L

/Graphic queries and updates for 2-step

Report ISSI-91-003

Adolfo Guzman
International Software Systems Inc.'

ABSTRACT. We define a graphic manner to represent information, sets, queries, updates, and con-
straints. We also define a text manner to represent above concepts. Finally, we give a series of ex-
amples expressed in:

(a) SQL, a traditional query language for databases;
(b) the “sequence” operation, defined by Yin [];

(¢) our graphic notation (Chapter I), which is obtained by “filling in the details” of an “empty
graph” (such as Figure 5¢) representing the schema of the whole database;

(d) our text notation, called “path expressions”, which can be mechanically (i. e., automatically)
derived from (c), as described in Chapter II.

The empty graph of (c) representing the schema can be obtained and automatically drawn from the
database description; this means that the user is not required to draw anything, merelly to fill in an
already correct graph. Mistakes are minimized in this manner.

Our notation can represent in an unified manner relational databases, ERA, object databases, etc.

| Graphs representing permanent information

By “permanent information” we mean that stored in files, databases and other “permanent”
media. Our basic idea is to represent with long ellipses sets of homogeneous information, while
with circles (really, short ellipses) we represent these individuals: usually strings or numbers, but
ocassionally individual objects. Arrows represent relations (properties, slots, relations of the ER
model, ...) that go to ellipses or to circles. Example: see Figure 3+ We can graphically represent
information stored in: (1) databases expressed with tables (Section 1+1); (2) relational databases
(Section 1+2); (3) Entity relationship attribute (ERA) model, and its variants or extensions (Section
1+2); (4) object databases, where an object can have pointers to other objects (Section 123); (5)
many conventional file systems (Section 1+4), such as index sequential, etc; (6) information stored
in a hybrid combination of (1) through (5) above.

Figure 1+ shows how most common constructs used for permanent storage of information are
represented in our notation; details are given in Sections 1+2 through 1+5 of this Chapter.

On these “schemas”, a particular query is expressed by paths that go from a fat arrow (the do-
main of a query) to every shaded ellipse (the things that we want to know) representing the targets

1. Address: 1SSI. 9430 Research Blvd., Bldg. IV-250. Austin, TX. 78759 Tel. (512) 338 5700 Telex: 499
1223 ISSIC Fax: (512) 338 5757 email: guzman%issi.uucp@cs.utexas.edu, cs.utexas.edulissi!guzman

file: /home/guzman/publications/graphic-queries-and-updates-for-2-step.fm
Version 1 (Mar 91); changed Apr 2, 91; printed Jul 17, 91; 33 pages.

Articulo 81

"

| Graphs representing permanent information 11 Introduction

Relational database Table: Represented by an ellipse, with values as circles, attributes as ar-
rows from ellipse to circle.

Properties, fields or attributes: represented as arrows to circles
ERA model Entity: Represented as Table above.
Relation: Represented by an ellipse pointing to the two entities it relates.

Attribute: Arrows going from ellipse to small circles; circles represent the
values of a given attribute for a given relation or entity.

Object base (object Class and individual object: Represented as an ellipse

database) Slot: represented as an arrow between ellipses.
Simple slots (properties, attributes): arrow from ellipse to circle
Value (simple value, number, string): circle.

Figure 1= Summary of our graphic notations for some types of databases

or ranges of a query. Example: see Figure 35¢ These paths can be expressed textually (Chapter 11
or graphically (Chapters III and IV). It is possible to graphically show relations; functions (Sec.
3+1-3); predicates (Sec.3+1+2); queries (Sec. 3+1); updates and deletion (Sec. 3+2); sets [other than
those shown in Figure 1+, which could be considered sets “directly related to the database™] and
constraints (Chapter IV).

1-1 Introduction

The information of an application database (Such as Figure 2¢) can be presented (after observ-
ing the mappings of Figure 1+) in the form shown in Figure 3+, which looks like a graph where the
nodes are relations or values, and the arcs represent the attributes.

CUSTOMER SUPPLIES
t:udy(hrafte Supply09

ame._(IndvGiraffe) name (RadioShack104)

foe St) upply 13 ver6)
ORDER name (Zzebra) name (Furrows2)
Edy(“ Oak St.) — item (Sgrewdriver12)
l;s.ipi 0s) fee 02l pﬁy‘er_BSO)
Order13
da

order# (11 INCLUDES A
customer (Zzebra Fncludes()‘) /

cludesI3
orde 18) on4)
item (Screwdriver12)

Figure 2+ Information in an application database

For a given company, there is just one figure like Figure 3+, which describes how the data is
organized in that company (it is called “company information graph”, it is nothing else than our

2 Graphic queries and updates for 2-step

&

1+1 Introduction | Graphs representing permanent information

well known “database schema’; we use the first name, which sounds friendlier to the final user).
Either or these can be derived from the definitions of the database schema (in DDL, for instance).

Figure 3+ Graphical representation of the info contained in a db
The graph that results after deleting the “contents” (such as Order13) of the bubbles
is unique for a given company or organization, and it is thus called “the company
information graph”.

Large ellipses represent relation or entity elements (such as Order13); the names of the relation
appear in capital letter, such as INCLUDES; the names of the entities applear also in capital letters,
such as ORDER, CUSTOMER, SUPPLIES. Circles (really, smaller ellipses) represent “data”
(strings, numbers), such as “118”. Arcs represent properties or fields, such address or balance.
When they are non-unique, such as name or order#, we can always make them unique by noticing
from which relation they emanate. Thus, we differentiate order# by writing, if needed, order#,order
and order#yfincludes-

Figure 2+ shows a typical relational database; the entities are Customer, Supplies. The rela-
tions are order, includes. A relation can only have two fields, each of which is akey (Screwdriver12
is a unique name for a product; 118 is a unique order# for an order). [A relation in a relational da-
tabase contains only two items; each is a key. These keys are numbers or strings; they are not point-
ers to “records” or entities]

A variant is shown in Figure 4+, where the relations point to the records themselves.

Graphic queries and updates for 2-step 3

-

| Graphs representing permanent information 12 Relational databases and the ERA model

Figure 4- The relation includes now points (in black, for clarity) to the
“records” such as order13 and Supply13. Compare with Figure 3+
The representation of Figure 3+ can become uncluttered it we do not represent the instances

(particular orders, customers, ..), as given in Figure 5¢

CUSTOMER

ORDER

Voxder#oﬁncludes

INCLUDES

Figure 5+ Simplified diagram where no instances are shown. Compare with
Figure 3«

1.2 Relational databases and the ERA model

The basic entity-relationship (ER) model uses the concepts of entities, relationships, and at-
tributes to represent data. Entities of the same type are grouped into an entity set. In Figure 6+ there
are two entity sets, STUDENT and CLASS, and the relationship IS-TAKING. STUDENT and
CLASS are called the participating entity sets for the relationship IS-TAKING.

