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ABSTRACT

The experience obtained, in the framework of the AHR project, in building
a prototype of a parallel LISP computer is generalized.

The machine built may have up to several dozens of microprocessors (2-80's),
working together to evaluate at the same time (in parallel) different pieces of
the same Lisp program. This computer uses a new type of data exchange betweeen
processors working in parallel. All the parts of this computer, except components,
were built in Mexico. Current version possesses five 2z-80's

Critical analysis of achievements is given.

Main directions for future scientific research and applied work are
discussed. These include.

1. Estimation of the field of possible applications of the results

(distributed computer systems, large computers, real-time applications)
2. Data flow optimization

3. Generalization for systems other than Lisp.
4. Determination of best policies for industrial production of the machine.

AnHOTaImMA

0Godmer ONHT MocTpoeHMs mpoToTuna napasnenbHod JICI - MamMHH,
ToNyueRAH{l B Xome OCymecTRIEHMA mpoexra AHP.

Mam@pa COCTOMT M3 HECKOJBKUX IECATKOB Mupompoueccopos ( Z - 80),
anwqenaux‘napannensno 7 ONHOBPEMEHHO OIEHMBAKIMX DA3JMYHHE y4YaCTKH
sanannoft JVCI-nmporpamMvs, B MammHe MCIOJB30BAH HOBHI THI Oprann3almn
ynpaBleHEns NapalenbHo#f pacoTo#f MUKPOIPOIECCOPOB. Mamr:Ha .co31aHa
MEKCHKAHCKAMHA CIIeIMamcTaMd M3 MMIOPTHHX HeTaiel.

B orTyeTe INaH KpETHYECKH aHaNM3 IOJYy9YEHHHX De3yJbTaTOB. O6cyxna-
0TCHS OCHOBHHE HAaNpaRIeHmA GyAyIMX MCCJeNOBaHmili ¥ NPHKJATHHX DPacoT.
Cona oTHOCATCHA:

I. BuGOp OGNACTM IPUMEHEHUA DE3yJBTATOB (pacrpeleseHHHe BHUMCIH-
TeJBHHE CHCTEMH, KDPYNHHE MyJbTHMIKPOIPOLECCOPHHE CHUCTEMH, CUCTEMH
DeansHOr0 BPEMEHH)

2. OnTpMmmaanus NoToka NaHHHX

3. Odobmenne Ha CHCTeMH NpOTpAMMHpPOBAHMA HEble, dem JUCIL.

4, Onpenenenme HampHTonHelimel TEeXHOJOTHYECKOY IOJHATKKNA IDH
oprannsanEe cepuifRoro IpPOMSBOACTBA MANMHH.
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s ELCTIVES OF THE AHR. PROJECT

The main direction for computer development seems to be parallel

sing. The future of this field is very bright and at the same time this

s very difficult because of the complexity inherent in parallel systems.
73, IIMAS researchers proposed organizations for parallel computers [Naranja
At that time, these proposals showed little promise to be fruitful.

: However, in 1980-81, doubts concerning parallel processing in the proposed
disappeared as a consequence of the results obtained from the AHR project:

nter designed along the lines proposed in 1973 was built and tested in spite
the difficulties intrinsic to parallel systems, and partly due to specific
ons existing in Mexico.

The laboratory prototype of the AHR computer consists of approximately
chips (see table "AHR CHIPS"). Thesechips includemany of large scale integration
. which means that the AHR project represents, under contemporary classifica-

. a very complicated electronic design. This project, which demanded such a
amount of hardware work devoted to a unique goal, is new for IIMAS and, so

. we know, pioneer for Mexico. Because of this, the main goal of executing
educative. Without such "on the job education" we could never discharge
from big investments in computer imports. But this educational goal was
ique. AHR was a multi-purpose project.

Other goals were:

* to have a machine in which it will be possible to develop
software and parallel processing languages. Currently, the AHR
machine supports parallel pure Lisp.

* to explore new ways to perform parallel processing.

* For students to use this machine as a tool for learning and
practicing parallel concepts in hardware and software.

