Interconnection of software tools or applications, considered as
black boxes

Adolfo Guzman and Weiping Yin

ABSTRACT. With so many software tools available today for increasing the productivity of the programmer, there is a frequent
need to integrate, interconnect or make collaborate two or more tools that, when developed, had no idea that they would be
talking or connected to each other much later. To compound the problem, these tools most likely were developed by different
manufacturers, or in some other form there is a resistance to share or publish source code for such tools; only object code is
available. The problem to be solved is how to make such “black box” tools collaborate in new desired ways, without having to
change the code of either tool.

Some current and new (proposed) methods for solving this interconnection problem (which is similar for tools and for ap-

- plications) are given and discussed, as well as when it is convenient to make some of these tools act as providers of a service

(“servers”). Certain methods rely on some degree of knowledge (at tool design time) of the probable ways 10 interconnect the

tool in the future. This paper focuses in tools written in the same language for the same machine, but some extensions to alleviate

this restriction are mentioned. Examples of the methods are given. The paper also contains some implications for tool builders
that wish to integrate their tools via these methods with other yet-unknown tools.

Keywords: software engineering; tool interconnection; tool integration; software engineering environment; SEE; fPSE; appli-

cations interaction.
I The problem to solve

Tools to develop software, and in general, to help in appli-
cations programming, significantly increase the productivity
of programmers and users. Unfortunately, most of these tools:
(1) are designed to work in a stand-alone mode, interacting
perhaps with a proprietary database or with the operating sys-
tem; (2) are available only in object code, the source being
kept unavailable by the original developer. On the other hand,
there are demands for tools’ collaboration: (a) complex prob-
lems use a multiplicity of tools, so that their interaction be-
comes necessary or natural; (b) methods' for software
development require the developer to follow certain sequence
of steps (hence, of needed tools); thus, the tools need to inter-
act (be supervised) by another tool: the software engineering
environment; () in general, a given tool is used only in a part
of the development: an interpreter is used in the initial steps of
fast prototyping methods; later, it is displaced by a compiler.
Tools come and go. This calls for dynamic tool integration.

The problem to be addressed is: how can two (or more)
tools (or applications) be made to interact, when the code of
the tools can not be changed, but more code can be written
around them?

1-1 Integration, collaboration and use

Some definitions follow.

Tool T communicates with T, when T provides some infor-
mation to Ty. “Ty communicates with T,” does not neces-
sarily imply “T, communicates with T,."”

1. “Methods” is used to refer to a series of steps or algorithms;
“Methodology™ is the science that studies methods. In U.S.A. there is
a tendency to use “Methodology™ when “methods™ is intended.

Presumably, T; provides the information in order (o re-
quest from T, some action or in some manner modify its
behavior. Thus,

T, uses T, when Ty communicates with T, in order to obtain
some information or service from Ty, or to modify T5’s be-
havior or state. “T; uses T,” does not imply necessarily
"Tz uses Tl o

Connects, Interconnects, Collaborates or Integrates are often
used in place of uses; they are less desirable terms since
they tend to imply a commutative relation, while uses does
not.

T, is a clear box if its casy* to modify its code. This generally
means that its source code is available. An non modifiable
tool is a black box. There could be “gray” or “almost
black” tools.

The use of Ty by Ty has the purpose of accomplishing
some goal or service S, which neither T, nor T; can accom-
plish by itself. It requires in gencral some additional code and
modifications to Ty and T. If both Ty and T, are black boxes,
their modification is impossible; service S can only be
achieved by means of additional code. This is called glue code
or integration code when conceived as located “between” T
and Ty, and is called encapsulation code when it is thought to
be “around” the used tool, T, (which is now encapsulated).

. For instance, if its inner workings, functions, arguments, etc.,
and the purpose of these, are known, so that its modification or de-
tailed understanding is straightforward.

Presented at he Fourth International Symp. on Artificial Intelligence, Nov. 1991; Canciin, Mexico

A. Guzmén is with Int'l Software Systems, Inc. 9430 Research Blvd., Austin, Tx. guzman%issi.uucp@cs.utexas.edu; W. Yin is with /alL

Computers, Inc. 8920 Business Park. Austin, Tx. 78759
F;H«l‘ !JM:».J Swu..

o AChed l-\i‘cl/";ama. 30
199/

Articulo 82

1-1-1 Tool versus application

A piece of software intended for developers’ use is a
tool; intended for end-users’ use, is an application. The
boundary is blurred: there are “tools” like grep that are
employed by programmers and end users. This distinction
is not necessary here and the paper will speak of integrat-
ing tools, meaning in general tools, applications and any
piece of software.