Attributes describe the properties of entities and relationships. In Figure 6, the attributes of
STUDENT are SS#, Name, and Address.

4 Graphic queries and updates for 2-step

"

1+2 Relational databases and the ERA model | Graphs representing permanent information

SS#
STUDENT __—— Name

"~ Address
Figure 6+ A simple ER schema

@ diagram

Class-ID#
/
CLASS |—— Course#

" Section#
Figure 7+ is a conceptual representation of some data instances corresponding to the schema
in Figure 6+. Each relationship instance relates two entitites, one from each of the participating en-

tity sets.
S3
SS# (103 35 2956)
Name (William B. Travis i\@\
S2 (Czlzass ID# (104)
SS# (505 45 3870) B, Course# (Math 18.16)
Name (Renato Barrera) \ \~~§\ Se| C1
181 \6’\ Class-ID# (611)
SS# (013 58 7738) Cogeed (B0
> Section# (2)
Name (John Smith) {_—\
Address (6 Oak Rd) \@/ CLASS
STUDENT IS-TAKING

Figure 7« Some data instances for the ER diagram of Figure 6.

Each element of the relation (table) is-taking is a key (a property that uniquely identi-
fies the item). Example: the SS# of the student and the Class-ID# of the class

In our graphic notation, Figure 7+ becomes Figure 8.
IS-TAKING

CLASS

Section#

Figure 8+« Our graphic representation for the ER diagram of Figure 7-.

Graphic queries and updates for 2-step

pe

| Graphs representing permanent information 1-2 Relational databases and the ERA model

When it is not necessary to represent instances, Figure 8+ becomes Figure 9e.

class CLASS

STUDENT student

IS-TAKING

Section#
Clas-ID# S

Figure 9+ Our graphic representing the ER diagram of Figure 6+, showing
no instances.

A manner to simplify Figure 9« is to represent the relation is-taking by a single arrow n (shown
black in the figure for clarity), so that Figure 9+ now becomes Figure 10+
CLASS

R R is-taking

ddress

SS# name

Figure 10« An arrow representing the relation is-taking simplifies Figure 9+

6 Graphic queries and updates for 2-step

=

1+2 Relational databases and the ERA model | Graphs representing permanent information

As a final example, a more complex ER diagram, extended to contain par..tions (+) and unions

(V) is shown in Figure 11+, and its corresponding graphic in our notation is shown in Figure 12,
taken from [].

Permit# ™~~~ MOTORCYCLE
Registratiorsf_] YRIRCRS
No-of—tickets/ BB
CAR
1ok
s . : Parking-Lot#
VEHICLE-OWNER{—Drivers-License#
n
SS#
L~
Department PERSON -
Office Hame
Salary Address
l Rank
/
Faclll STUDENT

0:* 0:* kb 0
0:1
VI GRAD-STUDENT

Undergrad-School

0:1 0:%
CLASS

A NG

Times-Taught Class-ID/ Cours!:# \Section# No-of-Repetitions

Figure 11+ An example of an extended Entity relationship diagram (ECER).

An arrow with a U as tip means subset: Vehicle-owner is a subset of Person.Partici-
pation constraints of the form (min, max) are represented on each participating entity
set. Example: 1:1 in vehicle means that a vehicle participates exactly once in the re-
lationship OWNS, which means that a vehicle must be related exactly to one owner,
whereas a VEHICLE-OWNER entity participates one or more times (1:*), which
means that a vehicle owner owns at least one vehicle, but possibly more. A circle with
an U means union: a person is either a faculty or a student or both; with a + means
disjunction: a vehicle is either a motorcycle or a car, but not both.

Graphic queries and updates for 2-step ¥

-

| Graphs representing permanent information 1-3 Information from Object bases

VEHICLE

ass

ubclass MOTORCYCLE

CAR

Drivers-Licensef#

VEHICLE-OWNER Parking-Lot#

Department

is-teaching Wnderorud:

CLASS

No-of-Repetitions

Times-Tanght
Class-ID#

O Section#

Figure 12« Our graphic representation of the ECER of Figure 11
We have shown with thick arrows the relations of Figure 11+ We prefer to keep the
names of the entities (big bubbles) outside, since the bubbles will be used later in the
formulation of queries. The relations , + and the participation constraints such as 1:*,
are expressed in a form explained in the text.

Course#t

1-3 Information from Object bases

Class and individual object: Represented as an ellipse
Slot: represented as an arrow between ellipses.
Simple slots (properties, attributes): arrow from ellipse to circle

Value (simple value, number, string): circle

Example: Figure 12+

Graphic queries and updates for 2-step

&

1+4 Information from file systems Il Text representing sets and queries

1-4 Information from iile systems
Sequential files. Index sequential files. Random access files.

1.5 Information from hybrid storage mechanisms

It is possible to represent with our graphic notation information coming from hybrid sources,
such as partly coming from a relational database and part from an object system, say.

Il Text representing sets and queries

A query can be associated with a set: the set of elements (of another set) “answering” or “sat-
isfying” the query. Therefore, when we define below (Sec. 2+1+2) how to represent sets, queries
will be automatically represented, too.

2.1 Definitions

2+1-1 Dot notation

For e an element (a row of a relation, such as Order13, or an entity, such asSupply13), not a
set, and s a property (or slot, such as customer), we define e+s to be the value of that property for
that element. Example: Order]13+customer is “ZZebra”, and Guzmaneage (Figure 13¢) is 40. Ocas-
sionally, we overload the meaning of « to represent the singleton set containing that value; we dis-
tinguish in context. Example: Guzmdneage is a number in Guzmdneage+4, but is a set in
union(Guzmdn-age, S2).
2+1+2 Set representation

The following things are considered to be sets, and are represented as such:
2.1.2.1 In the ER model

(a) A relation (a table of a relational database). Example: INCLUDES.
(b) An entity class, such as CUSTOMER.

2.1.2.2 In an object base

(c) A class, such as Person in Figure 13+

2.1.2.3 In our notation

(d) an explicitly enumerated set: {Yin, Guzmdn, Jack}, {Blue, Red, Green}, { }, etc. formed by
listing (separated by commas or not) the elements inside { and }.