The AHR computer has the following characteristics:
11 purpose parallel processor.
the processors are heterarchical. This means that there is no "master"
ocessor, or controller. All the processors are at the same hierarchy level;
, there is no hierarchy.
hronous operation.
Sp as its main programming language. (Pure Lisp, without goto's, setqg's,...)
‘essors do not communicate directly one to another. They simply 'leave the
ork' that is needed to be done for the next processor without having to tell
t what is expected from it.
adually expandible. As additional computing power is needed more microprocessors
can be added.
o input/output. This is conducted by a microcomputer to which the AHR machine

ﬁf.erfences in square brackets are listed at the end of this report, but the AHR
reports and publications are listed in page 11.



ting system in software. There exists a normal operating system in the
essor, or i/o processor, but it is not considered to be part of the

e. Also, if by "operating system" we mean "system's resources

ator", then the grill or active memory, together with the fifo and the
tor, do form an operating system. Nevertheless, it is embodied in

The majority of the Lisp operations, as well as the garbage collector,
en in Z-80 machine language. Also, special hardware helps to handle
ctures, free-cell lists, and queues. The efficiency of the system
increased by use of "intelligent" memories, which can be accesed in
modes: "read", "write", "free this cell", "give a new cell", etc.
are implemented in hardware.

ine works as a slave to the general purpose microcomputer.

the purposes of the AHR Project were mainly educative ans scientific,
ttention was paid to the normal things that give good service to users
put facilities, utility programs, service routines, and so on) but which
11 known, on the other hand. We concentrated instead in ithe new

the computer, in its unique and novel parts, and in insuring that

leas will perform correctly.




A VIEW OF THE AHR LABORATORY

The picture was taken at the middle o4

1980. 1t shows the generat aspect of
the AHR Labonratony.




PROJECT ORGANIZATION AND MAIN WORK PERFORMED

Work organization of the AHR project was determined by the difficult
task at hand: to build and test the prototype of a complete computer system,
which appeared to be very complicated, due to its novelty and to the parallelism
of its execution. In the work organization, we faced a fundamental choice between
"wide" or "deep" working modes. The "wide" mode is understood as involving practical
work and experiments devoted to all parts of computer software and hardware. In
this case, we would have to build all parts of the AHR machine using modern and
fast components despite of its cost, complexity, difficulties in system building
and debugging. These 'drawbacks' of "wide" mode are compensated by the evident
educational advantages and the opportunities of increased learning.

In the "deep" mode, we would have to minimize risk and difficulties in
designing reliable but perhaps not the most modern and not the faster prototype.
However it could be used for a long time.

Taking into account our educational goal (See "Objectives of the AHR
Project" above) we chose the "wide" mode.

SHORT DESCRIPTION OF THE LISP MACHINE

A short description of the AHR (or Lisp) machine is given in some detail in
[Naranja 279, Naranja 280)] . It consists of a memories grill, passive memory,
variables memory and fifo; active units are Lisp processors or cajas ("boxes");
data circulation connections are the high speed bus and the low speed bus; and
the distributor (with its arbiter) and Input-Output processor which can be
regarded as administrators of the system.

All these parts are shown on figure "THE AHR MACHINE."

Functioning of the AHR machine is as follows [Naranja 280) :

Input: The user uses a terminal of the micro (I/0 processor) which is master of
the AHR machine. He uses a standard editor, disks and the normal operating
system of the micro. When the user is ready to run a program, he loads it from
disk into a part of the address space of the micro (which is really the passive
memory of the AHR machine. In this way, the program is loaded as list cells into
the passive memory. A signal from the I/0 processor to the AHR machine causes
Lisp execution to begin. Along with this signal, an address is also passed,
indicating where in passive memory the program to be evaluated resides.

Starting: At this point it is assumed that each Lisp processor already has had
its programs (the Lisp interpreter, written in PLZ and compiled into 2Z-80 machine
language, with routines that handle the special hardware, the mail box, the
memory access modes, and so on) loades into its private memory.

When the AHR machine has received the "start" signal, the distributor
makes available a node (called the RUN node) to some Lisp processor. This node
points to the program which will start to be evaluated.



BUILDING THE SOFTWARE FOR THE LISP PROCESSORS

Using a Zilog microcomputer as a developing
aid, the Lisp interpreter for the Lisp processors
is being developed.

ONE OF THE LISP PROCESSORS BY ITSELF

The Lisp processor (background, center) is being
debugged through an "umbillical cord" by the Zilog
microprocessor (right). In front, the keyboard
simulates commands coming from the slow bus.



