MCC Technical Report Number: PP-163-87

Performance of Symbolic Applications
on a Parallel Architecture

MCC Non-Confidential

Adolfo Guzman, Edward Krall, Patrick McGehearty, Nader Bagherzadeh

May, 1987

The results of a study of several parallel applications on a parallel symbolic architecture are presented. The
architecture being simulated is characterized as a shared memory, hierarchical, and clustered architecture.
Speedup measurements were obtained from six different application kernels. Measurements were also per-
formed to assess the degradation of speedup as interconnection delays increase. These measurements al-
lowed understanding of some of the interactions that take place among architectural parameters and the
specific applications, and suggested ways for improving of the parallel architecture. The results presented
highlight the manner in which application characteristics place limits on achievable parallel performance,
given particular architectural features. The paper discusses processor starvation, fine grain parallelism,
uneven loads, foreign reference, costs scheduling and indeterminate computation with respect to the applica-
tions chosen.

Copyright © 1987
Microelectronics and Computer Technology Corporation
All Rights Reserved.

Shareholders of MCC may reproduce and distribute this material for internal purposes by retaining MCC’s
copyright notice and proprietary legends and markings on all complete and partial copies.

Articulo 70

Performance of Symbolic Applications on a Parallel
Architecture

Adolfo Guzman, Edward J. Krall, Patrick F. McGehearty, Nader Bagherzadeh

Parallel Processing Architecture
Advanced Computer Architecture Program
MCC

ABSTRACT

The results of a study of several parallel applications on a
parallel symbolic architecture are presented. The architecture being
simulated is characterized as a shared memory, hierarchical, and
clustered architecture. Speedup measurements were obtained from
six different application kernels. Measurements were also performed
to assess the degradation of speedup as interconnection delays
increase. These measurements allowed understanding of some of
the interactions that take place among architectural parameters and
the specific applications, and suggested ways for improving of the
parallel architecture. The results presented highlight the manner in
which application characteristics place limits on achievable parallel
performance, given particular architectural features. The paper
discusses processor starvation, fine grain parallelism, uneven loads,
foreign reference, costs scheduling and indeterminate computation
with respect to the applications chosen.

1. OVERVIEW

It is generally agreed that parallel computers will be one of the master pillars
in the design of advanced architectures capable of supporting the symbolic pro-
cessing tasks of future generation computing systems. Thus, the Advanced Com-
puter Architecture Program of MCC proposes, studies and evaluates parallel
architectures. Often, these evaluations are done using existing symbolic applica-
tions, converted into parallel programs.

This paper reports results obtained from running six symbolic processing
application kernels, in an architecture that can be characterized as ‘“shared
memory.” The tool used for the measurements was the FutureLisp Emulator run-
ning on a Lisp machine.

1.1. FutureLisp

FutureLisp is a dialect of Common Lisp [Steele, 1984), augmented by the
addition of futures. The future is a construct of MultiLisp, a parallel dialect of
Lisp devised by [Halstead, 1984]. A future returns a pointer to the eventual value

-92-

of its argument. In effect, it is a promise to compute the value asynchronously
with the calling routine. If the computation is not yet completed when that
value is needed by the caller, then — and only then — will the caller wait.

FutureLisp contains a number of Lisp functions built on futures, such as
pmapcar, the parallel counterpart of mapcar. It also contains primitives for syn-
chronization, such as wait-sema and signal-sema.

1.2. The Architecture and the Experiments

The applications were simulated on an architecture (See Figure 2-1) with the
following characteristics.

e Each processor has access to three types of memory: private, com-
mon, and shared. The private memory is used for instructions, stack,
cache, ete. Private memory is only accessed by the processor owning it;
the union of private addresses does not form an address space. The
common memory repeats itself among each processor. A given location
of common memory contains the same information in each module.
Common memory contains program constants and other rarely changing
global values. Common memory could be visualized as a single address
space that is physically repeated among the processors. In contradistine-
tion, shared memory forms a single address space that is physically split
among the processors (See Figure 2-1). Thus, each processor has quick
access to a portion of the shared memory (as well as slower access to
the remainder). That portion is {requently referred to as its local shared
memory, or — if no confusion arises — simply as its local memory. If a
processor wishes to access a portion of shared memory that is not local
to it, such processor must communicate through the interconnection
network.

e The architecture under study presents two level of interconnections;
those processors connected through the lower level are said to form a
cluster; also by cluster memory the paper refers to the part of shared
memory located within a cluster.

e The individual parts of the architecture are implementable in current
technology.

The experiments measured

e the speedup obtained for six different application kernels with various
processor/cluster combinations,

e the effect on speedup of varying the delays of interconnection network.

The graphs and charts in this paper illustrate the following statements: (1)
application characteristics have a significant impact on obtainable speedup for
any given combination of architecture and application; (2) system performance is
very sensitive to interconnection delay.

