __
}

Algebraic examples

Ejemplos practicos

if(n > 1000){

Calculate the time complexity:

I=n*100;

o « O for the worst case.
while(i>2){

i=1; O for the best case.

while(j<n){

=i73;

}

I=i/9;
}

Practical examples

Estructuras de control

Paradigm of the language: imperative

The 1instructions are executed 1n a sequential order.
Unless the flow of the program is modified the order using Flow control

sentences.

instruction-1; => O(1), 1, 1s a function

Instruction-2; => O(1,)
a=3; : : :
function(parametres); Oprograme = O(|1) + O(IZ) * .. O(IN)

=0(ig +iy + ... +iy)
Instruction-N; => O(iy)
If the times are contantes:
v = 0(0.001+0.002+...+0.003)= O(0.006)=0(C*1)
C=3

Algebraic examples

Ejemplos practicos

Review of logarithms

log, y =X < b*=y

Inverse Operation

Propiedades

log nm =log n + log m

log n/m=logn-logm

logn'=rlogn

log,n=log,n/log,a (ay b enteros)

logy x
log, ¥x = —‘cif

el =1
log,.x = INn1=0
I logyx b Ine=
Ine"=n

2!

No todas las bases y numeros son
posibles. La base b tiene que ser
positiva y distinta de 1.

log, (1) 4

En cualquier caso, y para todo valor apropiado

de la base b, la grafica de la funcion logaritmica

corta al eje de las abscisas en el punto (1,0).

El logaritmo de n en distintas bases, esta

relacionado por una constante (que es

logaritmo de una base en la otra).

Asi que analisis de complejidad que se hacen

en una base de logaritmos, pueden facilimente

traducirse en otra, simplemente con un factor

de proporcionalidad.

El valor de e es la base del algoritmo natural
Inn=logen

Algebraic examples

Ejemplos practicos

lw 0) (h, 0) Ch, 0)

Horlzontal Shift

Review of Quadratic function \ / \ /
0, k) (h, k)
(0, %

Vertical Shift

Quadratic Function: Vertex Form

—> Axis of Symmentry
+ e <«—— Vertex
./" V= +br+c (Maximum Value)
\ J
/ 2
\ General form: f(x)=ax" +bx+c
\ / Vertex
\ /) <—— (Maximum Value)
) / To get the vertex of the quadratic graph
\\ / —> Axis of Symmentry
\ L — b
k. h=—— k=f(h)
\ 2a y-axis
Xad N .
X h k 2 |
// (h, k) Vertex form: f(\’) =a(x-h) +k |+ Axis of Symmetry
vertex l

Domain 1 x Range

‘\ - ,' X-axis
\/ (h,K)

Vv . “Wertex

Algebraic examples

Ejemplos algebraicos

Nodos Altura /\
23=8 3
22=4 2
21=2 1
20=1 0

Niveles (iteraciones)
log, 8+ 1=log,23+1=3+1=4

Problems notation

Problemas de notacion

s comon to write: .
La comparacion =

t(n) = O(9(n)) tambien es un operador con sus propiedades
la cual suele ser reflexiva, pero para O ...

but we have:
funcidon = Conjunto de funciones
f ={fgh,..}
that is, they are not equivalent/comparable.
The correct way is f(n) € O(g(n))

So it is an abuse of the notation that in some cases gives us problems:
Investigar y dar ejemplos

Landau Notation

Notacion Landau

e Is used in math & algo for symbolically expressing the
asymptotic behavior of a given function.

e Definition for functions. It is what we have seen.
e Definition for sucesiones:

No es tema del curso sin embargo ...
Tarea optativa

e |nvestigar la notacion Landau y entregar resumen en no mas

de 3 cuartillas.

* Una sucesién puede definirse como una funcién sobre el conjunto de los
numeros naturales (o un subconjunto del mismo, y es por tanto una funcion
discreta) y su codominio es cualquier otro conjunto, generalmente de numeros,
figuras geomeétricas o funciones.

* No confundir con una serie matematica, que es la suma de los términos de
una sucesion.

