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1.1. FutureLisp

FutureLisp is a dialect of Common Lisp [Steele], augmented by the addition
of futures [Halstead]. A future returns a pointer to the eventual value of its argu-
ment: it is a promise to compute the value asynchronously with the calling rou-
tine. If the computation is not yet completed when that value is needed by the
caller, then — and only then — will the caller wait.

FutureLisp contains a number of Lisp functions built on futures, such as
pmapcar, the parallel counterpart of mapcar. It also contains primitives for syn-

chronization, such as wait-sema and signal-sema.

1.2. The Architecture and the Experiments

The applications (briefly described in Section 3) were simulated on an archi-
tecture (See Figure 2-1) with the following characteristics.

e Each processor has access to three types of memory: private, common, and

shared.

o The architecture under study presents two levels of interconnections, with pro-
cessors connected through the lower level forming a cluster. By cluster
memory the paper refers to that part of shared memory located within a
given cluster.

e Each part of the architecture is implementable with current technology.

The experiments measured the speedup obtained for six different application
kernels with various processor/cluster combinations. The graphs and charts in

this paper illustrate the following statement: application characteristics have a
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significant impact on obtainable speedup for any given combination of architec-

ture and application.

2. BACKGROUND

This section describes the main characteristics of the architecture and appli-

cations used in the experiments.

2.1. Definitions

The following parameters are of use in discussing the power of a parallel pro-

cessor, when executing a particular program:

Speedup: is the time required for the parallel processor (which contains n proces-
sors) to execute the whole job or program, relative to the time it takes one
processor using the serial version of the program to do the same job. Note
that the serial version of the program generally requires less execution time
than the parallel version of the program executing on one processor. This
difference is due to overhead required for parallel task management even

when no parallelism results. Thus, the speedup is typically a number < n.

Efficiency: is the speedup divided by n. The efficiency is a number < 1. Gen-
erally, as n grows, the speedup grows, but the efficiency drops. The efficiency
of a parallel program running on a parallel processor gives an indication of
how well utilized are the processing resources by such program. The same
parallel program running on a single processor can be used to estimate the

overhead incurred by the parallel constructs.
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Figure 2-1: FutureLisp Cluster Architecture
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The above terms always define relations between a particular program and a par-

ticular architecture.

2.2. Architecture Summary

Figure 2-1 shows a diagram of the FutureLisp Cluster Architecture. The
processors are connected through a two-level interconnection network. Each pro-
cessor has three kinds of memory associated with it, private, common, and shared
memory. The shared memory may be further categorized according to whether it
is local to a processor (local shared), in the same cluster as a processor (cluster
memory), or in a different cluster from a processor (non-cluster memory). Thus

each processor sees five different types of memory.

No statements are made concerning the technology of hardware implementa-
tion except to assume that comparable technology is used throughout the system.
Indeed, the performance figures are quoted in terms of master clock cycles, not
microseconds. The emulator assumes that the processor is faster than the rest of
the system, so that it may execute two typical operations in a single master clock
cycle. With the master clock cycle set equal to that of a local shaied memory
reference time, the switch delay is specified in units of master clock cycles, thus
allowing the emulator to function independently of implementation technologies.

The shared memory on each processor may be read by any processor in
the system at varying costs. Access by the local processor typically takes one
master clock cycle given that no conflicts occur. Access by other processors incur
an interconnection switch delay in addition to the master clock cycle required for

the read or write operation. This delay is smaller if the accessor is in the same
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cluster as the local memory being accessed; it is larger if the processor belongs to
another cluster. A single shared memory module services one request per master

clock cycle. If both local and non-local requests are present, the module alter-

nates their service.

The private memory is used for code and for execution stack data. It is
accessible only by its associated processor. Two accesses to private memory may

occur in a single master clock cycle.

