comunicaciones técnicas

serie naranja: investigaciones

10O DE INVES HGaEIINE S
ATEMATICAS AP IC AIDAS
Y EN SISTEMAS

AUTONOMA DE MEXICO

N LAUTC

Apdo. Postal 20-726 Admon. No. 20
Delegacion de Alvaro Obregon
041000 Mexi DiF.

7

\ \\\\, 7 b
AR 87 X

AUV

Articulo 54

comunicaciones técnicas

1982 Serie Naranja: Investigaciones No. 323

* Technical Report AHR-82-23
*% Tnstitute for Control Sciences,
Academy of Sciences, USSR.

Recibida: 22 de noviembre de 1982.

INSTITUTO DE INVESTIGACIONES
. EN MATEMATICAS APLICADAS
Y EN SISTEMAS

i.NVERsDADmALAUTmOMADEkEX!CO

APDO. POSTAL 20-726 ADMON. No. 20
DELEGACION DE ALVARO OBREGON
01000 MEXICO, D.F.

550-52-15 ext. 4559

ACKNOWLEDGEMENTS.

A special word of gratitude to the IIMAS administration, its past director, Dr.
Tomds Garza, its present director, Dr. Alejandro Velasco, who made their best
effort to help this project.
This project benefitted from the interchange of visiting scientists between -
the Institute for Applied Mathematics and Systems (Mexico), and the Institute
for Control Sciences (USSR Academy of Science, Moscow), as a consequence of an
Agreement for Scientific Collaboration between the two countries. We are
grateful to the people of CONACYT (The National Council for Science and Technology,
Mexico), and the USSR Academy of Sciences, who made this agreement possible.
' The indispensible support of the Directors fo the Institute for Control
Sciences is gratefully appreciated.
~ The group representing Mexico would like to thank Boris Kuprianov for
describing the PS-2000 in such great detail, and Prof. Norkin for translating
the description from Russian into English so meticulously and tirelessly. And
0 Prof. Vilenkin %or proof reading this report. '

And finally, and in a certain sense, most importantly, we gratefully
knowledge the members of the AHR project, IIMAS-UNAM, Mexico, who brought
~ the first AHR machine into existance, for without them, the project reported
Vhere{n would not have been possible.

 INTRODUCTION:

The writing of this report came as a consequence of applying AHR concepts

f parallel programming (processing) to the PS-2000, a single decoder multi-

rocessor computer (SIMD). This machine resembles the ILLIAC-IV computer in its
rchitecture.

. The basic idea of AHR (Arquitectura Heterarquica Reconfigurable) it that

bas pbssib]e to implement a system which carries out parallel computation in

such a way that the programmer is freed from the necessity of making his programs

;para]lelizab1e" as he writes his code. Instead, this responsibility is shifted

o the hardware. In IIMAS, Mexico City, Mexico, the AHR project built and tested

. first version of this type of hardware. ;

However, in the Soviet Union, the design of the PS-2000 hardware was not

as consequence of taking into account AHR ideas, for its main goal was

create a machine for numerical calculation. Despité this fact, the present

roject of implementing a parallel AHR type LISP on the PS-2000 promises to

’éﬁbnstrate that AHR ideas can be applied to SIMD computers. :

-The immediate goal of applying LISP to the PS-2000 was to understand the
ctional characteristics of this machine. The intermediate goal was to use
information for designing the parallel AHR type LISP on the PS-2000. This
done. (see report: AHR-82-24; "Functional Design of a LISP Interpreter for
e PS-2000".) The long term goals are to:

L 1-document and publish,in English,'information on the PS-2000, such as
in this report, for those people who may be interested in this type
of computer.

'2-study the behaviour of this LISP implementation as it is used for
projects in the Institute of Constrol Sciences, and elsewhere.

ENERAL ORGANIZATION OF THE PS-2000.

4 he PS-2000 is organized according to the single de-
multi-processor architecture. (Figure 1)

QU: special purpose processor with memory for data.

- G= memory for microinstructions.

emory of 4K bytes (to 16K bytes, depending upon the
ation), 24 bits per word. This PEi memory is for
aly.

H=memory for programs. One instruction in H provokes a
microinstructions in G to be broadcasted sequentially
. PE'8B.

&:activation triggers (mask bits) which permits or dis-
- activation of PEi. In & (see Figure 1), we write
ntents of each of the Ti trlggers.

5SS INTERCONNECTION. =
Channel A (fast bus). Each processor is directly con~

. with two of its neighbors. One can form clrclas of.
th 64 processors or one can form 8 circles of 8 proqg—;
etc. This is done with software. There also exits
iai register SG for the types interconnection just

Channel B (slow bus, also called the magistrar bus). This
to broadcast scalar data from CU to a2ll PEi, teking
ccount Ti. Or the slow bus is used to broadcast from
PEi which has the right to broadcast.

hannel C is used to broadcast microinstructions.

Channel D is the input/output channel to transfer data
fograms to and from disks, and other periferal

PS-2000 Architecture

Figure 1,

ul

)

W 1
Kiowaw Kowaw Kiowsw Asowaw Kiowaw
‘_ Z MH
W] e ‘waw W ion 89 wew H Q ‘waw 9
uiIngas
L7 44 VH | 4| 41
L7H.
\\\\ sia)sibay
asodind
\ OH| or| o1 LOuMIDS
s$nNq }soy oY | oMl we
18uuoy) o1 2 55| AL] B3
v g Ny
/
e i SR T 0] deenran), n
vl sLfeifn ‘ni
s n
u3d 13d o 03d InL o

snq Jojsibow g |auupyd

TU is another activation trigger in CU (registers) which
i dicates (irrespectivelof Ti) which PEi are to be ignored.
‘When using Q, you can activate the following way:’

-Processor N
-Up to processor N.
-Processor after N without processor N.

here are additional ways to perform activation:

-Activate each j (for example, the third) PE in
each group of 2 4,8,16, or 32 processors.
(see page for details)

~Activatetup to processor j in each group of
2.4, etce ;

,-Agtivate after each processor Jj in each group,
etc.

0, triggers Ti can be broadcasted from memory Mi.

BTAIL OF TU IN CU:

N I

fo number (which PE)
type of division inte groups (2,4,8 etc)
type of activation (see page)

%mis is done dynamically in software.

Q, QUEUEING TRIGGER (1 vt in PE).

Activation holds only to the leftmost PEi which has the
trigger on (in case there are several on). Then, perhaps,
the instruction will change the status of the trigger and
another PEj will be activated later.

Some microinstructions will use the trigger Q, while
other will ignore it.

MICROINSTRUCTION FORMAT, SIMPLIFIED DESCRIPTION, IN G.

[Alorlo,]o._qo, [[or o1 od]

type of activation ;operands for OPcu

operation code for PEi operation code for CU
operand address, for the PEi which

are»actlvated.

Note: the exists microinstructions for going from one micro-
instruction to another, that is, jump instructions.

DESCRIPTION OF SOME INSTRUCTIONS IN THE CONTROL UNIT (CU)

Q

CU.

.} — several .registers in

Each microinstruction demands 1 clock cycle. Each CU performs
+,=,%,V,A, with scalars which are stored in memory H. Scalars
in G are not allowed. The operations involve the use of CU
registers. They are executed in parallel with the micro-
instructions affecting the PEi indicated in the left part
of the microinstruction.

Jumps need 4 clock periods.

1/0, INPUT OUTPUT
Two types of -input/output-instructions:

-those of CU.
-those of PEi.

In the firs design (initial), I/0 of PEi was performed in
parallel in all processors. However, in the present versions
I/0 in PEi may be ignored by using T or Q by some PEi.

There exists special additional I/0 equipment which -
connects 1 (or 4) disks to the 64 PEi's, and thus, it appears
that there are 64 disks.

The effective address in which I/0 is done, is indicated
by M field of OPpe, but it may be affected by the contents
of one or some of the 8 registers of PEi. Then, one PEi may
be reading into address, say 1024, and another PEj in
address, say 3543, during_the‘same instruction. Thus, any
element of memory ML can be read and written.

PﬁOCESSING ELEMENT 'OPERATIONS
All of them are executed simultaneously in each PEi .
The operations are:
+

+ addition complement 2's

+ * incremental step for addition and
product.

» one step multiply

FMPY one step floating point multiply.

Other operations: -loading activity triggers
-writing to Ti, unconditionally, such
as WRITE B into T -
B conditionally, such
as if A O, then WRITE B into T.
This can be done in one instruction
in parallel.

-broadcasting from PEi to its neighbor.
Each PEi has two neighbors to which
it can breadcast.

-accessing the slow channel.

i There are symbolic
addresses only in CU memory. The path of control (the path
of the PC, program counter, does not depend on the data, but

" the effective address may depend.

N . -

REGISTERS IN THE CONTROL UNIT (CU)
' The following list and description of registers should
be done with reference to Figure 2.

U the universal register.

I0-IF 16 registers of 24 bits for common purpose.

JO=-JF 16 registers of 12 bits for common purpose and

for counters.

TU external activation register. It is used to activate
the n'th PE in each group. It is used for regular
activation.]

PT format register. It is used to process arithmatic of
different widths. : :

TY trigger that checks that at least one PE is activated.
It is used for conditional jumps.

KU the contents of this register goes directly to regis-

e

S ————

Figure

23

16

R Enpb)

23
A K

HLO

HL7

HA

23

10

IF

JO

JF

ter K of PE's which are active.

segment register. It is used for dividing up the entire

collection of processor into segments. Each segment
must have a minimum of 8 members. Note: with TU, one

‘can also divide the processors into groups of 2,4,8,

~etc. But there are groups that are not cyclic.

The segmentation cuts the channels also, thus inter-

connecting the processors of each segment. This

division only applies to the fast (channel A) bus, and

the slow, magistral (channel B) bus. .

FM masking for ignoring the overflow register of each PE.

H memory of 16 k bytes (now).

"HW output buffer of the memory H. Mémory contents upon

extraction from H always goes to the HW register. ,

B register. It is the input buffer of the memory H and

‘ is used as HW, but for reading. P> A

HA register for holding the address of a lpcation in B

memory. HA is based address. ;

HLO-HL7 registers for address arithmetic for control unlt.
It is used for different addressing modes.

GB reglster for the return address from the subroutines.‘
This is the short stack.

" GBA pointer to the top of the stack in GB. This is the

stack pointer.

IR holds the number (address) of RO-RF registers in PEi.
This is used in conjunction with indirect addresslng
registers of RO-RF. (4 bits).

IL same as IR, but for registers LO-L7 in PE. (3 bits).

REGTSTERS IN PROCESSING ELEMENTS (PE).
The following list and description of registers is

understood easier with Figure 3.

K is a register which belongs to 8 PE'B; and controls
the slow bus (Channel B).

B is a universal register. It allows the regular exchahge
of data between processors. It permits sending data to
right and receive from the left processor, or opposite.

Figure 3.

»
1o

{ 18
L e
RO
RE
0 B
e i
Bk L
0 3]
Lis B
23
= K
5 i
L TA
LO
g
(o} 23
Z out

M in

9

C is also a universal register. One of the operands
can be placed in this register, and the result will
also be stored here immediately after the operation,
like an accumulator.

RO-RF are 16 common registers for arithmetic and logic

operations.

E is used for extended arithmetic operations, multiple
precision,

~ F is an overflow register.

T is a register with four bits for activation. Each bit
can be addreeged seperately. : ‘

Q is the queueing register. The leftmost queue bit is the
one that is 'obeyed' for triggering processors.

M is the memory of the processor (private memory). The
maximum memory configuration will be 64 k words. The
present configuration has only 4 or 16K words.

Z is a register associated with the memory M, and it is
used to get data out-of memory. (Output buffer)

M is the input buffer for memory.

. LO-L7 are registers for address arithmetic, for different

' types of addressing modes.

A is an address register

OTE: There is an ALU (arithmetic/logic unit) for addressing

d one for 'normal' computational processing (floating point

rocessing, extended precision processing etc.) in each PE.

. addition, the control unit (CU) has also an ALU for

essing and one for arithmetic/logic operations, but it is

t as powerful as the one in the PE's.

SEGMENTATION. [

: The processors of the PS-2000 can be organized in bunches
of processors. This organization is done by software. How

¢ is bunching is done is determined by the segmentation regis-
 ter. The idea of segmentation is to control communication
 between bunches of processors. More explicitly, the bunching

- DCL, DCE»’J Dq 3)

EHEHEHEDH

11

is defined in terms of the following definitions:
segment- is Bx2" processing elements (PE).
module - is .8 processors
group - are those processors which will be activated
within a segment by using the TU register
(bits 8:10) See page
The maximum configuration is comprised of 8 modules, each of
which have 8 processors. The configurations define "the
neighbor to my left" and "my neighbor to my right".
NOTE: the fast channel permits bi-directional communication.
The meaning of the bit patterns in the SG register
are seen in the following table.