Properties of O

Propiedades de O
c- 0]

Sea E c R, sean f;:E—R, g;:E—>R , {,:E—>R, g,;E—>R funciones y k un
real. Entonces los siguientes enunciados son ciertos:

. Sif;=0(g)) y g = 0(g,), entonces f; = O(g,)

2. Sif, =0(g))y £,=0(g,), entonces f,f, = O(g,g,) Producto

3. 1, 0(g,) =0(f,g,) Igualdad entre conjuntos. Producto

4. Sitf; =0(g)) y £,=0(g,), entonces t;+1, = O(|g,| + |g,[) Suma

5. Sif} y g, son funciones positivas, f;+O(gl) = O(f; + g,;) Suma

6. S1f=0(g,), entonces k £;=0(g,) Multiplicacion

7. S1k # 0 entonces O(kg,) = O(g,) Igualdad entre conjuntos. Mult.

Big-Omega notation, () notation

Notacion 2

Mathematical definition

Q(g(n)) =
{ f(n): there exist positive constants ¢ and n,, such that
0 <cg(n)<f(n)foralln>n,}

Acota por debajo

Big-Theta notation, ® notation

Notacion ®

Mathematical definition
Acota por arriba y debajo
Cota ajustada
O(g(n)) = ’

{ f(n) : there exist positive constants c,, ¢,, and n, such that
0<c;gn)<f(n)<c,gn)foralln>n, }

O f(n)=O(g(n)

Big-Theta notation, ® notation

Notacion ®

In orther words:

f(n) = ©(g(n)) s1y solo si
f(n) =0(gn))y
f(n) = Q(g(n))

Properties of ©®
Propiedades de ©

1. Dualidad
g(n) € 0(f(n)) & f(n) € Q(g(n))
2. Clasificacion
g(n) € O(f(n)) & f(n) € O(g(n))
3. Eliminacion de términos de menor peso
Sic>0,d>0,gn) € O0(f(n)yhm) € 6(f(n)), entonces
cg(n) + dh(n) € 6(f(n))
4. Limite

¢ = R*, entonces f(n)sO(g(n))

lim #(n) _ e e _ -
: =< 0,entonces f(n)=O(g(n)), peronoa®(g(n))

A

1n—> o g(n)

o, entonces ()= Q(g(n)), pero no a ®(g(n))

Little-o notation

Notacidon o

Mathematical definition

o(g(n)) = estrictamente menor
{ f(n): there exist positive constants ¢ > 0 and n, > 0 such that
0 < f(n) <cg(n) for alln>n, }

The value of ny must not
depend on n, but may
depend on c.

Little-o notation

Notacidon o

Definition with limits:

im 2D _ i 20D _

n—eo g (n) n-n, g (n)

For some problems its useful to use this definition.

Analogy
Analogias

o]

Notation Definition Analogy

f(n) = O(g(n)) see slides <=

f(n) = o(g(n)) see slides <

f(n) =Q (gn)) gn)=O(f(n)) >=

f(n) =w(gm)) gn)=o(f(n)) =

f(n) =O(gm)) f(n)=O(gn)) and g(n)=O(t(n)) =

Properties of Asymptotic notation

Propiedades de las notaciones asintoticas

Many of the relational properties of real numbers apply to asymptotic
comparisons as well:

— Transitivity

— Reflexivity

~ Symmetry

— Transpose symmetry

But Trichotomy does not carry over to asymptotic notation.

Tarea optativa

— Investigar la Tricotomia y entregar resumen en no mas de
3 cuartillas.

2.2.2
Standars notation & common functions

Notacion estandar y funciones tipicas

Definiciones

Standars notation & common functions

Notacion estandar y funciones tipicas

Monotonicity
e A function f(n) is monotonically increasing
if m < n implies f(m) < f(n)
e Similarly, it is monotonically decreasing
if m < n implies f(m) > f(n)
e A function f(n) is:
— Strictly increasing if m <n implies f(m) < f(n)
— Strictly decreasing if m <n implies f(m) > f(n)
e For any real number x, we denote the greatest integer less than or
equal to x by |x] (read "the floor of x"), and

e The least integer greater than or equal to x by [x]| (read "the ceiling
of x"). For all real x.