Each processor has the whole contents of common memory immediately
available for itself. Thus, read accesses to common memory are always immedi-
ate and require only a master clock cycle. Writes originating from a processor to
its common memory also require a common memory cycle from the other com-
mon memories; thus no common memory is available to any processor during a
write. The FutureLisp Emulator “‘charges” a master clock cycle to every proces-
sor, when common memory is written, in order to be conservative. In a real
implementation, processors not requiring access to common memory will suffer no
delay. This “cycle stealing’” by common memory from the processors is done
through the broadcast bus of Figure 2-1. Several processors simultaneously want-
ing to write to common memory will have their requests queued; each processor
blocks until its write access is granted. In the applications studied, common
memory was used for global variables and property lists. Writes to common
memory were rare. Defining which data should be classified “read-mostly” in

general is a open research topic.

The interconnection networks are assumed to be non-blocking with no con-
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tention. The communication delays for a cluster reference or non-cluster refer-
ence are system parameters that may be set independently for purposes of simu-
lation. Each processor may have only one request to other than private memory
outstanding at a time; that is, a processor request (read or write) to shared
memory waits or blocks until that access is granted. When multiple requests for
the same shared memory are made by different processors through the intercon-
nection networks, the interface between the interconnection networks and the
memory is assumed to queue requests from the interconnection networks that
cannot be serviced immediately. No other assumptions are made about the struc-

ture of the interconnection networks.

There are four main parameters that characterize a given architecture: (1)
Total number of processors; (2) Number of processors per cluster; (3) Delay for

cluster memory reference; (4) Delay for non-cluster memory reference.

The number of processors could be set to any value, but the experiments
generally used numbers between 1 and 256. The number of processors in a clus-
ter could also be set to any number. However, to reduce the complexity of the
experimental space and improve comparability, the number of processors in a
cluster was set to 8 if the number of processors in the total system was less than
or equal to 64, otherwise the number of processors in a cluster was set to 16.
Besides being ‘‘reasonable’’ numbers, the interconnection systems to support
these cluster sizes are feasible with current interconnection technology. Detailed
study beyond the scope of this paper would be required to determine optimal

configurations for any given implementation teclinology and a particular pro-
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gram; the above numbers were chosen based on preliminary data.

The details of the processor used in the FutureLisp Emulator are not critical
to these experiments. Briefly, it is stack-based machine with hardware assist for
discriminating among the various data types (“tag bits”) and for low-level
scheduling operations. Each processor is assumed to have substantial private

memory and enough registers to hold the context of the computation.

2.3. Application Characteristics

Each of the six application kernels used (See Section 3) had different charac-
teristics (summarized in Table 2-1) relating to parallel symbolic computation.
They were tested over several data sets, and a typical data set was selected for
each application. While each of these programs is relatively small, varying from

60 to 600 lines of source code, they do cover a range of characteristics.

Application Independent Dependent Serial Number  Grain
Subtasks Stages Time of Tasks Size
Mandel ves no 3,160,000 2550 1400
Image yes no 940,000 128 7400
Rewrite yes yes 1,340,000 9040 157
Poly yes yes 970,000 5720 207
Resolve no yes 9,200,000 3840 2500
EMY no yes 66,000 187 425

Table 2-1: Application Characteristics
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The “Independent Subtasks” column refers to whether a computation at the
lowest level of parallelism is self-contained except for system wide constants once
it has its initial values, or whether its behavior depends on other values that are
being dynamically computed. The rule sets in Rewrite, Resolve, and EMY are
considered system constants, because they do not change during the computation.
The “Dependent Stages” column refers to whether there are stages in the compu-
tation which depend on earlier results. The “Serial Time” column contains the
number of master clock cycles required to execute the serial version of the appli-
cation (that version written without futures) on a single processor with a!l data
local. The “Number of Tasks” counts how many executable tasks (in FutureL-
isp, an executable task is a Future) were created during the parallel execution of
the application. The “Grain Size” column is the average size, measured in master
clock cycles, of each task. Since a master clock cycle represents a local shared
memory reference time, or the time for two private memory accesses (usually one

for instruction fetch and other for operand fetch), it is an approximate measure

of “RISC” instructions.