SG bits number of modules number of PE's
which are members which are members
of one segment of one segment

00 1 i 8

01 2 16
10 4 32
14 8 64

The various configurations of the modules 'are described
in Figure 4.

For any segment, CU is connected to each segment using
the low speed channel (magistral channel). That is, CU is
always connected to all of the PE‘'s, as well as, of course,
the instruction channel. :

DATA FORMAT. ;

The data format is determined by the FT register in CU.
This register is of two bits. The meaning of the bit config-
urations can be seen in the following table. Next page.

12

FT bits in CU data format
00 12 bits, fixed point
01 16 bits, fixed point
10 24 bits, floating point
13 24 bits, fixed point

The above table has the following corresponding diagrams
for making explicit the use of each bit.

FT bits] !
: ar " 23
ooe’ 171 e

e i S e
C’;;ZEZta is 12 bits, C?;t is possible to
it is written here place here another
i 12 bit number
= 5 /6 23

01: ICI ; I I\I
U or 16 0ite

Cj;e word of exactly 24 bits, fixed integer

19 20 23

10: Lo]¥ Jl] A]
L 7‘:—-man*l:is sa (s‘i}gn Z exponent

sign
of of
mantissa exponent

done in complement of 2's

13

INSTRUCTIONS.
Notational conventions:
The alphabet is latin, plus the cyrilic letters for
labels and comments.
The digits are 0,1,2....9
Special characters include +,-,/,(,)

The format of microcode instructions is:
label: field of PE <§ field of CU; comment

Notes on the format and microinstructions: 1- the field of
PE is the computing field which may contain one or more
microinstructions of the PE, which are performed in parrallel
and which are joined by ",". 2-there is a special table
which indicates which microinstructions can be performed in
parallel. (see page 72). 3-the instructions in the field -of
CU can be one or more and are joined by !,". They are also
performed in paraliel to the ones being exxecuted by the PE's.
4~cach instruction is member of either field, and one must

- be sure to make this clear in writing code, or that, given an

instruction, the assembler can deduce the correct membership.
This will be clarified on page «» 5- any field can be absent.
6-the § marker can be absent if the PE field disappears.
7-if the CU field disappears, then the é' marker can also
disappear. But if the programmer puts it in, it is redundant
because the assembler knows it is there or should be there.:
8- the semicolon must always be present.
In the following description of the assembler of the

PS-2000, the notational conventions are:

Underlining a string, such as, MUMBLE , means that it

can be omitted, that is, it is optional.

If we write T, for register T, then it is understood
to stand for T1, T2, T3, and T4. : 26

Curly brackets indicate that several alternatives are
allowable. In general, one should select exactly one.

S

14

To make the subsequent descriptions of instructions more
compact, there are several subset of registers denoted by
Ay A250 48 wAT B Inside the curly brackets are the names
of the registers or memory locations.

C B
Al= an A2= C
RA I K
A R I
A3= {g c M} you can choose one or more
: 3 of these registers
A4=fB Cf A5= fc z T A}

BHagE3Egar

= {3

. i X is any 1 digit base
& 16, that is, O to F.

U1

A9= SG
H

=

{ _
4

S

Note: in microcode, there are three constants: 0, 1, -1.
O means that O will be placed in each bit.
1 means that 1 is placed in the least significant
bit, also refered to as the youngest bit.
-1 means that 1 is placed in each bit, that is,
2's complement.

15

All digits are represented in 2's complement.

/g#?é/?B direct address
U

jump to contents of U

A10=d *+£ 8 current addr. + decimal
label +4£ label + some offset, dec.
5ot current addr. + contents

of U register.

=0,1,:.7 ochaly ie., ;one digit
base 8. .
- IMPLICIT INSTRUCTIONS:
' Implicit notation in this assembler is a compact way
of expressing operations. However, one must remember what
the instruction means, since it is not obvious from the
notation of implicit instructions themselves.

An instruction in implicit form for arithmetic and logical
operations is: 2

is for arithmetic

is for logical

: means that this

5 i _instruction is
=0...F is the hexa performed by PE.

i decimal humber of :
ity 5 F permits the influ-

Ty micro influence of

operand. - overflow control

in each PE.

That is, the PE

nust take into

account the F bit

A1, and A2 are classes or sets of registers. The first and
the second are optional (underlined).

1 h
6=£E} means modification of operation code.
<;\‘\‘~____ absent, no modification
T=modifies with value 1

SF &S?(A%&’A_?.-i)

18 -3

E=modifies with reg. E.

Examples:
. SA2(A3=A1,A2,8) means A3& (A1V 1A2)+€

16

means not

means "oxr"

means binary unsigned add with possible
overflow

+<.o

SA9(C=A,B) means Cé& A+B
+ in this case, it is 2's complement arithmetic

A1l implicit arithmetic and logical operations are performed
under the control of the format register FT. If the FT
register indicates floating point arithmetic or operands,
then the operations are done on 20 digits of the mantissa.
In addition, one must make sure by software that the exponents
are equal in performing the operation. However, the 4 bits
which represent the exponent will change their contents
during the operation in an unpredictable way, thus forcing
the programmer to store the values of these exponents someplace
else. :
All of these operations take 1 clock cycle.

. There also exists macro instructions which expand into

several microinstructions.

EXPLICIT INSTRUCTIONS, ARITHMETIC.

~ In contrast to the implicit instructions, explicit
instructions indicate with greater clarity the meaning of the
instruction. As in the last section, the SFA instruction
is presented here. The general format is:

SFA (A3=A1wA2 + §)

w=means or refers to general operations,

arithmetic
List of operations: ;
1 SFA(A3=A1) means A3<«A1 —{fontents of A1 is
2 SFA(A3=A1+E) e 14E (pisced In A3
3 SFA(A3=A1+1) : A3 Al+1
4 SFA(A3=241) A3e2*%A1 contents A3 receives

2 times contents of A1

4

5 SPA(A3=241+1) means A3¢ 2%¥A1+1

6 SFA(A3=2A14E) A3« 2%A1+E

7 SFA(A3=A1-1) A3 & A1-1

8 SFA(A3=A1-1+E) A3« A1-14E

9 SPA(A3=-1) A3 e =1 Each digit is 1

10 SFA(A3=-1+E) A3& -14E

11 SFA(A3=0) A3€0

12 SFA(A3=A1VA2) A3 € A1VA2

13 SFA(A3=A1VA2+E) A3 & ATVA2+E

14 SFA(A3=A1VA2+1) A3 & ATVA2+1

15 SFA(A3=A1V!A2) A3 & A1VAA2

16 SFA(A3=A1VIA2+E) A3 & AMV-A4+E

17 SFA(A3=A1vIA2+1) A3 € ATVAA2+1

18 SFA(A3=A1-A2-1) A3 & A1-A2-1

19 SPA(A3=A1-A2-1+E) A3 €A1-A2-14E

20 SFA(A3=A1-A2) A3 € A1-A2

21 SFA(A3=A16142-1) A3« A18-42-1

22 SPA(A3=A181A2-14E) A3 & A18-A2-14E :

23 SFA(A3=A181A2) A3 & A18A2
24 SFA(A3=A1+A2) A3& A1+A2

25 SFA(A3=A1+A2+E) A3« A1+A2+E

26 SFA(A3=A1+A2+1) A e R AR

27 SFA(A3=A1£A2-1) - A34 A1842-1)

28 SFA(A3=A18A2-14E) A3¢ A1€A2-1+E

29 SFA(A3=A18A2) A3+ 21842

Note: in the above instructions, the E register is set in

the following situations: ! |

1-in overflow (plus or minus)

2-in AZE and EA1, shift opera-
tions. :

The contents of E is determined by the operation.

For the F register, the same happens as in the case of
the E register, except that if 1 is sent to F, then .

F assumes the value 1 (its contents is set to 1), but
if O is sént, then the contents of F is left unchanged.

18

For further information (and if you can read Russian) see
page 53 of the menual, PS-2000, for the complete table.

EXPLICIT INSTRUCTIONS, LOGICAL.
There are the corresponding implicit logical operations,

but they are not listed here.

The general form of the expllclt operation is:

SL (A3=A1w A2)

Notice that the F register is always absent.
The list of operations are:

1 SL(A3=241) means A3¢ A1 "not’ the contents of
5 SL(A3=A1) A3e=A1 -[é;tisAgent or loaded
3 SL(A3=A2) A3&A2

4 SL(A3=1A2) A3E A2

5 SL(A3=0) A3« 0

6 SL(A3=-1) A3E -1 Vv

7 SL(A3=11A1vA2) A3¢ - [a1vaz] w= ¢

8 SL(A3=!A18A2) A3€-A16A2

9 SL(A3=!1A18A2) A3« ~[A1€ A2])

10 SL(A3=AA2) A3& AT# A2

11 SL(A3=418:A2) A3& A18A2

12 SL(A3=!A1VA2) A3eA1VA2

13 SL(A3=!!A1%A2) A3e[A1#A2]

14 SL(A3=A18A2) A3¢A1842

15 SL(A3=A1VIA2) A3€AIVAA2

16 SL(A3=A1vA2) A3€ATIVA2

is "or" addition, mod. 2, exclusive "or
1 ig "not" but applied to entire result
! is "not" to immediate operand. °

19

SHIFT OPERATIONS.

There are three types of shift operations: arithmetic,
logical, and cyclic. They can be used with or without the
E register. Note, the difference between the E and F register
is that F (of the PE) can be used by the control unit and
the E (of the PE) can only be used by the PE. The operation .
of shifting is influenced by the PT register: 12 bit shift,
16 bit shift, etc. The bits that are not included in the
format are altered in an unpredictable manner during the
shift operation. In the case that the FT register holds code
for floating point number (10), only the mantissa is shifted.
The exponent bits are altered unpredictably.

The general format of the shift operation is:

o { %} &j (43=42)

stands for shift
for arithmetic

for logical
(second one) stands
for circular.

is left

is right

'Notes- the left arithmetic shift does not change the contents
of the sign bit, 1sb (least significant bit) becomes 0. Thev
rlghp arithmetic shift propagates the sign bit. If the bit
that disappears is not equal to sign bit, then the contents

of the F register is set to 1. Otherwise, F register is not
changed. The operation of shifting takes one microinstruction
cycle, and only one bit is shifted at a time. In general,
register E's contents are not altered and do not intervene.

In the case of the logical shifts, the sign bit is treated
as any other bit. New bits are filled with zeroes. The shift
operation is done one bit at a time, so if one wants to shift
several bits at a time, one must write the shift operat:.on
codes the required times.

In the circular shift case, the sign goes to the 1sb
bit. ; '

The three shift operations can use the E register to
store an additional bit. In general, one uses the mnemonics

TEH arkEa

20

EA2, EA3, A2E, and A3E. In the arithmetic shift, the bit
of the E register is moved as seen in the following diagrame.

F o Bl e W

In the CLL(A3,EA2) case, the shift is done by using register
EA2 (25 bits), but the result is as if one copied the contents
of A2 (24 bits) to A3 (24 bits). One bit is "left" in E.

In all of the cases and examples in which A3, A2 and A1
are mentioned, one should always remember that they are
sets of registers. _ :

There are more examples involving shift operations in
the manual on page 59.

Example,

Suppose that FT is equal to "11" (24 bit fixed point).
We then perform CLL(EM=C) with the contents of the following
registers thus: i

-

before the O= 189 111 000 010 001 111 011 101

: Wt
operation >
; after the E=1 Vl
operation et -

M=001 110 000 100 011 110 111 dﬂo
tnew bit added.

MULTIPLE (STEPS) SHIFT OPERATION. .
This type of operation permits that several bits may be
shifted in only one clock period. The general format of the
instruction is:

ik

IRH

This is only arithmetic shift; L means "left" and R means
"right". The numbers refer to the number of bits to be
shifted. This operation only shifts the C register, and only

the first 20 bits are involved in the shift. See figure on
the ‘next page.

21

these bits are not involved in the
shift operation, but they change
in a predictable way.
o 19 23

L et

(/;;_;he shift is to the left, the bits become O
if the shift is to the right, the bits are altered
unpredictably. The contents of the E and F registers
are not altered.

OPERATIONS INSIDE PROCESSING ELEMENTS (PE's): TRANSFERENCE.
The instructions to perform transference all start with
"pr . which stands for the word, "perisilka" which means
transference in Russian. ¢

The FT register is ignored.