The program (in passive memory) is then copied (i.e., transformed from
its passive-memory representation, which is in list notation, to its grill-
representation, which is composed of nodes) by more Lisp processors into the
grill (The amount of leaves or branches a program has decides the number of
processors that will be needed to help copy it; copying is done in parallel).
Nodes with nane = 0 are inserted by the Lisp processors into the fifo, so
that other Lisp processors will execute them.

NOTE: At a given time, there are some Lisp processors copying the
program while nodes with nane=0 are being evaluated by other Lisp processors.

Evaluation: When a Lisp processor is idle, it gives a signal to the distributor
indicating it is ready to accept more work. The distributor is very fast in
comparison to the speed of the Lisp processor. This is even more evident if
"complicated" Lisp functions (such as MEMBER or FACTORIAL) are coded in Z-80

. machine language, instead of "simple" Lisp functions, such as CDR.

Due to the large difference in speed, the distributor can have and
continuously keep working many Lisp processors. For example, if the distributor
is one hundred times faster than the (average). Lisp function, it could keep
one hundred Lisp processors functioning. Is it therefore worthwhile to have a
fast distributor.

The distributor selects (with the help of an arbiter) one of several

~ idle processors, and through the high speed bus it introduces a new node (taken
from the grill through the head of the fifo) into the private memory of the
processor (in a "mail-box" fashion). It then signals that processor to start.

The Lisp processor finds the node in its memory with all the arguments
already evaluated. The Lisp processor proceeds to perform the evaluation that
‘is needed by the node. For example, if it is LIST, and its arguments are (A B),
M and N, it then has to address the passive memory in the "give a new cell”
~mode. Such cell is given by a cell dispatcher (hardware attached to passive
memory). In this case three new cells have to be requested. The Lisp processor
 then forms the result: ((A B) M N). For this result the Lisp processor has to
store pointers into passive memory (in the new cells that have been obtained)
to (A B), to M and a pointer to N. It then stores the result (which is a pointer
to passive memory) into a special place ("results place") of its private memory.
:It then signals to the distributor that it is finished and is ready to accept
more work. The distributor will insert new work (another node with nane=0) into
the private memory of the processor, but it will also collect the result
((A B) M N) (through the high speed bus; see figure "THE AHR MACHINE") from the
"results place" in the private memory of that processor. The distributor will
~ store this result into a slot in a node in the grill. The address of this slot
~ in the grill is known to the (LIST (A B) M N) node, because each node points to
its father. Thus, the distributor has no problem in finding where to store the
result: this address is found also in the "results place", together with the
result ((A B) M N).

After all of the above is accomplished the distributor has to subtract
one from the nane of the father (which has just received the result ((A B) M N)).
If that nane becomes zero, then a pointer to the father is introduced by the
distributor into the fifo through its tail.

The last thing that the distributor does is to free the cell of the node
(LIST (A B) M N), so that this grill space can be reused.

Output: Finally, after the complete program has been converted into a single
result (a list, let us say) and deposited in passive memory, the AHR machine
then signals the micro (I/0 processor) also giving to it the address in passive
memory where the result --the final result-- is being stored. The micro makes
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access to the passive memory as if the passive memory were a part of its own
memory (since their address spaces overlap), and proceeds to the (serial)
printing process. Execution of the program has finished.

ORGANIZATION OF WORK

fs In 1973, A. Guzman (IBM Scientific Center), R. Segovia and M. Magidin (CIMAS-
i UNAM) conceived the idea of a special architecture working with pure Lisp. It
was not until 1976 (Naranja 133] that these ideas found their way in print.

In that report we can clearly see the fundamentals of the modern AHR machine.

In the summer of 1977, a computer simulation (J. Ludlow) proved that
~ the idea under which the AHR machine was conceived, had enough merits to be
considered further.

In 1978, more people were discussing informally an initial design of
the AHR machine: L. Lyons, L. Penarrieta, D. Rosenblueth, J. M. Ldpez Acevedo,
C. Velarde. The main conclusion was to start the AHR Project in January 1979.
~ For this reason, C. Velarde and D. Rosenblueth undertook a detailed simulation
- of the initial design (designers were L. Penarrieta, A. Guzmadn and L. Lyons,
among others). This simulation [AHR-79-2] gave enough encouragement to continue
further.

s In the middle of 1979, CONACYT sponsored our project, and serious
construction of the machine begun. We were fortunate to have been visited by
Prof. K. Norkin, from Moscow Institute for Control Sciences, who gave further
ideas about current design and underlined some theoretical tradeoffs between
speed and memory [ AHR-79-4, AHR-79-5].