1.1-2 Tight Integration versus tight
coupling

« A system is tightly coupled to another when it can ob-
serve and react to changes in the state of the other
quite soon after the changes occurred. The degree of
coupling considers the control sequence of the tools;
how tools call each other, and how they interact to
achieve an expanded role. This will be the main sub-
ject of this paper.

« Two tools exchanging objects of small size are tightly
integrated. The degree of integration considers the
kind and “level” of information they share. Informa-
tion can be shared/interchanged:

(1) At the character and gesture entry level, where two
tools share the same sequence of input keystrokes
and mouse clicks;

(2) At the file level, when they operate on a common
set of files; often, but not necessarily, these files
contain text (ascii characters);

(3) At the database interface level, when tools use a
common notation or a common set of routines to
obtain access to artifacts in the database;, but it is
transparent for these notation/routines how the in-
formation is actually stored in the database. Data-
base independence is achieved, since the same

notation or set of routines can access artifacts
stored differently in different brands of databases.

(4) At the database level, when tools use a unique rep-
resentation (of the application objects) in second-
ary memory [but not necessarily in main
memory],

(5) At the memory level, where tools use the same
representation (data structures) in main memory
[generally implying integration at the database
level, too]. Some workstations (Sun) possess
shared memory 10 store the shared data.

(1) and (2) are considered loose integration; (5) is

tight integration. These forms of integrations are dis-

1. For instance, SQL, Standard Query Language.

1. Example: create_loan, destroy_loan, update_loan,
save_loan, etc., used by a mortgage company to transfer 1o/
from memory loans from/to an abstract database (a “loan serv-
er”), which could be implemented using different vendor data-
bases for different sites or computers, say.

cussed elsewhere [8], but see also §3-1-1 below. See
Figure 1+

« Single-language environments are used to develop the
tools in a common programming language. This
makes possible common in-memory structures (tight
integration) and source code tool modification (to be
seen in §2+1) (tight coupling). Often, the tools are de-
veloped concurrently .

1-2 Role of a software engineering
environment

Some tools are integrated not with each other but into
an integrating software, which acts as central or sole inte-
grator. This integrating software is called Software Engi-
neering Environment (SEE) or Integrated Project Support
Environment (IPSE)°. For the purposes of this article, the
integration of a tool into an IPSE is no different that the
integration of a tool to another; hence, the IPSE is consid-
ered as still another tool: an “integration tool.”

Example 1: Atherton’s Software Backplane [6] is an
IPSE.

Il Current solutions

2-1 Integration of a tool from a clear
box

The simplest way for tool T; to use T is to modify Ty;
thus, T should be a clear box. T, does not need to be. The
integration code gets placed inside Ty, and is being built
with T in view. This allows for tight integration or cou-
pling. Ty knows when to use which parts of T,. Most of
the tools developed by the same group and not intended to
be used stand-alone are integrated this way.

Example 2: A compiler using its parser.

Usually, medium to tight integration (§1+1+2, (4), (5)) is
done from clear boxes.

2-1-1 Pros and cons of modifying a tool
to use another

v Being able to make modifications to the source code
for Ty makes the integration of T, simple. The use of
parts of T, if needed, is straightforward.

X Source code, if purchased, costs more than object code,
in part because code of clear boxes could be stolen or
plagiarized.”

0. Some people use IPSE for an environment devoid of tools;
a SEE is an IPSE populated with tols.

¢. The Free Software Foundation gives away (free) source
code; most of their tools, therefore, can be tightly coupled with
other tools and with programs being developed.

esentation
: Application 1

External repre@o W

Keystrokes and mousg glifkSsion 3
kRz”~

External representation
in As P

Figure 1+ Different places (gray ellipses) where tools can share information.

If, in addition, T, is also a clear box, it can be modified to fur-
ther suit the needs of Ty, if needed.
Example 3: The Proto interpreter using its graphic editor
(1], [2].
X Careless modification of T, may cause errors in other pro-
grams using the non modified version, and will increase

the difficulties for version control and configuration man-
agement of those systems depending on Ts.

%5 This method (modification of Ty, or clear box integration)
should be used whenever possible.f

2-2 Loose coupling: Integrating a tool
at both ends

A black box Tj can use T, via some code that performs
some work before communicating with T, (for instance, com-
puting appropriate arguments for it), and some more work af-
ter T, finishes, such as giving to T; part of the values returned
by T,. Thus, T, is “tied” at its beginning and at its end. Ty can
not use the integration code (because Ty can not be modified),
so that the integration code ends up using Ty and T,. Ty and
T, have a more symmetrical role than in §2-1. Each call to
each tool can have a preamble and a postamble, which encap-
sulate (cf. §1<1) it.