The "P" instructions are defined as:

1
M : :

¢ ¢ (<a transfer operation>)
H1

H2

H12

H21

'The meaning of the modification number or mnemonics are:

1 means send the 24 bits (0:23) bits

M means send the mantissa (0;19) bits

C means send the exponent (20:23) bits

E1 means send the lowest half (12:23) the youngest Dbits.
H2 means send the upper half (0:11) the oldest bits.

22

H12 means send (12:23) bits of one register to (0:11)
bits of another register, inside the same processing
elements. The other bits are left unchanged.

H21 means send (0:11) bits of one register to (12:23)

bits of another register.

The transfer operations are illustrated'and to be understood

in the following cases.

P1(A3=A2) means A3¢A2
2 P(A3=A1) means A3€A1
3 P(A3 RAI=A5) A3 €TA5
RAL
4 P(A3 H1RXI=A5) A3 ¢ A5
5 P(A3 H2RaI=A5) . A3e s
R4
6 PM(A3=A2) A3e-A2
7 PU(A3=A2,ReI=A5) A3¢-A2
: RALe-A5

send all 24 bits from
&2 to A3 °

same as above, it does
does not have a "1%

send 24 bits to both A3
and RXI . If "I" ig in-
cluded, then add the .
number in I to the number
of the register R. For
example, if we say R2I,
and IR hdgs 3, then we
send to R5.

send 24 bits of A5 to A3,
and then the youngest
half of A5 to RAI. The -
oldest bits do not change.

same as above, but the -

~oldest bits are sent.

send the mantisse of

A2 to the mantissa of A3.
But if A3 is M (memory)
then all bits are sent,
Once you write into M,
then data becomes inac=
cessible. M can only be

‘written into. If one wants

to read, then store into
memory, then read from
Z; and Z can only be
read from.

same as above, but does
two sets of registers.
All operations done in
one clock period. Remem-
ber, A3 is BC M .

23

PC(A3=A2, RAI=A5) means A3< A2 Bame as above, but
RxI¢A5 for exponent.

9 PH12(A3=A2) A3eAD send (12:23) bits

of A2 to(0:11) bits
af K32

10 PH21(A3=A2) A3€AD send (0:11) bits of
of A2 to (12:23)
| bits of A3.

11 P(Z=!M) Z&ANM send to Z the comple-
ment of M. It is

the same as sending
into M and then :
read this into Z.

ACTIVATION INSTRUCTIONS.

These instructions are in G memory, and use register TU
in CU, and registers T in PEi. Some of these instructions

are executed in PE, and some in CU. They are executed for

one cycle. And, if one wants to have five instructions that
satisfy the activation condition, one must write five
activation condition, one for each instruction. That is, one
can only write one activation instruction per microinstruction.
The general form of activation instruction is:

/G

The several cases for are:

1 /w1234 where ! inversion (031, 120)
V disjunction
conjunction (also written as -)
N addition modulo 2, exclusive

w - or" 3
!N not(exclusive "or")
1 € not"ana"
}V not "or" (first "or" each Ti,
then not

example: /&T24 means that process elements will be
activated when processing element T2 and
T4 are both set to 1. Y

2 /Fceo where e=§< o =-¢ .)}

24

The purpose of this ébtivation instruction is to match the
contents of the C register with O in PE. The length of the
matching is determined by FTr. If FT is "10" (floating
point), then only the mantissa is matched. If in the activa-
tion instruction, one writes F, then the PEi becomes
activated when the contents of the register F is 1, or if
CB0 is satisfied. If one does not write F, then only the
condition C®0 is tested.

5, /F means to select and activate those PEi which
have overflow, F set to 1.

4 /Q In this mode, one activates only one PEi per
segment which a Q register is set to 1. But only that Q
which is the left most register. For example, if the Q
registers are set:

0.0, 004 12001

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 etc.
The processing element with Q4 will be triggered first, then
Q6, etc.

5 /QF This is the same as above, but the PE will be
activated if the left most Q register is set, but after
the PE is triggered, the Q reglster is turned off, that is

set to 0. For example,

before (6 o L oiat e Xam b plnaits R Ve s i R o b
; Q1 Q2 Q3 84 Q5 Q6 Q7 Q8 Q9 Q10 etc.
after 000 0.0 6:1 d.,. 100
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
6 /TUE means to activate PEi according to the con-

tents of TU, which is in CU. The register TU is used as
follows: Bits'

Oz activation mode

28 not used

8:10 number of PE in group (ie. how mary
PE's in a group)

11:16 the number of the PE in the group,
(ie. which PE in the group)

25

' These last bits correspond to the portion in TU refered to
~as TU1. In transfer intructions, one can send bits to TU1, but
one cannot write an activation instruction such as /TUl. TU1
appears as part of the set of registers of A9.

Note about groups. A group, as mentioned before in a
different way, is not the same as a segment. One divides
the computer into segments, and the segments into groups.

The number of elements PE in a group is a power of 2. The
number of elements in a group must be less than or equal

to the number of elements in a segment. If one makes the
‘mistake of including more elements in a group, the system

- will ignore it, and it will make or include the maximum

- number of elements in a group allowable.

The following table is for bits 0:1 of TU. It should

- not be confused with the table of bits for segmentation.

bits 0:1 (activa?ion mode in a group)

00 in each group, activate PEi

01 - all processor except PEi

10 all processor up to and including PEi
i all processor after PEi

bits 8:10 (how many PE's in a group)

0001 64 PE's in a group
001 32 PE's in a group
010 16
011 8
100 4
101 2

Again, it is impossible to have groups which have more elements
than in a segment. If one designates more elements in a group
than in a segment, then the system will make the size of the
group equal to the size of the segment.

] If P is written in the TU activation instruction (last
page), then the number of the PEi in bits 11:16 will be
increased by 1. (IMPORTANT: this F has nothing to do with

the register F.) It is the programmers responsibility to -
make sure that new PELi number after the increment operation
is less than or equal to the size of the segment. Otherwise,
the system will report an error.

26

If no instruction of the form /Z exists, then all of
the PE's will execute the microinstruction.

SENDING DATA TO TRIGGER REGISTERS. .
All of these instructions do not depend of the format
register FT.

1o Ew 1 08 means E« 0 place O into E. The
E€1 previous value is lost.
E is also is set after
addition, previous
value is lost

2 P= {1 05 means Fe0 P is also set after
Fe overflow in addition.
F holds previous value
if no overflow. Thus,
if one set F=1, and
there no overflow, then
it remains 1.

TU has 17 bits in CU.

3 TU
Q This instruction is
T1234=4CC executed by all PE's,
F and O or 1 is stored
FCeo in the registers to the

left of the equal sign,
depending upon whether
the rules of interpre-
tation of TU render this
processor inactive (0)
or active (1). =
Cases (or example):
T13=TU means that (according to the rules of interpre-
tation of TU) O or 1 will be set in T1 and T3 of each
PE. !
T24=Q means send. the contents of the Q bit to registers
T2 and T4. :
T12=C means send the (20:21) to T1 and T2 respectively
of register C. If one writes T1234=C, then bits (20:23)
are sent from C to registers T1...T4. _
T34=F means send the contents of F bit to T3 and T4.
T1234=FC60 means one is comparing (matching) the contents

a1

of register C. © can be ¢,¢=,=,#,2=,> , For example,
 T12=C>0/&T12. This means that we write 1's in T1 ant T2
~ in the case that C>0, and that T1 and T2 are active (that

. they already have 1) . However, O's will be written in T1
and T2, which might have 1's, if C¥ 0. In addition, it
will leave T1 and T2 unchanged for those PE's which have
their number (11:16) of TU are not simultaneously active.

~ SENDING DATA TO REGISTER Q TRIGGER.

) The general form of the instruction is:

,_ Uz

It places a 1 into the Q's in each PE where is satisfied.
If one writes only Q with no conditional, then 1's will

be written in all PE's.

Example: Q/TU means write 1's in those PE's which
’wouln‘be active according to the rules of interpretation
of TU, and in other Q's, write O's.

SENDING DATA TO REGISTER TY.

The general form of this instruction is:

TY/C - ;

lote: the use of TY is that it is set to 1 if there is at
.least one active processing unit; otherwise it is set to
0 In the case of the above mentioned instruction, TY
;is set to 1 depending upon -at this moment- there is or
‘there is not some PE obeying & . '

PROGRAMMING EXAMPLE. ;

The objective of this example is to show how to fill
a matrix with O up to a given index 1level. The levels are
stored in a vector V and it contains:

; v=19 138 12 6]

~ This vector is prestored in the machine with 9 in the first
PE, 13 in the second PE, 8 in the third, etc. The filling
of O's is done from location of the index~ down toward

location O.

28

To illustrate what we want to do, see the following diagram.

o g
A ol 4
9- A £l .
&
13 A .
PEo PEn
The program is as follows: (code is in syntactic "free form")

C=1 C is the current index, set to 1

C=V-C in all PE's. Begin with V-1 and
ending with 0. In reality, V is -
stored inside a register. .

Li: . T1=C# 0 Set T1=1 in those PE's where C
is not yet negative.

M(C)=0/T1 Store O in those PE's which are
active. This instruction is not
strictly correct syntactically.

C=C-1 - Decrement the index.

TY/C >=0 Execute this instruction to store

1 in TY if there is at least one
PE still active; and C>=0.

GOZo L/TY ‘Go to label L if there is at least
one active PE, else continue.

SENDING DATA OVER THE FAST CHANNEL (CHANNEL A).
: This instruction, (described below) does not use or
does not pay any attention to register FT.
The general format of the instruction is:’

B(+4) where + means send to the right
: - means send to the left.
Aig any decimal number from
1 to 32.

If one writes B(+8), the translator (assembler) will produce
eight B(+1), each one will take 1 clock period. The actual
effect of this instruction is to shift the contenst of
register B in one PE to another register B in the neighboring
PE. It is important to note that to which PE (that is which
PE is considered the neighbor to the left and neighbor to

the right) is determined by the SG register. But grouping
only influences activation of PE's, and in this case, it is
not taken into account.

29

It is also possible to use:
B(+8/C

In this case, data is sent out of all PE's, whether they are
active or not, but the writing into the register B is done
only in active processes. The inactive PE's have registers
B whose contents remain unchanged.

Example, given the instruction B(+1)/T1, the following
will happen. The contents of the B register is shifted to

the right if the T1 bit of the neighboring processor is
set 50 e

number of PE 1 e s L R T S) etc.

contents T1 0 1 (0] 1 1 3 0 0

contents B g{L 567 8. 35 666,88 69 BEFORE
L4 ¥ g

contents B \N 56%‘5;;‘8 \835 88 69 AFTER

If one wants the shift to be done twice, then the code should
be

B(+1)/m1

B(+1)/T1
Example- performing an add using eight PE's and shift to
the neighbor operation or instruction. The goal is to have
;the sum of Ci, the contents of eight numbers of C which have
be loaded in each PE. This sequence of operations for adding
requires seven clock periods. The code is as follows:

a

he C registers of all PE's.
ppears on the next page.

P(B=C); Copy C into B, in parallel
B(+1); Send B if PEi to right
: neighbor
SA(B,C=C+B); Add C to B and store in
both C and B
B(+2); Send to the right neighbor
two times.
SA(B,C=C+B); Do the addition again.
B(+4); Send to the right neighbor
: four times.
SA(C=C+B); Do the addition for the

last time. Finished.

hihe result of the program is in the register C of the seventh
; rocessor; and by symetry, the resuit will appear in all of
The diagram of the operation

PEQ PE1 PE2 PE3 PE4 PES PE6 PE7
B«C / B{-C B«C BeC BeC j}&g B&C BeC
\\\\NB i \\\\‘B i \\\\NB £ \\\\‘B i
VoL b e
'S e i Iy
B C B i B C BC
\‘B ! \B i
Y Y
&y v
B C B.G
\ 1
BC

\/

+
Ve

B C

30

contents of C
is stored in B

the sum is

stored both in

register B and
register C

THE USE OF LOW SPEED CHANNEL (MAGISTRAR OR CHANNEL B).
The instructions for accessing this channel uses KU
in CU, and K associated with the PE's. Note: there are eight

PE's for one register K.
The general syntax of the instruction is:

QF
KU=B/{ " g
TUF

This instruétion sends to the register KU the contents of
The way in which the PEi
is selected is done using the Q register, OR by using the
register TU. In this last case, :
interpretation of TU) more than one PE is selected, then

EXACTLY one register B in one PEi.

the system indicates an error.

(because of the rules of

Diagram of the relationship between the KU register
and the K registers for each 8 PE's is seen on the next page.