(e) The notation Res, where R is a set (that is, one of (a), (b), (¢) or (d) of Sec. 2¢1+2)and s is an
attribute or property (such as customer, or name of Figure 3+, for ER models), or a slot (such
as wife of Figure 13, for object bases) denotes the set of res with r € S. Example: If R = {John

Graphic queries and updates for 2-step 9

"

Il Text representing sets and queries 2+2 Predicates and functions

Jack}, then Rewife represents the set consisting of {Joeswife, Jackswife}, that is, {Mary, Jill}.
Ref. to Figure 13

Figure 13« Some relations among certain persons and some objects

Similarly, Rewifesfriend = {Mary, Jill}+friend = { Yin, Guzmadn, Sue, Dutton, Bob}; Rewifes-
child = {Sue, Bob}, etc. Ocassionally, o+s returns a singleton, such as Guzmdneage = {40},
and in this case we also use o*s (overloading its meaning) to denote both that set and its unique
element, differentiating using context. Thus, Guzméneage denotes {40} in union
(Guzmdneage, S2),while it denotes 40 in Guzméne~age + 8.

(f) The notation { s sin S | P(s)}, where s is a variable, S is a set and F is a predicate, denotes the
subset of elements of S that satisfy P. Example: {s sin {Sue, Bob, Mary} | ssage <30} is {Sue,
Bob}; {s s in Jackewifesfriends | sestudies_in = NorthOaksSchool} = {Sue, Bob}.

(g) We similarly define { f(s) | s in S | P(s)}, a collection of objects of the form f(s).
(h) union (81, 82, ...), intersect (S1, S2), set_difference (S1, S2), etc., defined as usual.

2.2 Predicates and functions

2-2+1 Aggregate functions

Arithmetic functions: For el and e2 two numbers, we define el + €2, *, etc., as usual.
Arithmetic predicates: we also define the predicates el < €2, =, <, etc.

Arithmetic functions for sets: avg (S), min (S), max (S), sum (S), where S is a set of numbers.
Functions on sets: count (S) where S is a set. Gives how many elements S has.

groupby (f(e) ein S | P(e)) groups set S into several groups (sets, too) g1, g2, ..., each of them
having equal values for f(e), which is called the discriminant function. Example: groupby
(e+age e in union (Mary, Jillsfriend) | € != Yin} groups set {Mary, Guzmdn, Sue, Bob} into
{ {Guzmdn, Mary}, {Sue}, {Bob}}, the ages of each group being 40, 10 and 9, respectively.

10 Graphic queries and updates for 2-step

"

2+3 Path Il Text representing sets and queries

Predicates from properties: If s holds between o and v, thus: s<o = v, then we use s as a (logical)
relation, thus: s(o, v), meaning: property s holds between objects o and v. Example: friend
(Mary, Yin). This defines the predicate friend (Mary, x) which is true is x is a friend of Mary.

Membership: For e an object and S a set, we define e € S in the usual manner.
Universal quantifier: forall (s in S | P(s)) returns True if all elements of S satisfy P.
Existential quantifier: thereis (s in S | P(s)) returns True if at least one element of S satisfies P.

2.2-2 Functions that alter the database
new (Relation) or new (Class), returns a new element of that class or relation. Example: new (SUP-
PLIES).

new_or_exists (Relation, string) returns the element having name = string, or a new one (to which
assigns the name string) if needed.

putv (e, property;: value; property,: value; ...) adds value; under property; for element (not a set)
e. Each property; is a property, attribute or slot. Often written as {esproperty;, esproperty;) :=
{valuey, value, }. Example: putv (Guzmén, age: 50, friend: Jack) adds (changes, since age is

uni-valued) 50 to Guzmdneage and adds Jack to Guzmdn+friend. Example: Guzmdneage =
Guzmdneage + 3 increments 3 to Guzmdaneage.

delete (o, s, v); delete (o, s), delete(o), deletes, resp., the value v from o2s, the property s from o,
or the object o from its class or table.
2+2+3 lteration

foreach (x in S | P(x)) function executes function for each element of S satisfying P. function
may modify the database.

2.3 Path

(Definition) The path between two bubbles b1 and b2 is the sequence of properties that we find
when traveling (in a graph such as Figure 3¢) from b1 to b2. We separate each property by the sym-
bol +; moreover, when a property gets crossed along its own direction, it is just written down; if it

gets traversed opposite to its own direction, we write it with a ™! exponent, meaning “the inverse.”.
Example: the path from Order13 to Screwdriver12 is order#-order#']oﬁncludcs-item. Example: the

path from ZZebra to 118 is customer‘loorder#, and the path from 118 to ZZebra is order# lecus-
tomer.

Given a path from a to b, the inverse path is written by reversing the order of the first path.

The paths can be seen as “super-properties” or super-slots, linking any two bubbles no matter
how far appart they are, much in the same way that ordinary properties link two immediate bubbles.

2:4 Path Expression

A path expression expresses how to compute a set, using a set (a relation, a table, such as OR-
DER, or an entity set, or a class) or an element of a relation (a row of such a table) as starting point,
and a path to define the new set.

Graphic queries and updates for 2-step 1

IIl Graphs representing queries 25 Locking

Given a set S and a path p, the path expression S+p denotes the set & »p already defined in 2¢1+2
(e), as long as the path p does not contain inverses (!as exponent). Example: ZZebrasaddress is
“6 Oak St”; Joeswifesfriend = { Yin, Guzmén}.

We need to define now how to compute Sep™, for instance Joeswife™! or “Screwdriver]2”i-
tem” lofsupply. It is easy to see (refer to Figure 3+and Figure 13¢) that S-p’l is obtained by searching
the domain set of p and collecting all those elements e where e+p belongs to S. Example: “Screw-
drivcrlZ"-itcm"ofsupply is { s sin supplies | ssitemyggypply = “Screwdriver12”) = (Supply13}.

Example: 40°age.'l is {p p in person | peage =40} = {Guzmdn Mary}, denotes the set of people
having 40 years of age. The figures show clearly how to travel graphically these paths.

Example: 40-age 'sfriend 'schild = {Guzmén Mary)+friend !schild = (Mary Jill}schild =
{Sue Bob} = “the children of those people who have friends of age 40,”

Example: Orderl3-order#-order#'1oﬁnc1udes ={ 118}°ord<:r#'loﬁ,,dudes = [includes13}.

Care must be taken, when using the figures to compute these sets, that they usually (due to space
restrictions) do not show all the possible properties or values, but only a few representatives or ex-
amples. Thus, the above examples are correct assumming that the figures express all the objects in
the database.