Useful mathematical tools

Herramientas matematicas utiles

For some of the calculations you might find L'Hépital's rule
helpful. Considere:

Regla que usa derivadas para ayudar a

evaluar limites de funciones que estén

en forma indeterminada: expresion que
involucra limites de la forma 0/0, «/~, etc.

img, 5.) f(n)/ g(n) =0
this gives you O(f(n)) < ©(g(n))

lim(n =»~)f(n)/ g(n)=c;c>0
this gives you O(f(n)) = ©(g(n))

lim(n =»<0) f(n)/ g(n) =
this gives you O(f(n)) > ©(g(n))

2.3 A survey of common running times

Tiempos de ejecucion tipicos

Grafica y
Funciones (series)

A survey of common running times

Estudio de tiempos de ejecucion tipicos

Sublinear time, O(log n)
Linear time, O(n).
Linearithmic time, O(n log n)
Cuadratic time, O(n?)

Cubic time, O(n3)
Polynomial time , O(n¥)
Exponential time, O(2")

N o O M Do~

A survey of common running times

Estudio de tiempos de ejecucion tipicos

Graficas de las complejidades tipicas:

A survey of common running times

Estudio de tiempos de ejecucion tipicos

Graficas de las complejidades tipicas:

Big-O Complexity Chart
(Forribe] (sad] [ra:- | [ooos | ERESTIRRT

Operations

Elements

A survey of common running times

Estudio de tiempos de ejecucion tipicos

Oftras graficas: Raices Polinomios de Taylor

x2 x3

X
vVi+x=1+ E+E+E

A survey of common running times

Estudio de tiempos de ejecucion tipicos

Otras graficas: Hipérbolas

A survey of common running times

Estudio de tiempos de ejecucion tipicos

Otras graficas: Exponencial y = a*

Leyes de los exponentes

a)a"Ya’)=a™
a” .
b)a—y =& ‘g

c)(ax)'v
d)ab)" =a’b”

a®

EXxercises
Ejercicios

Homeworks Basic problems 2

Tareas Problemas basicos

e Order the following expressions in increasing ©-order.

e If two functions are of the same order of growth, you should state this
fact.

|
E1: nlogn,n logn, n'gn 10n + n32 10, 2n, 2legn 2297 |oq n
1 2 3 4 5 6 7 8 9 10

E2: 22" 27° n2logn, n, n2
Respuesta E1

Tiempo de 15 min para responder.

Homeworks Basic problems 3

Tareas Problemas basicos

Demostrar

Si f(n) = O(s(n)) y g(n) = O(r(n)) entonces
f(n) +g(n) = O(s(n)+r(n))

Sif(n) = O(s(n)) y g(n) = O(r(n)) entonces
f(n) * g(n) = O(s(n)*r(n))

Usando las propiedades que definen el algebra llegar a la conclusion.

Trichotomy

Mathematics

e In mathematics, the Law of Trichotomy states that every real
number 1s either positive, negative, or zero.

e More generally, trichotomy is the property of an order relation < on
a set X that for any x and y, exactly one of the following holds:

X<y, X=y, Or Xy

Types of Problems
Tipos de Problemas

Introduccion

Types of Problems

Introduccion

Una clasificacion informal es:

.0 X

*

0’0

J
0‘0

*

Problemas triviales

Problemas de busqueda

Problemas de conteo o enumeracion
Problemas de optimizacion
Problemas de decision

Dificultad
Complejidad

2!

Types of Problems

Librerias que ya lo hacen

IIltI'O duc Ci(’)n https://docs.python.org/3/library/itertools.html

Problemas de conteo o enumeracion

https://docs.python.org/3/library/itertools.html G M % Y

[Permutations figuracién 10 my_IP 5 django-docker [E5 Inv 5 IEPC [CGSI 3 Rolando-Dr [Ludico [Tools [E3 CIC [E3 Developer [E5 IPM

(CO m b|n ation S 1ts Combinatoric iterators:

ons
r Iterator Arguments Results
e Power Set
i roduct () p,d, ... cartesian product, equivalent to a nested
P [repeat=1] for-loop
. r-length tuples, all possible orderings, no
permutations() P, 1] repeated elements
ming
. . r-length tuples, in sorted order, no repeated
combinations() p, r elements
] r-length tuples, in sorted order, with
r-order combinations _with replacement() p,Tr 9 P
tions - - repeated elements
Examples Results