———> Shows direction of control signals

BROADCAST BUS
COMMON PROCESSOR and SHARED
—» MEMORY PRIVATE MEMORY MEMORY
‘ 3 CLUSTER
I l . L
INTER- INTER-
CONNECTION, —ggo! CONNECTION
COMMON PROCESSOR and SHARED
> MEMORY PRIVATE MEMORY MEMORY [
3 J I 7 NETWORK NETWORK
COMMON PROCESSOR and SHARED
—> MEMORY PRIVATE MEMORY MEMORY
3 | I 5 CLUSTER
= . - e
INTER-
CONNECTION___g,
COMMON PROCESSOR and SHARED
—» MEMORY PRIVATE MEMORY MEMORY [€—
? l | 3 NETWORK

Figure 2-1: FutureLisp Cluster Architecture

v

2. BACKGROUND

This section describes the main characteristics of the architecture and appli-
cations used in the experiments.

2.1. Definitions

The following parameters are of use in discussing the power of a parallel pro-
cessor, when executing a particular program:

Speedup: is the time required for the parallel processor (which contains n pro-
cessors) to execute the whole job or program, relative to the time it
takes one processor using the serial version of the program to do the
same job. Note that the serial version of the program generally
requires less execution time than the parallel version of the program
executing on ome processor. This difference is due to overhead
required for parallel task management even when no parallelism
results. Thus, the speedup is typically a number < n.

Efficiency:
is the speedup divided by n. Efficiency is a number < 1. Generally,
as n grows, the speedup grows, but the efficiency drops. The efficiency
of a parallel program running on a parallel processor gives an indica-
tion of how well utilized are the processing resources by such program.
The same parallel program running on a single processor can be used
to estimate the overhead incurred by the parallel constructs.

Relative Ezecution Time: It compares the time taken by a program running on
the actual system against the time taken by the same program run-
ning on an ideal system equal to the actual system but with no inter-
connection delays. It is > 1.

Relative Execution Time = (time on real syst)/(time on zero-delay syst)
= (speedup on real syst)/(speedup on zero-delay syst)

The relative execution time (not speedup) of a given application run-
ning on a particular architecture is given by:

Relative Execution Time =1+ C,D, + C; D;

a
I

out of cluster references / total cycles
C; = in cluster references / total cycles

D, = out of cluster delay

D; = in cluster delay

Note that if the delays are zero, the size and diameter (how far the
memory modules are) of the memory system are irrelevant.

Slowdown Factor: If the ideal speedup of a given program is divided by its real
speedup, the slowdown factor is obtained.
Slowdown Factor = (speedup on zero-delay syst)/(speedup on real syst)

wils

= 1/(Relative Execution Time)
The slowdown factor ranges between 0 and 1; the closer to O this fac-
tor, the greater is the loss due to the interconnection delay.

The above terms always define relations between a particular program and a par-
ticular architecture.

2.2. Architecture Summary

Figure 2-1 shows a diagram of the FutureLisp Cluster Architecture. The
Pprocessors are connected through a two-level interconnection network. Each pro-
cessor has three kinds of memory associated with it, private, common, and shared
memory. The shared memory may be further categorized according to whether it
is local to a processor (local shared), in the same cluster as a processor (cluster
memory), or in a different cluster from a processor (non-cluster memory). Thus
each processor sees five different types of memory.

No statements are made concerning the technology of hardware implementa-
tion except to assume that comparable technology is used throughout the system.
Indeed, the performance figures are quoted in terms of master clock cycles, not
microseconds. The emulator assumes that the processor is faster than the rest of
the system, so that it may execute two typical operations in a single master clock
cycle. With the master clock cycle set equal to that of a local shared memory
reference time, the switch delay is specified in units of master clock cycles, thus
allowing the emulator to function independently of implementation technologies.

The private memory is used for code and for execution stack data. It is
accessible only by its associated processor. Two accesses to private memory may
occur in a single master clock cycle.

Each processor has the whole contents of common memory immediately
available for itself. Thus, read accesses to common memory are always immedi-
ate and require only a master clock cycle. Writes originating from a processor to
its common memory also require a common memory cycle from the other com-
mon memories; thus no common memory is available to any processor during a
write. The FutureLisp Emulator ‘‘charges” a master clock cycle to every proces-
sor, when common memory is written, in order to be conservative. In a real
implementation, processors not requiring access to common memory will suffer no
delay. This ‘‘cycle stealing” by common memory from the processors is done
through the broadcast bus of Figure 2-1. Several processors simultaneously want-
ing to write to common memory will have their requests queued; each processor
blocks until its write access is granted. In the applications studied, common
memory was used for global variables and property lists. Writes to common
memory were rare. Defining which data should be classified “read-mostly” in
general is a open research topic.

The shared memory on each processor may be read by any processor in the
system at varying costs. Access by the local processor typically takes one master
clock cycle given that no conflicts occur. Access by other processors incur an
interconnection switch delay in addition to the master clock cycle required for the
read or write operation. This delay is smaller if the accessor is in the same cluster

= B

as the local memory being accessed (it will be called delay for cluster memory
reference); it is larger if the processor belongs to another cluster (it will be called
delay for non-cluster memory reference). A single shared memory module ser-
vices one request per master clock cycle. If both local and non-local requests are
present, it alternates their service.