The design took most of 1979; we used the methodology of "democratic
dictatorship": main issues of design were discussed between all member of the
project (D. Gomez, A. Kuri, M. Correa and R. GOmez joined then the staff of the
project); if an objective decision could be obtained by reasoning, it was adopted.
In case of doubt or if the tradeoffs or advantages of different alternatives were
not clear, the leader of AHR (A. Guzman) will take the decision. All decisions
were binding for all members, whether they agreed with them or not.

As a result of the design, a master file was formed. The results of
design can be found in [AHR-79-2, AHR-79-5] , as well as some resules of the
simulation.

The detailed design was divided then as follows:

_* C. Velarde. Left the project at this time.

* L. Lyons. Responsible for overall hardware design.

Responsible for design of Lisp processors ("cajas").

Responsible for design of "acoplador" (coupler).

* L. Pefiarrieta. Responsible for distributor, hardware and software versions

[ AHR-80-10, AHR-82-20]

* A. Kuri. Responsible for software distributor. Left the project after initial
design of software distributor.



* M. Correa. Design of window from input/putput processor

Garbage collector, software for input/output

processor, screen editor [AHR-81-18]

R. Gémez. Design of controllers for intelligent memories.

M. Correa. Design of Memories.

Dora Gomez.- Design of the Lisp interpreter and high level routines (in Z-80

assembly language and in PLZ).

* Adolfo Guzmadn. Leader of the project. Design of the low-level routines
(software) of the Lisp interpreter [ AHR-80-13, AHR-81-21]

Arbiters [AHR-82-22]

* D. Rosenblueth and N. Apodaca.

* ¥ ¥

* N. Apodaca.

Work proceeded during all 1980. More detail can be found in [ AHR-80-10]

During January 1981, we had our AHR machine constructed, in the sense that all
subsystems were put in the same cabinet.

By the end of 1981, the AHR machine was working [ AHR-81-16] , and the
project was drawing to a close.

The above work was documented in about twenty publications and technical
reports.

REPORTS AND PUBLICATIONS

A) TECHNICAL REPORTS FROM IIMAS

Series and Number AUTHOR TITLE YEAR
Naranja 133 Adolfo Guzman, A Configurable Lisp Machine, 1976

Naranija 200

Naranija 206

Naranja 214

Naranja 215

Naranja 216

Amarilla 15

Naranja 229

Raymundo Segovia

David Rosenblueth
Carlos Velarde

Adolfo Guzman

Kemer Norkin,
Dora Gomez

Kemer Norkin,
David Rosenblueth
Adolfo Guzman

Adolfo Guzman

Adolfo Guzman

AHR-76-1

The AHR machine for parallel processing.
First Stage. AHR-79-2 (In Spanish) 1979

Heterarchical architectures for parallel
processing of digital images. AHR-79-3 1979

A new description for data transformation

in the AHR computer. AHR-79-4 1979
Towards Optimization in AHR. 1980
AHR-79-5

Distributed Computing as an alternative of
the future. (In Spanish) AHR-79-6 1979

125 Projects and Theses Topics in Computer
Science (In Spanish). AHR-80-7 1980

Reconfigurable Geographic Data Bases.
AHR-80-8 1980



Naranja 271

Naranja 253

Verde 17
Naranja 251
Naranja 246
Naranja 282
(pending)
i, Naranja 279
Naranja 280

(Thesis ESIME)

Naranja 309

6

Amarilla 25

Naranja 302

Naranja 308

Luis Hugo Pefiarrieta paHR: A debugging tool for AHR programming.

A. Guzman et al.

A. Guzman,
D. Rosenblueth

Victor G. Sanchez

Adolfo Guzméan

(In Spanish) AHR-80-9 1981

The AHR Computer: construction of a
multiprocessor with Lisp as its main

language. (In Spanish), AHR-80-10 1980
Structures of Digital Computers. 1980
AHR-80-11

Reconfigurable information systems. 1980
AHR-80-12

A parallel heterarchical machine for high
level language processing. AHR-80-13 1980

