MCC Technical Report Number: PP-355-86

AHR: A Parallel Computer
for Pure Lisp

MCC Non-Confidential

Adolfo Guzman

October 1986

This paper was submitted for publication in a book ‘“Parallel Computation and Computers for
Artificial Intelligence” written by Dr. Janusz S. Kowalik of the Boeing Corporation.

The AHR computer, proposed in 1973 in Mexico City and operational by 1981, yielded data that
helped to establish the feasibility of parallel computers. Its name, an acronym for Arquitecturas
Heterarquicas Reconfigurables, emphasizes its reconfigurable, heterarchical (single-level) architecture.

This paper describes the design and construction of AHR, a multi-microprocessor that executes pure
Lisp in parallel. Each microprocessor can execute any Lisp primitive, and the computer can support as
many as 64 microprocessors. Each has its own private memory, and all share access to three common
memories as well: 1) the grill, where the Lisp program(s) being executed resides; 2) the passtve
memory, which contains data; and 3) the varigbles memory, where bindings of variables to values re-
side. By using pure Lisp, the programmer does not need to be aware that the program is being execut-
ed in parallel, for it is not necessary to give 2 parallel command explicitly. All communication with
the user is handled by a host machine, for which AHR is a back-end processor.

The architecture of AHE is predicated upon several premises. The operating system is small due to
the synchronization among tasks being done, through hardware, by simple counters. No processor
needs to communicate explicitly with another. A processor is never blocked; while there is still work
to be done, a processor can proceed without wasting any time. In addition, a process itsell is never
blocked: either it has not yet started, or, if it is running, it is guaranteed to run until completion. Fi-
nally, this architecture has been realized: the AHR was built, and it worked as predicted.

Copyright © 1986
Microelectronics and Computer Technology Corporation
All Rights Reserved.

Shareholders of MCC may reproduce and distribute this material for internal purposes by retaining
MCC'’s copyright notice and proprietary legends and markings on all complete and partial copies.

ARTICULO 67

MCC TECHNICAL REPORT

AHR: A Parallel Computer for Pure Lisp

October 29, 1986

Adolfo Guzman

Abstract

The AHR computer, proposed in 1973 in Mexico City and operational by
1981, yielded data that helped to establish the feasibility of parallel comput-
ers. Its name, an acronym for Arquitecturas Heterarquicas Reconfigurables,
emphasizes its reconfigurable, heterarchical (single-level) architecture.t

This paper describes the design and construction of AHR, a multi-microprocessor
that executes pure Lisp in parallel. Each microprocessor can execute any Lisp
primitive, and the computer can support as many as 64 microprocessors. Each has
its own private memory, and all share access to three common memories as well:
1) the grill, where the Lisp program(s) being executed resides; 2) the passive
memory, which contains data; and 3} the variables memory, where bindings of vari-
ables to values reside. By using pure Lisp, the programmer does not need to be
aware that the program is being executed in parallel, for it is not necessary to give
a parallel command explicitly. All communication with the user is handled by a
host machine, for which AHR is a back-end processor.

The architecture of AHR is predicated upon several premises. The operating sys-
tem is small due to the synchronization among tasks being done, through
hardware, by simple counters. No processor needs to communicate explicitly with
another. A processor is never blocked; while there is still work to be done, a proces-
sor can proceed without wasting any time. In addition, a precess itsell is never
blocked: either it has not yet started, or, il 1t is running, it is guaranteed to run
until completion. Finally, this architecture has been realized: the AHR was builg,
and it worked as predicted.

1. Objectives of the AHIR Project

Parallel processing now constitutes a major direction for computer development, and the
future of this field is very bright. At the same time, the field is very difficult due to the
complexities inherent in parallel systems. In 1973, these complexities made parallelism
seem to be impractical, yet results obtained from a project undertaken that year at the
Institute for Research in Applied Mathematics and Systems (IIMAS) at the National

1 This work was carried out at the Institute for Research in Applied Mathematics and Systems (IIMAS), Na-
tional University of Mexico, Mexico City. Other members of the AHR team were Luis Lyons, Luis
Peiiarrieta, Kemer Norkin, David Rosenblueth, Raul Gémez, Manuel Correa, Dora Gémez, and Norma A de
Rosenblueth

AHR: A PARALLEL COMPUTER FOR PURE LISP

University of Mexico demonstrated that parallel systems were more feasible than had
previously been assumed.

In 1973, researchers at IIMAS outlined several organizational premises for parallel com-
puters, specifically one for a reconfigurable Lisp machine [1,2]. At that time, the proposal
showed little promise to be fruitful. However, in spite of all the difficulties intrinsic to
parallel systems, a computer designed along the lines proposed in 1973 was built and
tested. Specific conditions existing in Mexico influenced the final form of AHR, primarily
in terms of staffing and the curtailment of second-generation work. Yet results obtained
from the prototypes at IIMAS in 1980 and 1981 yielded information useful for future
developments in parallel processing.

The laboratory prototype of the AHR computer consisted of approximately 600 com-
ponents, many of which were Large Scale Integration chips. Consequently, the AHR pro-
ject represented, under classifications prevailing at that time, a complicated electronic
design. This demand for such a huge amount of hardware devoted to a unique goal was
new for IIMAS, and the project was a pioneering effort in computer research in Mexico.

Although the main goal of AHR was educational, the project had a multi-purpose aim.
AHR was designed as a vehicle for future development, one that would, for instance,
allow a programmer to write programs for a parallel machine without having to worry
explicitly about parallelism. The first implementation of AHR supported pure parallel
Lisp, but the ultimate goal for the machine was as a development tool for new languages
and hardware for parallel systems. As part of its evolution as a development tool, the
machine was available for students to use to learn and practice parallel concepts in
hardware and software.
Four principle uses were envisioned for the machine:

e to develop hardware and parallel processing languages,

e to explore new ways to perform parallel processing,

® to provide parallelism in a way that was transparent to the user, and

e to provide a machine for students to use.