The interconnection networks are assumed to be non-blocking with no con-
tention. The communication delays for a cluster reference or non-cluster refer-
ence are system parameters that may be set independently for purposes of simu-
lation. Each processor may have only one request to other than private memory
outstanding at a time; that is, a processor request (read or write) to shared
memory waits or blocks until that access is granted. When multiple requests for
the same shared memory are made by different processors through the intercon-
nection networks, the interface between the interconnection networks and the
memory is assumed to queue requests from the interconnection networks that
cannot be serviced immediately. No other assumptions are made about the struc-
ture of the interconnection networks.

There are four main parameters that characterize a given architecture:
1. Total number of processors
2. Number of processors per cluster
3. Delay for cluster memory reference
4. Delay for non-cluster memory reference

The number of processors could be set to any value, but the experiments
generally used numbers between 1 and 256. The number of processors in a clus-
ter could also be set to any number. However, to reduce the complexity of the
experimental space and improve comparability, the number of processors in a
cluster was set to & if the number of processors in the total system was less than
or equal to 64, otherwise the number of processors in a cluster was set to 16.
Besides being “reasonable” numbers, the interconnection systems to support
these cluster sizes are feasible with current interconnection technology. Detailed
studyt beyond the scope of this paper would be required to determine optimal
configurations for any given implementation technology and a particular pro-
gram; the above numbers were chosen based on preliminary data.

The cluster and non-cluster delay parameters do not include the time
required to access the shared memory. They refer only to the delay imposed by
the interconnection network. Thus, if cluster delay were set to 2, a cluster
memory access would require 3 master clock cycles if no other processors had
pending memory accesses on the requested memory during the master clock cycle
that the memory request arrived at the requested memory (2 to travel the cluster
and 1 to access the memory). If the non-cluster delay were set to 6, then a non-

t Very small cluster sizes increase the percentage of slower out-of-cluster accesses; very
large cluster sizes increase bottlenecks in that cluster. Thus, the detailed study should
describe ways to allocate tasks and data to processors and memory. Section 2.5 ‘“‘Limita-
tions on Obtainable Speedup” touches some of these issues.

..

cluster shared memory access would require 7 master clock cycles if no other pro-
cessors were accessing the requested non-cluster memory when the memory
request arrived. In this way, it is possible for an experiment to have non-cluster
delays relatively independent of cluster delays, instead of the more restricting
rule

non-cluster delay = cluster delay + outer-delay + cluster delay

which Figure 2-1 indicates.

Table 2-1, “Default Parameters for Multiprocessor Configuration,” shows the
values for the default system configurations. Note that if default parameters are
specified, the only independent variables are the number of processors and the
application selected. When the number n of desired processors is not found in
the table, use the row corresponding to [n]. Thus, for 128 processors, use the
parameters 128, 16, 2 and 7.

Number of Processors in ~ Cluster ~ Non-Cluster
Processors a Cluster Delay Delay

1 1 0 0
8 8 1 1
16 8 1 2
64 8 1 5
256 16 2 7
1024 32 3 9

Table 2-1: Default Parameters for Multiprocessor Configurations

The details of the processor used in the FutureLisp Emulator are not critical
to these experiments. Briefly, it is stack-based machine with hardware assist for
discriminating among the various data types (“tag bits”) and for low-level
scheduling operations. Each processor is assumed to have substantial private
memory and enough registers to hold the context of the computation.

2.3. Methodology

Since the parameterized architectures of Table 2-1 (as well as any others)
were supported by the FutureLisp Emulator, the experiments proceeded as fol-
lows:

1. Select suitable applications and data for the measurement study. The appli-
cations are selected to represent different aspects of the behavior of symbolic
processing programs. See [McGehearty and Krall, 1986] for a discussion on
the parallel execution of Common Lisp programs.

2. Modify the source code of the application program to execute in parallel in
the FutureLisp Emulator. This step also included separation of the initiali-
zation routines from the body of the code to be measured. The initialization
routines are omitted from the measurement phase to allow these studies to
focus on the parallel kernel of computation. For completeness, a detailed

-8-

study focusing on the limits of parallelism in applications would need to
study parallelism in the initialization phases as well.

3. Compile the application using the FutureLisp Compiler, built into the
FutureLisp Emulator.

4. Invoke the FutureLisp Emulator on the object code, with a specific set of
emulation parameters, often taken from Table 2-1.

5. Understand emulator output, and then show results and graphs.

6. Using the understanding from (5) above, modify emulator to measure specific
information or to implement new architectural features. This suggests
several iterations of points 1-6, as opposed to knowing in advance exactly
what to measure; the architecture of Figure 2-1 was an act of evolution, not
of creation.

2.4. Application Characteristics

The experiments use six application kernels, each having different charac-
teristics relating to parallel symbolic computation. The application kernels were
tested over several data sets, and a typical data set was selected for each applica-
tion. While each of these programs is relatively small, varying from 60 to 600
lines of source code, they do cover a range of characteristics. Some of these
characteristics are summarized in Table 2-2. A brief description of each applica-
tion kernel can be found in Section 3.