Luis Hugo Pefiarrieta, A computer architecture for LANDSAT image

Luis Lyons

Dora Luz Gomez

A. Guzman et al.

Adolfo Guzméan

Nelly Gayosso

D. Rosenblueth

Adolfo Guzman

L. Penarrieta,
Nelly Gayosso

A. Guzman,
K. Norkin

Norma Apodaca

management. (In Spanish) AHR-81-14 1981

The Lisp interpreter of the AHR Computer.
(In Spanish) AHR-81-15 1981

Construction of a multiprocessor that handles
Lisp, (In Spanish) AHR-81-16 1981

A heterarchical multi-microprocessor
Lisp machine. AHR-81-17 1981

The distributor of the AHR machine, hardware
version (microprogrammable).
(In Spanish) 1981

A full-screen text editor for microcomputers
(In Spanish). AHR-82-18 1982

125 Projects and Theses Topics in Computer
Science, Third Edition (In Spanish).
AHR-81-19 1981

Alternatives for AHR distributor
AHR-82-20 1982

The design and construction of a parallel
heterarchical machine: Final Report of the

Phase 1 of the AHR project. AHR-82-21 1982

The arbiters of the AHR computer.
(In Spanish) AHR-82-22 1982



THE AHR COMPUTER

The picture shows the cincular structunre

of the AHR machine. Under the table, Zwo

Zikog 780 microcomputend: the 1/0 processor
[Regt), and the distributon, Vernsion 0 (ndight).



B) PUBLICATIONS IN THE SCIENTIFIC LITERATURE

Guzman, A., and Segovia, R. A parallel reconfigurable Lisp machine.
Proceedings of the International Conference on Information Science and

Systems, August 1976. University of Patras, Greece. 207-211.
Heterarchical configurable architectures for parallel digital
Présenté@e a4 1' I Salon Interna-

Guzman, A.
processing with high level languages.
tional de Informatique et Equipment de Bureau. Mexique 1979.

Reconfigurable geographic data bases. In Pattern Recognition in
Practice, E. S. Gelsema and L, N. Kanal (eds), 99-112, 1980, North

Guzman, A.

Holland.
Guzmadn, A. Distributed computing as an alternative for the future. Informitica
46, 23-32, Dec. 79.
A parallel heterarchical machine for high level language processing.

Guzman, A.
In Languages and Architectures for Image Processing, M. J. B. Duff and
S. Levialdi (eds). 1981 Academic Press. Also in: Proc. 1981
64-71. 8|CH-—1634-5.

International Conference on Parallel Processing.

Guzman, A. A Heterarchical multi-microprocessor Lisp machine. Proceedings of
the 1981 IEEE Workshop on Computer Architecture for Pattern Analysis
and Image Database Management. Hot Springs, Va. 1981. IEEE Computer Soc.

81CH-1697-2.
Guzmdn, A., Lyons, L., et al. Construction of a multiprocessor that handles
Lisp. Part I: THeory of operation of the AHR machine. (In Spanish)

Memorias del VII Congreso de la Academia Nacional de Ingenieria. Oaxaca,

Oax., 1981.
A., Lyons, L., et al. Construction of a multiprocessor that handles
(In Spanish). Memorias

Guzman,
Lisp. Part II: Architecture of the AHR machine.
del VII Congreso de la Academia Nacional de Ingenieria. Oaxaca. 1981.
Guzmédn, A. A multi-microprocessor that executes pure Lisp in parallel. Submitted
for publications to IEEE Transactions on Computers, Dec. 1982. Special
Issue on Parallel and Distributed processing.

IEEE Computer Workshop

Peflarrieta, L., and Lyons, L. An Image processing system.
on Computer Architecture for Pattern Analysis and Image Database Managmt.

Nov. 1981. 293-300. IEEE Catalog 81CH1697-2.

C) PUBLICATIONS IN NEWSPAPERS, MAGAZINES AND PERIODICALS OF GENERAL CIRCULATION

"Informacidn Cientifica y Tecnoldgica" Julio 1, 1981
COMPUTADORA MEXICANA DE PROCESAMIENTO EN PARALELO. pp.42-43.




"Gaceta UNAM" Agosto 20, 1981
Se disefa y construye en el IIMAS
PRIMERA COMPUTADORA DE PROCESAMIENTO EN PARALELO Y DE PROPOSITO GENERAL.
PP. 14-15.

"Novedades" Oct. 28, 1981
IPN Y UNAM DESARROLLAN NOVEDOSA COMPUTADORA. p 21

"Computerworld" Oct 12, 1981 pp 13-19
LA COMPUTACION DISTRIBUIDA COMO UNA ALTERNATIVA DEL FUTURO.