31

CU

KD K| K KD A
o[P o147 o[37 [1] LT

77

In executing the instruction, the contents of register B is
sent to the corresponding register K, then after that, the
~ contents of register K is sent to register KU in CU. So,
- again, it is important to take into consideration that only
- one PE must be selected.
The register FT, for format, is ignore.
If F is present in the instruction, while using the
5 Q register, then the Q bit (left most processor) is set to
0, making the corresponding PE passive.
; If F is present in the instruction which uses TU, then
- the number of the PE (which one) in (11:16) bits is increased
by 1, to permit the access of the next PE. Note again, if
- the pfogrammer does not initialize the number correctly, then
upon increment of the number, the system will indicate an
error.

If one wants to send an array, it must be done word by
word. Parallel copying of data is good for replication, and
the'appropriate instructions for this task will be seen
- later.

ANOTHER INSTRUCTION FOR CHANNEL B, MAGISTRAL CHANNEL.
The general formgt of this instruction is:

QTU
BKC(S8)/ { J?
TUQ

The register FT is not taken into account, all of the bits are
sent.

32

Example: (cases)

BKC(4)/QTU

o

Sl 1
contents 5~ contents of
of reg. B + t ks reg. C
reg. Q before 1001106 01 + 4 reg. TU, al 3
reg. Q after o o \'1E::///’some PE's 1

i activated.

The processes for transfering data is done in the following
ways:
1st step- data is sent from the register B of the PE which
has the first left most Q bit set, to register K. Then,
the transfered data into K is sent to register C. The
PE which receives the data into C is selected

according to the rules of interpretation of TU. TU should be
in the mode which only one PE is activated. This is done
by setting (0:1) bits to "oo".
2nd step- after the first step, Q register is set to 0, and
the number of the PE in TU (which one) (11:16) bits are
incremented by 1. Now, the instruction is executed again, °
but the transfer is done from the next PE which has the ;
left most Q bit set to 1, and the next PE number is stored
in TU.

The net effect of executing this insfruction several
times is to concentrate data that is widely disperesed in
various PE's.

-

-
-

-

-
e

-
o~

33

The number of times that the instruction is executed is
 determined by S. However, the translator expands this

éwinstruction into several instruction if & is greater than 1.
 The expansion gives several instructions, each of which take

BKC(8)/TUQ

his instruction does the opposite as the previous instruction
in that in is useful for dispersing concentrating data.

| However, in contrast to the previous instruction, B is
ntrolled or the B of PEi is activated by the rules of
“interpretation of TU. And C is selected by register Q.

The effect of executing this instruction is to first
ve data from B register to register X, and then from K
‘egister to C register.]

OTE: : i

If, for some reason, a segment is made up of 2 modules
fi eight processors, only one of the two K registers
selected and used in the transfer process. The other K
‘egister is ignored.

CCESS TO PE's MEMORY.
The memory of each PE is private memory.
The syntex of this instruction is:

MpiXs; R read
? =éw} write
u

in CU processor

A in PE

s 1 b in PE
o Af% in PE
LAI+1) in PE

/Bis an octal number.

te: one can index EB by using IL. One can also send data

the address stored in A, and after the operation, increment
+ For example: MR(A+1) means read from memory at the loca-
ion stored in register A, After this reading, then increment

34

the contents (the address) by 1.

The meaning of IxI is: use address that is stored in
the register L5 , which register number is 5. But, in the
code of the program, we write L3I, but we have stored in
register IL (the "I" in the instruction is short for nIL")
the value 2. Upon the excution of the instruction, 2 in
T1 is added to 3 in the instruction L3I.

Notes: 1-it is not allowed to write two M instructions,
one right after the other. The reason being that memory
requires 2 machine cycles, each one being 300 ganoseconds.

EPRSEEN e

2- It is possible to write: !
P(B=2) & MR(U) for example
and the net effect is that the two instructions will be
executed in parallel. That is, old data from register Z to
register B, and at the same time, the contents of memory
location indicated by the address in register U is transfered
into %Z. As a consequence, 2 contains a new value.
3-Tt is not possible to invert the order of the instruction "above
and write:
MR(U) § P(B=2)

The common rule for connecting instructions is that the ins-
truction of the PE should be written first, and then thg"
instruction for the control unit last. :
4=~The is a way to write " instructions using the U register
that is different than described above. The following is
also permitted:

MUR is the same as MR(U)

MUW is the same as MW(U)
5-If one wants to connect (join) two instructions for PE's,
or two for CU, they have to be separated by a comma, won
However, if one wants to connect one PE instruction and one
CU instruction, they have to be separated byl§" « But the
instruction for the PE must go first. The symbol.7§. also
indicates that the instruction on either side of it will be
executed in parallel.
6-Restriction: If one wants to write into memory, oOne nust
load register M at least one instruction before performing

35

- the operation of writing into the memory. That is, the writing
~ into M register and writing into M memory can not be perform-
ed in parallel. The explanation for this restriction is
- that each instruction is decoded in CU. The control unit
~ is the only place in which instructions are decoded.
example, if one decodes:
P(A=2Z) ¢ Mw(U)
then the first instruction will be performed by the PE's
and the MW instruction will be performed by memory. This
art dogs work in parallel. However, if one writes:
' P(M=2) ¢ MW (U)
hen this violates the restriction because one is copying
into register M the contents of register Z, and at the
ame time (parallel), one is writing into memory the
ontents of register M at the address stored in register U.
-Another restriction: On cannot write into register M
imnediately after performing an MR or MW instruction. It is
cessary to execute some other instruction in between.

-In using the MR and MW ipstructions, the FT register is
ot used.

For

vﬁfRUCTIONS'TO FILL REGISTERS A AND L/9. ADDRESS REGISTERS
The FT register for these instructions is not used.
The instructions have the following general formats:

U 1
ke 3
A= g’lg - A+ { L

HﬁZf1 A
: Lﬂ-{oj /2 is an octal

number

the case that one writes "A+ MUMBLE", means that

A=A+ MUMBLE". The "A=.." is omitted in the spirit of opti-
mization. But in the case that we are adding A register and
gﬁlAregister, such as "A+LAI", means that both "LAI=A+TgI"
and "A=A+L I"., The specific cases and their meaning are
Seen in the following list: (next page)

36

1 A=U means A&U contents of reg. U is sent to

reg. A.
2 A=0 A&O
3 A=C AeC
4 Ao | At |
5 A+ AeA+1 :
6 A+U AeA+U 1
7 A+Lel £A£;7A+94£ |
8 ILpI+1 Lol 12141

9 LA=A Leal A
10 LAI=0 Lale O

These instructions are found on page 169 of the PS-2000
manual. (

is, they can.be conditionally activated or executed.

INSTRUCTIONS OF ACCESSING H MEMORY OF THE CU.

The H memory is the one that contains the so-called
macro instructions, that is, the pointers to bunches of
microinstructions in G memory.

The FT register is ignored for these instructions., -

The general format of these instructions is:

He (A1); U in CU processor
HA
R ‘1= 7/ HL
¢= j : HA+1
w HL +1
Note: indexed addressing is not possible. i |

These instructions are performed in three clock periods{
This means that two or more H memory instructions cannot be
written or coded one after the other. Therefore, one must
write two other instructions in between two-H memory instruc-
tions. This is true if the memory is of 16 k of size. '
However, if it is 4 k, then one must write only one other
instruction between two H memory instructions.

The same restrictions to H memory with respect to the

37

ﬁput register H, and the output register HW hold as those
at apply the input/output buffers of M memory, of the

As in the case of M memory instructions, one can write
he following H memory instructions thus:

HUR is the .same as HR(U)
HUW is the same as HW(U)

>

&,TRUCTIONS FOR ADDRESS ARITHMETIC IN CU. (ADDRESS REGISTERS)
These instructions are related to those instructions

f address registers for M memory, in that they perform

imilar functions.

' The general formats are as followe-

U
HA= 0
HS” is an octal number.

in the case of the instructions of M memory, the following
notational shortcuts hold: in the case of "HA+ MUMBLE",
except for H;%A%is meant to be understood as "HA=HA+ MUMBLE",
"HA+H96" is written, then it is the same as "HA=HA+

ad "HL =HA+H96“. Specifig examples of instructions are:

HA=U " means HAeU the contents of régister
* U is loaded into reg. HA

HA=0 - L e

HA= ; _HA«-H:;,J

HA+1 HA€HA+1
HA+U HA€HA+U

HA+H94 : gﬁ;T'HA+H94
(WSTRUCTIONS FOR ARITHMETIC/LOGIC UNIT OF CU.

These are the same as the operations for the ALU of

The FT register is ignored. The Operatlons are perfor-
ed on all 24 bits, without taking into account the overflow.

38

Negative numbers are represented as 2's complement. The
arithmetic and logic operations teke one clock cycle.
The format is: (implicit type instruction).

A W refers to ALU in CU.
W? ;«P(U.-._.ﬂ,_A_s_,l); A arithmetic
L L logic
is a hexadecimal
digit.

This implicit representation is probably useful for program-
who have a great deal of experience in using the PS-2000,
because they can remember what the instruction stands for.
However, for readability and maintaince of code, it may
be counter productive.

For implicit intructions, there is a set of explicit
instructions, which correspond to the implicit ones exactly.
The format is: (explicit instructions)

A

v § fomatans +1)
(L

0f the sets of registers and number that are underlined

(optional), at least one must be present. The list of

cases (exemples) is:

1 WA(U=AT) means UeAT7 load the contents of AT
i register into U

2 WA (U=AT7+1)" U&AT+1

3 WA(U=2A7) U&2*A7 load two times the value
%n register type AT into

4 WA(U=247+1) U&2*AT+1

5 WA(U=-1) Uée-1

6 WA(U=0) U€0 load immediate constant
zero into register U.

7 WA(U=AT7-1) U€AT-1

8 WA (U=AT7) U<€AT

9 WA (U=ATVAS8) U¢ATVAB

10 WA(U=AT7vAB+1) U€ATvAS+1

11 WA(U=A7v!A8) U€ATv®A8 1Joad into reg. U the re-

sult of reg. type AT
"ored" with not A8 type.

12 WA(U=ATVIA8+1) UCATVABH1

13 WA(U=AT7-A8-1)
14 WA(U=AT-A8)
15 WA(U=A7&!AB-1)
16 WA(U=AT7&!A8)
WA (U=AT7+A8)
WA (U=AT7+A8+1)
/ WA (U=AT7&A8-1)
20 WA(U=A724A8)

WL(U=2AT7)

WL(U=AT)

WL (U=A8)

WL(U=!A8)
WL(U=0)
WL(U=1)
 WL(U=!3A7vA8)
WL(U=!AT&A8)

v cessor,

means

means

39

U& A7-A8-1
U& AT7-A8
Uée AT&-AB-1
U« AT& A8
U& AT+A8
U& A7+A8+1
Ué& AT&AB-1
Ué& AT&AB

LOGICAL OPERATIONS FOR PROCESSOR CU.
The 1list of logical operations is:

means Ué& A7

using the circular option of this shi
gister is not used since it does not exist in the CU

IR<U(20:23)

U& AT

Ue A8

U« A8

Ue 0

Ue1
Uen[A7v A8]
U&—ATEAS

FT INSTRUCTIONS IN THE ALU OF CU.
The form of the instruction is:

A arithmetic
L logical
C circular

L (second one) left

R right

ING DATA TO THE IR AND IL REGISTER. :
Remember that the IR register is of 4 bits and the IL

ft operation, the E

the conftents of bits
20:23 of register U
are sent to reg. IR

40

e e

2 IR+ means IRIR+1

3 IR-1 IR¢IR-1

& Iial ILeU(21:23)

5 IL+1 : IL€IL+1 done module 8
6 IL-1 IL¢IL-1

INSTRUCTIONS TO SEND DATA TO I, J REGISTER GROUPS IN CU.
The register group I has 24 bits, and register group
has 12 bits. The general form is:

1,35 =UC

Cases:

1T I=U means Ix¢U the contents of reg. U
is sent to reg. I .

2 J«=UC IxeU the contents of reg. U

. is shifted to the right

12 bits (eircular option)
U reg. remains unchanged.
Useful for storing two
12 bit numbers.

3 J&=U Jx «U(12:23) bits (12:23) of reg. U
is sent to reg. J . 4

4 Jg=UC . J «U(0:11) sends all 24 bits.

5 TI«,Jx=U ' I« & U(0:23) gsends all 24 bits.

J «U(12:23) sends the youngesi bits.
the least sigriificant
bits.