AA AB AC AD BA BB BC BD CA CB CC CD DA DB
product('ABCD', repeat=2)

DC DD
permutations('ABCD', 2) AB AC AD BA BC BD CA CB CD DA DB DC
combinations('ABCD', 2) AB AC AD BC BD CD

combinations_with_replacement('ABCD', 2) AA AB AC AD BB BC BD CC CD DD

Types of Problems

Introduccion

Problemas de conteo o enumeracion
e Permutations
o The number of permutations of n numbers is n!.
o There are six possibilities for three objects: 3! = 6.

o This is manageable, but as the number of objects increases, the
number of permutations increases exponentially.

‘ Number of Objects | Number of permut

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

20 2.432902e+18
30 2.6525286e+32
40 8.1591528e-+47

Types of Problems

Introduccion

Problemas de conteo o enumeracion
e Combinations

e Given an array of size n, generate and print all possible
combinations of r elements in array.

For example, if input array is {1, 2, 3, 4} and ris 2, then
Output should be {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 4}

Types of Problems

Introduccion

Problemas de conteo o enumeracion
e Power Set
o Power set P(S) of a set S is the set of all subsets of S.
o Forexample S ={a, b, c} then
P(s) = {{}, {a}, {b}, {c}, {a,b}, {a, ¢}, {b, c}, {a, b, c}}
o If S has n elements in it then P(s) will have 2" elements.
For the previous example 23=8.
e Create a program that generates all combinations of

Types of Problems

Introduccion

Intento de solucion

Tomaremos 10 min para que cada quien intente solucionar un
problema como pueda.

o Puede ser fuerza bruta.
o Puede ser iterativo o recursivo.
o Que sean funciones con parametros.

Luego veremos las soluciones conocidas!

Types of Problems

Introduccion
Soluciones
Resumen
Sol Permutations Combinations Power Set

Heap’s algorithm
1963
decrease and conquer

Steinhaus—Johnson—
Trotter

Fix Elements and
Recursion

Include and Exclude
every element

Generating all binary
numbers

Sorted by cardinality

Backtrack

2!

Types Of Pl‘()blems It was first proposed by B. R. Heap in 1963.
https://en.wikipedia.org/wiki/Heap’s_algorithm

Introduccion

Soluciones
e Permutations

e Heap’s algorithm is used to generate all permutations of n objects.
The idea is to generate each permutation from the previous

permutation by choosing a pair of elements to interchange, without
disturbing the other n-2 elements.

[J Example Here is a solution using backtracking.
- Input. 1 2 3 A o C BB Fixed Characte
- OUtpUt: 1 2 3 Swap A with A Sv;.ml\\lvitha Swap A with C
132 e
Als|cl.l, Bl|A|C | ClB| Alfe
213 \
Swap BwithB Swap B with € Swap A with A Swap A with C Swap B with B Swap Bwith A
231 £\ L N\
AlB|C]| |A]JC|]E® BIAJCc]||B|C]|A clela] |C|A|B
3 1 2 AB is Fixed \C Is Fixed BA Is Fixed BC is Fixed C8 is Fixed CA is Fixed
321

Recursion Tree for Permutations of String "ABC"

#1 2#3;:‘: ;
Types of Problems
g
Introduccion o S0

Soluciones 1
s algori - e
e Heap’s algorithm / permutations. iy v ¥
void heapPermutation(int a[], int size, int n) Revisar la ;é@’
Version e—
{ Jers 13
e : _ _ iterativa. Wil

if (size == 1) { printArr(a, n); return; } Fo¥
#1 2 #3 ;'q‘)t:]

@A‘

for (inti= 0; i< size; i++) { A€
heapPermutation(a, size - 1, n);
if (size % 2 ==1)
swap(a[0], a[size - 1]);
else
swap(a[i], a[size - 1]);

} It was first proposed by B. R. Heap in 1963.
https://en.wikipedia.org/wiki/Heap’s_algorithm

Algorithm 3: NonRecursiveHeapsAlgorithm
Data:
GeneratedPermutations: generated permutations,
ElementsToPermute: elements to permute (also initial permutation),
Length: The length of the array

Types Of PrOblemS c[] «— initArray(length,0);

output this permutation, ElementsToPermute;

Introduccion i< 0

while i < Length do

G
if 7 is even then
’ SwapFElements(0,i);
Problemas de conteo ... else
e Permutations e’ndSwapElements(c[i], i);
add ElementsToPermute to GeneratedPermutations;
clt] «— c[i] + 1;
i<— 0;
else
cli] «— 0;
— i+ 1;
end

end

Leer una explicacion
amplia:
- https://www.baeldung.com/cs/array-generate-all-permutations.