D) PRIZES AND AWARDS

PREMIO "CONFERENCIA ALEJANDRO MEDINA", Morelia, Mich. January 1982.
Prize given to Adolfo Guzmdn "for his contributions to the Computer
Science field". During the award ceremony, the AHR project was
specifically mentioned.

"Gaceta UNAM" February 8, 1982. pi 5
FUE OTORGADO EL PREMIO "CONFERENCIA ALEJANDRO MEDINA" 1982.

E) THESES DIRECTED

L. Peharrieta. Multiprocessing based in a memory shared by n processors.
M. Sc. Thesis; School of Engineering. National University of Mexico.
1978. (In Spanish)

N. Gayosso. Distributor for the AHR computer, in hardware, microprogrammable.
B. Sc. Thesis, ESIME, National Polytechnic Institute. 1981. (In Spanish) .

Victor G. Sanchez. General Information System with reconfigurable structure.
M. Sc. Thesis, IIMAS, National Univ. of Mexico. 1981. (In Spanish).
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WEAK POINTS 1IN PROJECT ORGANIZATION

In work organization within AHR, we can mention some drawbacks which caused a
reduction in results. The main ones were:

* Weak attention of IIMAS executives to the vital needs of some essential
members of AHR. This produced undesirable turn over of people during AHR
execution.

* It is a bad practice to have research assistants (students) without sa}ary
for a long period of time: for some reason, they tend to leave the project.
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* Loading AHR members with very time consuming additional projects and duties.

* Absence of redundant personnel and resources. This redundancy is absolutely
necessary, due to the presence of some random and unpredictable obstacles in
such time-long and complicated project. It would have been nice to have had
some surplus resources (manpower, computer circuits) available, to better meet
these unforseen obstacles.

* Insufficient attention to design methodology. This caused, in the beginning,
wrong estimation of man-montls for the project, as well as the extra man-months
for debugging and fixing the machine.

Finding these drawbacks in project organization is in fact, part of the
educational goals of AHR. Because of this, we include in Appendix I of this
report a summary of our understanding of "good organization" in AHR-like projects.
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THE USER CONSOLE

In the foreground, the usen console (G).
In the background, the AHR machdine.



MAIN -RESULTS

Using new principles for computing process organization, the design
of the AHR computer was finished, and a working prototype of the computer was
built and checked. As a prototype, the AHR computer was not destined for normal
use, but for verification of main ideas. It was completely sufficient for this
purpose, and it became "living proof" of the feasibility of AHR premises.

From the very beginning, it was felt that our way to organize the
parallel work of constituent computers in a multiprocessor system [Naranja 13ﬂ
promised to be very fruitful and, at the same time, it was very doubtful. These
doubts existed for the lack of concrete experience in the construction of such
systems, and for the novelty of the design. The only way to solve these doubts
was by construction of a real computer. With the conclusion of the AHR project,
we now know that this is indeed a practical way to interconnect several machines.
These machines may or may not be of the same type. These machines may or may
not be close to each other or geographically distributed. This will be explained
in more detail in part "DIRECTIONS FOR FUTURE RESEARCH."

* It was shown (by construction) that it is possible to build an entire parallel
computer in Mexico.

* We can trust the simulation methods developed, because they were checked in
practice and showed sufficient correspondence between simulation and measurements.

* Enough data was obtained to estimate the possibility of competing or not competing
with other commercial computers.

»

Practical estimations were made for the possible costs in producing AHR-like
computers. This is absolutely necessary for determination of best ways to use
the scientific results from the AHR project.

»

Practical data about complexity of different parts of the computer (see table
"AHR CHIPS"), and about time delays in different parts of the computer were
obtained [AHR-80-10].

* The AHR design is very flexible and it gives essentially a well designed and
practically checked concept about interconnection and parallel work of many
homo and heterogeneous systems.

»

We gained considerable experience in hardware and software during this project.
In hardware,

* experience in high speed digital electronics.

practical experience in building microprocessors modules and software.
shared access to common memories.

spies (which make unnecessary input/output with the user)

windows which map one address space to another

how to make a smart memory, with "sensible" addressing modes

* ¥ ¥ * *
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arbiters and acopladores (couplers)

fast data loading using "mail box" techniques.

broadcast of data to all Lisp processors (cajas).