1.1. Characteristics of the AHR Machine

The design of AHR was predicated upon several architectural considerations, the chiel of
which are listed in Table 1.

AHR Design Premises
A general purpose parallel processor.

The absence of hierarchical distinctions.

An asynchronous operation.

The use of pure Lisp as the main programming language.

The absence of processor-to-processor communications.

A gradually expandable hardware design.

An allocation of input/output to a host.

A small operating system.

Table 1: AHR Design Premises

8]

AHR: A PARALLEL COMPUTER FOR PURE LISP

These design premises made the complexity of a parallel system more manageable.
Because all the processors were at the same hierarchical level, no one of them was the
“master’”; hence, the AHR machine used a heterarchical organization, not a hierarchical
one. Having pure Lisp as the main programming language eliminated side effects, setq’s,
and goto’s. Up to a point, the computing power of the machine could be increased by
simply adding more microprocessors. Communication between processors was minim-
ized: since the design of the machine did not require processors to communicate directly
with each other, they simply “left work” for some other processor to do, without know-
ing or talking to such a processor. Finally, all input/output was conducted by a host
computer to which the AHR machine was attached as a slave or back-end processor.

Another factor in the management of the complexity dealt with the allocation of tasks
normally associated with an operating system. The AHR machine, as such, had no
software-written operating system. A normal operating system existed in the host proces-
sor, but it was not considered a part of the AHR machine. If the term operating system
is taken to mean the ‘“system’s resources administrator,” then the grill or active
memory—together with the fifo and the distributor—constituted an operating system.

Even this small operating system, however, was embodied in the hardware. The majority
of the Lisp operations, as well as the garbage collector, which was not parallel, were
written in Z-80 machine language. Special hardware also helped with handling list struc-
tures, free-cell lists, and queues. The efficiency of the system was further increased by
the use of “intelligent memories” that could be accessed in several modes, among them
read, write, free this cell, and give me a new cell. All modes were implemented in the
hardware.

Since the purpose of the AHR Project was mainly educative and scientific, not much
attention was paid to the normal things that give good service to users, such as [/O
facilities, utility programs, and service routines. Because such resources are very well
known, the AHR team concentrated instead on the new aspects of the computer, its
unique and novel parts. By doing so, the team insured that the new ideas performed
correctly, given the constraints of time and lunds for the AHR project. The final report
[3] of the AHR project contains further details of the IIMAS effort; the summary thus far
in this article is based on that report.

1.2. Project Status

By the end of 1981, the AHR was operational to the extent of performing short test pro-
grams, which processed correctly. As a prototype, the AHR computer was not destined
for normal use, but for verification of design ideas, a purpose for which it was completely
sufficient. Consequently, the prototype became the “living proof” of the feasibility of
the AHR premises. Since the machine had only a modest amount of memory, no large
programs were run on it. As a Lrototype, it proved the correctness of its design assump-
tions and the validity of its way of operation. As a learning tool, it was invaluable
because, in addition to confirming many design choices, it taught the AHR researchers
many things to avoid.

The things to avoid primarily involved the issue of reliability for a sustained operation of
several hours. The prototype failed frequently, due to the designers’ insufficient experi-
ence in some technical aspects of its construction; some of the problems were due to the
connections, weak contacts, a card size that was too large, short circuits, and reflections
of pulses.

Because the prototype proved the success of the design, together with the fact that the
machine was not able to support practical applications, Phase 1 of the AHR Project

AHR: A PARALLEL COMPUTER FOR PURE LISP

terminated; version 1 of AHR ceased to exist at the end of 1982. As detailed in the final
report [3] of Phase 1 of the AHR project, a second version of the machine—improved,
robust, and reliable—was proposed, but due to a lack of resources, work on this second
version never began.

2. The Parallel Evaluation of Pure Lisp

Since the order of evaluation of the arguments of a function does not matter in a pure
applicative language, such as pure Lisp, it is indeed possible to evaluate them in parallel.
The only rule that a designer has to follow is applicative order evaluation, meaning that
a program has to evaluate all of the arguments of a function before evaluating the func-
tion itself.

Thus, a pure Lisp program is analogous to a tree in which the leaves are ready for
evaluation. This evaluation can proceed in parallel by several Lisp processors: as each
leal is converted into a value, the “parent” of that leal must receive not only the value
but also the notification that one more of its arguments has been evaluated. When a
node has all of its arguments evaluated, that node becomes a leaf node, and is itself
ready for evaluation. Figure 1 shows the tree corresponding to a particular Lisp expres-
sion. Notice that next to each node there is a number, called a nane, indicating the
number of arguments not yet evaluated.

2.1. Idealized Evaluation Model

If the ““tree” represented by Figure 1 is placed in a common memory, which is accessible
to all Lisp processors, then the processors can be controlled with an instruction of the
following generalized form:

Lock for a node with nane = 0, and evaluate it.
After finding its value, give the value to its parent.
Then subtract one from the nane of the parent.

This rule permits the parallel evaluation of the tree from the leaves towards the root. As
the internal nodes have their nanes diminished, the nanes eventually become 0 and, con-
sequently, ready for evaluation. In other words, the nodes can then be captured by what-
ever Lisp processors are not busy evaluating a node; these processors search through the
memory looking for “work to do,” namely nodes with a nane of 0. Eventually, the
whole tree is transformed into a Lisp result, namely a list or an atom.

Figure 2 illustrates the foregoing principle: the tree has been drawn with nodes
corresponding to each Lisp primitive, and each node points to its parent. Initially, only
the nodes named VAR, or the variables, are ready to be evaluated, but soon the evalua-
tion proceeds towards the root. As a node is evaluated, its value is inserted in the
corresponding slot of its parent, and the nane of the parent subsequently decremented.
VAR Z, for example, can be evaluated as having the value of §; this value is then
inserted in the slot for its parent process, and the value of the nane of the parent
decreases by one.