- Presenta 5 algoritmos
e The principle of Heap’s algorithm is decrease and conquer.

Types of Problems

Introduccion

Soluciones
e Permutations
e Steinhaus—Johnson-Trotter algorithm is .

e Johnson y Trotter descubrieron el algoritmo independientemente al
inicio de los 60s. Un libro de Steinhaus, publicado en 1958 vy
traducido al inglés en 1963, describe un rompecabezas relacionado .

- https://es.wikipedia.org/wiki/Algoritmo_de_Steinhaus-Johnson-
Trotter

e Example

Types of Problems

Introduccion

Soluciones
e Combinations
There are two Methods
1. Fix Elements and Recursion
2. Include and Exclude every element.

Ambos métodos no consideran elementos repetidos pero
pueden ser adaptados.

Types of Problems

Introduccion

Soluciones

e Combinations.
Methods-1: Fix Elements and Recursion
Time Complexity: O(n?)

12345

Types of Problems

Introduccion

Soluciones

e Combinations. Methods-1: Fix Elements and Recursion

def combinationUtil(arr, data, start, end, index, r):
if (index ==r):
for j in range(r):
print(data[j], end ="");
print();
return;

| = start;

while(i<=endand end - i+ 1 >=r-index):
data[index] = arr]i];
combinationUtil(arr, data, i + 1, end, index + 1, r);
i +=1;

arr=[1, 2, 3, 4, 5];
r=23;
printCombination(arr, len(arr), r);

def printCombination(arr, n, r):
data = [0]*r;
combinationUtil(arr, data, 0, n- 1, O, r);

Types of Problems (n) _ (n - 1) N (n - 1)
., k k—1 k
Introduccion

Soluciones
e Combinations. Methods-2: Include and Exclude every element.

o This method is mainly based on Pascal’s Identity. The idea here is
similar to Subset Sum Problem.

o We one by one consider every element of input array, and recur
for two cases:

1. The element is included in current combination

We put the element in data[] and increment next available index
in datal]

2. The element is excluded in current combination
We do not put the element and do not change index. When

number of elements in data[] become equal to r (size of a
combination), we print it. i

Types of Problems

Introduccion

Soluciones
e Combinations. Methods-2: Include and Exclude every element.

def combinationUltil(arr, n, r, index, data, i):
if (index ==r):
for jin range(r):
print(data[j], end ="")
print()
return

if (i >=n):
return
data[index] = arri] def printCombination(arr, n, r):

combinationUtil(arr, n, r, index + 1, data, i + 1) data = [O]'r; |
combinationUtil(arr, n, r, index, data, i + 1) combinationUtil(arr, n, r, 0, data, 0);

arr=[1, 2, 3,4, 5]
r=3
printCombination(arr, len(arr), r)

Types of Problems

Introduccion

Soluciones
e Power Set

e Hacer un programa que genere el P(S), donde S es el
conjunto de datos de entrada.

e Geek for Geeks
1. Generating all binary numbers.
2. Sorted by cardinality
3. Backtrack

Types of Problems

Introduccion

Soluciones
e Power Set. Metodo-1
For a given set[] S, the power set can be found by:

— Generating all binary numbers between 0 and 2"-1, where n is
the size of the set.

— For example: for the set S {x, y, z}
e Generate all binary numbers from 0 to 23-1 and

e For each generated number, the corresponding set can be
found by considering set bits in the number.

e Time Complexity: O(n2")
e Auxiliary Space: O(1)

Types of Problems

Introduccion

Soluciones

e Power Set. Metodo-2
In auxiliary array of bool set all elements to 0. That represent an
empty set.
Set first element of auxiliary array to 1 and generate all
permutations to produce all subsets with one element.