T, is loosely coupled to T, since the time between T re-
questing some service from T, and T;’s response may be ar-
bitrarily large; Ty is not immediately aware of changes in T,’s
state.

t. The hand ¥ points to considerations for wol builders that de-
sire Lo integrate their tools via the methods discussed in this article.

Example 4: A user interface calls (Figure 2+) a matrix in-
version package and sends electronic mail m =“job finished” to
the user. The Ul can also call email directly.

The code for the UI (the integration code) could be:
(Button “INVERT”):
get numeric file f;
result = MATRIX (f);
--prepare messg m with results r;

-- MATRIX preamble

--MATRIX postamble
EMAIL (m);
return; /* return to U */
(Button “MAIL"):
EMAIL ();
return; /* return to UI */

Example S5: Atherton Software Backplane [6] uses this
form of tool coupling; no two tools could call each other direct-
ly; each tool gets called by the Backplane (Figure 3¢)

A tool attached at both ends to an IPSE has long periods of
time (from start execution to end of execution) during which it
interacts with nobody. Its coupling with any other tool is quite
loose. In many cases, more frequent interactions are often
needed, and the next sections address this.

2.2.1 Pros and cons of integration at both
ends

v Simple to accomplish.

v/ Works for completely black tools.

X Limited in scope: more general ways of integration, tight
coupling among tools, interactively sharing data, is not pos-
sible.

o

USER INTERFACE

Preamble to MATRIX

| Get numeric file to invert
/I

Postamble to EMAIL=0

Postamble to MATRIX
Prepare mssg m

Call EMAIL with m

MATRIX PACKAGE

Function call/return -—95

Data flow ———p»
Empty: ©

EMAIL

Figure 2+ The Matrix Package and EMAIL were integrated into the Ul through a
preamble and a postamble.

55" Simplest form of black box tool integration.

2-3 Intercepting calls meant for
somebody else

Often, loose coupling like that of the preceding section is
not enough: Ty needs to know what Tj is doing, specially if it
deleted some data structure or file. T; needs to know the state
of T, more frequently. But, how can T read or sense more fre-
quently (and react to) the state of T, if it does not know that T,
exists? Ty was written without this sensing capability. And,
even if it knew the state of T, how could T, react to this
knowledge? It was written without this reaction capability, and
it can not be rewritten (no source code). The situation seems
hopeless.

Fortunately, there exists a neat trick of great help here,
which depends on the ability to substitute certain functions that
Ty uses. It is through changes to these functions' that T, can
use T in a tighter coupling manner.

. These functions will be named s, s,,...; they are subroutines that
T calls; they can also be (§2+4) message servers to be sent messages
from T}. They will be called “internal API's” of T; (§3+1+1).

C COMPILER

Postamble to C compiler

EMAIL
Postamble to EMAIL

Preamble to C compiler

But these functions are black boxes, too! How can they be
modified? The answer: With a preamble and a postamble
(§2+2 “Loose coupling: Integrating a tool at both ends”).

The first step is to identify these functions. These functions
relate to events or actions that are about to occur (performed
by said functions), that may be important for other tools to be
aware of. The second step is to modify them in a special man-
ner: whatever they were doing before T;'s integration [that is
the “important action” for which they are responsible], they
should keep doing it}, unless the new tool (T, glue code, Ty}
is meant to do something different. Also, they need to react to
T,’s state. For this purpose, glue code is placed around each of
these functions.

Conceptually, a subroutine sub gets replaced by a new
subroutine with the same old name sub, which does some-
thing additional: sense and react to the state of T,. The new
sub can also modify the behavior of Ty, by returning a modi-
fied value to it, or by performing an action that the old sub did
not perform, if that action is the correct or sensible action to
take given the state of T,.

Example 6: The way the Sun Network File System [7] han-
dles files over the network. Before NFS existed, the calls from
an application program to a file function (file_open, say)

$. Because T is still expecting from them their previous behavior.

MATRIX PACKAGE

ADA COMPILER

Figure 3+ Black-box tools integrated to an IPSE. The particularities of the application
(i. e., the specific manners in which the tools collaborate) are written “inside” the IPSE,
which contains the integration code.

would start a function that opens a file in the caller’s worksta-
tion. When NFS came, all it had to do was to “intercept” the
calls to open_file and other file-handling functions, and then
do some extra work: check where the file resides; send mes-
sages across the network and get the file; or, if the file is local,
invoke the old open_file. Thus, the application program is in-
teracting with NFS, without knowing it (Figure 4+). The appli-
cation program is thus treated as a black box: no source code
for it is needed.