Application Independent Dependent Serial Number Grain
Subtasks Stages Time of Tasks Size
Mandel yes no 3,160,000 2550 1400
Image yes no 940,000 128 7400
Rewrite ves yes 1,340,000 9040 157
Poly yes yes 970,000 5720 207
Resolve no yes 9,200,000 3640 2500
EMY no yes 66,000 187 425

Table 2-2: Application Characteristics

In Table 2-2, the “Independent Subtasks” column refers to whether a com-
putation at the lowest level of parallelism is self-contained except for system wide
constants once it has its initial values, or whether its behavior depends on other
values that are being dynamically computed. Note that the rule sets in Rewrite,
Resolve, and EMY are considered system constants since the rule sets do not
change during the computation. The “Dependent Stages” column refers to
whether there are stages in the computation which depend on earlier results. The
“Serial Time” column contains the number of master clock cycles required to exe-
cute the serial version of the application (that version written without futures) on
a single processor with all data local. The Number of Tasks counts how many
executable tasks (in FutureLisp, an executable task is a Future) were created

-9-

during the parallel execution of the application. The “Grain Size” column is the
average size, measured in master clock cycles, of each task. Since a master clock
cycle represents a local shared memory reference time, or the time for two private
memory accesses (usually one for instruction fetch and other for operand fetch),
it is an approximate measure of “RISC” instructions. (The latest RISC from
Stanford University gives 1.2 clocks/RISC instruction+result, in the average
[Agarwal]). .

Table 2-2 does not show the parallel execution times; these are shown and
discussed in Section 3. Note that the “Number of Tasks” multiplied by the
“Grain Size” is larger than the “Serial Time”. The difference is the overhead
required to initiate the parallel tasks using the scheduler. If only one processor is
used by the parallel versions of the programs, the program still incurs a measur-
able overhead of task creation and completion (Column “1 Pe Eff” of Table 3.1
shows the efficiency loss due to these overheads). This study compares the execu-
tion time obtained by the parallel version of the programs with that of the serial
version to compute speedup.

A given application may not use all the processors available for its use. For
example, on a system with 256 processors, the “Image” application could only use
128 of them since it only creates 128 tasks. In other words, there are some prob-
lems in which the parallelism is so shallow that some processors remain idle dur-
ing the entire execution (See Figures 3-1a,b).

2.5. Limitations on Obtainable Speedup

Many features of an algorithm and architecture determine the effective
speedup obtained. The most obvious cause of limited effective parallelism is a
lack of tasks to keep the parallel processors busy. This limitation on speedup
will be referred to as processor starvation.

A related problem arises when there are approximately as many tasks as
processors, but the tasks do not map evenly to the processors. Either the tasks
are of uneven size so that some processors finish early while others still have
much work to do, or there are slightly more tasks than processors, so that some
processors must execute two tasks while others execute one. Without prior
knowledge about the execution requirements of the tasks, it might occur that the
longest task is started last. This type of problem will be referred to as the
uneven load problem.

Both processor starvation and uneven load can be alleviated by larger data
sets in which the number of tasks is determined in part by the size of the data
set. With more tasks, processors are not starved and the laws of large numbers
tends to smooth out uneven task sizes [Lundstrom].

If the tasks created by a parallel application are small, then system overhead
dominates useful computation. This limitation on useful task creation will be
referred to as the fine grain problem. Solutions to the fine grain problem may
conflict with solutions to the processor starvation and uneven load problems.
Nevertheless, if the architect expects most of the tasks to be of fine or very fine
grain size, then his system will likely be designed with a smaller system overhead.

= 10 =

Another application problem, called the serial fraction, occurs when a part
of the application does not allow for parallel execution. For example, if twenty
percent of an application’s execution time must be performed serially, then more
than five times speedup will never be obtained. This limit has been expressed
previously as Amdahl's Law [Amdahl]:

Maximum Efficiency = 1/([S X n] + 1 - 8)
where:
n is the (total) number of processors
S is the fraction of code that is serial; 1-S is the fraction that is parallel.

The term serial fraction will also be used to cover the case when a portion of the
application allows only a limited degree of parallel execution which is much less
than the parallelism obtained in the main body of the application. This type of
problem frequently occurs during task initiation and completion.

A problem related to the serial fraction is that of dependent stages. Some
solution methods allow a limited amount of parallelism, followed by a sequential
synchronizing step, then more parallelism followed by another synchronization
step. Each additional stage contributes synchronizing overhead and increases the
serial fraction. Further, limitations or slowdowns at any stage, which operate
asynchronously, affect the entire pipeline. Thus a problem that has many depen-
dent stages will be limited primarily by the least parallel or slowest stage and
secondarily by the number of stages.

The foreign reference problem refers to tasks which require non-local or
foreign data to execute. These references are considered part of the task creation
overhead. The reason is that when a Future creates a task, this task usually runs
in a processor different from the creator. Thus, the Future has to make foreign
references to the data residing in the creator. The creator needs the value that
the Future will produce; in addition, the creator may modify the data it is shar-
ing with the new task; for these reasons, FutureLisp keeps these data (generally
the arguments to the function created by the Future) local to the creator. The
created task is thus penalized with foreign references each time it uses them.