The above design, as is, contains the possibility of having sixty-four Lisp processors
fighting lfor access to the common memory where the program to be evaluated resides. In
such a case, the memory port becomes a bottleneck. However, the problem can be
avoided if another memory, called

fifo or blackboard,

AHR: A PARALLEL COMPUTER FOR PURE LISP

(LIST (CONS X (CDRY))

3
(TIMES X 2)
Z
usT®
3° 2
cons 2 TIMES 2
0
X CDR x0 29
I
Y

Figure 1: A Lisp Program
A Lisp program can be represented as a tree. The numbers near the nodes are
the nanes, and nodes with a nane of “0” are ready for evaluation. Nodes with
nane '‘=""gare already evaluated (such as the constant 3).

contains only pointers to nodes with nane = 0. Additional details about the fife can be
found in the third section of this paper, entitled “The Parts of the AHR Machine”.

In the above model, the common memory where the program resides—called the grili—
has the property to destroy the programs, since it converts them into Lisp results; there-
fore, a master copy of the definition of each user-defined function has to be kept outside
the grill. As discussed later, these definitions are kept as list structures, together with
the other Lisp data, in another common memory called the

passive memory.
The bindings of variables to values must also be kept outside the grill, consequently,
there is another common memory, called the

variables memory.

In addition to having a separate logical use, these memories are actually separate
memories in the AHR machine in order to allow simultanecus access by different Lisp
Processors.

AHR: A PARALLEL COMPUTER FOR PURE LISP

(LIST (CONS X (CDRY))
3
(TIMES X 2)
Z)

LIST 3

CONS 2 TIMES 2

VAR O

VAR © CCR 1 VAR O VAR ©

X VAR O X z

Figure 2: Representation inside the Grill
The nodes tnside the grill represent the program to be evaluated in parallel.

2.2. The Handling of Conditionals

Evaluations of Lisp conditional expressions must be treated in a special manner for pro-
cessing in a parallel system. For example, pure Lisp evaluates (¢f p q r) by first evaluat-
ing the predicate p. Then, exactly one of g or r is evaluated, depending on whether the
value of p is “True” or “False.” Consequently, the tree of (¢f p ¢ r) can not be placed
into the grill, because this action calls for the parallel evaluation of P, g, and r. However,
if the expression (iff p) is placed into the grill, then whenever p is evaluated, ifI decides
to copy g or r on top of itself. Thus, tf7 becomes either ¢ or r.

COND, AND and OR are handled in similar ways, because their “‘arguments” can not
be evaluated in parallel. Consequently, the program does not copy an entire list, as in

AND p grs .., into the grill instead, p is copied while ¢ r s... stay in the passive
memory, waiting, perhaps, for a later evaluation.

In conclusion, a function can be evaluated merely by copying it into the grell; there the
evaluation takes place “automatically’’ with the help of the Lisp processors that search
for nodes with a nane = 0.

AHR: A PARALLEL COMPUTER FOR PURE LISP

2.3. Handling Recursion in an Idealized Lisp Machine

When the call to a user-defined function, as in, for instance, factorial z, is placed on the
grill, the node then has the name factorial, a procedure that allows the evaluation of z to
occur. For example, suppose the value of z is 4; if so, the node (factorial 4) is replaced
by the node

((lambda (n) (if (eq n 0) ...)) 4)
In effect, this operation replaces “factorial” with its definition. The evaluation of a
lambda expression, in which all of its arguments are already evaluated, produces no spe-

cial problem, except that new bindings have to be registered in the variables memory
prior to the evaluation of the lambda body.

3. The Parts of the AHR Machine

Various parts of the AHR machine are discussed below: a) the mailbor and injection
mechanism for avoiding access bottlenecks, b) the various forms of memory, ¢) the Lisp
processors, d) the communication media, and e) the host. Following the discussion of
the parts is a section that describes how the machine works.

0 nane # f pointer to environment
1 type pointer to code
2 task number peinter to father
3 first argument
4 second argument
5 third argument
6 fourth argument
0 3

Figure 3. A Node
This node contains seven words of 82 bits; the last four are for arguments to
the Lisp primitive, as indicated in the field type. The fields “# 7 and I’ indi-
cate number of arguments and flags, respectively. Nane contains the number
of arguments not yet evaluated.

AHR: A PARALLEL COMPUTER FOR PURE LISP

3.1. The Mailbox and Injection Mechanism

One of the most critical parts of the AHR design involves the management of the
memory known as the grill. To make eflicient use of the grill, a Lisp processor has to
access it for as little time as possible. On the other hand, what is transmitted from the
grill to the Lisp processor is a node—that is, a primitive function—with all its arguments
already evaluated. Figure 3 depicts such a node.

A node contains seven words of 32 bits each; however, in the instance of the AHR, a
Lisp processor (a Z-80A) can only access 8 bits at a time. Thus, fetching a node from the
grill, in this configuration, is quite slow. In addition, several Lisp processors may be try-
ing to access the grill. To avoid this bottleneck, the situation is reversed: when a Lisp
processor requests more work, the grill actually snjects the node inte the microprocessor.

This ““injection” is done through a mailboz in the private memory of each Lisp processor.
The mailbor is a T-word (32-bits each) register that shadows some addresses in the Lisp
processor memory. When a Lisp processor requests a new node, the processor goes into a
wait state. The grill notices this request, extracts the previous result from the mailboz,
and stores it in the corresponding slot of the parent node. The grill then subtracts one
from the nane of the parent; this subtraction is an indivisible operation. The grill then
checks to see if this new nane is zero; if so, the grill registers the parent in the fifo. At
this point, the grill obtains a new node, with the help of the fifo, from the griil and
injects this node into the mailboz of the (waiting) Lisp processor. Finally, the grill takes
the Lisp processor out of its wait state.

Thus, the grill operates as a smart memory, and its capability as such is made possible
by the construction of an additional piece of hardware, the distributor, which does all
these things on behalf of the grill.

3.2. The Memories of AHR
There are five different types of memory:
1) grill,
2) fifo
3) passive memory,
4) variables memory, and
§) private memories within each Lisp processor.
Each of these is discussed below, and Figure 4 shows a diagram of the overall machine.