2.5 Locking

The idea is to have a good set of defaults, so that the normal user does not worry about locking.
Each one of these defaults can be over-written and specified by the knowledgeable user.

Every SSDL bubble is a transaction.
2:5-1 Cther issues

Rollback.

Full objects. ERA explanation. Inheritance in presence of relational databases. Add more flex-
ibility.

Il Graphs representing queries

Chapter II explained how to represent sets, including those normally represented by “que-
ries,” by using paths (Sec. 2+3) or path expressions (Sec. 2+4). This chapter describes how to draw
or graphically express arbitrary queries. The person formulating a query does so by adding a few
signs on top of the company information graph (refer to Figure 3¢). A query is always expressed
over a “primary” set (a long ellipse): “give me all the employees that ...”” has as primary set em-
ployees, etc. The user denotes the primary set by placing a fat arrow in its ellipse (in the company
information graph of Figure 3+), as shown in Figure 14e. It means: the answer is among these.

Sometimes you want to find certain properties (say, names or addresses) which are circles, not
big ellipses (i. €., they are not entities in the ER model). You must ask yourself: the name of whom?
Or: the address of whom? “Of customers” is the answer. Then, place the arrow on the ellipse (set)
customer. Examples: Sec. 5¢4+1, Sec. 5+4+2.

12 Graphic queries and updates for 2-step

™

31 “Drawing queries on the company information graph lll Graphs representing queries

CUSTOMER

e CUSTOMER

(B)

Figure 14+ (A) “Find all customers that ...",
SR and (B) “find all the names that ..."

3-1 “Drawing queries on the company information graph

Remember that the “company information map” is just another name for the schema of the
database (Ref. Figure 3-).

3+1-1 Representing the primary set (or domain) of a query

The primary set of a query is denoted by a fat arrow, (Figure 14¢), and represents the domain
of the query: it is the set of which an appropriate subset will be the answer to the query. If you want
as anwer some strings (Names, say) or numbers (ages, say), you still want to specify as primary set
the set (customer, say) of which you want these names or ages.

3-1-2 Representing predicates
3.1.2.1 Representing the existence or inexistence of an attribute

“a customer having an address” is represented by count>0 inside the circle for address; “a cus-
tomer having no address” is represented by count=0 inside the circle for address See Figure 15¢

Gap TEEC D

CUSTOMER CUSTOMER
Figure 15+ Customers with some address; customers without address.
3.1.2.2 Predicates comparing to a constant

(a) With equality. To represent the predicate attribute = constant, we write the constant inside the
bubble receiving the arrow corresponding to the attribute (see figure below). That bubble is
unique, if the attribute is unique. If that is not the case (for instance, the property name could
represent either namegfeysiomer OF NAMEofsypplies)s We take a look to the set (relation) to which

it qualifies, in order to disambiguate the property. We ask ourselves: the name of who?.

CUSTOME ' n”
name
SUPPLIES

Figure 16+ Representing predicates comparing with a constant
We show balance=500, age<40, and namegsypplies=Guzman.

(b) To represent predicates having a relation other than equality, such as age < 40, write it: “<40”,

inside the small bubble receiving the arrow age. Notice that is a shortcut for)

Graphic queries and updates for 2-step 13

&

IIl Graphs representing queries 31 “Drawing queries on the company information

14

3.1.2.3 Predicates comparing tw-attributes

attrl rel attr2, for instance, balance = age, is represented by drawing a comparison arrow

(which looks just like an arrow representing a relation) between attrl and attr2, and by writing the
predicate on such arrow. See Figure 17-.
CUSTOME

balance age

Figure 17+ Predicate balance = age
3-1-3 Representing functions
3.1.3.1 Functions of one argument

Functions of one argument are represented by a function arrow (which looks just like the ar-
row representing attributes) labeled with the function name, going to a new small circle. Example:
age+3 in Figure 18« Notice that +3 is a shortcut for the unary function f(x) = x+3. Now, it is easy
to see (Figure 18+) how to represent the predicate sqrt (balance) < age + 3.

>

Figure 18+« Predicate sqrt (balance) > age + 3
Alternatively, the function could be typed inside an small circle, as in (a) or (b) of Figure 19-.

CUSTOMER O

balance CUSTOMER

Figure 19+ (a) and (b) show two other variations to sqrt (balance) > age+3
of Figure 18-.

3.1.3.2 Functions of several arguments

These can be expressed with the help of the set notation (Section 2+1), and can be signaled by
adding a new arrow to the relation it qualifies, with a temporary or missing name. Example: Sup-
pose we want to compute the function f(balance, age) = 3*balance + 2*age, we draw a new circle
next to customer, type the formula inside as 3*customerebalance + 2*customereage, and add the
arrow labeled f, as shown in Figure 20+

These functions are restricted to have as arguments properties of the same set. The function f
will not be addec (to the database) as a new attribute of the set customer, unless we use a fat + sign
(Sec. 5+7).

Graphic queries and updates for 2-step

]

31 “Drawing queries on the company information graph Il Graphs representing queries

CUSTOME

Figure 20+ Computing a hasuce

function with several
arguments

3.1.3.3 Aggregate tunctions

The functions avg, max, min, sum and count are already defined and available for use as labels
on a function arrow. Example: Figure 21+ represents query “those supplies with price less than half
the maximum balance.”

SUPPLIES
Figure 21+ Use of aggregate functions

3-1+4 Representing the targets (or ranges) of a query

The targets of a query are the bubbles (entities, relations) or small circles (constants, values)
that we wish to find; they are the range or ranges of a query. They are denoted by shading. For ex-
ample, Figure 22- represents the query “those supplies with price les than 507, where we shade su-
plies because we want to find supplies. If we wish to know, in addition to supplies, the item of the
supplies, we should shade item, too.

SUPPLIES
Figure 22+ The targets of a query are denoted by a shading
Notice that, when you say “I need those elements of set S having...”, such as “those customers
having...”, then, the primary set and one of the targets coincide; in the drawing you see the fat arrow
pointing to a shaded circle or ellipse. If “you need the age of those customers having ...,” you shade
the age and place a fat arrow on customer.

3+1-5 Predicates that require duplication of bubbles

Some queries require duplication of relations; for instance, “those customers having balance
bigger than the balance of Guzmadn,” as expressed in Figure 23-.