Example 7: (a familiar case) A program for computing a
matrix’s eigenvalues uses a subroutine sqrt(x). This subrou-
tine can be replaced by another sqrt function with, say, in-
creased accuracy. Calls to the old sqrt (in some library L;) are
diverted to the new sqrt: same name, but in L.

2.3-1 Pros and cons of call interception

v The interceptor provides an improved service, which sub-
sumes (extends) the former service. The application pro-
gram need not change, nor the replaced functions, such as
the old [local] file functions in Figure 4« All programs, new
and old, automatically get the improved service.

¥ Fast. No interpretation of calls.

X Rigid. To connect T; to T, and Ty (Figure 7+), requires first
replacing a function s; by s; = {new function that connects
to T,, perhaps calling s,) and then replacing s, by s; =
{new function that connects to Ty, perhaps calling s;).
Nevertheless, this is conceptually simple: s, can be regard-
ed as an encapsulated s;, and s as an encapsulated s, from
the point of view of T.

X Requires that the loader does not get confused by the pres-
ence of two subroutines (one old and one new) with the
same name. This may require to use the dynamic option for
the loader and link to shared libraries.

2-4 Tool integration via a broadcast
message server

The methods discussed above also apply to tools that ex-
change messages. In the method discussed now, all the mes-

APPLICATION PROGRAM
call to open_file

sages issued by T to iis servers sy, $p,..., aré now routed’ toa
central message table or message server, accomplished by a
broadcast message server in SoftBench [3], [4], or an inter-ap-
plication message service in Sun’s ToolTalk [9]. In this server,
messages can be routed not only to the original functions, but
to new ones of which the sender is unaware (Figure 5¢). Each
tool defines a set of messages that inform of important events
or actions that such tool feels other tools may want to know.
Also, each tool defines (to the message server) a set of messag-
es that it wants to hear. The message table is called blackboard
in Artificial Intelligence.

Figure 5+ shows tools either taking notice of the message
or ignoring it. The message server simply sends the message
of a given row to all the tools wanting it (/). The tool sending
the message does not know what other tools will react to it. It
only expects certain behavior as a consequence of the message
sent. It is the responsibility of the message server that such ex-
pected behavior is indeed fulfilled for each message sent [that
is, for each row of Figure 5¢], regardless of the combination of
¢ and X's in the row. With this kind of table, the coupling of
the tools may be dynamically altered: for instance, changing to
X all the marks in the column of a given tool effectively de-
couples it from the system.

In this paradigm, T; does not talk to other tools: it does not
know their names. T; just “talks.” Precisely who is listening
and reacting 1o its messages is not its problem. T, is analogous
10 a queen who does not address her butler or cooker “1 would
like to eat.” She just utters “I want food x” and food appears,
brought by some food servers that could change depending on
the day of the week or the kind of food x is. Also, Ty need not
send messages for everything it needs done; it could just call a
simple subroutine without the message server knowing it.
Conversely, T can issue informational messages (“I am hap-
py” or “I am about to die”) without expecting any response Lo
them.

+. This is the principle of i ption already di d in §2+3.

LOCAL FILE FUNCTIONS

-

L

olid open_file .
e Lo

new open_file

NETWORK FILE SYSTEM

See where in the network
the file is and get it

Figure 4+ NFS intercepts the call to open_file, providing an extended service.

2

MESSAGES T O O L S (and functions)
Mail Editor Compiler ActivityDisplay
send_mail v X - v
edit_file X LR v
list_file X R v
open_file X X X v

Figure 5+ A message server allows other
tools to eavesdrop (and possible take action)
on original messages. Here, a new tool,
ActivityDisplay, is listening to everybody’s
messages, in order to produce an activity
diagram.

2-4-1 Pros and cons of a message server

v Simplicity, extensibility. It is syntactically easy to add a
tool: create a new column in the message table (Figure 5¢)
for it; to delete a tool: delete its column; to disconnect a
tool: set all entries in its column to X; to change the use of

atool: change some ¢ and X in its column in the message
table. Two tools that provide the same service but at differ-
ent speeds can in parallel process a request; the first one to
fulfil it can stop the other. All of this without the tools be-
ing aware of each other’s presence. The tool interaction is
built into the message server.

v Flexibility. Changing a table changes the interactions or
ways of coupling among tools.

X 1t is semantically difficult to add a tool: it has ta be done
rather carefully; the response to the message in every row
has to be preserved (but it can be augmented) by the addi-
tion of the new tool.

X Slow. Each call is intercepted, broadcasted, and manipulat-
ed, before other tool(s) can act upon it.

X It is easy to lose track of what is happening. Unwanted in-
teractions among tools can take effect. Debugging the mes-
sage table (Figure 5+) when many tools are involved, can
be tricky.