Table 2-1 does not show the parallel execution times; these are shown and
discussed in Section 3. Note that the “Number of Tasks” multiplied by the
“Grain Size” is larger than the “Serial Time”. The difference is the overhead
required to initiate the parallel tasks using the scheduler. If only one processor is
used by the parallel versions of the programs, the program still incurs a measur-

able overhead of task creation and completion (Shown in column “1 Pc Eff” of

Table 3-2).
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2.4. Limitations on Obtainable Speedup

The effective speedup attained depends on many features of both algorithm
and architecture. The most obvious cause of limited effective parallelism is a lack
of tasks to keep the parallel processors busy. This limitation will be referred to
as processor starvation: a given application may not use all the processors
available, due to lack of enough parallelism in the application. For example, on a
system with 256 processors, the “Image” application could only use 128 of them

since it only creates 128 tasks (See Figures 3-1a,b).

A related problem arises when there are approximately as many tasks as
processors, but the tasks do not map evenly to the processors. For instance, the
tasks may be of uneven size so that some processors finish early while others still
have much work to do. Or there may be slightly more tasks than processors, so
that some processors must execute two tasks while others execute one. Without
prior knowledge about the execution requirements of the tasks, it might occur
that the longest task is started last. This type of problem will be referred to as

the uneven load problem.

Both processor starvation and uneven load can be alleviated by larger data
sets in which the number of tasks is determined in part by the size of the data
set. With more tasks, processors are not starved and the laws of large numbers
tends to smooth out uneven task sizes [Lundstrom).

Another application problem, called the serial fraction, occurs when a part
of the application does not allow for parallel execution. For example, if twenty

percent of an application’s execution time must be performed serially, then more
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than five times speedup will never be obtained. This limit has been expressed

previously as Amdahl’s Law [Amdahl):
Maximum Efficiency = 1/([S X n] + 1 - 8)

where n is the (total) number of processors, S is the fraction of code that is serial,
and 1-S is the fraction that is parallel. By extension, the term serial fraction will
also be used to cover the case when a portion of the application allows only a
limited degree of parallel execution which is much less than the parallelism
obtained in the main body of the application. This problem frequently occurs

during task initiation and completion.

A problem related to the serial fraction is that of dependent stages. Some
solution methods allow a limited amount of parallelism, followed by a sequential
synchronizing step, then more parallelism followed by another synchronization
step. Each stage contributes synchronizing overhead and increases the serial frac-
tion. Further, limitations or slowdowns at any stage, which operate asynchro-
nously, affect the entire pipeline. Thus a problem that has many dependent
stages will be limited primarily by the least parallel or slowest stage and secon-

darily by the number of stages.

If the tasks created by a parallel application are small, then system and
creation overhead dominates useful computation. This will be referred to as the
fine grain problem. Solutions to it may conflict with solutions to the processor
starvation and uneven load problems. Nevertheless, if the architect expects most

of the tasks to be of fine or very fine grain size, then his system will likely be
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designed with a smaller system overhead.

The foreign reference problem refers to tasks which require non-local or
foreign data to execute. These references are considered part of the task creation
overhead. The reason is that when a Future creates a task, this task usually runs
in a processor different from the creator. Thus, the Future has to make foreign
references to the data residing in the creator. The creator needs the value that
the Future will produce; in addition, the creator may modify the data it is shar-
ing with the new task; for these reasons, FutureLisp keeps these data (generally
the arguments to the function created by the Fuiure) local to the creator. The

created task is thus penalized with foreign references each time it uses them.

In the current implementation of the FutureLisp Emulator, tasks assigned to
a processor can not “migrate” to another processor, even if the processor it is
assigned to has several tasks ready to run while a neighbor is idle. This specific
condition can arise when a number of tasks are created each of which needs the
result of some task which has not completed. Each task is assigned to a proces-
sor (see below under the task and data assignment problem) and computes until
it requires a result that is not yet ready. Then the task blocks and the processor
becomes available for the next task. When the result is finally available, all of
the tasks which have blocked on it become ready to run. However, if they hap-
pen to be assigned to the same processor, they will run sequentially, even if other

processors are idle. This problem will be referred to as the scheduling problem.