In the current implementation of the FutureLisp Emulator, tasks assigned to
a processor can not “migrate” to another processor, even if the processor it is
assigned to has several tasks ready to run while a neighbor is idle. This specific
condition can arise when a number of tasks are created each of which needs the
result of some task which has not completed. Each task is assigned to a proces-
sort and computes until it requires the result that is not vet ready. Then the
task blocks and the processor becomes available for the next task. When the
result is finally available, all of the tasks which have blocked on it become ready
to run. However, if they happen to be assigned to the same processor, they will
run sequentially, even if other processors are idle. This problem will be referred
to as the scheduling problem.

t How this assignment is made and what problems are found is discussed below under the
task and data assignment problem.

o 1 B

Some applications require an indeterminate amount of computation, depend-
ing on the order in which subportions of the application are executed. This type
of application is frequently referred to as having “OR” parallelism. As will be
seen in the experimental results section, this indeterminate computation prob-
lem interferes with architectural studies significantly. As an example of the prob-
lem, consider that search application may be implemented with a depth-first
search strategy or with a breadth-first search strategy. In a sequential implemen-
tation, the order of search is strictly controlled, whereas a parallel implementa-
tion can put control of the order of search in the hands of the system task
scheduler. Thus, the time to find an acceptable solution becomes dependent on
the order in which tasks happen to be scheduled.

The task and data assignment problem refers to the criteria used by the
run-time system environment to assign tasks and data to processors. In the exam-
ples presented here, a task was assigned to the first processor available. If no pro-
cessor is available, the task was kept in a queue waiting for an available proces-
sor. In general, data frequently used by a processor should be located next to it,
perhaps in its local shared memory. Tasks working closely together should be
assigned to a single cluster. This study did not consider the issues involved when
data and tasks are allowed to migrate.

While there are other types of problems which interfere with effective paral-

lel execution, the ones discussed above cover the problems observed in the
selected application set.

-12 -

3. MEASUREMENTS

This paper studies six applications (3.1.1 to 3.1.6) against a variety of paral-
lel architectures (given by Figure 2-1 and Table 2-1), where the main measure-
ments seek to find out two important performance parameters: (a) the speed-up;
and (b) the sensitivity of the applications to the interconnection delay.

3.1. The Speed-Up Potential in the Applications

As discussed in Section 2.4, “Application Characteristics,” six applications
were selected for this case study. Default parameters described in Table 2-1 were
used. As Figures 3-1a and 3-1b “Application Speedup” show, the speedup
obtained by each application varied widely. For the EMY application, additional
processors beyond 16 provided little useful speedup. At the other extreme, Man-
del shows continued speedup beyond 64 processors.

Table 3-1 shows additional information about each application. The column
labeled “Number of Tasks” refers to the number of separately executable tasks in
the application. The column labeled “Grain Size” is the average number of mas-
ter clock cycles in each task. The column labeled “Task Suspends” refers to the
number of times a task suspended waiting for another task to complete or for a
semaphore to be unlocked. The column labeled “1 Pc Eff.” states the efficiency
of the parallel version of the application when running on a single processor as
compared to the sequential version of the application. Finally, to simplify com-
parisons, the speedup obtained with 64 processors is listed for each application.
The behavior of each application will be discussed in turn.

Application ~ Number Grain Task 1 Pc 64 Pc
of Tasks Size Suspends Eff. Speedup
Mandel 2550 1400 51 0.99 59
Image 128 7400 2 0.99 40
Rewrite 9040 157 1958 0.92 33
Poly 5720 207 2409 0.82 25
Resolve 1785 2500 1660 0.30 23
EMY 187 425 279 0.83 9

Table 3-1: Application Behavior

3.1.1. Mandel

Mandel is the program which determines whether points on the complex
plane are members of the Mandelbrot set [Dewdney 1985]. The computation is
non-trivial. The number of points selected to be computed was a 50 X 50 grid in
the complex plane. Mandel comes the closest to linear speedup, since the basic
algorithm allows each point to be computed independently of every other point.

-13-
64 —&8— Mandel
—%— Image
—=— Poly
—&— Resolve
48 - —o— Rewrite
—— EMY
o
]
. 32 1
o
Q.
7]
16 1
0 5 T T 1 1
0 16 32 48 64
Processors

Figure 3-1a: Application Speedup for up to 64 Processors

The only communications required by each task are input of the initial point
coordinates and output of the final boolean determination. Since fourteen hun-
dred master clock cycles are required to make the determination for a typical
point, and less than twenty-five are required for communication and task initia-
tion, overhead is minimal. The test data reported here is for a 50X 50 array of
points. A startup task is created for each row in the array, which starts a sub-
task for each point on the row. Thus, fifty support tasks are created, each of
which in turn create a total of 2500 working tasks. The working tasks then
determine whether each point is in the Mandelbrot set. The number of tasks far
exceeds the number of processors, thereby preventing processor starvation.

-14 -
250 —B8— Mandel
W —%— Image
—%— Poly
200 | ——4— Resolve
—o— Rewrite
— m
0. 150 -
1
b
[
[
Qo
100 A
50 4
0 T 1 2§ T T 1
0 50 100 150 200 250 300

Processors
Figure 3-1b: Application Speedup for up to 256 Processors

3.1.2. Image

Image implements a simple gray level shift or scaling on a 128 X 128 image
array. Because the amount of computation for each point is very small, each
parallel task performs the smoothing operation for an entire row. This approach
keeps efliciency high, but yields only 128 tasks to be executed, leading to the
uneven load problem. Note that minimal increase in speedup is obtained
between 64 and 96 processors in the Image program. With 64 processors, each
processor handles two rows of the image. With 96 processors, each processor
handles an average of one and one-third rows. However, the task size equals one
row. So, some processors handle one row and some handle two rows. Since the
computation is not complete until all rows are processed, the speedup is limited
by the, time to handle two rows, just as in the case for 64 processors. Some
speedup is gained by spreading the array references over 96 memories instead of

=15=

64 memories. No speedup is gained after 128 processors, since there were only 128
tasks (each row was a task).