CUSTOMER
Figure 23+ Customers with balance bigger than Guzman's balance

Graphic queries and updates for 2-step 15

&

4-1 Graphs representing sets IV Graphs representing sets and constraints

to create that car, then we need to add another fat cross (the middle one) «a top of the circle repre-
senting the car. Finally, if it was necessary to paint it blue, we add the third fat cross on color, sig-
nifying the new color of the car is blue. We do not add a cross to “blue”, since that would mean
that we are creating a new color, and naming it “blue.”

IV Graphs representing sets and constraints

We saw in Chapter III how graphs are used to represent queries. Now we will see how to use
graphs to represent other useful concepts.

4-1 Graphs representing sets

By considering a query as denoting the set that produces as answer, the graph for that query
can also be thought to represent the “answer” set. Example: Figure 24+ represents the set “students
speaking languages that Guzmdn does not speak.”

4-2 Graphs representing constraints

A constraint is a relation that holds among certain objects or sets of objects. For instance
“Black men should make less money than White men,” interpreted to mean “Every Black person
should make less money than any White person.” The trick is to keep as “constants” all the objects
mentioned in the query, except one, which is a set. Translate the above query to “The set of Black
men making less money than White men.” Transform it in such a way that such set should be al-
ways empty if the constraint is satisfied. In our example: “The set of all Black men making more
money than White men.” Now, that is a set, and, following Section 4+1, can be represented by a
graph (Figure 26+). We interpret that the constraint is satisfied if the graph always returns an empty
set, otherwise the constraint is violated.

PERSON PERSON

Figure 26+ All Black men should make less salary than White men. Notice
the 2 sign.
This manner to validate constraints is “global”, and should be compared to an “incremental” way to validate if a
constraint holds in a database: each time a person changes (or obtains for fist time) a salary, verify the constraint only

with respect to him, since it is assumed that the database is already in a consistent state, i.e., the constraint was already
holding. This incremental way should be preferred, but we will not elaborate here further.

There may be more than one manner to reduce a constraint to a set. For the last example, an-
other graph could be .Figure 27+, which represents the set of White men making less money than
Black men.

Graphic queries and updates for 2-step 17

#

V Examples 4-2 Graphs representing constraints

18

PERSON
PERSON

Figure 27+ All Black men should make less salary than White men; variant.
Notice the relation < going from right to left, saying “salary of White should
be less than salary of Black.

4-2-1 More examples of constraints

4.2.1.1 Referring to Figure 12+

(a) A graduate student can not take a course that he has taken before.

(b) No faculty member may have a degree other than a Ph.D.

(c) An undergraduate student can not be registered in a graduate course.

4.2.1.2 Relating several sets, Figure 12

(a) A graduate student who is a Research Assistant must have an advisor.

(b) A faculty member who is not an advisor of any graduate student must teach at least one section.

(c) Every section must have some courses.

(d) Teaching Assistants whose major is in the Department of Electrical Engineering can not teach
courses that belong to other departments.

(e) Teaching Assistants can only teach courses that belong to the Department that they (the TA’s)
belong.

(f) The GPA of a graduate student majoring in any Deparment of the College of Engineering muyst
be > 3.3. Also, if such a graduate student is a Teaching Assisant, he must have an advisor.

V Examples

In these examples, we give the following representations:
(a) SQL, a traditional query language for databases;
(b) sequence operation, defined by Yin [];
(be1) the graph associated or representing that query, as described in Chapter IIT;
(be2) the path, obtained by traveling from the start (an arrow) to the primary set (a filled-in
ellipse), as described in Sec. 2+3;

(c) the path expression, which can be mechanically (i. e., automatically) derived from (c), as de-
scribed in Sec. 2+4.

It is useful to remember that a graphic query can be interpreted as: “From the set that has the fat
arrow, find those elements satisfying the relations written inside some ellipses. From the answer,
give me those values shown shaded.” For example, see Figure 28+

Graphic queries and updates for 2-step

5+1 The select statement of SQL V Examples

5.1 The select state ment of SQL
5-1+1 Example 1

Select the name, address and balance of customers with negative balances from the relation
customers.

(a) SQL:
select name, addr, balance
from customers
where balance <0
(b) Sequence operation:
{ {x.name, x.addr, x.balance} | x in customers where x.balance < 0}

(1) Corresponding graph (See Figure 28¢):

Figure 28+ Find addresses,
names and balances of
customers with negative

name CUSTOMER balance.

How to draw the above graph: You start inside Figure 2¢. You start at CUSTOMER, be-
cause you ask yourself: from which “primary set” I am going to answer? “From custom-
ers” You end in balance, address and name because that’s what the query wants you to
find.

(2) Path corresponding to graph (1): You start from the start (fat arrow) and walk towards the
ends (shaded ovals). The answers are:

cebalance | cebalance < 0
ceaddress
cename
where you know that ¢ is in customers.
(c) Path expression corresponding to (2):
{ {cebalance, ceaddress, cename} ¢ in Customers | cebalance < 0}
Comparing with (b), they are identical.
5+1.2 Example 2
Select the supplies of the items Zack Zebra ordered.
(a) SQL:
select supplies.name
from orders, includes, supplies
where orders.cust = “Zack Zebra” and orders.o# = includes.o#

Graphic queries and updates for 2-step 19

&

V Examples 5+1 The select statement of SQL

and includes.item = supplies.item
(b) Sequence Operation
{s.name | s in supplies where
exist (il iin includes where s.item = item
and exist (o | o in orders where o.0# = i.0# and o.cust = “ZackZebra”)))

(1) Corresponding graph. We want to go from ZackZebra to the name of the includes (See Fig-
ure 29¢):

name
SUPPLIES

iteMyfsupplics

order#sfincludes @ wdriver12”

INCLUDES item

Figure 29+ Find the names of the supplies ordered by customer ZZebra.

(2) Path corresponding to graph (1):

ZZebra°customer'l'ordcr#-order#'loﬁncludes-itemdtem'lofsuppﬁes-namc, obtained by me-
chanically walking from source (in-arrow) to sink (shaded ovals) in above figure.

(c) Path expression corresponding to path (2): In what follows we go step by step mechanically de-
riving the path expression from above path (refer to last figure):

The path expr corresp to Z.Zcbra-customcr'lofo,de, is {0 oin orders | o* customer =“ZZebra”}

The path expr corresp to aboverorder# is { osorder# o in orders | oscustomer = ZZebra}, call
the set S1 and n an element of it.