X Limited. The tool interaction is in principle state-less: each
tool responds to the same message in the same manner [al-
though in practice the arguments could be used to change
the behavior of the recipient]. The tool server is a finite
state machine where the messages play the role of the sym-
bols that cause transitions, and each state is an n-dimen-
sional binary vector [ay, ay, ..., 3], where n is the number
of tools and each a; is 1 if for that state tool i is active, and
0 if not.

UF Publicize the API's (messages, in this case) of the tools
you build.

B [you want to use this method, consider the variant of §3+2

Il Some solutions proposed

3.1 Function substitution

This is a generalization of §2-3, requiring a small amount
of cooperation from the tool builder. It is also called “call in-
terception” because the calls to some API functions get inter-
cepted by new API functions having the same name as the
intercepted functions. The functions themselves get redefined,
but their interfaces (name, type of arguments, etc.) do not.

3-1-1 APIs through which the tool can be
integrated

(a) The builder identifies some of the inner interfaces (those
among subroutines of the tool) as possible interfaces
with other tools. These interfaces (but not their source
code), called APIT, are made public: their names, argu-
ments, and semantics: what each of these functions ac-
complishes or does, what are the roles of their
arguments, etc. Common levels of interfaces are:*

(1) at the character/gesture entry level. This API contains
all the functions that obtain characters from the key-
board or clicks from the mouse and give it to the tool
in question;

(2) at the memory (data structure) level. This API contains
all the functions that modify pertinent® data structures
in memory;

(3) at the input/output (database) level; this API contains
all the functions that interact with a database(s);

(4) at start and end (control level), or “external API level.”
This is the API of the tool itself; it contains all the func-
tions through which this tool can be used. §2-2 used
this level.

Although more than one API can be made public for each

tool, the discussion here, for simplicity, speaks of only

one.”

(b) Whenever a given task (such as a modification of a data
structure) can be accomplished through a published API,
the tool is obliged to use it. That is, a public API defines
subroutines for tasks which are not done in any other
manner (through another function, or by direct pointer
manipulation, say) in the tool.

(c) When delivering the tool (to a purchaser), the API is deliv-
ered in a separate library.

3-1.2 Method of integration

When a tool T has an API defined as above, and it is de-
cided to integrate it with another tool T, the following ques-

+. Application program interface: a set of subroutines through
which a given program or tool is used.

1. Compare with §1+1+2 and Figure 1+

0. One which is worth sharing with or serving as an interface to an
external tool.

¢. Not every subroutine deserves to be published as part of an API;
only those which make sense “for the world to know about;” only
those which are reasonable candidates for tool interconnection.

Function call/return e_;

Data flow —

Figure6+Subroutinessjands,oftool Ty (left)aremadeavailableintheexternal
interface of T4 (right).

tion has to be answered for each of the subroutines s; of that
API: “what should tool T, do when tool T} is calling this s;?”
The answer tells what code to write instead of the old s;; that
code constitutes the new s;. Tool Ty will call s; as before, but
the code of the new s; will be executed instead. Some s; can be
left unchanged, if it is not required for T; to do anything when
Ty calls that s;. Normally, the new s; calls the old s; (and the
new code around the old s; is part of the integration code), but
it is not necessarily so. An example illustrates the method.

Example 8: A spreadsheet designer decides that it is appro-
priate to make available for interaction with other tools the
functions that evaluate the rightmost cells in each row (which
presumably contain the totals or some important value for such
rows). Such API is published, containing only one function, s;:
evalrightmost (n), where n is the row number. ‘She now
checks her code to see that no rightmost cell is evaluated using
another function, say, evall(i, j), which evaluates any cell but
is not part of the API. Having done that, her spreadsheet is now
capable of integrating (using) a tool that, say, draws pie chart
and graphs. The purpose of the integration is to redraw a pie
chart each time one of these rightmost values changes. To ac-
complish this, the library that the tool uses (containing ,)qe-
valrightmost) is replaced by another that contains
newevalrightmost: a function that first calls 5gevalright-
most and then calls the draw program to redraw the pie with
the new value returned by ,qevalrightmost. The code for
the spreadsheet remains unchanged. It is in this form how the
spreadsheet integrates the drawing program.

The method makes available (Figure 6¢) “in the external
interface” of T, the subroutines s; of a given APIL. Encapsula-
tion code is added to these s;, to transform them into new s;’s
that, among other things, call T,. This is illustrated with the
following example.

Example 9: The compiler T; has a public API for error
handling; among these the function error (file, line, err_-
num, err_messg) signals the current error. This function
currently sends an appropriate message to an error file (Figure
8-a). The modification consists in T} using T, an editor, to
display the relevant source code as the error occurs. For this,

function error is modified to first call (or send a message 10)
the editor T, to show the source file and the offending line; and
then, proceed with the old business handled by the old error
function (Figure 8+b).