How to go from a piece of complex software (the distributor in this
case) to a piece of hardware that executes the same function.

In software,

* * N X X ¥ ¥ *

recursive programming for microcomputers.

programming in the presence of parallel computation.

programming for a purely applicative language.

garbage collection helped bv special hardware.

multiprocessor svstem debugging.

experience in applicative programming.

synchronization of applicative processes.

we gained experience in simplifying the software, in particular
resource management software which takes care of computation control
("bureaucratic software"). This software was later replaced by
hardware ("bureaucratic hardware"), and we also gained experience in
the production of hardware for computation control.

After this project, the members of IIMAS acquired a practical background
in the design and construction of digital computer systems, as well as a feeling
of participation in a leading research avenue. In addittion, the AHR project
triggered the formation of a new department in IIMAS called the Computing
Systems Department, as an affirmation of qualification growth.

ENDING PHASE 1 OF AHR.

The goal of Phase 1 of the AHR project was to construct a prototype of

a computer

designed using AHR principles and ideas.

* The machine was built.

»*

It operated successfully, according to its design.
The machine was not sufficiently reliable for sustained (several
hours) operation. It failed frequently, due to our insufficient
experience in some technological aspects of its construction, such
as connections, weak contacts, short circuits, and reflections of pulses.
Since the prototype proved success in the design, and since the
machine was not able to support practical applications, it was decided
to close Phase 1 of the AHR Project.
As discussed in the section "Directions for future research and applied
work, Phase 2 of the AHR Project should tackle the important problems
of
* building a realible (high mean-time-between failures)
version
* Improving further the design, for instance by incorporating
distributed computation.
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CRITICAL ANALYSIS OF VERSION 1 OF THE AHR  MACHINE

. As a whole, AHR Version 1 met the strong requirements imposed by the

nal approach, and campletely verified the theoretical premises given in
1331 . The organization for parallel work in hamo and

In practice however, the necessity to obtain concrete results given
Tesources motivated the members of AHR to make some simplifications to
al design. 1In other words, those parts of the design which were not
1l for checking the main idea were eliminated at the cost of possible

nercial applications of the AHR machine. Specifically, the initial
S simplified in the following way: elimination of any traditional
except Lisp; elimination of traditional input/output facilities;

of large system software overheads such as complex utilities and
routines.

BHR Version 1 was built as a tool for checking the special properties

' language for performing parallel computation [ Naranja 133, AHR-81-17].
puter proved both the suitability of Lisp for parallel processing,
venience of our hardware-software architecture. 1In addition, it

our initial guess that it will be extremely easy to Program in pure

t the programmer having to worry about the parallel execution of
it "executed in parallel" in a natural manner.

> generalize these results,
le. We may think of a Li

of a function L working on an initial data X. In general, this

is a set of lists of arbitrary length and arbitrary nature (letters,
'« Function L is written as a superposition of Lisp primitives or
ated mathematical constructions using simple rules. Since a Lisp
its result are lists, Lisp function superposition always has a tree-

this tree are Lisp primitives and the branches

of the function evaluation (outputs)
ta for subsequent calculations (inputs). For some functions, all

S are known at some time (the function is ready for evaluation),
they permit this function to be evaluated. Aas a consequence of
other functions will become ready and may be evaluated.
only signal or condition for function evaluation is the readiness
S. This readiness can easily be checked during the replacement
's name by its value. The checking operation is independent (each
do the checking by itself) given the structure of the function
the AHR system, the main rule is that any ready function must be
giving rise to the phenomena that the computation in the system
and is self-synchronizing. The lesson gained from this experiment
er takes on the description of a computation using the Lisp
automatically rids himself of synchronization problems.

we need to look at how our Lisp computer
SP program as no more (and no less!) than



'TY BETWEEN PURE LISP PROGRAMS AND TREES OF HARDWARE COMPUTING STRUCTURES

To begin, let us underline the fact that pure Lisp corresponds to
designs in hardware computational structures (hardware that computes

om inputs) which have no feedback. For example, if we match the two
alculation of Algebraic Expression Using Hardware .." and "Lisp program
", we can demonstrate this similarity. The non essential differences
A using "multi-input" multiplications in Lisp.