TNSTRUCTIONS FOR DATA EXCHANGE BETWEEN ADDRESS REGISTERS OF
CIJ - |

The general format of this instruction is:
=A11

where A11= §I J TU SG HA FT HW FM KU IL IR}

Note: if the source of the bit pattern has less than 24 bits,
the bits which are not sent from the source register are
set to O in register U.

Cases:
1 U=1« means U& I« all 24 bits are received.
2 U= U(12:23)¢ Jx

U(0:11) ¢« O

41

means U(7:23) TU TU register has 17 bits
U(0:6) 0
U(21:23) IL IL has 3 bits.
U(o:20) 0O
U(20:23) IR IR has 4 bits.
U(o:19) o
U KU _ KU has 24 bits.
U(14:15) SG SG has 2 bits.
v(0:13) @
U(16:23) © .
U(10) FM FM has 1 bit.
u(0:9) O
U(11:23) © |
U HW HW has 24 bits, it is

output of memory.

U(22:23) FT PT has 2 bits.
Dlo=21) .0

U(10:23) BHA HA has 14 bits
ulo:=9) © ‘

RUCTIONS TO LOAD CONSTANTS INTO REGISTER U.

- Note: constants can be written in the microinstructions
lemselves, instead of loading them into areas of memory
hich are seperate from the code.

The format is:

- Y(U=¥)

: T octal digits
rere e | £

p S decimal digits
; = *+ B b i
—‘;!;’a /‘ * means "where the
*i §55855 § program counter
(PC) is".
4?4435. Bide 7
{label) + g j
SE588ES J
_pecimal‘numbers range from O to 223—1. Only positive deci-

mal numbers are allowed.

INSTRUCTIONS FOR SENDING FROM U TO OTHER REGISTERS.
i There are two equivalent forms:
Y(A9=U) or A9=U
. Bach form is used in particular cases. The table which

S r—

SR

42

indicates how to join instructions for execution in parallel
also indicates which of the above mentioned forms are appliedf

Programming example: how to write 5 in H memory loca-
tion 100 octal.

Y(U=5); load 5 into reg. U

Y(H=U); load contents reg. U into
memory buffer H, input

Y(U=100B); load memory address into U.

HUW; perform write operation
into memory using address
in reg. U

On cannot write a constant directly into H memory due to
the fact that it is difficult to relocate.

Another programming example: how to add the contents
of one location in memory to the contents of another
location in memory. The operating system 0.S. reports ~-for
example- that the first free word in H memory assigned to

our program is stored in register I0. The situation is

seen in the following diagram:

. i
value of A —t |

|value of B

result of sum:C

What needs to be done is to add the contents of locatiaon
A to the contents of location B, and leave the result in
location C.

U=I0; get the address of A

HUR; read memory H at location in U
NOP; need to wait two cycles for
NOP; memory to do its thing

U=HW; load contents of A read from

memory via output register and
load into U.

J5=U,WA(U=I0+1); store A in reg. J5, increment the
addr. in I0 to location of B -
note: original value in I0 is
left unchanged. The result of

fils increment is stored in U.

HR(U),U=J05; read H memory using addr. in

reg. U, and load A into U.

*see Table A. (appendix I).

43

NOP; we let time pass for memory to

NOP; perform its task.

WA (U=U+HW) ; add A -in U- to B -in ouput reg.
HW- and leave the result in U.

H=U; store result in input reg. H of
H memory

Y(U=2); load immediate value 2 into U.

WA(U=U+10); add 2 to memory location of A 1o

: get memory location of C in H

memory.

HW(U); write the sum of A and B stored

in H register into H memory
at location pointed to by U.

ADDITIONAL INSTRUCTIONS FOR SENDING CONTENTS OF U TO OTHER
GISTERS.

There are two formats for the following instructions.
For example, in the instruction TU1=U, one can also write
(TU1=U). But if one writes the instruction using this

ast format, then one has to consider the rules of joining
nstructions, so as to assure parallel processing. (See

ole A). If one does not pay attention to the format of

Se instructions, then one does not have the assurance

hat the instructions one wants to have performed in parallel
111 actually be performed in parallel.

The list of instructions is:

TU1=U means TU1U(18:23) load bits (18:23) of
U into reg. TU1

TU=U TU&«U(7:23)
H=U Hi&~ 1 all 24 bits sent
SG=U SGe&U(14:15)
K=U K eU
FT=U FT «U(22:23)
=U Fli &U(10)

INSTRUCTION FOR SENDING DATA FROM REGISTER HW TO REGISTER K.
This instruction sends the contents of HW to K simulta-

- neously. This facilitates sending data from H memory to

- PE's. The instructions are:

i K=HW means K«&HW

§e | Y(wesm) HW4&—H

44

For this last instruction, only this instruction format
exists.

SENDING DATA INTC FT REGISTER.

In performing this operation, one has to write two
instructions. The pairs of instructions depends on the
format of the data.

1 Y(U=0B); for 12 bit arithmetic
Y(FT=U);

2 Y(U=1B); for 16 bit arithmetic
Y(FT=U);

3 Y(U=3B); for 24 bit arithmetic
Y(FT=U); i

4 Y(U=2B); for floating point arithmetic
Y(FT=U);]

SENDING DATA INTO SEGMENT REGISTER.

1 Y(U=0B); for 8 PE's
Y(SG=U);

Note: an instruction being executed in
parallel to the last instruction of the
above pair will be doing it in accorda
to a previously defined segmentation.
Only after this last instruction of the
pair is executed will the new segmenta-"
tion be used. -

The above pair is used for defining segmentation; only the
octal value of the first instruction is different. THe
rest of the values are:

a 400B for 16 PE's
b 1000B for 32 PE's
c 14008 for 64 PE's

When there are several users running, they time-share; tﬁey
do not compute in parallel, because there is only one CU.
The 0.S. saves and restores all of the registers in the cas
that the context changes from one user to another.

SENDING DATA TC REGISTER TU OF CU.
The general form of the instruction is:

% %k k% next page * %k %k

45

P 2
3P 4
TUp=4 PIOY k= 8 possible number
P>7 16 of PE's in each
32 group
64
X' is the processing element number within
a group. It values range gs¥* <y -
1 TURP activates in each group, processing element P¥
e TUpP activates in each group, all processing elements
except PY

TU§P1>¥" activates in each group, processing elements
0:¥ dinclusive. ;

TURP¥ >N \%ctivates in each group, processing elements
+1:4

In the table on page 146-149 of the manual, one can see that

there are two instructions which are equivalent to the

mnemonics above. For example:

TU2P1 means Y (U=500B)
Y (TU=U)

This table is used to see which pairs of "Y" instructions
are equivalent to the mnemonics above in case that such
mnemonics are not known to the assembler/translator.
However, there is another approach which permits avoiding
the use of the taﬁle. One can use the information stored
in TU to éccomplish the same purpose. In particular, one can
remember that TU has the following bits for the following
urpéses: .
L register TU
bits 01 activation mode
287 not used

8:10 size of group: how many PE's
11:16 PE number: which PE in group

Now, what needs to be done -as an illustration of the use of
. TU- is to divide the computer into groups of 4 PE's, and
activate the 3rd PE in each group. The mnemonic for this
would be: .
' TU4P3 .
t one can also set the TU register with the following bit

xnext page*

46

TU: 00, 000000, 100, Q00 011,

L__ C PE number (which one)
\~__ number of PE's, (size)
not used
activation mode.
The above bit pattern is 000403B in octal. Thus, the simple
way to do the same as the mnemonic on the previous page is:

Y(U=403B); load in U the bit patterm
Y(TU=U); stash it in register TU

INSTRUCTIONS FOR JUMPING.
The general form of the jump instruction is:

G(A10)/G2 where G stands for G memory
and the "/" is for
conditional jumping.

and where \
: U®A12 match contents of U to Al12
C2= TY=1 check against at least 1
active PE
Q=0 check if all Q regs. are O
: EI(} these registers are in CU
Al2=
JL

If the condition 2 is not satisfied, then the next instruction
is executed. We can say that the "G" instruction is a CU
instruction. "G" instruction takes 1 clock period if &2

is false, and 4 clock periods if &2 is true.

If /&2 is not written, then the instruction becomes an
unconditional jump to a location specified by A10 (defined
previously, at the beginning of this report).

Note: it is possible to overlap a "G" instruction with
another 1 clock period instruction for PE's. '

Restriction: if one checks the Q registers (triggers),
one cannot change'their contents at the same time one checks
them. The reason is that U is in CU, and "G" is a CU instruc-
tion.

47

SECOND TYPE OF JUMP INSTRUCTION. (JUMPING TO SUBROUTINE).

This instruction permits the jumping to a subroutine,

and the return is done with the jump instruction of the last

- section, but without 2, that is, condition. :

Associated with jumping to a subroutine is the set of

. "registers" called GB, and a register which points to the
last return address at the top of the stack in GB. See

 diagram:

GB « R GRA

|
%

16

The process for going to a subroutine is: first add 1 to
register GBA, then load into GB pointed to by GBA, the

address of the next microinstruction to be executed after
returning from the subroutine. And finally, jump to sub-
routine indicated by A10. Upon returning from the subroutine,
jump to the location stored in GB pointed to by GBA. Sub-
ract 1 from GBA.(The subtraction and addition to GBA is

ne modulo 16,hexadecimal).

'HE ‘NOP INSTRUCTION. :
. The NOP instruction in the PS-2000 is an important/useful

~instruction in that it "wastes time" when processors have
to wait for memory instructions (or other instructions) to
finish their operation. In general, this is not important,
but in parallel computer systems, it is very important.

The NOP instruction can appear on either side of the

sign. In each case, it will be executed by either the
CU or the PE's, ‘ .
noP € a CU instr. ; CU instr. executed

a PE instr. ¢ NOP . PE instr. executed.
examples: 1in the case that the machine has 16 k memory, it

takes 2 cycles to execute; in the case of 4 k memory, it
takes only 1 cycle.

48

16 k memory 4 k memory
HUR; HUR;

NOP; NOP;

NOP; U=HW;
U=HW;

There are some situations in which the NOP instruction can
be dispensed with. For example, the code on the right side
‘is equivalent, and less redundant than the code on the left
side.

HUR; HUR;

SA(C=0) NOP; SA(C=0);
P(B=C) NOP; P(B=C);

U=HW; U=HW;

INSTRUCTIONS FOR FLOATING BOINT MANIPULATION.
The FT must be used for these instructions..
The formats are: (execution instructions)

2 (A1V143) where Ai, Aj are any
registers. '

preperation
perform
exponent
mantissa

C) _joint exponent
mantissa

131=

Pt e %
EEan =

this refers to the fragment
of operation designative by Yh

(normalization instructions)

ZA1Q, A3V,

N i LL logical shift left
2 gl s by 1 (see note LL
: 3] logical shift lef

by 1 i
i 4R arithmetic shift
Qa, = 4 bits to the rig
- to either Ai’Aj
AP rounding
DN dencrmalize
NL

the two words A. and A. are
processed, sepa}ately.J

49

RUCTIONS FOR FIXED POINT MULTIPLICATION:
iple: a program for fixed point multiplication, using
one step instructions.

FT can be either 24, 16, or 12 bit mode; fixed point
hmetic.
. Registers R® and C have the operands, and the result
ored in C and B. Thusly: /

R B
-“s* !
.

ey

le ’ B

msb 1sb

e code:

Z1(RI * B); preliminary/execution
Z2(RaI * B); performing/normalization

'he Z2 instruction is repeéted depending upon the size of

he operands, that is, depeding -upon the contents of FT.

if PT is -set for 24 bits, then repeat 22 6 times
" 16 n 4
n ‘] 2 n 3

hus, or as a consequence of this phenomena, it is evident

hat the machine needs 4 clock periods for every 12 bits.

There is an assembler construct that permits easier
‘coding for repetition of Z2 instructions. For example:

REPEAT=12 for 12 bit manipulation
Z1(Ral * B);
z2(R«T * B);

If one needs to process 16 or 24 bit numbers, then replace
the 12 with the appropriate number. THe assembler will
produce the appropriate number. of 22 instructions. .

Note: it is important to consider the rules for coupling
instructions of CU and instructions of PE. There are two
ways to do it. The first way is to write the code with coupled

50

instructions, and then let the translator/assembler determine
if it is a correct coupling. But one must beware. It is
also the case that the translator does not detect all of the
incorrect couplings, which brings us to the second method.
1t simply involves consulting Table A, which indicates all
of the legal couplings of instructions.