3.2.1. The Grill

The grill, also known as the ‘“‘active memory,” holds the programs that are being
evaluated. With the help of the fifo, the distributor of the grill passes data to/from the
Lisp processors requesting access to the grill. The grill has to be very fast, in order to
distribute nodes quickly to the Lisp processors. The grill can consist of up to 512K words
of 32 bits and is divided logically into nodes, each with seven words. Version 1 of AHR,
which contained only 8K words, had an access time of 55 nanoseconds per word 4, 5].

3.2.2. fifo

Also called the “blackboard,” the fifo holds pointers to the Lisp nodes that are ready for
evaluation but have not yet been evaluated. When the distributor decides to send a new
“ready for evaluation” node to some Lisp processor requesting it, it pops the top of the
fifo to obtain its address.

AHR: A PARALLEL COMPUTER FOR PURE LISP

HIGH
SPEED
BUS
J
T

» MAIL BOX
14
o
[12]
wn
w
Q
2 }
a| A PASSIVE
a MEMORY

mMaiLTsox
g ™ (LIST STRUCTURES)

1

DISTRIBUTOR
FIFO
VARIABLES
MEMORY

(CACTUS OF A-LISTS)

GRILL
(ACTIVE MEMORY)

Figure 4. Diagram of the AHR Lisp Machine
The fifo contains pointers to nodes with nane — 0. There are connections

(not shown) from each Lisp processor to passive memory and also to variables
memory. The distributor sends nodes with nane = 0 to each Lisp processor
requesting for more work to do. These nodes are placed directly in the mailbor
of the requester.

3.2.3. Passive Memory

The passive memory contains “data,” namely lists and atoms; this memory also contains
the Lisp programs in list form. In the beginning of a process, the programs to be exe-
cuted reside in passive memory. From there, they are copied by the Lisp processors onto
the grill for their execution. As new data structures, otherwise known as “partial
results,” are built, these structures also come to reside in the passive memory, which can

AHR: A PARALLEL COMPUTER FOR PURE LISP

have up to one million words of 22 bits, plus a parity bit. The tag bits were not imple-
mented in hardware, but in software, as indicated in Figure 3.

In addition, the passive memory communicates with the memory of the host computer
through a window. Version 1 of AHR had only a modest 64K words of passive memory
with an access time of 150 nanoseconds per word. This memory is a single-port memory;
an arbiter handles simultaneous requests from the Lisp processors, according to a fixed
priority.

3.2.4. Variables Memory

The variables memory contains a tree of a-lists (association lists). Each element of an a-
list is & variable name paired with its value. If AHR were a sequential machine, the vars-
ables memory would be a stack; instead, the variables memory looks more like a cactus,
where branches and subbranches grow and shrink in parallel. A branch of this “cactus”
grows after each Lambda binding.

When the value of a variable is needed in a node, the Lisp processor in charge of the
evaluation of that variable uses the appropriate part of the “cactus” to begin searching
for its value. Accordingly, the node also has a “‘pointer to the environment.”

The variables memory consists of up to 512K words of 32 bits. Its lower half contains
floating point numbers, and its upper half has has “environments’’ (the cactus of a-lists),
which are lists of cells of 5 words each. Version 1 of AHR had a variables memory of
16K words with an access time of 150 nanoseconds. The variables memory is a single-
port memory with a fixed-priority arbiter.

3.2.6. The Private Memory of Each Lisp Processor

Each Lisp processor has 16K bytes, with 2 maximum of 64K, of private memory (RAM
+ ROM]). This “private” memory is where the processor’s own machine stack resides, as
well as the code in Z-80 machine language that executes each Lisp primitive.

3.3. The Lisp Processors of AHR

Each Lisp processor is a Z-80A with 16K bytes of private memory, each one connecting
to the AHR machine through a coupler. This coupler contains:

a) a mailbor for fast access to the grill, and

b) latches to indicate petition access either to the grill, the passive memory, or
the variables memory.

The Z-80 not only accesses these memories in the write or read modes, but the chip also
addresses the grill in several other modes, namely give me new work and take my previ-
ous result and others [6]. This plurality of modes to access memories proved to be valu-
able for simplifying the design of AHR.

All the Lisp processors are connected to the distribufor of the grill through the high-
speed bus, which transfers a word (32 bits) in 55 nanoseconds. Note that this transfer
occurs directly between the grill and the mailbor of the Lisp processor, while the latter is
in a wait state.

Each Lisp processor knows how to execute every Lisp primitive; each one works asyn-
chronously, without communicating directly with other processors. The processors ‘‘com-
municate” by leaving their results in the corresponding slot of the parent process, as

10

AHR: A PARALLEL COMPUTER FOR PURE LISP

shown in Figure 3. Synchronization takes place whenever the nanes of nodes become 0.
Nodes with a nane of zero signal a request, after their inscription in the fifo, for their
evaluation.

Each Lisp processor is always either occupied in evaluating a node or ready to accept
more work (another node). Only nodes with a nane = 0 come to the Lisp processor for
evaluation; hence, the processor never has to wait, since all its arguments have already
been computed. In the process of evaluation, the Lisp processor may have to access the
passive memory, as in, for instance, taking CADR of a list. Likewise, the Lisp processor
may also have to access the variables memory to obtain the value of a variable, If a pro-
cessor wants to access the node that it is evaluating, that node is already in its maibor;
consequently, the node is available through the processor’s own private memory.

Up to 64 Lisp processors are possible, but version 1 of AHR had only five. Figure 5 gives
an overall view of version 1 of AHR.

Figure 5: Front View of the AHR Machine
AHE 1s built as a cireular structure. The top of this figur shows the Lisp pro-
cessors, the different memories, the couplers, etc. The bottom left includes
the host computer; to ils right there s another Zilog Z-80, which is the distri-
butor in its software version. The Lisp processors are nof visible in this pic-
ture.

11

AHR: A PARALLEL COMPUTER FOR PURE LISP

3.4. The Communication Media in AHR

The Lisp processors connect their mailboxes with the distributor of the grill through the
high-speed bus. The AHR machine itsell communicates with the host through a win-
dow. The variable memory and the passive memory each have a single port; thus, one of
these memories can be accessed by a Lisp processor while the other memoty is being
accessed by another Lisp processor simultaneously.