The task and data assignment problem refers to the criteria used by the

run-time system environment to assign tasks and data to processors. In the exam-
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ples presented here, a task was assigned to the first processor available. If no pro-
cessor is available, the task was kept in a queue waiting for an available proces-
sor. In general, data frequently used by a processor should be located next to it,
perhaps in its local shared memory. Tasks working closely together should be

assigned to a single cluster. This study did not consider the issues involved when

data and tasks are allowed to migrate.

Some applications require an indeterminate amount of computation, depend-
ing on the order in which subportions of the application are executed. These
applications are frequently referred to as having “OR” or ‘‘search” parallelism.
As will be seen in Section 4, this indeterminate computation problem inter-
feres with architectural studies significantly. For instance, consider that a search
application may be implemented with a depth-first or with a breadth-first search
strategy. In a sequential implementation, the order of search is strictly con-
trolled, whereas a parallel implementation can put control of the order of search
in the hands of the system task scheduler. Thus, the time to find an acceptable

solution becomes dependent on the order in which tasks happen to be scheduled.

While there are other types of problems which interfere with effective paral-
lel execution, the ones discussed above cover the problems observed in the

selected application set.

3. MEASUREMENTS

This paper studies six applications (3.1.1 to 3.1.8) against a variety of paral-

lel architectures (given by Figure 2-1), where one of the main measurements was
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to ascertain the speed-up potential of the selected applications.

The applications for this study use the default parameters listed in Figure

3-1.

Processors  Processors Delay
in Cluster _ within cluster _ out of cluster
1 1 0 0
2 %8 8 1 1
9..16 8 1 2
17 ....64 8 1 5
65 .. 256 16 2 7
257 .. 1024 32 3 9

Figure 3-1: Default Parameters

These cluster sizes and delays are reasonable and are further discussed in

[Guzman et al].

3.1. The Speed-Up Potential in the Applications

The speedup obtained by each application (see Figures 3-1a and 3-1b) varied
widely. For the EMY application, additional processors beyond 16 provided little
useful speedup. At the other extreme, Mandel shows continued speedup beyond
256.

Table 3-2 shows additional information about each application. The column
labeled “Number of Tasks” refers to the number of separately executable tasks in
the application. The column labeled “Grain Size” is the average number of mas-
ter clock cycles in each task. The column labeled “Task Suspends” refers to the

number of times a task suspended waiting for another task to complete or for a
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semaphore to be unlocked. The column labeled “1 Pc Eff.” states the efficiency
of the parallel version of the application when running on a single processor as
compared to the sequential version of the application. Finally, to simplify com-
parisons, the speedup obtained with 64 processors is listed for each application.

The behavior of each application will be discussed in turn.

Application  Number Grain Task 1 Pc 64 Pc
of Tasks Size Suspends  Eff.  Speedup
Mandel 2550 1400 51 0.99 59
Image 128 7400 2 0.99 40
Rewrite 9040 157 1958 0.92 33
Poly 5720 207 2409 0.82 25
Resolve 1785 2500 1660 0.30 23
EMY 187 425 279 0.83 9

Table 3-2: Application Behavior

The details of the application analysis may be found in [Guzman et al]. The

applications are briefly described here, however.

3.1.1. Mandel

Mandel is the program which determines whether points on the complex
plane are members of the Mandelbrot set [Dewdney]. The computation is non-
trivial. The number of points selected to be computed was a 50 X 50 grid in the
complex plane. Mandel comes the closest to linear speedup, since the basic algo-

rithm allows each point to be computed independently of every other point.

3.1.2. Image

Image implements a simple gray level shift or scaling on a 128 X 128 image

array. Because the amount of computation for each point is very small, each
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Figure 3-1a: Application Speedup for up to 84 Processors

parallel task performs the smoothing operation for an entire row. This approach
keeps efficiency high, but yields only 128 tasks to be executed, leading to the

uneven load problem.

3.1.3. Rewrite

Rewrite -is a small theorem prover based on the Boyer-Moore theorem

prover. It was adapted to FutureLisp from the version of Rewrite published in
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[Gabriel]. A short theorem was selected to be proven. Similar behavior was
observed with other theorems, except that the maximum speedup observed was
dependent on the complexity of the theorem to be proven. Rewrite was selected

as a benchmark because theorem proving is a critical part of the planning process

Processors

Figure 3-1b: Application Speedup for up to 256 Processors

in many Artificial Intelligence programs.
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3.1.4. Poly

Derived from the MACSYMA program widely used for symbolic mathemat-
ics, Poly provides symbolic manipulation of polynomials. The data set selected
causes two large polynomials to be multiplied together. Other data sets yield
varying amounts of speedup which are proportional to the complexity of the

polynomials in a non-linear manner.