When the image size goes up to 256 X 256, slightly better speedups were
obtained: the size of the task was larger (256 instead of 128, so there is less
start-up overhead), and there are more tasks, thus allowing slightly better
smoothing over the 64 processors. These results were not included in Figure 3-1b,
since the figure refers to Image working on a 128 X 128 array.

Another problem for Image relates to startup activity. From the data in the
previous section, it can be determined that 3000 master clock cycles are required
to start 128 tasks. This time is a significant fraction of the 7400 master clock
cycles required by the average task. Therefore, the last task starts to work 3000
cycles later than the first task. The same reasoning imply that the last task ends
3000 cycles later than the first task — but the total time spent by the multipro-
cessor is counted from the begining of the first task to the end of the last task —.
Thus, if it were possible to start all 128 tasks in parallel, a significant amount of
computer power could be put to use earlier and saved at the end. This behavior
can be classified as a serial fraction problem. It is reasonable to speculate that
breaking the startup task into parallel pieces could reduce the startup time, and
further, breaking the computation of each row of tasks into several parts would
ease the load balancing problem. The limiting factor on these approaches is the
overhead of task initiation and completion.

Foreign references also affect the Image application. Like the Mandel appli-
cation, the operation on each point in the Image application is independent of
every other point. However, unlike the Mandel program, each task also requires
the initial value of its point in the image. These points are stored in a two-
dimensional array. Two types of memory references are required for operations
on arrays in the current FutureLisp implementation. First, the array descriptor
must be accessed to check array bounds and compute the linear index of the
referenced value in the array from the index values supplied in the array refer-
ence. Then the appropriate array value is read or written depending on the type
of memory reference required. For this experiment, the array descriptor is placed
in common memory and the array itself spread over shared memory in an inter-
leaved fashion. That is, the first word of the array is in the local shared memory
of processor 1, the second word is in the local shared memory of processor 2, etc.
Since each processor maintains a copy of common memory, no memory conten-
tion or non-local delays are incurred by the accesses to the array descriptor.
With a single processor, the array data is also local, leading to very high
efficiency. As the number of processors increases, accesses to the array data are
more likely to be non-local, with associated delays. In the 64 processor case, this
delay time accounts for approximately 15% of the execution time of a typical
task. Solving this problem would require some method of associating the tasks
for processing portions of an array with the processors that those portions of the

array are stored in. This is a fine example of the task and data assignment prob-
lem.

B0

3.1.3. Rewrite

Rewrite is a small theorem prover based on the Boyer-Moore theorem
prover. It was adapted to FutureLisp from the version of Rewrite published in
[Gabriel, 1985]. A short theorem was selected to be proven. Similar behavior was
observed with other theorems, except that the maximum speedup observed was
dependent on the complexity of the theorem to be proven. Rewrite was selected
as a benchmark because theorem proving is a critical part of the planning process
in many Artificial Intelligence programs.

Since over nine thousand tasks are created, processor starvation and uneven
load are not the limiting problems for this application. However, each task is
quite small, so the fine grain problem comes into play. Fine grain overhead
accounts for an 8% loss of efficiency in Rewrite.

Another problem is in the area of dependent stages. The parts of the initial
theorem to be proven are rewritten several times before the final proof checking
step occurs. Before a given part of the theorem can be rewritten, the previous
rewriting of that part must be complete. In the final stage, the rewritten
theorem is checked. This stage has the least available parallelism and acts as a
further limit on the speedup obtained.

The variation observed in the speedup of Rewrite in the range from 48 to
128 processors is due to the indeterminate computation problem. In the sequen-
tial implementation, all rewriting is completed before any checking is performed.
In the parallel implementation, checking begins as soon as any rewriting has com-
pleted. Some optimizations exist which allow portions of the rewritten theorem
to be ignored by the checking process. Since these portions are not needed by
the check phase, it does not matter whether they complete their rewriting opera-
tion. Thus, if they happen to be scheduled before the required portions. total
execution time is greater than if they happen to be scheduled after the required
portions of the rewriting and checking process.

3.1.4. Resolve

Resolve is a resolution theorem prover. It was included in the benchmark as
another type of theorem prover, because it uses “OR” parallelism to search the
tree of possible proofs. Since its method of computation is considerably different
from Rewrite, it provides an alternate view of theorem proving.

Resolve is strongly affected by the indeterminate computation problem. Its
basic method of operation is “generate and test,” combining previous solution
attempts (clauses) to be checked as future solutions. When it combines the right
set of clauses, it determines that the theorem to be proven is correct. If the
theorem is not correct, it will never terminate. The order in which new clauses
are added to the trial list greatly affects the time required to achieve a solution.
If a complex clause which does not lead to the solution is added to the trial list,
many related clauses will also be added to the trial list. The computation related
to these subclauses detracts from the desired computation. This effect is so
strong for this application that it overrides other problems.