51

FHA KRR KRRk Rk K kkokk P A R/m TwWO *************************

In this part, more complete Programming examples are
given, as well as rules of syntax of the organization of
Lf entire programs. In addition, input/ouput of the system
:E is dealt with along with the "software tools" (editors,
[debuggers etc) which are needed to make a "useful" program.

- GENERAL SYNTAX AND SEQUENCE OF INSTRUCTIONS FOR COMPLETE
~ PROGRAMS. /

The sequence is:

PS=L,B,T; L is listing, B is symbol table, T is
binary code output. These are options.

TITLE=<text>;title of the program to be placed at
top of each page, optional

PUNCH=<(text>;text to appear at the beginhig of each
paper tape. It is optional. :

START=<num? ;starting load ‘address of the program
in memory in decimal or octal. (nnnnB)
If one says START=;, it means load at
O. One can have several "starts" in
several parts of the Program to have
a disjoint or noncontigous program.
The assembler is either absolute or
relocatable. In addition to START,
there is a command to start .the execu-
tion of the program at an address
other than the load address.

NAM=1111; program name, no more than four letters.
microcode
END; the end.

In between NAM=1111; ... END; , one can have other instructions
for title and start (load address). The ‘title command

- makes the printer begin with a new rage, and the start com-.
mand begins loading the program at a new location.

E
i

EEE———

e

B

52

Progremming example: assume that there are W processing
elements. The program is to calculate the natural numbers.
Lfter each step of the program (or iteration),
there will appear in each PE one of the natural numbers.

See the diagram below:

L 2

[T2[3]4]5]6]7]e] [o]rofn1f12]13]14[15]16]

W

The first group of numbers are under W1y and the second group
are under w2, etc.

Note: this program is the same as iota in APL.

The following example is for 16 PE's.

PS=L,T B3
START=100B; - load beginning at 100B, absolute.
NAM=INDX; name of program is INDX
Y(U=3); load code for format 24 bits
Fr=U; stash it in the format register "
Y(U=400B); load code for segmentation, 16 PE's
Y(SG=U); store it in segmentation reg. SG
line that starts with star is comment
for this program to run, the following data
must be loaded in the following way:
1- JD=16 X

2- I4 contains reg. number of R. Registers R are .
from RO to RF. :

3- M(I3)= 1,2,3,4,54444,16 The number corres-
to the number of PE's, This data is loaded
in such .a way sc that 1. is in I3 in PE1, 2 is
loaded in I3 in PE2, etc.

4- JE is the complement to tail length. In some
cases one wants to produce a set which has the
length, say 67 for 8 elements. The natural
divider is 64; the teil is 3. Complement fo
tail is 64. THUS JE CONTAINS 64.

5- IB is the integer (N/n)+1, where N is the last’
natural number, n is the number of PE's, in
case, 16. :

6~ I0 contains the number of superwords that one
needs. The Pfirst superword is 1,2,+¢4.16 3
the second superword is 17,18,...32; and the
third superword is 33,34....48;

I0 has the values 1 IO 1IB.
I0 indicates which superword is needed.

EE S R T R O R R R S S R SR S

RN ERR RN R

* %X ¥ x *

*

* R K K ¥ *

* ¥

U=133s
MUR, WA(U=IO-1);

K=U, WL(U=JD);
P1(C=K),K=U,WA(U=I4);

IR=U;

P1(B=K),R0I=C;

21(ROI*B)$ U=JE;

Z22(ROI*B)$ Y(TU=U);
Z2(ROI*B)$ Y(U=300000);

- 22(ROI*B)$ WA(U:U;JE);
- 22(ROI*B)$ I1=U;

Z2(ROI*B)$ WA(U=IB);
2Z2(ROI*B)$ NOP;

SA(C=Z+B);

G(GB);

53

load U with I3, address of loc. in
memory M.

read from M mem., at addre. point-
ed to by U, load new superword
number.,

loed K with U, and load U with
number of PE's, ie 16

load C in PE from K, load K from U
and U from I4, the number of the
register in which there is an addr,
which -in each PE- the final

result will be placed

now we copy this addr. into U

AT THIS POINT, MUR HAS FINISHED
ITS ACCESS TO M MEMORY.

contents of JD loaded via U and K
into B via slow channel to a1l PE's "
in parallel. in each PE, load Rn
indexed by IR. value comes from
operation I0-1, above.

NOW THE MULTIPLICATION IS PERFORN~-
ED IN FIXED POINT MODE.

do the execution of the multiplic
tion, and in parallel, load
natural divider, ie 64
do first normalization, load
activation register TU with 64
load U with bit pattern which is
code to activate after given PE
number, inclusive.

"or" the bit pattern with the

PE number, ie 64 :
temgorarily stashes the bit pattern
in I1

load U with value (N/n)+1 prestor-
ed in IB register.

this NOP is not necessary but we
put it in for fun.

by MUR, numbef in Z ouput register
is stored, and it is "ored" (exclu-
sive) to B and stored in C

P1(B=C,R0I=C)$ G(TAIL)/U=IO;

save in B the result in C for
future use, and in parallel save
in Rn indexed by IR, If U is
equal. to IO, then go to TAIL. IO
indicates the superword needed.
If it is not equal (U to ROI),
then execute the next statement.

. return from this routine via

return address pointed to by top
of stack in GB,

AIL:KU=B/TU$ U=I1;

P1(C=K)$ Y(TU=U);

¥R KKK KX KT XK

*

izox:c/TU&ls G(GB);

*

END;

send contents of reg. B from
active PE. There is only one PE
activated by what is stored in J
The contents that are sent are
placed in KU. Note, when data
is placed in KU, it will also be
in K. The "ored" value placed in
I1 is taken out to be used.
contents of K loaded into C, and
at the same time load into TU
the activation bit pattern

load ROI with C for active PE's
determined by TU, and in parallel
return from this routine.

CONMMENTS TO THE PROGRAM.

1-in the code,the sign "$" is to mean §

35

COMMENTS OF THE RELATIONSHIP OF K REGISTER AND KU REGISTERS.

The relationship of the KU register and the K registers
and the modules of 8 PE's is diagramed thus:

If the KU register is loaded, then automatlcally the
contents of KU are wrltten into.the K underneath.

If all of the K's registers are loaded, then the KU
register is also automatically loaded. ‘However, if the
contents of each K register is different, then what will
be loaded into KU will be unpredictable.

If a segment is defined, using instructions related
to the SG register, then the K registers are ‘"physically"
connected to the 8 PE's. This is done with an electronic
switch. » i

The transfer to and from the KU register and the K
register is done in parallel. Consecuently, it is evident
that if data is to be sent from several K's to KU, then
the data must-.be the same.

56

A second example in programming the PS-2000: the goal is
to write a 1 in PEO, a 2 in PE1, and ... 16 in PE15. The
code is:

Q; set all Q's equal to 1
SL(C=0); initialize all C regs. to O
SA(C=C+1); now set C to 1, all C's in the

*

all PE's. They will be incre-
mented later. 8

P1(B=C)/QF; load reg. B with value in C in the
PE which is "under" the left 'most
Q reg. which is set to 1. After
this dinstruction is executed,
then the Q bit is set to O.

G(*+2)/Q=0; if all Q Dbits set to O, then
jump two instruction down, to
P1(M=B)

G(*=3); if 2 @ bit is still set %o 1,

* go back and increment C by 1

» three instructions "up"

P1(M=B); we have finished the loop, store
* ; the value in input reg. of Il

* % % ¥ *

* %

do other things

INPUT/OUTPUT CONTROL INFORMATION.

The following programs, which can be called from FORTRAN,
are only stored into memory, but are not read from memory.
1- PUTG is a program which sends a program from the memory of

2 (the host of PS-2000), or from the disks into G memory.

2- PUTH does the same as above, but sends the program into
H memory. j

The calling convention of these programs from FORTRAN is: i |
1- CALL PUTG(K,M1,IB,NF,M,PB) where:]

K= number of logical unit from which one receives the
_ information; the values of which mean: ' |

20 Disk Number (number on drive) |
=0 Random Access Memory (RAM) : 1
(0 Device which is not disk, eg. Paper .

tape, or whatever.

lil=name of array in Si2 in which the data exists. This
is for K=0 (RAM). The array is of integer numbers. The maxi-

Bils
I
i
M
i
A
(i
il

|

57

? mum size is 10,000. If wants to load an array which is large,
' then one calls PUTG again. If K is not equal to O, then M1
. is ignored.

IB=this is an output variable of this program, and it tells

‘% how the call did. If IB(1)=0, then the call did alright. If
. IB(1) is not equal to O, then IB(2) will contain more infor-

mation about the error. If this happens, then consult the
staff about the meaning of the error.

NF=ig the name of the disk file. There are two characters
per array position. This array is used if K is greater than
0. The array is declared as NF(4). An examﬁle of the use
of this array is:

NF(1)=2HMA

NF(2)=2HSH

NF(3)=2HA_ underline means blank space.
NF(4)=2H ~

M=is a buffer used for sending data from a file to G memory.
It is declared as M(144).

PB=an integer, which is used to tell the loader where *
(beginning a which address) the program is to be loaded. When
PUTG finishes, then PB points to the first free location not

‘used in G after the load operation. This last value is used
by the next load operation upon calling PUTG. In addition,

in saying, PB=PB+M, one leqves'a space of M words.

"One has to define PB is a double precision integer, if
one is loading in a memory which is greater than 32 k. The
following trick is used:

DP. (double precision) PB. DIM I(2)
INT PB EQUIV (DP,I(1))

In this case, the system programmer must supply you with a
a modified PUTG where DP, PB holds:

DP

2- CALL PUTH(KH,M1H,IBH,NFH,MH,PBH)

This program doeé the same as PUTG, but it puts programs
in H memory instead of_G memory. It is useful to note that
the way in which the program transfers information from the

$13(]01}U0d
Yags ¢das ¥S1p 'das
L)
0 .
bys o
- Jayndwod 5 v |3uUUDYd DIOP
& 1soy e % a
et
[
(2WS) 2WD e
$.3d 8
o0 0 00 40 ¥|npow
u pow 2 'pow

| "pow

59
CM2 computer and the PS-2000 machine.

cm2 0

G 63
; \/Lj - O U TR
S S S e

Transfer from CM2 and G memory.

Cu
0 34 B) 0 23

[[H
&-’1,/

Transfer from CM2 and H memory. '
Copy data from CM to PS(G) and PS(H) memories leaves unchanged
the contents of the memory of the CM2 machine.

Note on the format of M1. o Jg f

For PUTG number of -wordzin O, The first ‘word
7 «of M1. LEN(G of PS)*
: information
For PUTH number of words in CM; same as above
: information

HOW TO LOAD DATA FROM RAM OF CM2 OR FROM DISK.

The relationship of the ‘diske and the memory of the PE's
can be seen in Figure 5. The data is transfered via an I/0
channel. This channel is connected to the host computer CM2
as well as the PS-2000. In between the I/O channel and the
disks themselves are disk controllers, or so-called special
purpose- microprocessors which interface the disks to the
system. The I/0 channel is also called the KD channel.

The process of transfgring data, the programmer has to

60

subdivide the PE's (and corresponding memory) into so-called
sections. These sections can coincide with groups and
segments, but it must be clear that the section is different.
Each section has a disk controller CB i associated with it.
The section may have 1, 2, 4 or 8 PE's. All of the disk
controllers CB i are under the control of the host computer,
CM2. A particular configuration of sections and their
corresponding PE's, and controllers.can be seen in Figure 6.

In sending data from disks fto memory of PE is carried
out in the following way:

s-activate the data channel KD, which means that one asks
the chamnel to be readied. The CM2 will ask the CB i to
transfer "x" size or block of data.

b-ask the CB i to send the data.

c-the data will be transfered directly into memory, from
the point of view of the programmer. However, internally, the
transfer is not direct because it involves several intermediate
steps. This internal system employs buffers, etc. When the data
starts to flow, the CM2 becomes free, and thus available for
other purposes. This happens because the CB i takes over in
the transfer of data.

d-when the CB i f1nlshes, 1t switches off the KD channel.
During the process of transfer of data, the controller can
send data to the proper PE if that PE is not masked NOT to
receive the data. Thus, in a section, mnot all the PE's have
to receive data.

In the case that there are several controllers to transfer
data to the PE's, then the process of activation and termination
is:

a-activate each controller sequentially. There can be
several controllers working at the same time.

b-each’'controller will stop when it finishes its task.

c-the KD channel remains "on" while there is at least
one controller active.

d—the last controller finishes it task, and it will
turn off the KD channel.

61

.