3.1.5. Resolve

Resolve is a resolution theorem prover. It was included in the benchmark as
another type of theorem prover, because it uses ‘‘OR’ parallelism to search the
tree of possible proofs. Since its method of computation is considerably different

from Rewrite, it provides an alternate view of theorem proving.

3.1.6. EMY

EMY implements a kernel of EMYCIN, a backward chaining expert system.
The rule set selected, called fevers, is based on disease diagnosis expertise; the

specific disease to be diagnosed was rheumatic fever. More information in [Krall

and McGehearty].

3.1.7. Summary of Application Behavior

While each application differs in its parallel behavior, there are some com-
mon trends. Serial fractions and dependent stages of computation cause the most
severe limits in speedup. The overhead associated with fine-grain tasks causes a
loss of efficiency, which reduces speedup by a constant factor. Non-local refer-

ences can also reduce speedup. Note that the parallel versions of the applications
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were carefully modified to minimize non-local references, and the default architec-
ture assumes near-optimal interconnection performance to minimize the cost of
non-local references. The final problem in measuring speedup relates to the prob-
lem of indeterminate computation. This report does not have a solution to this
problem, but will discuss its effects where they are significant.

It is important not to make predictions about likely speedups to be obtained
in real systems over broad ranges of applications from the limited data presented
here. The mix of behaviors and parallel algorithm problems will vary widely
from one application to another. Rather, these application kernels are intended
to be used to identify common styles of programming and potential weaknesses of

parallel architectures and their implementations in supporting these programming

styles.

4. DISCUSSION OF RESULTS

4.1. Influences of Application Behavior on Architecture

The application experiments demonstrate (See Table 4-1) that application
style and algorithm technique influence attainable parallel speedup.

Applications with fine grain tasks require support for fast scheduling to
prevent scheduling overhead from dominating useful computation. Without such
support, their algorithms must be redesigned to increase the grain size of their
tasks. In some cases, such redesign results in too few tasks being created to pro-

vide a smooth load to the entire system. In summary, the efficient support for



o

fine grain tasks reduces the programming burden on algorithm design, parallel

compiler support, and load balancing schedulers.

Application | Salient Critical System Observable
Features Requirements Parallelism

Mandel independent computation none great

Image independent computation, rapid network large
but shared data

Rewrite search algorithm with fast scheduling moderate
fine grain tasks

Poly shared data; rapid network; moderate
fine grain tasks fast scheduling

Resolve OR-parallelism runtime priority moderate
algorithm methods

EMY synchronization; rapid network; limited
fine grain tasks fast scheduling

Table 4-1: Algorithm and Architecture Interactions

Some classes of symbolic applications have significant components of indeter-

minate computation. Frequently several paths of computation are pursued and
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the partial results on one path can be used to optimize the computation on
another path. In addition to requiring efficient communication methods, these
applications might benefit from methods of adjusting the priority of different sub-

tasks dynamically during a computation. No such method is currently available

in the system used for these measurements.

4.2. Other Effects Observed

System performance is very sensitive to interconnection delay too, but the

results are reported elsewhere [Guzman et al].

Very small cluster sizes increase the percentage of slower out-of-cluster
accesses; very large cluster sizes increase bottlenecks in that cluster. Further stu-

dies are needed to adequately quantify these effects.

4.3. Summary

The results presented show that both application characteristics and archi-
tectural features place limits on achievable parallel performance. In particular,
the graphs and charts in this report show that application characteristics have a

significant impact on obtainable speedup for any given combination of architec-

ture and application.

There are of course other factors that influence the degree of parallelism:
basic architecture of the system; scheduling disciplines; specific interconnection

networks, and delays. Such features are orthogonal to those reported here.
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