Then set the second element to 1 which will produce all subsets
with two elements, repeat until all elements are included.

e Time Complexity: O(n2")
e Auxiliary Space: O(n)

Types of Problems

Introduccion

Soluciones

e Power Set. Metodo-3
Use backtrack, we have two choices:
— First consider that element then
- Don’t consider that element.

e Time Complexity: O(n2")
e Auxiliary Space: O(n)

Algorithm design paradigm
Paradigmas de diseno de algoritmos

Introduccion

Algorithm design paradigm

Introduccion

Definiciones

e El| término paradigma tiene varios significados derivados de su
evolucion. Nosotros usaremos: “El conjunto de practicas y teorias
que definen algo”. La parte de teorias incluye los términos de:
modelos y conceptos; la parte de practicas incluye métodologias vy
procedimientos. Y “algo” en nuestro caso es Algoritmo.

- Lean: https://es.wikipedia.org/wiki/Paradigma
e Paradigmas principales _
_ Graph Otras taxonomias

* Backtracking

« Branch and bound.

« Branch and cut / prunnig.

- Greedy

— Divide and Conquer

—~ Dynamic Programming
Referencias

- https://en.wikipedia.org/wiki/Branch_and_bound
- https://len.wikipedia.org/wiki/Branch_and_cut

https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound

Algorithm design paradigm

Introduccion

Mapa conceptual

Problemas combinatorios y de optimizacion
+ State space search
+ Backtracking => Greedy y DP => Heuristica
Algoritmos * Constraint programming and

: Operations Research
» lterativos

 Recursivos

. 2 Linear programmi
Programacion Programacion Networ?(flgw °
» Secuencial Yy
« Paralela o concurrente Algoritmia
Paradigmas de la programacion Paradigmas de diseino

* Imperativo + Greedy

* Funcional » Divide and Conquer

* Logico * Dynamic Programming

- OO

Algorithm design paradigm

Introduccion
Material
Temas Slides
1. Grafos 83/17.18%
2. Greedy 130/ 26.91%

3. Divide and Conquer 155/ 32%

97 ejemplos + 66 math
4. Dynamic Programming 115/23.8%

483

Como todos son importantes los veremos concurrentemente.
Aprox. 2 semanas y cambio de tema.

Several topics
Varios temas

Notas histéricas
Problemas abiertos
Tareas
URLs

A recordar

Open problemes or Further topics

Problemas sin resolver

Similar notatios of asintotic funcions are defined in number theory,
example:

The vinogradov notation (operator <<)

Number theory is a branch of pure mathematics devoted primarily to
the study of the integers.

It is sometimes called "The Queen of Mathematics" because of its
foundational place in the discipline.

Number theorists study prime numbers as well as the properties of
objects made out of integers (e.g., rational numbers) or defined as
generalizations of the integers (e.g., algebraic integers).

Criptography is nowadays based on prime numbers.

To remember

A recordar

Lo mas importante es:
La forma de las curvas asintoticas.
Saber manipular algebraicamente las funciones O, efc.
Calcular la complejidad de algoritmos ("tipicos").

Recomendable:

Poder demostrar algunas manipulaciones algebraicas.

The end

Contacto

Raul Acosta Bermejo

http:www.cic.ipn.mx
http://www.ciseg.cic.ipn.mx/

racostab@ipn.mx
racosta@cic.ipn.mx

57-29-60-00
Ext. 56652

mailto:racostab@ipn.mx
mailto:racostab@ipn.mx
mailto:racostab@ipn.mx
mailto:racosta@cic.ipn.mx

Algebraic examples

Ejemplos practicos

Tunie= Tt Tyt Tpt T,

G - ¢ (cn o)+ (o o) + oy
i:n*2; 0(1) = Cgn + C6
while(i>2) 7
{

instruccion 1; 0(1)
for(j=0; j<n/2; j++)
instruccion 2; O(1) } O(n)
for(k=n; k>1; k--) { h - O(n)
for(m=1; m<10; m++) _ O(n) O(n)+0(n)
instruccion 3; O(1) } o)
} - —
i=i/3; O(1) __
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