3.4.1. The High-Speed Bus
The high-speed bus connects the grill, whenever the distributor decides to do so, to the

mailboz of one of the Lisp processors requesting access to the grill The bus transfers a
node in 7 cycles of 55 nanoseconds each.

3.4.2. Channels to Variables Memory and Passive Memory

Each of these is a memory channel with an arbiter. The Lisp processors have a fixed
priority in which the “closest” to the distribufor has the highest priority. As soon as a
Lisp processor requests access to a particular memory, it goes into a wait state; conse-
quently, it can not request access to more than one memory at the same time.

3.4.3. The Coupler and the Mailbox

Each Lisp processor contains a coupler. As described in the preceding section and illus-
trated in Figure 7, this piece of hardware contains a mailboz and latches to indicate
requests/grants from/to the Lisp processor.

3.4.4. The Distributor

The distributor monitors requests from the Lisp processors to access the grill If
requested, the distributor selects a processor and produces the desired access in accor-
dance with the mode in which the request was made. Most frequently, the distributor is
asked to do the following tasks:

® to take, from the mazlboz, the previous result;

e store it in the parent;

® subtract one from the nane of the parent: and

e inscribe this parent into the fifo if its new nane becomes zero.
This entire process can be considered as a “take my previous result” request.
After this procedure is done, the distributor is usually requested to “give me new work."
The distributor responds by transferring a node through the high-speed bus to the maii-
boz of the requester. At this point, the distributor signals the requester to proceed.
The first version of the AHR machine had a software distributor embodied inside another
Z-80, as depicted in Figure 5. This software distributor was very useful for debugging
purposes. Once the exact “code™ for the distributor was known, a hardware distributor
replaced it (7, 8].

3.4.5. The Low-Speed Bus

The low-speed bus is not really a part of the AHR machine. Its width is 16 bits, eight of
which indicate which Lisp processor is addressed, and the others to carry data. This

12

AHR: A PARALLEL COMPUTER FOR PURE LISP

low-speed bus is used in the following situations:

® to transmit to the Lisp processor, at initialization time, the code for the Lisp
primitives,
® to gather statistics; and, when necessary,

® to broadcast to all Lisp processors the number of a program that needs to be
killed [6].

3.4.6. The Window

Part of the passive memory of AHR maps into the private memory of the host computer
through the use of a movable window of 4K addresses. From the viewpoint of the user,
the Lisp programs are loaded into the host-machine memory but they actually go into
AHR’s passive memory.

3.5. The Host Computer

The host computer, as shown in Figure 6, is still another Z-80, although any other com-
puter could be used. Though not actually part of the AHR design innovations, the host:

transfers data to/from AHR through the window,

signals to AHR to start working, and

waits for the “work has finished” signal from AHR.
The host accesses the result to be printed through the window. The host, which is also
called the “I/O machine” due to input/output taking place there, uses its normal
operating system, disks, etc. The host uses the AHR machine as a back-end processor
whenever the host desires to execute Lisp programs. While the AHR machine is execut-
ing, the host can be doing other jobs, including non-Lisp-related ones.

4. How the AHR Machine Works

The section discusses the following topies: input, initialization, evaluation of programs,
and output.

4.1, Input

Through the host, the user may develop a Lisp program, as, for example, in Figure 1. By
loading the program from disk into the memory of the host, the user is really loading a
Lisp list into the passive memory of AHR. After the program is loaded, the host signals
AHR to begin execution and gives it the address in passive memory where the program
to be evaluated resides. In a more realistic example, the user would have defined several
functions, perhaps factorial, and then typed (factorial 4).

4.2, Starting

At this point each Lisp processor is assumed to have had its programs loaded into its
private memory. This memory contains Z-80 machine code for Lisp primitives, together
with routines that handle the special hardware, such as the mailbor and the memory’s
access tmodes. All Lisp processors are idle and, consequently, requesting work to do.
When the AHR machine receives the “start™ signal, the distributor makes available a
node, called the RUN node, to some Lisp processor. This node points to the program,
stored in passive memory, that is to begin to be evaluated.

The program in pessive memory is then copied into the grill; in the course of being
“copied,” the program is transformed from list notation to node notation. The RUN
node does the initial copy/transformation, but soon more and more Lisp processors aid

13

AHR: A PARALLEL COMPUTER FOR PURE LISP

Figure 6: Host Console with AHR
In the foreground (G) sits the console attached to the host; the AHR machine

appears in the middle ground. At the top of the picture are partially visible two
spies; these are television screens that display in ASCII the contents of select-
ed blocks of private memories of the Lisp processors. These were very useful
Jor debugging, but they are not referenced in the text. Here, two Lisp proces-
sors (H) are being debugged off-line.

in copying the program tc the gril The number of processors needed to copy a program
is determined by the number of leaves or branches in that program. Copying is done in
parallel: a processor that is copying (foo r y 2}, for example, ean still copy foo while
requesting some other processors to copy r, y and z, the latter of which, one can assume,
are large S-expressions. This “request’” on the part of the former processor takes the
form of the creation of suitable nodes ou the gréll

Nodes with nane = 0 are inserted, by the Lisp prccessors copying them, into the fifo, in
order for other Lisp processors to execute them. At any given time, there are some Lisp
processors copying the program while nodes with nane = 0 are being evaluated by other
Lisp processors.

14

AHR: A PARALLEL COMPUTER FOR PURE LISP

4.3, Evaluation

As explained in the section on the communication media and as shown in Figure 7, the
distributor sends a node to each Lisp processor that requests more work.

Figure 7: A Lisp Processor
Here a Lisp processor {I), to which a fat cable of wires from a development
system 1s connected, is evident, complete with its coupler. The emply connec-
tors in the circular structure of AHR are where additional {up to 5} Lisp pro-
cessors are altached.