The path expr corresp to abovc-order'lol-mdud‘,'S is:
(a) the includes having number n = o*order# are { i i in includes | i*order#,fincludes = n}-
Thus, the path expr corresp to abovcmrder’lofmdudcs is:
{i iinincludes | i.order#,ginciudes € S1)
The path expr corresp to aboveritem is (isitem i in includes | isorder#,inciudes € S1}
T | o
The path expr corresp to aboveritem’ ofgypplies is:
(a) the supplies having m = iitem are {s s in supplies | s*item = m}, call it S2.
Thus, the path expr corresp to above-ite:m'lofs\,pplies is:

{s s in supplies | ssitem € S2)

20 Graphic queries and updates for 2-étep

52 Tuple Variables V Examples

The path expr corresp to aboveename is {ssname s in supplies | seitem € S2}.
Comparing with (b), we see that our expression saves considerable searching over (b).

5.2 Tuple Variables
5+2+1 Example 3

Select the names and addresses of customers whose balance is less than that of J udy Giraffe.
(a) SQL

select cl.name, cl.addr

from customers c1, customers c2

where cl.balance < c2.balance and c2.name = “JudyGiraffe™;
(b) Sequence Operation

{{cl.name, cl.addr} | ¢l in customers where

exist (c2 | c2 in customers where c1.balance < c2.balance

and c2.name = “JudyGiraffe”}

(1) The corresponding graph can be seen in Figure 30+

CUSTOMER

Figure 30 Find the name
and addresses of
customers with balance
less than that of Judy
Giraffe.

(2) Paths corresponding to (1): JudyGiraffe-name'l'balance-<'1-balance'lofcustomer'namc,
and <balance, and +address.

(c) Path expression corresponding to path (2):

The path expr corresp to J udyGiraffe-name'l is {c c in Customer | cename = “JuddyGiraffe”}

The path expr corresp to abovesbalance is {cebalance c in Customer | cename = “JuddyGi-
raffe”}; call this set S1. We notice that cebalance gives a unique answer, we will make use of
this later.

The path expr corresp to aboves<'! is (n nin NumberIn<b & be Sl }. But S1 has only one
answer, hence the path expr can be written as {n n in Number | n < S1}; this is an abuse of the
notation for <. Let us also call this set S2. Note: S2 is an infinite set of numbers, all of them
less than the balance of Judy Giraffe. We will have to eliminate later that cumbersome set S2.

The path expr corresp to above-balanc«:'lofcuswmr is {¢ cin Customer | cebalance = m & m

€ §82). Since we know that < only holds among numbers, this expr can be rewritten as {c cin
Customer | cebalance < S1} and we got rid of N2.

Graphic queries and updates for 2-step

21

V Examples 5+3 Pattern Matching

The path exprs corresp to abovesname, abovesbalance, and above+addre.s, are
{cename c in Customer | cebalance < S1}
{cebalance c in Customer | cebalance < S1}
{ceaddress c in Customer | c*balance < S1} which could be conveniently grouped as
{ {cename, cebalance, ceaddress} c in Customer | cebalance < S1}.
Comparing with (b), we do not compute the double loop that (b) computes.
5.3 Pattern Matching
5-3-1 Example 4
Select those items from supplies, and the item names begin with “E”.
(a) SQL
select item
from supplies
where item like “E%”.
(b) Sequence Operation

{item | item in supplies where item.name = “E*”’} where the * is a wild character that matches
any (zero or more) characters.

(1) Figure 31« shows the corresponding graph

! Figure 31+ Find those items
1Mo fsupplies of supplies that begin with
capital E.

SUPPLIES.

begins_
(2) Path corresponding to graph (1): s | begins_with (s, “E”). We have added an arrow with the
predicate (Sec. 3+1+2) begins_with (“E”).
(c) Path expression corresponding to path (2): {s+item s in supplies | begins_with (seitem, “E”)}

Comparing with (b), we notice an error in (b), since items is not a relation, and it does not contain
a “field” called name.

5-3:2 Example 5

Select those orders from Order, the order numbers are in the range 1000 to 1999, assume that
order numbers are stored as character strings rather than integers.

(a) SQL

select *

from order

where off like“1__ _”
(b) Sequence Operation

22 Graphic queries and updates for 2-step

5-4 Set Operations V Examples

{o!l o in order where o.o# =“1__ "}
(1) Corresponding graph (we give two variants, see Figure 32¢):

>1000€ & <¥2000”

Figure 32+ Give me those orders with numbers between 1000 and 2000, two
variants

(2) Paths corresponding to graph (1): o | o.order# < “2000”; o.order# 2 “1000”

(c) Path expression corresponding to path (2): {o o in Order | ocorder# < “2000” & o<order# >
“1000”

Comparing with (b), (c) is equivalent to it.
5-4 Set Operations
5-4-1 Example 6
Select items from supplies when the item price is as large as any appearing in supplies.
(a) SQL:
select item
from supplies
where price >= all (select price from supplies);
(b) Sequence Operation
{s.item | s in supplies where all (o | 0 in supplies where s.price 2 o.price)}
(1) The corresponding graph can be seen in Figure 33«

>
price Figure 33« Those items of
supplies having the largest price
- appearing in supplies.
SUPPLIES HeMyfgpplies SUPPLIES

(2) Path corresponding to graph (1): seitemggsypplics | S*price 2 oeprice

(c) Path expression corresponding to path (2): {seitem s in supplies, o in supplies | seprice 2
oeprice}

Graphic queries and updates for 2-step 23

#

V Examples 5+5 Aggregate Operators

Comparing with (b), both make a car:>sian product search through supplies. An smarter solution
would be p =max (seprice s in supplies}; answer is {s+item s in supplies | s*price 2 p}, which only
makes two single searches through supplies.
5+4.2 Example 7
Select all items ordered by Ruth Rhino
(a) SQL
select item
from includes
where o# = (select o# from orders where cust = “Ruth Rhino”)
(b) Sequence Operation
{i.item | i in includes where exist (o lo in order where o.0# = i.0# and o.customer = “Ruth Rhi-
no™)}
(1) The graph corresponding to the above sequence operation appears in Figure 34«

Figure 34+ Find all items ordered by
Ruth Rhino.

(2) Path corresponding to graph (1): Rutthinmcustomcr'l-order#-order#’loﬁnc;udcs-itcm

(c) Path expression corresponding to path (2):

The path expr for RuthRhinoscustomer ! is {c ¢ in customer | cscustomer = “RuthRhino”}; this
is the set of customers having RuthRhino as their name.