« 17 =

3.1.5. Poly

Derived from the MACSYMA program widely used for symbolic mathemat-
ics, Poly provides symbolic manipulation of polynomials. The data set selected
causes two large polynomials to be multiplied together. Other data sets yield
varying amounts of speedup which are proportional to the complexity of the
polynomials in a non-linear manner.

Like Rewrite, it tends more toward the fine grain problem than the processor
starvation problem. In particular, task creation and communication take approx-
imately 18% of the total execution time.

It also suffers from the problems of dependent stages and serial fraction.
Polynomial multiplication has four stages. First, the terms of one polynomial are
distributed over the other polynomial for multiplication. Second, the multiplica-
tion occurs. Third, the terms of the same degree for each variable in the polyno-
mial are matched. The fourth stage adds these terms to compute the final result.
The first and third stage tend to be serial in nature thus limiting the obtainable
parallelism.

3.1.6. EMY

EMY implements a kernel of the EMYCIN expert system. EMYCIN is a
backward chaining expert system. The rule set selected, called fevers, is based on
disease diagnosis expertise; the specific disease to be diagnosed was rheumatic
fever. More information about EMY may be found in [Krall and McGehearty,
1986).

The primary problems with obtaining speedup with EMY are dependent
stages and serial fraction. EMY contains a concept known as parameters. The
value of a parameter is determined by executing rules relating to that parameter.
After all such rules have completed execution, conclusions about the value of a
parameter are made. Note the implicit sequentiality in this process. A further
serialization may be caused by executing a rule which requires that the value of
another parameter must be determined. Then another set of rules must be exe-
cuted and conclusions made about the new parameter before the value of the first
parameter is known. The parallelism is limited by the number of active rules,
which is between 60 and 95 in the chosen test data.

However, there is another sequential step relating to the termination of the
rules associated with a single parameter. Each rule must access a shared value
sequentially. The combination of dependent stages and serialization are the pri-
mary limits on the speedup of the EMY application. Adding more processors will
not result in a significant speedup since there are not enough parallel tasks to
keep the processors busy.

3.1.7. Summary of Application Behavior

While each application differs in its parallel behavior, there are some com-
mon trends. Serial fractions and dependent stages of computation cause the most
severe limits in speedup. The overhead associated with fine-grain tasks causes a
loss of efficiency, which reduces speedup by a constant factor. Non-local

= 18=

references can also reduce speedup. Note that the parallel versions of the appli-
cations were carefully modified to minimize non-local references, and the default
architecture assumes near-optimal interconnection performance to minimize the
cost of non-local references. The final problem in measuring speedup relates to
the problem of indeterminate computation. This report does not have a solution
to this problem, but will discuss its effects where they are significant.

It is important not to make predictions about likely speedups to be obtained
in real systems over broad ranges of applications from the limited data presented
here. The mix of behaviors and parallel algorithm problems will vary widely
from one application to another. Rather, these application kernels are intended
to be used to identify common styles of programming and potential weaknesses of
parallel architectures and their implementations in supporting these programming
styles.

3.2. Switch Delay Study

The next aspect of the architecture to be studied was the interconnection
delay characteristics of the system communications. Varying the interconnection
delay provides a sensitivity analysis of each application with respect to the inter-
connection delay. This analysis is useful for the following reasons:

1. Implementation of the interconnection system with different component
technologies or topologies yields different average delay times for the system.
By examining a range of values for the delay, one may view how the choice
of underlying implementation can alter overall response times of applica-
tions. In addition, one could analyze the cost versus performance properties
of the system as faster switches are incorporated into the design, and extra-
polate the system performance for various delays.

2. The application sensitivity can be analyzed by observing the effect of inter-
connection delays on execution time of different problems. Hence, one can
evaluate how sensitive a given problem is to different communication delays.

In the results discussed in this section, the number of processors was fixed at
64 processors, with 8 processors in each cluster. To provide a regular comparison
of increasing interconnection delay, the cluster interconnection delay was chosen
as the independent variable. The inter-cluster interconnection delay was set to
be three times the cluster delay [Recall from Section 2.1 that in addition to these,
there may be some further delays queuing at the target memory|. This value is
justified by two observations: (a) a non-cluster reference must traverse two clus-
ter interconnects and the system interconnect (See Figure 2-1), and (b) the inter-
cluster interconnect ties together some number (eight) of processors, while the
inter-cluster interconnects ties together the same number (eight) of clusters.
Other system parameters were kept at the default values.

Figure 3-2 shows the speedups (for 64 processors) of the various application
kernels for the selected range of cluster interconnection delays, while Figure 3-3
gives the “Slowdown Factor” of the applications, dividing their speedups for a
given delay by their speedups when the delay is zero (See Section 2.1). The closer

- 19 -

(84 processors)

—&— Mandel
Image
Poly
Resolve
Rewrite
EMY

] T 0 T T 5
[+] 10 20 30 40 S0

Delay (cycles per request)

a—

Figure 3-2: Effects of Interconnection Switch Delay on Speedup

to zero this slowdown factor is, the worse the speed loss due to the interconnec-
tion delay is.