Before sending the node, the distributor extracts the previous result from the processor’s
mailbor and inserts the value into the parent. If no Lisp processor requests more work,
the distributor sits idle, wasting grill cycles. If more than one Lisp processor requests
work, a fixed priority arbiter choses one of them.

Thus, nodes with rane = 0 are consumed by the Lisp processors and converted into
results. At the same time, the subtraction of 1 from the nane of the parent eventually
creates more nodes with nane = 0. In addition, recursion-—as indicated by the substitu-
tion of the word factorial by its definition (lambda (n) ... }—creates more nodes in the
grill, some with nane = 0 and some with nane > 0.

4.4. Output

When the complete program has been converted into a single result, for instance a list,
residing in passive memory, the AHR machine signals the host, giving it also the address
where the result is stored. The host proceeds to read the result through the window and
to output the data to the user’s terminal.

5. What the IIMAS Team Learned from the AHR Project

The following analysis of the results from the AHR project includes a consideration of
the successful premises as well as a discussion of the technical weaknesses to be avoided
in similar experiments. In addition, a list enumerates certain choices that could be varied

15

AHR: A PARALLEL COMPUTER FOR PURE LISP

in future experiments. Finally, the section concludes with an explanation of recommen-
dations for further work.

5.1. Benefits of the AHR Project

Certain conclusions were far-reaching. The AHR project showed, by its very construc-
tion:

e that it is possible to build an entire parallel computer of a novel type in Mexico,
o that simulation methods are reliable,

e and that the AHR design is viable for other design projects.

The AHR design is very flexible: it offers concepts about interconnection and parallel
work applicable to many homo- and heterogeneous systems. The architecture was not
only proven to be a well-designed concept, but the prototype offered a myriad of practi-
cal checks during the course of development. The research effort also proved the validity
of simulation methods, in this case, the use of Simula on a Burroughs B6700. The simu-
lation methods developed by the team were checked in practice, and the simulation
results had a sufficient correspondence to actual measurements. Finally, the project
yielded practical data about the complexity of different parts of the computer [3} and
about time delays in different parts of the computer [6].

65.2. Key Decisiona for the AHR Project

Several key architectural considerations, as listed in the table below, contributed to the
success of AHR.

Key Decisions for the AHR Project
To use pure Lisp.
To use a grill that was very fast relative to the slow Lisp processors.
To use simulation tools for the design of AHR.
Not to do garbage collection in the grill.
To use other modes besides read and write for memory access.
To use a host computer.

Table 2: Key Decisions for the AHR Project

The decision to use pure Lisp made the hardware design very simple, since there were no
worries about side effects. The use of pure Lisp also freed the programmer from having
to worry explicitly about parallelism, for special commands such as DOALL, FORK,
JOIN, etc., were unnecessary.

The design of a very fast grill also had repercussions for the success of the experiment.
One particularly valuable implementation was the procedure that allowed the grill to
inject and extract work from the mailbor. That design made it possible to use a simple
shared memory concept. In fact, if the time that it takes the grill to receive a previous
result and emit a new work is k times faster than the average Lisp primitive, as exe-
cuted in the Lisp processor, then up to k Lisp processors can be supported by the grell
without any bottlenecks. A bigger k could be realized through several (not mutually
exclusive) choices:

1) to have a hierarchy of memories,

2) to have cache memories for data in each Lisp processor, and

3) to increase the grain of parallelism.
The latter option of increasing the grain would be possible if larger Lisp primitives were

16

AHR: A PARALLEL COMPUTER FOR PURE LISP

constructed that, in eflect, would define a new Lisp-based language.

The small number of processors in Version 1 of AHR, as well as its memory constraints,
prevented serious performance studies from being undertaken, yet the principles listed
above could be the basis for new experiments.

As noted in Table 2, simulation was a key ingredient in the successful outcome of the
project. The AHR project used simulation tocls to detect the places and causes of non-
effective work. By first simulating the operation of AHR, the design team found ways to
simplify the design by migrating this non-effective work to the hardware. One can think
of this type of work as “red tape,” meaning non-eflective, bureaucratic work. As a
result, the modes of the grill were specially chosen to make the bureaucracy fast.

Another important factor was the elimination of the role of garbage collection from the
grill. Because the distributor knows exactly when a node is no longer needed, it returns
the node to the free-nodes list directly.

A key premise in the AHR design was the decision to use other modes in addition to
read and wrife for memory access. This decision helped to blur the distinction between
memory and processor. One example is the mode, insert this node into the free-nodes list,

The AHR experimental architecture would not have been possible, within the limits of
the time and budget, without the use of a host machine. The use of a normal host
allowed AHR to be designed as a back-end (memory-to-memory) processor for the host.
In fact, the resources of the host, together with the use of the window, saved the team
from having to write I/O routines, file management systems, editors, and so forth. The
users had access to unmodified tools belonging to the host. Consequently, the team could
concentrate on the novel parts of the AHR design.

5.3. Possible AHR Design Modifications

Some important decisions had definite alternatives, which were not, in all cases,
thoroughly investigated at the time the machine was being constructed. In addition,
there was a certain degree of arbitrariness in the chosen course of development. The
AHR team does not know to what extent the following decisions would have improved
the behavior of AHR:

e List vs. node forms for Lisp program storage.

A Lisp program is kept in list form in the passive memory. Each time a program
is copied to the grill it then has to be converted to the node form, as shown in
Figure 2. Perhaps it would have been better to have also kept the Lisp pro-
grams in node form in the passive memory.

e Fixed vs. variable size of nodes.

As evident in Figure 3, the nodes are of a fixed size, and they can have as many
as four arguments. Thus, Lisp on the AHR machine can not directly handle
functions with more than four arguments. Using nodes of variable size would
maximize the use of space in the grill—at the expense of a more difficult memory
management.

¢ Serial vs. parallel garbage collection.

The garbage collector on the AHR was a serial one. Since this factor caused all
processors but one to wait, a parallel collector was clearly in order. However, the
AHR team concentrated on other aspects of the AHR machine and did not pur-
sue this topic.