The path expr for abovesorder# is {ceorder# c in customer | cecustomer = “RuthRhino™} =S1.
The path expr for aboveoorder#'l(,fmcluck,S is: (i iin includes | i*order#,finciudes € S1}-
The path expr for aboveritem is {isitem i in includes | i*order#,ginciudes € S11-
Compare with (b).
5.5 Aggregate Operators
5-5-1 Example 8
Compute the average balance of customers and the total number of distinct suppliers.

(a) SQL
select avg (balance) from customers;
select count (distinct name) from supplies.

24 Graphic queries and updates for 2-step

5+6 Aggregation by groups V Examples

(b) Sequence Operation
avg (c.balance | ¢ in customers);

count (distinct (s.name) | s in suppliers)

CUSTOMER

Figure 35+ Graphs corresponding to two queries.
(2) Path corresponding to graph (1): cebalance; the other is ssname
(c) Path expression corresponding to path (2): avg { cebalance c in customer}; the other is

count {distinct {s*name s in supplies}} or count_distinct {sename s in supplies}.
count_distinet is not needed since the arguments are sets; but we will generalize this later
to sequences (which can have repeated elems), and then it will be needed.

Comparing with (b), they are identical.
5.5-2 Example 9
Count how many suppliers sell Brie.
(a) SQL select count (name) from suppliers where item = “Brie”
(b) Sequence Operation
count (s.name | s in suppliers where s.item = “Brie”)

(1) Corresponding graph: refer to Figure 36+; we drew the function count to supplies.

SUPPLIES
Figure 36+ How many suppliers

: sell “Brie"?
1teMyfsupplies

G

(2) Path corresponding to graph (1): Briesitem-1gsupplies

(c) Path expression corresponding to path (2): s in suplies | seitem = “Brie”}, and we have to count
them, thus: count {s in suplies | s«item = “Brie”}.

Comparing with (b): the expression s.name is counted in (b), while (c) counts s.
5.6 Aggregation by groups
5-6+1 Example 10

Select all the items and their average prices

Graphic queries and updates for 2-step 25

"

V Examples 56 Aggregation by groups

«‘a) SQL
select item, avg(price)
from supplies
group by item;
(b) Sequence Operation
{ {s.item, avg (s.price)} | s in group (s.item | s in supplies)}
(1) Figure 37+ shows the corresponding graph; function average is drawn pointing to price.

average

Figure 37+ Find all the
items and their average

itemy founpli
prices. Mofsupplies

SUPPLIES

(2) Path corresponding to graph (1): sepricesaverage-1, grouped by item.
(c) Path expression corresponding to path (2): To group supplies by item, we have:
G1 = groupby (s.item s in supplies).

If g € G1, then g is a group of supplies; the thing being equal is geitem. We want to compute
average (seprice), where s € g. The expression to find the set of average prices is

{average (seprice sin g) | gin G1}, which has a price for every group g. Since we also want
the items, the final answer is { {geitem, average (s*price sin g)} | gin G1} which gives a set
of tuples, each of the form {“Screwdriver12”, $2.50}.

Compare with (b).
5+6+2 Example 11
Select those items that were sold by more than one supplier
(a) SQL
select item, avg (price)
from supplies
group by item
having count(*) > 1;
(b) Sequence Operation
{ {s.item, avg(s.price)} | s in group (s.item | s in supplies) where count (s) > 1}

26 Graphic queries and updates for 2-step

5+7 Insertion V Examples

(1) Corresponding graph: refer to Figure 38+

Figure 38« Find those
items sold by more
than one supplier. SUPPLIES

iteMyfgupplies SUPPLIES

itemofsupplies

(2) Paths corresponding to graph (1): ssname; seitem; s2+item; constraints: s*item = s2¢item,
s #s2.
(c) Path expression corresponding to path (2):
{sename s, s2 in supplies | seitem = s2+item & s # 2}
Comparing with (b), we see that (b) avoids the cartesian product search by use of the group oper-
ation.

5.7 Insertion

5+7+1 Example 12

Insert into supplies values (“Ajax”, “Escargot”, 0.24)
(a) SQL insert into supplies values (“Ajax”, “Escargot”, 0.24)
(b) Sequence Operation

next (supplies) = {“Ajax”, “Escargot”, 0.24}

(1) Corresponding graph (Figure 39+). Add word new inside bubble supplies, tc indicate that
you want to create one element, and add three things to it. Otherwise, you would add to
every element of supplies the name “Ajax”, the price “0.24” and item “Scargot”, which
is not what you want.

Figure 39- Store "Ajax” now sells
“Escargot” at $0.24. Notice: no

query.

(2) Path corresponding to graph (1): ssname = “Ajax”; seitem = “Escargot”; s=price = 0.24 &
s = new (supplies).

Graphic queries and updates for 2-step

27

V Examples 5+7 Insertion

(c) Path expression corresponding to path (2): s := new(supplies); ssname := “Ajax”; s¢item := “Es-
cargot™; seprice := 0.24. The above creates always a new supplier. If that is not desirable, say
s :=new_or_exists (supplies, name: “Ajax”); putv (s, item: “Escargot”, price: 0.24).

Comparing with (b), (b) has the different values identified by position.
5+7-2 Example 13

insert into supplies (name, price) values (“Ajax”, 0.24)
(a) SQL insert into supplies (name, price) values (“Ajax”, 0.24);
(b) Sequence Operation
next (supplies.name, supplies.price):= {“Ajax”, 0.24}
(1) Corresponding graph (Figure 40+). We write new inside bubble supplies

G (OB

Figure 40+ There is a new
item (product) that store Ajax
sells at $0.24 (we don't know

the name of this item)

SUPPLIES

(2) Paths corresponding to graph (1): s*name; seprice
(c) Path expression corresponding to path (2): s :=new_or_exists (supplies, name: “Ajax™); putv
(s, price: 0.24).
Compare with (b).
5:7-3 Example 14
Create a new relation acme_sells(item, price) containing the item and price components of the
supplies with name equal to “Acme.”
(a) SQL
insert into acme_sells
select item, price
from supplies
where name = “Acme”;
(b) Sequence Operation
foreach (x in suppliers where x.name = “Acme”)
next (acme_sells.item, acme_sells.price) := {x.item, x.price};

28 Graphic queries and updates for 2-step

58 Deletion

(1) We can see in Figure 41 the correspo: ding graph

(3% yRll

SUPPLIES

RELATION

Figure 41+« A new relation, acme_sells, is created, containing the item and
price of the supplies with name equal to “Acme”.