The loss of speedup in the various applications is dependent on the effect of
locality. As the percentage of the non-local references (see Table 3-2) increases,
the delay graphs tend to take on a sharper slope. The Mandel program with less
than 1% non-local memory references was least sensitive to interconnection
delay. The image application showed the second best results with 3% mnon-local
references. The application programs which have approximately 10% non-local
memory references (Rewrite, Poly, and EMY) constitute the worst delay graphs
in the experiments. Indeed, with the cluster interconnection delay set at 50, they
show almost no speedup when executing in parallel on 64 processors.

While some applications are much more sensitive than others to interconnec-
tion delay, large interconnection delay, in all cases, causes a substantial reduction
in performance. Therefore, interconnection delay is a critical system parameter
for applications designed to execute on the class of architectures studied here. If
interconnection delay is large, then major redesign of applications and algorithms
may be necessary to achieve useful levels of performance improvement.

(84 processors)

Loss Factor

-920 -

—&— Mandel
Image
Poly
Resolve
Rewrite
EMY

o T T
o 10 20

T T 1

30 40 50

Delay (cycles per request)

Figure 3-3: Slowdown Factor as a Function of Switch Delay

Application Fraction of Data References
(64 processors) _ Cluster Non-Cluster
Mandel 0.005 0.004
Image 0.004 0.026
Rewrite 0.073 0.053
Poly 0.049 0.048
Resolve 0.015 0.043
EMY 0.029 0.061

Table 3-2: Application Effects on Locality of Data

4. Discussion of Results

4.1. Implications of Application Behavior on Architecture

The application experiments demonstrate that application style and algo-
rithm technique influence realizable parallel speedup. These influences are sum-

marized in Table 4-1.

- 91 -

Application | Salient Critical System Observable
Features Requirements Parallelism

Mandel independent computation none great

Image independent computation, rapid network large

but shared data

Rewrite search algorithm with fast scheduling moderate
fine grain tasks

Poly shared data rapid network moderate
fine grain tasks fast scheduling

Resolve OR-parallelism runtime priority moderate
algorithm methods

EMY synchronization rapid network limited
fine grain tasks fast scheduling

Table 4-1: Algorithm and Architecture Interactions

Applications with fine grain tasks require support for fast scheduling to
prevent scheduling overhead from dominating useful computation. Without such
support, their algorithms must be redesigned to increase the grain size of their
tasks. In some cases, such redesign results in too few tasks being created to pro-
vide a smooth load to the entire system. In summary, the efficient support for
fine grain tasks reduces the programming burden on algorithm design, parallel
compiler support, and load balancing schedulers.

Those applications which communicated frequently among their various
tasks showed rapid loss of performance when the cost of communication was
high. Such high communication costs would place heavy burdens on algorithm
designers to minimize communication among subtasks.

Some classes of symbolic applications have significant components of indeter-
minate computation. Frequently several paths of computation are pursued and
the partial results on one path can be used to optimize the computation on
another path. In addition to requiring efficicnt communication methods, these
applications might benefit from methods of adjusting the priority of different sub-
tasks dynamically during a computation. No such method is currently available
in the system used for these measurements.

4.2. Summary

The results presented show that both application characteristics and archi-
tectural features place limits on achievable parallel performance. In particular,
the graphs and charts in this report illustrate the following statements:

=0

1. Application characteristics have a significant impact on obtainable speedup
for any given combination of architecture and application.

2. System performance is very sensitive to interconnection delay.
There are of course other factors that either contribute to or detract from
optimal parallelism. Other researchers have investigated the basic architecture of

the system, the scheduling disciplines, and specific interconnection networks.
Such features are orthogonal to those reported here.

-93-

5. BIBLIOGRAPHY

Agarwal, A., Chow, P., et al. “On-Chip Instruction Caches for High Performance
Processors.” In Advanced Research itn VLSI (Proceedings of the 1987 Stan-
ford Conference), P. Loslebel (ed). MIT Press, 1987.

Amdahl, G. M. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities,” Proceedings 1967 Spring Joint Computer
Conference, 483-485.

Dewdney, A. K. “Mandelbrot Sets” (in the column “Computer Recreations”),
Scientific American, July 1985.

Gabriel, Richard. Performance and Evaluation of Lisp Systems, The MIT Press,
Cambridge, 1985.

Halstead, Robert. “Implementation of Multilisp: Lisp on a Multiprocessor,” ACM
Symposium on Lisp and Functional Programming, Austin, Texas, August
1984.

Krall, E. and McGehearty, P. “A Case Study of Parallel Execution of a Rule-

Based Expert System”, International Journal of Parallel Programming,
Volume XV, Number 1, February 1986.

Lundstrom, Stephen F. “Applications Considerations in the System Design of
Highly Concurrent Multiprocessors,”” submitted to IEEE Trans. on Comput-
ers.

McGehearty, P. and Krall, E. “Potentials for Parallelism of Common Lisp Pro-
grams,” Proceedings of the Sizth International Conference on Parallel Pro-
cessing, St. Charles, Illinois, August 1986.

Steele, G. et al. Common Lisp, Digital Press, Hanover, Ma., 1984.