17

AHR: A PARALLEL COMPUTER FOR PURE LISP

¢ Immediate vs. delayed evaluation of nanes with a value of zero.

When a Lisp processor, after subtracting 1 from the nane of a node, discovers it
to be 0, it could go ahead and evaluate that node, instead of inseribing it in the

fifo.

5.4. Weak Engineering Points

Some decisions had a negative impact either on the performance of AHR or on its design
and construction. As such, these flaws need to be documented.

5.5.

e Cards that were too large.

The AHR cards were too large, and they tended to bend, causing printed-circuit
connections to break or become loose. These flaws produced bugs and intermit-
tert failures that were hard to diagnose.

¢ Card interfaces that initially were incompatible.

The interfaces among the different cards were not precisely specified early in the
construction phase. Consequently, slightly different—but incompatible—
assumptions were made by the people building cards that were later intercon-
nected. The decomposition of the computer into its constituent printed circuit
cards was not done in such a way as to make each card simple and easy to test.

e Cables that were too long.

The flat cables running among the different cards of AHR were just too long;
there was no backplane. The length of the cables gave rise to pulse reflections
and impedance mismatches, among other problems, as well as pulse distortions.
There were too many lines going to each Lisp processor. The well-known tech-
niques of multiplexing, time sharing, etc., were not used.

e Debugging tools that were insufficient.

Too little detail was devoted to debugging tools, mainly due to scarcity of
resources (people). Thus, debugging this parallel machine was difficult.

Recommendations for Further Work

Any additional work in parallel processing that considers the results gained from the
AHR project will have a greater degree of success if the factors listed in Table 3 are
observed.

Recommendations for Further Work
Introduce Impurities into Pure Lisp
Emphasize Hardware Improvements
Increase the Granularity of Parallelism
Provide Natural Parallel Constructs
Provide Natura] Parallel Data Structures

Table 3: Recommendations for Further Work

5.5.1. Introduce Impurities into Pure Lisp

Most Lisp programs are written in impure Lisp, with setq’s, rplacd’s, goto’s, etc. Learn-
ing pure Lisp in order to use a machine such as AHR may seem a very high price to pay.
Moreover, there are some applications where there is not enough memory for continually

18

AHR: A PARALLEL COMPUTER FOR PURE LISP

replicating data when only a small part changes. A program that modifies an array of a
million pixels, for example, may have changes affecting only a few pixels.

Consequently, there is a need to introduce the assignment concept (setq), and similar
arguments can be made for other impurities. At the time of the AHR project, the AHR
team proposed to define suitable impurities, perhaps by inventing a few new types, to
add to pure Lisp. These ‘impurities’” could have been introduced only if the overall
design maintained the following features of the architecture:

a) the simplicity of the AHR schema,

b) the suitability of the program for parallel systems, and

c) the transparent user interface for a parallel system.
A programmer should, ideally, have little or no awareness of programming a machine
that is a parallel system. The AHR design team did not want to load (not heavily, at
least) the programmer with special parallel constructs, with worries about synchroniza-
tion, assignment of tasks to processors, etc.

5.5.2. Emphasize Hardware Improvements

Once tasks that need to be done efficiently are identified, it is worth the effort to develop
hardware that does them quickly. For instance, the different modes of AHR memories, in
addition to write and read, greatly simplified the design and made the system run faster.
Simulations using the B6700 allowed the AHR designers to discover what parts were
worth improving and speeding up. Along the same lines, actual machines now contain
tag bits and forward pointers in hardware.

Monoprocessors with a program counter work better with a memory buffer register
bigger than one word. If, for instance, the memory buffer register can hold two words,
then a fetch issued to the memory location a can bring both the contents of a and a+1
to the CPU, thereby cutting the effective fetch time in half. This trick works because the
next instruction is normally executed right after a prior one instruction is executed.
Why not, then, when the Lisp processor asks for cell a, bring also the cell pointed to by
the car of a as well as that pointed to by the edr of a?

5.5.3. Increase the Granularity of Parallelism

The AHR machine sends nodes for evaluation to the Lisp processors that are too small,
perhaps, compared with the overhead involved in using the distributor, the high-speed
bus, etc. Thus, there could be a concept such as send bigger nodes. Implementing this
concept would necessitate the invention of higher primitives in Lisp. Lisp could be
enriched with functions that “compute more” once they have all their arguments. To
some extent, Lisp already does that, for it provides MEMBER as a primitive function,
primarily for efficiency reasons, although MEMBER could easily be a user-defined func-
tion.

5.5.4. Provide Natural Parallel Constructs

A collection of Lisp functions-~such as Mapcar, Forall, For-the-first, Parallel-and, ete.—
would entice the user to “think paralle]l” The use of future [9] is natural in this sense,
since (future (foo x y)) means the same as (foo x y), but the “future” version is intended
to be computed in another processor. Nevertheless, asynchronous evaluation creates
indeterminism in the presence of side eflects and assignments of global variables; there-
fore, it has to be used carefully with impure code. One example of a language that pro-
vides natural parallel constructs is L, a language developed for image processing [10].

19

AHR: A PARALLEL COMPUTER FOR PURE LISP

A language that emphasizes natural parallel constructs can be described [11] as follows:
e it would create primitives that operate on all processors;

¢ it can be interpreted as an order to the whole parallel computer, as opposed to
CAR, which is an order to one of the Lisp processors;

¢ and it captures, in a2 MIMD machine, the “‘spirit of programming’’ a SIMD archi-
tecture.

5.5.6. Provide Natural Parallel Data Structures

The edr of a list is generally bigger than the ear. This “unbalanced” data structure
predisposes the programmer to a sequential mode of computation: there is a tendency to
think, “First I will handle now the car, and then later I will take care of the rest.”
Perhaps something like the xapping construct [12] is needed.

8. Conclusion

The history of the AHR project was not only a precursor of later work with parallel sys-
tems, but it also posed some questions that are still of intrinsic interest to computer
research.