3.1-3 Pros and cons of function substitution

v The tools (integrating and integrated) remain unchanged.
v Fast. No interpretation of calls.

X Changes to the API should be carefully done, to make sure
that they will not interfere with other uses of the old APL:
old and new functions of the API should be functionally
compatible (although not equivalent, since the new API
extends the services that the old provided). Moreover, it
could be possible for a program, if so chooses, to call the
old API and not the new one.

X Rigid. If tools T; integrates T, and T5, and now T disap-
pears, a new interconnection code needs to be written.
Nevertheless, in the presence of dynamic loading/binding,
the trick of §2-3 “Intercepting calls meant for somebody
else” can be used.

X Requires that the loader does not get confused by the pres-
ence of two subroutines (one old and one new) with the
same name.

o

From T

ToT
Yuse T‘ilb Yuse 'I\éd

Figure 7+ Call interception as a cascade of
preamble-postamble pairs.

Error file

_ Source file \
Source file old error
file /o Tp: EDITOR 3
data flow ——p
r fil
call/retumne=—= e

Obj. file

new error function

Figure 8+ Example of function substitution.
In order to enable the compiler T4 to exhibit the source code of the current error, the function error,
that belongs to the APl of Ty, has been replaced by a new function error, that uses the editor T, and
then performs its old duties.

U Publicize the internal API(s) of your tool: those which you
think are appropriate for integrating some other tool into
yours.

B¥ Use when a static integration is acceptable.

3-1-4 Converting call interception to
message server integration

If Ty uses T, via the method in §3+1, which substitutes
function s, belonging to the API of tool Ty, then it is also pos-
sible for T to use T; via the method in §2+4, employing a mes-
sage server (which provides flexibility in place of rigid
preamble-postamble encapsulation), as follows:

Figure 7+ represents T using T, and Ty in a certain way,
via the substitution of s; by s, and later of s, by s,. The prob-
lem is to produce a server table like Figure 5, for the same use.
To do this, without loss of generality, s, can be represented
with a preamble, a call (or message) to s, and a postamble; and
similarly for s3, as in Figure 7+

The desired table, having the same flow of messages as
Figure 7-, is shown in Figure 10+ This table provides the same
functionality that Figure 7+, but in a more flexible manner: it
is easy to dynamically change the connections among tools, by
modifying some rows. :

3.1.4.1 Extended notations

Itis easy to simplify tables like that in Figure 10+ by using
a notation such as that of Figure 9«

The ¢ under function S in first row now means: Yes,
function S; will react to message m, but in this way: {preS,,
preSy, Sy, postSy, postS,}; that is: first it will execute interac-
tion code preS,, then preS, then S, itself, then postS;, and fi-

nally postS,, all of this as the reaction to message m. The
second row simply says: Only tool T5 will react to the message
a (which will be issued by preS,), and similarly for the other
rows. In other words, the dispatch server is now used as a prim-
itive interpreter that executes the “code” (preS,, preS;, S;,
postSy, postS,) in sequence. Other notations could be used to
mean parallel execution, non-deterministic execution, etc.

Another way 1o extend the notation is to have in each col-
umn, instead of the ¢, a pattern (string with placeholders such
as *, %L, to be matched in special ways) specifying the format
of acceptable messages. This is done in the Field Environment
[8].:

3+1.5 Transforming a message server into
call interceptions code

Conversely, each row of a message table like Figure 5+ can
be converted to fast code resembling calls interceptions. A giv-
en row like

T T T T

messl v v v
says that message m goes (o tools Ty, Ty, ..., Ty: such row can
be replaced by the following code:
MESSAGE S; T, T; 1
original messgm v/ = [preS,,preSy, Sy, postS; postS,)
messg a v
messg b 14
messg ¢ v
messg d (4

Figure 9+ Extended notation

messl: call Ty; call Ty; ...; Call Ty;

These calls could be executed serially, as shown, or in parallel.
The advantage of this conversion is that all the calls are “pre-
wired” and faster; the disadvantage is lack of flexibility if tool
connection changes.

MESSAGE Sl Tz T3 prcS, pl’BSZ pOSSl].X)SSZ
messg mto Sy v

messg a v

messg n 4

messg ¢ v

messg o v

messg p v

messg d 4

messg q v
messg b v

Figure 10+ Message server table
corresponding to calls in Figure 7+

3-2 Message server reacts to tools’
state

A generalization of §2+4, this method does selective broad-
casting of messages according to the state of its sender. The re-
sults are less message traffic, and detection of integration
errors when a tool’s behavior is inconsistent with its published
API (as shown in its manual).