: 19{]044U09
ysip
|auuoyd Dojop v
ax 2
S =
o 6
-
o b
H Q L
5 ©0
5 o
(<9 o
(=)

v 8|npow ¢ a|npow 2 9npow | @8|npow

62

Given a section, the way to control the flow of data
from the disk controller and the PE's is by means of a mask.

The mask has two fields; the first one refers to module
selection (one module has 8 PE's), and the second one refers
to PE selection. The bit code is that if set to 1, then the
data is send to the module/PE, if set to 0, then the data is
not sent. The format od the mask is:

o el T CFS
MOD PE'sg

selection or mask for directing data
to PE's

module mask or selection

mask values

O=not to send
1=send

SENDING DATA FROM MEMORY OF CM2 AND PE'S OF PS-2000.

In sending data from CM2 to PS-2000, one has to do it
sequentially, processor by processor, due to software restric-
tion. In the case that one wants to send the same data to
all of the PE's, then one also has to do it sequentially, send- %
ing the same copy over and over again. Another better way to i
do it is to send data into U of CU, from there to register
K, and finally to PE's. I

In addition to these methods, there exists a program i
called IOCHM which facilitates the transfer.from CM2 to the |
PE's via the KD channel. ?

In CM2, the variables needed are declared as follows:

JSB I0CH

DEF *+10

DEF YC control word: 1=read, 2=write

DEF BZ . 2 words, BZ(1)=0 means OK, BZ(2) error code
DEF AM base addr. to load M if BZ(1)=0

DEF BPF addr. of buffer

DEF 1LBF length of buffer

DEF FT type of data transformation

DEF MA module/PE mask to send data

DEF LV length of vector

DEF CB address in memory of CM2 of location of

array, up to 36 words.

63

3 Comments on paramters: in FT, there are several codes
. for requesting data transformation: 161, 212, and 38. The
. explanation:

24 bits in PE memory word

161 16 bits

212 bits (4:15) of CM2 are sent to (0:11) of
PE;second word of CM2, bits(4:15) are
sent to PE into same word as above but

into bits(12:23).
that is, 2 words of CM2 to 1 word of PE

38 bits (8:15) of CM2 of first word sent to
bits(0:7) of PE; bits (8:15) of second
word of CM2 sent to (8:15) of PE; bits
(8:15) of CM2 of third word is sent to
bits (16:23) of PE.
that is, three words of CM2 is sent to
1 word of PE.

i The variable LV is used because there are several cases
fin which the elements of & matrix-cannot be distributed
;ievenly over several PE's, For example, there can be a vector
;fwhich has 18 elements, but there are 8 PE's, In distributing
gﬁthe elements over the PE's, there will 6 location left over
 (with zeroes) in the third distribution (row). More specifi-
. cally, assume that the g section has 8 PE's. And assume tﬁat
{Ethe left side of the distribution mask is set only to that -
f{section. But on the right side, all of the bits are set to
5}1 indicating that the data will be sent to all of the PE's.
ffNow, LV is set to 18, and the vector to be sent has the fol-
| wing contents: '

11 .23 444 6 45 789 1000 7 98 34 5 77 12 432 & 7 8 150
The vector will be distributed:

11 23 444 6 45 789 -1000" 7
98 34 5 T 12 432 5 7
8 100 0 0 0 0 (0] 0

The last vector is padded with zeroes.

64

CB is a variable the way to tell the 0S where to put
things. The organization of CB iB:

cell contents meaning
1 -1 magic number
2 addr. first free address of M memory
before loading
3 aaddr. last free address before loading
4 %o T NOT USED
8 mod. num. number of modules in physical

configuration. 0S writes this
information in this location.

The way to call the routine from FORTRAN using these
parameters is by calling I0CM. The format is:

CALL IOCM(US,BZ,AM,BF,LBF,FT,MA,LV,CB)

Thus, if one wants to send data from the disk to PE, you
must first send the data to the memory of CM2 and then use
10CH to send the data to the PE's sequentially. The routine
for trensfering data directly from the disks to the PE's
directly, will be done soon (through the disk controller, and
not via CM2). - il

GETTING 4 PROGRAM CODED, LOADED, AND DEBUGGED.
The general process to get a program running on the PS-2000
is to code a program, have in punched on paper tape, read
the program from the paper tape into the host machine Cl2,
edit the program, and debug it. During the intermediate
stages of the debugging process, a user can have his program 4;
punched on paper tape as backup. The program usually resides
on disk. The final version is also stored on paper tape.
During the process of editing, it is very useful to al-
ways have a listing of the program, since there is no screen
editor. Not only that, the program must be assembled at
least once, because the assembler is the progrém that generates
line numbers on the listing for entering line numbers in the

65

editor.

For any program to run, logical numbers must be assigned.
However, if iwo programs use the same logical unit number
for the same purposes, then the logical unit number does not
have to be reassigned between rumning the first and second
program run. But in most situations, the logical unit numbers
must be assigned before running anything; the operating
system does not have the feature of assigning logical unit
numbers by default. It is assumed that the programmer/opera-
tor is responsible for all assignments.

One final comment: the operating system does not control
the access to the PS~-2000. It is the responsibility of the
programmer/operator to make sure that the PS-2000 is free
to run a program. Otherwise, he/she must wait.

COMMANDS. FOR THE FILE CONTROL PROGRAM, AND UTiLITIES.
1-Initialization of the user console.

$OR
the machine responds to *.

2-Assignment of logical unit numbers to files/physical devices.
(file name> ::nd
:AH, lun, i
nu

This associates an lun to a file or physical device. nd= disk
(physical) number, lun=logical unit number, nu=unit (physical)
number. Machine responds with / if assignment successful.
3-Test (and display) logical unit numbers.

.TA

the machine responds with a list of lun's and the

corresponding assignments.

4-Start (or run gystem routines) program.
:CT, { name of system routine>

>-File management program called POF (MNO¢).
:CT,nod starte POF

the machine responds with / if POF starts OK.
POF is now expecting commands for file operations.

66

5~-a Copying files.

<source file named::nd ¢destination file name)) (C)
K4, }l(f .

nu nu

Hote that if the destination file already exits, then it
must be erased before performing the operation of copying.
The machine will respond with / if operation OK.

5-b Printing files.
ﬂ 1 square brac-

. C kets means
[M®, ¢(file name ::nd i/ A " "optional".

In requesting to print, alphanumeric file is taken as default. '
The contents of the file will esppear on the screen of the
display.

5-c Print file attributes.
M, (file name H::nd

5-d List files on disk.
- flC,nd

5-e¢ Delete file.

Y$é, <Tile name? ::nd

5-f Rensme file name.

H¢, £old file name ::nd, <new file name)D

5-g Exiting POF.
KP

6~The Editor.
Before editing a file, one must assign the logical unit
numbers in the following way:

: 'H{5, ¢editor iﬁpu‘b file name» ::nd
: Hy4, { new file name, from.editingp ::nd
To start the editor:

:CT, PCng, , 1

67

6-a Insert text.

I,0

Insert command inserts text after line "n". One can insert
several lines if necessary. However, if one wants to terminate
the input sequence, one must type "/" IN THE FIRST COLUMN

OR POSITION IN THE LINE.

6-b Delete lines (inclusive).
D,n1[,n2]

Deletes lines from nl to n2. If one wants to delete one line,
then it is not necessary to include "n2".

6-c Replace text.
R,n1 [,n27]

This command deletes lines nl to n2, and then replaces them
with newly inserted lines. One does not have to insert the
same number of lines that are deleted.

6-d Delete previous line.

i >

One mﬁst press both keys., The effect is to delete the previous
line. It can be done as many times as necessary. '

6-e End of editing session (part 1).

E
6-f End of editing session (part 2).
e ,FCV‘A.

Upon exiting the editor, one must request the creation of
the new version of the file that was edited. The new file
has possibly afnew file name. The old file version is NOT
automatically erased by the editor. Such erasure has to be
done by hand.

NOTES OR COMMENTS IN RELATION TO THE EDITOR: 1- there
are no change instructions or commands in the editor. That
is, one cannot have the editor search for a pattern of

68

characters, and then replace it with another pattern.
2-the line numbers serve to reference parts of the file by
line ONLY. There is no way to reference parts of the file
any other way. 3-the file names are a simple single name.
The system does not support the feature of names with the
form < mumble >. {extension? , where extension refers to
the file type, such as texi, source code, binary, or assembler

7-Invoking Language Translators.
To invoke the translator programs, first one has to
enter the assignment statements:

AH,5, <input file name > ::nd
AH,4, <ouput file name> ::nd
:AH, 6,nu

The last instruction is to assign logical unit numbers for
printing a listing. This listing includes a symbol table,
and the line numbers necessary for editing. To invoke the

agsembler for the PS-2000, one types:

: CT, TPfiC

This means: "CTart TPanslator of Harallel Ctructure (micro-
code)"., £
To invoke the FORTRAN compiler, then do:

+CT, PTN

8-DEBUGGER (AND LOADER)
There is only one assignment statement for the debugge

:AH, 6,nu
To start: _
:CT,DBPSH [:: ¢ sys disk number which is usually 33)]

After starting, the debugger will start but with no prompt.
Then one types: :

0

to gain absolute control over the PS-2000.

e rer—

69

The next set of commands is for loading one or more modules
into the PS-2000, and to exit the loader part of debugger.

B, ¢load address) start loading at this address
D, <file name) ::nd now perform the load of program
LDG if another module is to be

loaded or some previous load
did not work.

B, <load address>
D, <file name)y ::nd

LDG
B, <etc.)
D, <etc.)

/E finish the load session.

When one invokes the debugger with the above start command,

one is really invoking the loader. When one exits the debugger,
- one is really exits the loader and AUTOMATICALLY enter

debugger portion for setting breakpoints. This is done by
typing:

' Poal 842,44 vt} .

it "ai" is an octal address.

P,a" ,82,‘.-..-81'1
etc,
One can type one or more than one line. However, the TOTAL

number of breakpoints cannot be greater than 132. Now, one
can run the program:

RUN ,a] "a" is an octal address.

The address after the run command is used the first time, but
optionally afterward.- If the program runs in such a way that
the breakpoints are no longer necessary, then one types:

Doat apy dos san 5 "ai" is an octal address.

to delete breakpoints. To display (print or list) breakpoints,

it is necessary to type: ¥*%next page***

70

TCP display breakpoints

There will be situations in which the program must be inter-
rupted. For this purpose, one need only hit any key in the
keyboard, and the program will stop.

In case it is necessary to alter a value in a particular
location in memory of oné or more PE's, then use this
command :

means binary
decimal
hexidecimal
is module num. O to 7,
if n=8, then all module
modules.
is the mask for selec~-
tion the processors
within the module.
a is the.address which
to be modified.

B
WM {D},n,p,a Where:
H ' 4

S How

o]

H# is the response of the machine if it
accepts the command.
For example, one may want to alter location 563 octal, with
the data 5490 decimal, in module 5, with processor mask
01257. The mask means "do alteration in processors 0,1,2,5,7".
The command is:’ T

WiD, 5,01257,563
- positive confirmation of machine.

Now, it is necessary to input the data. In general, the for- -
mat is:

<1st num.), <2nd num.) ,£ 3rd num.) ,< n number >

The above seQuence of number coincides (in number) with the
number of processors which are masked to accept data in the
"WII" command.

On finishing input date values .into the processors, one
types:

/E . exit input of data in de-
bugger. -

—=eTT——

71

Notes on the debugger: 1-as the machine stops and re-
ports that it has arrived at a breakpoint, it prints the
contents of registers of the control unit (CU) and the
processors (PE's). 2-one uses the listing of the translator
for determining the location of an instruction. The number
of the location is the one labeled "LOC". 3-WARNING: it is
not allowed to select a location which has in its location
an instruction of the type:

G(*+U)/Z

The problem is that the instruction is a conditional instruction
tion, or more specifically, it is a conditional branch
instruction. However, if one has an unconditional branch
instruction to an absolute address, it MIGHT work. The limita-
tion is that the jump is not done with the use of the U
register. 4-REMINDER: in programming a module, one should

make the load address (that is, the address from which the
loader starts loading the module) coincide with the start

-address of execution of the program. 5-ANQTHER WARNING: it

is not possible to modify the contents of the registers of

‘neither the CU or the PE's with the use of the debugger.

6-WARNING: register IF is reserved for use of the debugger.