Acknowledgments

The AHR machine is the result of many hours of work by the AHR team. A special
word of gratitude is due to the IIMAS director, Dr. Tomas$ Garza, and the IIMAS
administration, who all made their best efforts to help the AHR project.

The financial support from CONACYT (grant #1632) is acknowledged, as well as
CONACYT’s help in the interchange of visiting scientists between IIMAS-UNAM and
the Institute for Control Sciences, USSR Academy of Sciences.

Thanks are due to the Parallel Processing program at the Microelectronics and Com-
puter Technology Corporation (MCC), particularly Dr. Stephen Lundstrom, its Vice
President and Program Director, for his continuous support. A special word of apprecia-
tion is also due to my colleagues of the Lisp group for their fruitful comments and help.

References

1. Guzman, A., and Segovia, R. A Configurable Lisp Machine. IMAS-UNAM Techni-
cal Report Na 133 (AHR-76-1). National University of Mexico, P. O. Box 20-726,
Mexico City, 1676.

Hereinafter, all reports such as this one are signified by the note, “IIMAS Technical
Report.”

2. Guzman, A, and Segovia, R. “A Parallel Reconfigurable Lisp Machine.” Proceed-
ings of the International Conference on Information Science and Systems. August
1976. University of Patras, Greece, 207-211.

3. Guzman, A., and Norkin, K. “The Design and Construction of a Parallel Heterarch-
ical Machine: Final report of Phase 1 of the AHR Project.” IIMAS Technical
Report NA 308 (AHR-82-21), 1982.

4. Guzman, A. “A Heterarchical Multi-microprocessor Lisp Machine.” Proceedings of
the 1981 IEEE Workshop on Computer Architecture for Pattern analysis and Image
Database Management. Hot Springs, Va., 1981. IEEE Catalog 81CH-1697-2.

20

10.

11.
12,

AHR: A PARALLEL COMPUTER FOR PURE LISP

Guzman, A. “A Paralle] Heterarchical Machine for High Level Language Process-
ing.” In Languages and Architectures for Image Processing. M. J. B. Duff and S.
Levialdi, eds. Academic Press, 1981.

Also published in Proceedings of the 1981 International Conference on Parallel Pro-
cessing, 64-71. IEEE Catalog 81CH-1634-5.

Guzman, A., ef al. “The AHR Computer: Construction of a Multiprocessor with
Lisp as Its Main Language.” IIMAS Report Na 253 (AHR-80-10), 1980. (In Span-
ish.)

Gayosso, N. “The Distributor for the AHR Machine: The Microprogrammable
Hardware Version.” B. Sc. Thesis. ESIME-National Polytechnic Institute, Mexico
City, 1981. (In Spanish.)

 Pefiarrieta, L., and Gayosso, N. “Alternatives for the AHR Distributor.” [IMAS

Technical Report Na 302 (AHR-82-20), 1982.

McGehearty, P., and Krall, E. “Potentials for Parallel Execution of Common Lisp
Programs”. Proceedings of the 1986 International Conference on Parallel Process-
tng, 696-702. TIEEE Catalog 86CH2355-6.

Barrera, R., Guzman, A., et al. “Design of a High-level Language (L) for Image Pro-
cessing”’ in Languages and Architectures for Image Processing, M. J. B. Duff and §.
Levialdi, eds. Academic Press, 1981.

Lundstrom, Stephen. Personal communication.

Steele, G. L., and Hillis, W. D. “Connection Machine Lisp: Fine-grained Symbolic

Processing.” Proceedings of the 1986 ACM Conference on Lisp and Functional Pro-
gramming, 279-297. ACM Order No. 552860.

AHR: A PARALLEL COMPUTER FOR PURE LISP

Index
AHR Design Premisesccoccoee, 2 Passive Memory Channels 1<
Benefits of the AHR Project 16 Private Memory of Each Lisp Processor..1(
Channels...........co 12 Project Status.......cccceeviiieenniiiine, g
Characteristics of the AHR Machine....... 2 Recommendations for Further Work 1f
Communication Media in AHR................ 12 Recursion in an Idealized Lisp Machine... 7
Conelusionc.ccoeevviiviiiiicnii i 20 Representation inside the Grsll 4
Conditionals 6 SEATLIBE oo e 1d
Coupler.....covveiii 12 Table 1: AHR Design Premises.............. p
Design Modifications, Possible 17 Table 2: Key AHR Project Decisions......1¢
Diagram of the AHR Lisp Machine 8 Table 3: Recommendations..................... 1¢
Distributor...............coeoii i 12 Variables Memorycccccccvvvvvcivininininninnns 1(
Evaluationcooooviii 15 Variables Memory Channels p
IO 8 Weak Engineering Points........................ 1f
Figure 1: A Lisp Program..................... 4 WInAOW .ot 1¢
Figure 2: The Grall ... 4
Figure 3: A Node........oo.. i 7
Figure 4: Diagram of the AHR 8
Figure 5: Front View of AHR................. 11
Figure 6: Host Console with AHR 13
Figure 7: A Lisp Processor...................... 15
Front View of the AHR Machine............. 11
Granularity......oooooen i 19
Grill 8
Hardware Improvements........................ 19
High-Speed Buscccoovoniininiiin 12
Host Computer.......ocoooieviiiiii, 13
Host Console with AHR ... 13
How the AHR Machine Works 13
Idealized Evaluation Model...................... 4
Impurities of Pure Lisp 18
Injection Mechanism ... 8
Input. .o 13
Key Decisions for the AHR Project........ 16
Lisp Processorc.cooooiiiiniciii 15
Lisp Processors of AHR........................ 10
Lisp Program........c.coocovciinicninieiin 4
Low-Speed Bus.................. 12
MailboX.....oooiii 12
Mailbox and Injection Mechanism g8
Memories of AHR............... 8
Natural Parallel Constructs................... 19
Natural Parallel Data Structures............. 20
Node ..oooiiieie e 7
Objectives of the AHR Project 1
OUtPUb ..o 15
Paralle] Evaluation of Pure Lisp.............. 4
Parts of the AHR Machine 7
Passive Memorycoocooooiiii 9

22