3-2-1 The state of a tool

Atany given time, a tool will be in exactly one of a (usually
small) set of modes or states, such as not-running, reading,
modifying-memory, writing, etc. Some tools contain a global
variable®, provide a function in an API or send a message to in-
form the world about its current state. Or the state can be de-
duced from the type of messages the tool sends through some
of its APIs.

To make the message server (§2+4) sensitive to the tool
states, the table of Figure 5 is generalized so that each row
heading (representing in Figure 5+ a message or API call) is re-
placed by a trio {T, s, m}, meaning: it is legal for tool T in state
s to send message m. Trios not represented are illegal, and
cause the message server 1o issue an error if it receives one at
running time (Figure 11+).

Illegal combinations should not happen, if the tool and its
manual agree. Nevertheless, in the presence of an inconsisten-
cy among tool and manual (error in the code or in the manual)
or an inaccurate interpretation of the manual (Cf. §3+2+3, “in-
terpretation” bugs), or of faulty integration code, some illegal
combination may happen, but the absence of a trio for it in the
dispatch table will detect this error!

On the other hand, through a bad interpretation of the tool’s
manual, a trio could be deemed legal and be present in the ta-

1. Accessible, say, through the Common Area of Fortran.

ble, when in fact it is illegal. This kind cf error can be discov-
ered because, at exccution, the trio never causes any firings.

TRIOS {Tool, State, Message] T O O L S (and functions)

Mail Compiler

Editor Activity Disp.
(UL *, send_mail) JioX X o
(UL, start, edit_file) X &% &
(Debugger, editing, edit_file}) X « X
{Editor, file_present list_file} Xl % v
{ActivityDisplay,* open_file) X X X

Figure 11« LMessage server that is sensitive
to the state of tools.

The Ul can send_mail anytime, but can send ed-
it_file only if in state start; the debugger can not
send edit_file unless it is in state editing.

3.2-2 Variants of state-sensitive
broadcasting
(a) The state of the receiving tool, in addition to the sender’s,
could be used to determine whether to deliver a message.
For instance, the tick ¢ in the second row, second col-
umn (Figure 11<), which reads {UI, start, edit_file}
Editor= ¢/, can be generalized by specifying which
states of the editor can receive the trio {UI, start, ed-
it_file}, as follows:
(U1, start, edit_file) = (Editor, file_present)= v

(UI, start, edit_file) = {Editor, file_absent}= v

These rows say that the Editor in states file_present and
file_absent can receive the message edit_file coming
from the UI when the Ul is in state start.

(b) If the different subroutines in the API of the receiver are
known, the messages could be more specific and be tar-
geted to a specific API of the receiver, not just to “the re-
ceiving tool.”

(c) These variants should be easy to understand and rather
popular, since you already have C (or any programming
language) to program any message Server.

3-2-3 Pros and cons of state-based tool
interaction

As we know, this method uses selective broadcasting
based in the state of the issuing tools.

v Provides more control over the work flow than the simple
broadcast approach.

v Protects from bugs or cases where the behavior of the tool
differs from its manual’s description.

v Allows debugging of the integration code.

v/ Useful in a highly dynamic environment; when tools are
disconnected, re-connected, etc.

X Requires knowledge of the siate of the integrating tool (first
component of a trio).

X “Interpretation” bugs are pr'oduccd if the state transitions are
not build with strict adherence to the tool’s manual.

¥ Provide a global read-only variable or some easy manner
to know the state of the tool you build.

55 Use it when writing integrating code, and keep the states
unless error messages are distracting.

3-3 Tools as servers

Under the following circumstances it is convenient to con-
sider the conversion of an ordinary tool (that gets called and
bounded into the caller) into a server that receives messages:
(a) If the tool gives a centralized service that somehow it is not

convenient to replicate; for instance, a license server that
allows copies of a protected program to be ran by differ-
ent users;

(b) If the tool uses a single data repository; for instance, a data
base server; a printer’s spooler.

(c) If the tool attends several users but all of them sit in the
same workstation (for instance, several users of a main-
frame using the Lisp compiler);

Tools that are used intensively and interactively by each user

should not be converted in servers; it is better in general for

each user to have his own copy in his own workstation. Ex.: a

text editor.

3-3-1 A tool serving both a user and another
tool

This paper assumed that T is active (has a user behind it)
and that T, is only executing T, 's requests. In the more general
case, T, is active, too: it has a user issuing commands (o it, in
addition to those coming from T}. Or there could be more than
one tool issuing commands to T,. The solution becomes more
complex, but it involves seeing tool T as a server, which seri-
alizes requests of different users, be they tools or people.