?*X****XX*******X*X***#*#******#**XX********#*********************X*****X****

X

1

3 MNEMONICS OF THE FS5-2000 INSTITUTE OF CONTROL SCIENCES»

{ ACADNIEMY OF SCIENCESy MOSCOWs SOVIET UNION

g Table Translated: Octobers 1982, IIMAS, UNAMs MEXICO

e T e oS R

? THE LEFT PART OF THE INSTRUCTION TO BE JOINEDS

z -=> PART 1 <—-

4 INSTRUCTIONS OF FROCESSING ELEMENTS (FE’s)

R it o oo e s RS it

@ arithmeticy lodical instructions denoted by S ¥ loading instructions

g loading functions is done with redister R. S i i gl g =l

gx X ET ¥ P(AZ=A2) yREI=AS

X SyRRI=AS/T AS=A1 X X

X % 1 CYCLEX "C

i et st i e e e A G R T ¥ FM(AZ=A2) yRBI=AS

X X X X

B S-arithmetical orerators %X codes (0-F) X

- ————— e e e e e ¥ arithmetic ¥ FH12(A3=A2) sRRI=AS

'k exlicit? ¥ implicit! ¥ orerations X

% Al+A2 X 1 ¥ mm e m X

i* Al+A2+41 % .2 b 3 X FH21(A3=AZ2) /T

X Al+A2+E X 4 X X

] Al-A2 - X S * ¥ F(AZ=A1)

X Al-AZ-1 X 6 A2 X X

(% A1-A2-14+EXSFA7(A3=A1,A2»1)X X 1

X Al+1l ¥ 8 A2+E %X 0 AL+ S ¥ F(AZH2RERI=A1)

¥ A1+E X ? X 1 A1VA244 X i

X 281 * A ¥ 2 A1VIAZ44 X F(Z=1M) g

X 2A1+E X B 3 149 X K=
XSFA(A3= Al-1)% D ¥ 4 AL+A1RA244 X F(Z=1KD) %1 CYCLEX

X -Al1-14E X% g ¥ 5 81242+ (ATVA2IHR Koo mewrorpa-ssnnasta s ¥
X ALVAZ+1 X X 6 Al-A2-141A ¥ C-shifts in FE1 *

X A1VA2+E X 0 Al ¥ 7 AL&1AZ-14A D et e ety X
X A1V!IAZ+1XSFAC(A3=A1,1) % 8 AL+AZEAR1A * 4 X R

% ALVIAZHEX F AlsE X 9 AL+A2+4A X 8L ¥1 CYCLER
* AL&A2-1 X X A ALEA2+C(ALVA2)+R X CAlZ2 /T Ao ¥
X A1&A2-1+EX ¥ B A12A2-144 X 16R X
X AlEAZ-1 X A3 X C 24148 X X
* A18'A2-14+EXSFA3(A3r1) ¥ I AL+(A1VA2)+A X A ¥

I X 2Aa1+1 X A3sE ¥ E AL+(ALIVIAZ) A ¥ CELL(A3=A2)sREI=C/T X
X ¥ X F Al-1+A4 X CR X
X 0 X X X X
XKSFA(A3=-1) * X X %
X -1+E * i X k: X

X X ¥ ¥ ECLR(A3=A2)yRRI=C/T X
__ *

I S I I W N ¥ 2

THE LEFT FART OF THE INSTRUCTIONS TO BE JOINED:
-~> PART 2 <--
INSTRUCTIONS OF FROCESSING ELEMENTS (FE‘s)

. X X
Z-srecial X E-channel ¥ metasumbols
instructions X instructionsx
¥ / ! *
1 ¥ X
Z2(RRIXE) X + * &
X BC =N1)/T X Z
ZCELX ¥ X Al=T
X : TUR ¥ REe1
1: ¥ BKC(N1)/GTU X
X X
Z2(CIREI) ¥ X
X TUF X
ZCBLL Y ¥ Ku=B/ - X
ZCAFE: X QaF ¥ E
ZEF(C=-C) b3 - b3 C
% ¥ AZ=R
ZC(REBI+C) X KU=DMb ¥ REI
Fomm e e e X i
ZC(CXRRI) /T X T-activitw X
- K mmmmm e X A3=BCH
ZM(C+REI) RN X ——
- X v X
X & ¥ Cc
ZMC(CIRRI) X IV T1234 X z i
X 18 ————- X AS=T
.) ¢ S o " X A
ZEC(T+REI) X . b3
- ¥ % ¥
ZCINE X X 0
ZCEB4R: * ¥ X A=
ZONL * (X E
ZECNL ¥ e <="0 X
ZECNL1 ;S huadtalis %
ZCAFEX X a= ¥
R e o ¥ = *
* FT % ¥ @=(0-F)
X1 CYCLEX F X b=(0-7)
---------- ¥-——————% TUF ¥ 3=(0-4)
. i ¥
X % K=(0-1)
N1=(0-44) X QF 3
N2=(0-16777215) % - X
NZ=(0-16383) % Krrmmm e ¥
Na=lhbbbhtE ¥ 0, SN ¥ *
* X1 CYCLEX

I I I I I K I I I I I I I I I I W I I I I K K I K K

THE LEFT FART OF THE INSTRUCTION TO KE JOINED:!
Sy L ORART X S
INSTRUCTIONS OF FROCESSING ELEMENTS (FE‘s)
————————————————————————————————— *___..._....__—.__—..—______
S-logical orerators ¥ codes of losgical
————————————————————————————————— ¥ orerators
exrlicit? X imrlicit? X
0 7 Sl D e o b b ftnd
1 %02 X
tal) LR X
Al X & X0 val
11ATVAZ ¥SL7(A3=A1,A2) ¥ 1 11A1VAZ2
1A18A2 X 8 X 2 1a18A2
11A18A2 X .9 ¥ 3 0
SL(A3=A1%A2 % B ¥ 4 11A18A2
ALEAZ2 ¥ I X 5 A2
1ALVAZ % F X 6 AL¥A2
11A1$A2 X X 7 A1%1A2
Al&A2 X0 X 8 1A1VA2
ALVIA2 XSLF (A3=A1) ¥ 9 LIA1$A2
ALV A2 X ¥ A-A2
AlVAZ ¥ A ¥ B AL1&AZ2
XSLS(AZ=A2) KBt
tA2 X ¥ I a1viaz2
SL(A3=A2) s ¥ E AlVAZ
0 XSLC(A3) Kk A
1 * X
K m e e e e e e e e e e X
¥ THE LEFT FART OF THE INSTRUCTION TO *
¥ BE JOINED:? X
b S —~> PART 4 <-= X
* INSTRUCTIONS OF -THE PROCESSING ¥
X ELMENTS (FE’s) X
K= e e X
X loading triggenrs EsFsTsQeTY *
e e e e o o S o e e o e e e 2 b
X 0 X
¥ 1 X
* TU *
* 0 0 a ¥
X E=1 » F=1 » T1234=CC sQsTY/T X
X m——— F X
X *
* X
® < X
¥ (¢} 0 = X
¥ E=1 » F=1 » T1234=FC > 0 sQsTY/T X
Y S R SR el e a= : X
% & *
b S X
¥ *
* K i e e X
X X FT. . %
2 4 X1 BEYELE R
% !

__ *

I I A FH M I I

FE M I N I I N W M I XK K MW KX KX

****‘.—***-!-****************9‘**%*****

M I M I I W I I I I MK W MW MM I N MK N MO M N

THE RIGHT FART OF THE
INSTRUCTION TO EE JOINEDS
PART 1 <--

INSTRUCTIONS FOR MEMORIES
AND CONTROL UNIT <CuU)
control of M and H memory
addressing arithmetic and
registers! AsHA,IL and IR
AyLsyHAYHL »
ILsand IR
1 CYCLE
MrH
X2(3) CYCLES

“
B

*
X
*
X

<G
HA+U

AtLbI HLb IR=U
IR+1
0 IR-1

LbI=A&

0
/TyHLb=HA
IL=U
TL +1
LbI+1 It =1
u
A
R A+l
MW(LDI

HLb+1

u
R HA
HW(HA+1)
HLb

)

Jumes and
subroutines

G(Rri0O) /U

/TY=1
/08=0
G(A10)/QY=0
/6T=1
/1Q
/Dho=1
G(AL10)

sGTG
KF1=U

G(A10)yGE»
G(GR)

I I I I B W I H M M I I I I 3 MK

¥6-1,5(6)%
¥ CYCLES X
¥ GT,KF1 %
¥ CYCLES X

I K 3¢ ¥

X

X

*

X X
¥ rseudocommands X
X *
e e X
¥ X
X 4 X
¥ FS=LsBseTrlé *
X ¥
¥ END X
¥ TITLE=<string> X
XEIECT. *
¥ FUNCH=<string> X
¥ START=<string> *
¥ CONST=N4 b3
¥ N4 s N4 N4 ¥
X X
¥ 12 *
X 16 X
¥ REFEAT=FT24 X
¥ F ¥
* *
X ENT=<list> i ¥
X EXT=<list: b
¥ NAM=<name> X
X = e it e b el e £ 3
X binary codes in ¥
¥ B FTsSGsTU X
T vt b il e Ut o, 4
X FT12 ¥ Y(U=0). %
¥ FT16 % Y(U=1) ¥
X FT24 % Y(U=3) X
X FTF % Y(U=2) S
et Ko ¥
¥ SGB X Y(U=0) *
X SG16 ¥ Y(U=400E) %
¥ 8632 x Y(U=1000B)x%
¥ 8664 % Y(U=1400B)x%
¥ ¥ ¥
B et b & et %
X

¥

*

%

X

¥

¥

X

*

X

X

¥

TU

Je

u
AB=TIL

IR

FH
TUL
TU
SG
AT=H
K
FT
KF1

bbbb
u
¥+Wbbhbb
¥-Wbbhbb
¥+U
ALO=%X-U
“<lsbel>
<latiel’
<label>+edbbb
<lzbel>-whbbb

obbhbbbbbR

N2
=<label>+N3

<label»-N3

Al:

2

--> PART

’) .;.._

THE RIGHT FART OF THE INSTRUCTION TO BE JOINED

INSTRUCTIONS FOR MEMORIES AND CONTROL UNIT (CU)

M (U)»
H

I I K I K K K A R WH FK K K X K
o

A9=U,IRJE=UC,W

I I H W, I I I W X K ¢ K

¥
¥

¥

I, HKo I KK H K K K N

W Ko —mm e
R % YoTedol =1 CYELEX
M (U)sY(HW=IH)sIRJE=UC-W X
W ¥ MsH-2(3) CYCLE

_______________________________________ *..____.—_—__.._——..—_
X W-zrithmetic orerators X W-logical orerators
b sy cpooi b o b s e sttt ettt entiont
X implicit? X ¥ implicit! X
X 3 X g A7 SR § X i A7
. Al ¥ B A7+1) Sl X ¢ A7
X4 X Ht 2A7 X 4 X : 1A8
S X blt 2A7+1 X 6 ¥ bl: A8
X 6 ¥ E} A7-1 : Sy X 3 0

> Gl A K LD XWLB(U=A7sAB) X-—- =1
XWAB(U=A7AB8s1) % e X9 X LIA7VASB
: GEAL X A7VAB £ B X LA7&A8
¥ A ¥ A7VAB+1 X% I XWL(U=!1A7&AB)
xR XWA(U=A7V!IAS ¥ B X A7%A8

Xt X A7VIABE1 X X A7¥1AB
XE X A7-AB ¥ 0 X {A7VAB

X X A7-AB-1 XUWLF(U=A7) X 11A7%A8
¥ 9 X A7&!AB-1 X X A78A8
¥WAC (U=A7s1) X A7%!AB X A X A7V ! AB

X F % A7+AB XWLS(U=AB) X A7VAB

X X A7+AB+1 X A X

*WA3(Us 1) X A7&AB X 3 ¥

X ¥ A7&AB-1 XWLC(UW) X

* ___
X load instruction in CU ¥ no
e b ettt o v T ¥ oreration

X IR=U X orerator

¥ IR+1 A= e
X Y(a92=U) IR-1 %

¥ y y IPJE=UCsU=A11,K=HUW,»QY=1 ¥ NOF

X IL=U *

¥ Y(HW=1H) IL+1 X

X IL—1 Fogtme bt i K e e e e e
X Y{(U=A12) K=HUWs,QY=1 % 1 CYGUE X 1 EYCLE
e e T S s e . sl SO R e
X format of TUs bits of TU ¥
ot X

X % 01 234567% % B9AX BCDEFGX

bt S b X——=Kk—=——f——m———=X

¥ F % 00%x 000000% 64% 000X numberx

X !P % 01x ¥ 32% 001X X

X<P-1% 10x X 16% 010% F OT X

£ P % 112 X 8% 011x 000000x

X X X X 4% 100x% 0o x

X X X X 2% 10ix 111111x%
* ___

JE I I WK I I I 3¢ I ¢ I W MK I I} ¢ I X I X K