(2) Path corresponding to graph (1): ssname = “Acme”; s’sprice := seprice;

§"*iteMyfaeme._sells = seitemgpgupplies-
(c) Path expression corresponding to path (2):
r :=new_or_exists (relation, name: “Acme_Sells”);
foreach (s in supplies | ssname = “Acme™)
s’ 1= new_or_exists (r, item: seitem);
putv (s, price: seprice)
Comparing with (b), they are similar.

5.8 Deletion

5-8+1 Example 15

Delete all orders that include Brie
(a) SQL

delete from orders

where o# in (select o# from includes where item = “Brie”)
(b) Sequence Operation

delete (o0 in orders where

exist (i1 in includes where i.o# = o.# and i.item = “Brie”))

(1) The graph is shown in Figure 42

Figure 42« Delete those
orders that include “Brie."”

order#ofincludes

item

Graphic queries and updates for 2-step

V Examples

29

V Examples 5-9 Update

(2) Path corresponding to graph (1): vorder#-ordcr#’loﬁncludcs-item = “Brie”.

(c) Path expression corresponding to path (2): We will compute the path expression correspoinding
to path Brie~item‘]oﬁnclm-ordcr#oﬁmlm, and to o*order#.

(i) The path expr for “Bﬁc”-itcm'loﬁndudes is {i iin includes | isitem = “Brie”}.
(i) The path expr for abovesorder#ygnciudes 1S (i*order#yfinciudes 1 in includes | isitem =
“Brie”’}. Call this set S1; the set of order numbers whose item is Brie.

(iii) For the second path, the path expris {o<order# o in order}. Since it must be equal to (ii),
we have as final answer foreach (o losorder € S1) delete o.

Comparing with (b), (c) avoids recomputation of the set S1.

5-8-2 Example 16
Supplies, Acme, no longer sells Perrier. Delete Acme from supplies.
(a) SQL
delete from supplies
where name = “Acme” and item = “Perrier”;
(b) Sequence Operation
delete (s in supplies where s.name = “Acme” and s.item = “Perrier”)
(1) Corresponding graph in Figure 43+

Figure 43+ Supplier
“Acme” no longer sells
“Perrier.”" Delete Acme as
a supplier of Perrier.

(2) Paths corresponding to graph (1): ssname = “Acme”’; seitem = “Perrier”
(c) Path expression corresponding to path (2):

foreach (s s in supplies | s*name = “Acme” & s+item = “Perrier”)

delete (s)

5.9 Update
5-9-1 Example 17

Change the price Acme charges for Perrier to $1.00 in supplies.
(a) SQL

update supplies

30 Graphic queries and updates for 2-step

5-9 Update V Examples

set-price = 1.00
where name = “Acme”
(b) Sequence Operation
foreach (s in supplies where s.name = “Acme”)
s.price = 1.00;
(1) Corresponding graph (Figure 44¢)

Figure 44+ The new
price of “Perrier” in
“Acme” is $1.00

(2) Paths corresponding to graph (1): s*name = “Acme” & seitemgqpplies = “Perrier”;

seprice.
(c) Path expression corresponding to path (2):
foreach (s s in supplies | ssname = “Acme” & seiteMgfupplics = “Perrier”)
seprice := 1.0
Comparing with (b), (b) lacks reference to “Perrier.”
5-9-2 Example 18
Lower all of Acme’s prices by 10% in supplies.
(a) SQL
update supplies
set price = price * 0.9
where name = “Acme”
(b) Sequence Operation
foreach (s in supplies where s.name = “Acme”)
s.price = s.price * 0.9
(1) Corresponding graph (Figure 45¢)

g Figure 45+« “Acme” has
price reduced its prices (in

supplies) by 10 %.
e SUPPLIES

(2) Paths corresponding to graph (1): ssname = “Acme”’; ssprice

Graphic queries and updates for 2-step 31

&

V Examples 5+10 Other questions and their answers

(c) Path expression corresponding to path (2):
foreach (s s in supplies | ssname = “Acme”)
seprice := seprice * 0.9

Compare with (b).
5.10 Other questions and their answers
5-10+1 Possible to pose and answer now

(a) Collect persons who are teachers but not Faculty members

(b) Retrieve all persons. In addition, if a person is a graduate student who is also a Teaching Assis-
tant with a gpa > 3.5, retrieve his Major and Gpa also.

(c) Retrieve the ss# and name for all faculty members. And, if the faculty member is advising a
graduate student who is a TA and a RA, retrieve the advising and student information.

5:10-2 Impossible or difficult to pose or answer now

Questions like these can not be answered with the proposed graphic facility. A truly intelligent
query facility should provide, like the examples below shown, in addition to the answer to the ques-
tion, some example supporting the answer.

(a) Who protects plants and animals?

The U.S. Fish and Wildlife Service and the National Marine Fisheries Service of the U.S. Gov-
ernment have the job of seeing that endangered species law is carried out.

There are also people who help carry out state laws that protect fish and wildlife in their states.

There are many groups and private citizens who are intrested in protecting endangered species,
too.

(b) Why do plants and animals become endangered or extinct?
(1) Loss of habitat: the loss of habitat, or a place to live, is the main reason some species are
in trouble.

(2) Pollution: Harmful chemicals kill plants and animals. Example: The bald eagle is still on
the endangered list, but it is making a comeback. One of the reasons it was in trouble was
because of the widespread use of a chemical called DDT. The banning of the chemical
has helped to make the bald eagle’s habitat safer.

(3) Can’t adjust or adapt: some animals eat only certain foods. If something happens to this
food source, they are in trouble

(4) Predators: When animals from other areas are brought into a new area, they sometimes
do a lot of harm.

(5) Diseases: Diseases often kill native plants and animals.
(c) Why save endangered species?

(1) Special and different: every type of animal or plant is different. If we lose one species,
we have lost a model that can never be replaced.

32 Graphic queries and updates for 2-step

5+10 Other questions and their answers V Examples

(2) Balance of nature: Many plants and animals depend on each other to survive. If we lose
one thpe of animal or plant, then the whole system might be upset ot thrown off balance.

(3) Science: By destroying a type of plant or animal, we give up forever the chance to learn
how valuable it might be.

(4) Respect: Many people think that we should respect all forms of life. They think that these
living things have a right to live.

(5) Agriculture: We depend on plants and animals for our food. Our diet is made up of about

20 plants. However, there are 80,000 plants that are edible. If one vanishes, we might
have lost a valuable food source for the future.

(d) Which is the best? (Of two insurance plans, say).

Graphic queries and updates for 2-step 33