3-3-2 Converting subroutine call < server
message
Let us say that two copies of the tool exits: Tsub, which is

called as a subroutine, and Tser, a server to which messages
are sent.

To convert a call to Tsub into a message to Tser, replace Tsub
by a new subroutine:

(new Tsub): send a message to Tser;
r:= value returned from Tser;

return (r); --return as value of new Tsub the
--value that Tser returned

To convert a message to Tser into a call to Tsub, replace Tser
by a new server:
(new Tser): spawn a new process P,

send it the message and the <return address>;

(new process P): z: = call Tsub;

send z to <return address>;
kill (myself);

3+4 Interconnecting tools across
machines

It is common, when one tool calls another, that both reside
in the same address space, or at least, within the same file sys-
tem. With remote procedure calls, tools can reside in different
address spaces (possibly with different file systems) and,
therefore, perhaps in different workstations.

If message passing is used, the tools can reside in different
machines; the only limitations to this are the restrictions im-
posed by the routing capabilities of the message server (§3+2).

If the machines are heterogeneous: different operating sys-
tem, different vendors, e(c., the particulars of a successful con-
nection become more complex and will not be addressed here.
Nevertheless, usually among Unix systems it is possible a
large degree of message exchanges and remote procedure
calls.

3.5 Conclusions

The problem of connecting Ty to T, (where T calls or uses
T,) has been analyzed:

(a) Clear box interconnection is possible when source code for

T, isavailable, it is easy and is the preferred interconnec-

tion method (§2+1). It involves changing the code of Ty;

(b) Black box interconnection (source code for Ty is not avail-
able) is possible via loose integration (solution in §2+2),
involving writing glue code around T5.

(¢) Call interception, which is “almost black tool integration”
(source code for T; is not available but some information
about some APIs that T; uses internally is available) pro-
duces much better tool integration, with tighter coupling.
Cf. §§2-3 and 3-1.

(d) A Broadcast message server (§2+4) provides more flexibil-
ity and better control flow among tools.

(e) A State-based message server (§3+2) brings additional pro-
tective capabilities, but requires that the state of the call-
ing tool T} be known.

The paper gives pros and cons for each case.

Probably the message server is the most interesting way o
integrate tools. It changes the way programmers are used to do
tool integration. It treats different tools in a uniform (client-
server) manner. Tools can request the services from other tools
and at the same time, provide services to others. A message
server equipped with better control and management mecha-
nisms enables both centralized and distributed computation.

Integrating different tools is akin to building a new tool.
The tool integrator needs to visualize the tool integration and
their control. The simpler the integration method, the better. If
tools are black boxes, the less intrusion into the existing tool
APIs, the better.

Tool integration is a new way to develop software, with
the advantage that the components are pretty sophisticated
tools and application programs.

3-5.1 Recommendations for further work

% Build hardware that knpws the name and arguments of
each subroutine being called (keeping a stack of symbols
at running time, for instance), like the Burroughs B5500-
B7700 mainframes. In this way, calls to selected subrou-
tines (of APIs) could be intercepted much easier.

% Standardize the most common APIs that tools use. In this
manner, tools will become plug-compatible. Example:
There should be one single subroutine, open_database
(argl, ...) to open any database. Notice that the methods of
this paper do not rely on any standard API; they just need
that the API to be intercepted be public (hence, replace-
able).

% Further along these ideas, standardize on the ways applica-
tions communicate with the world: that is, have a set of
standard APIs that all (most?) applications should use. The
Object Request Broker by the Object Management Group
[5] is an example.

3+6 References

[1] Carla Burns. Proto — A Prototyping Tool for Requirements
Specification, Analysis and Validation. First International
Workshop on Rapid System Prototyping, June 4-7, 1990.
Research Triangle Park, N. C.

[2] Carla Burns. Parallel Proto — A Prototyping Tool for Ana-
lyzing and Validating Sequential and Parallel Processing
Software Requirements. Second International Workshop
on Rapid System Prototyping. July 1991. Research Trian-
gle Park, N. C.

[3] HP SoftBench Environment. Hewlett Packard Co.

[4] HP Encapsulator Integrating Applications into the HP
SoftBench platform. Hewlett-Packard Co.

[5] Geoffrey R. Lewis. CASE integration frameworks. Sun-
World, 73-82. July 1991.

[6] Software Backplane. Atherton Technology. 1333 Bor-
deaux Dr. Sunnyvale, CA 94809.

[7] Sun Network File System. Sun Microsystems Co.

[8] Steven P. Reiss. Connecting tools using message passing
in the Field environment. J[EEE Software, July 1990, 57-
66.

[9] ToolTalk (Beta) Programmer’s Guide. Sun Microsystems
Co.

1/