It is well known that this type of hardware configurations permits
ion of any known computer problem, if the number of computational
structures is unbounded. In practice, however, the purely general
 limited applicability for they require a very large amount of
elements. The same is true for Lisp programs and Lisp computers.
S may contain a very large amount of constituent functions especially
tational process. However, for a Lisp computer, this drawback is
fatal: each constituent function requires only a few words in memory
» out to be very cheap. Consequently, it is possible to write very
Despite the fact that pure Lisp in a Lisp machine requires little
each constituent function, it is nevertheless very desirable to reduce
of the programs given specific and "real world" problems.

By using feedback in hardware and reconnecting used computational
places in which the computational process has not started yet (in
ational elements, the complete set of evaluated arguments does not
difficulties mentioned above are annuled.

related issue to number of elements necessary for carrying out a
is that of what determines the number. That is, the number of
ements is not determined by the length of the program, but by the

blem. In this way, theoretically, it is possible to write
arbitrary length, which in practice means very long programs, and
cated hardware computer structures.

precisely, without reducing the computational speed, we can
which demand more computing elements that there are in the

More over, in some recent work (K. Norkin, "Specialized hybrid

¥ computation and control"®--in Russian--) it was proved that for

, g structures, optimal degree of parallelization is not always
maximum possible degree. There are some cases known in which the
parallelization degree does not produce any reduction in speed.

in some cases evaluation results are not immediately consumed, and
8, we can delay some computation without increasing total time. In
cases, using performance cost criteria, it is possible to reduce the
‘allelization despite some increase in computation time. For :-
maximum degree of parallelization can be reached only during a

of time. That being so, the optimum will move to lower degrees.
proach is valid for optimum memory size and optimum number of Lisp
("cajas") as in AHR. In the current design of AHR, the number of
nowhere near the optimum in the sense of [AHR-79-5], but it can be
ed in the future.

)
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1 of these findings were not fully applied to Version 1 of AHR
‘reduction. It is now our purpose to describe how additional memory
be achieved. It seems that the only possible obstacle for the

e of the principle of feedback and reconnection of computational
the sequence of node copying that the current design now has. This
rformed from the root of the tree towards its leaves. That is why
nodes will appear in the grill near the end of a copying operation,
se, after their parents.

le to this copying approach, the entire program must reside in the
fifo. This demands memory, and (more important) excludes the

of solving problems larger than the grill. It seems very interesting
possibilities of solving such problems, as follows.

¢y ALLOWS MEMORY REDUCTION

e current design of AHR, node copying and node execution are

two instances of the same type of work to be performed. These

are similar in the sense of its executing rules, and are performed
As it will be shown later, this similarity can be generalized. It

e redundant data flow: nodes which have been copied from passive

o nane=0 are ready for evaluation, and there is no sense to send
Tet us look at the following picture:

NODE, NANE =0
x—-x-—x-—x—-x——x-—x-—-x-—x-\$

3"‘4-
LIST NANE#0 @ NANE = 0
REPORT TO
FATHER

NODES READY FOR EVALUATION (NANE=0)
DIAGRAM OF CURRENT DATA PATHS

With -x-x-x- the redundant data
path described in the text is
signaled.

list notation resides in passive memory. Sequentially, beginning

, each list goes (irrespective of its nane) to a free "caja", and
Independently of its nane, this node is spit out of

and is sent to the grill (if nane # 0) or to the fifo (if nane = 0).

is executed under common rules: from fifo to "caja", from "caja"



ut bureaucracy"; and its father stays in the grill or is sent to fifo,
on its new nane. It is evident that for nodes with nane=0, the

on "caja"-fifo-"caja" is useless (The redundand path for this cycle
with -x-x-x- in the figure). The percentage of "ready for evaluation"
current sequence of copying is rather small, and that is why the
implification used now in AHR, which is responsible for this redundant
, is tolerated. But if we assume {the reality of this assumption
slained later] that we could find some ways to carry out program

rom the very beginning of the copying process, the percentage of

for evaluation" nodes will increase, and the drawback introduced by
path will become more visible.

A SPECIAL CASE OF DATA FLOW

e drawback mentioned above is not the only source of redundant data
Cases frequently appear in real programs in which the father has
as a son, and the input variables of the father are the output
his only son. As example of this is the operator "DO". Existing
treats this case in the standard manner, producing redundant data

overloading the grill with redundant relatives. It is now easy
rculation Improvement later in this report) to see how to change
are to get rid of these useless relatives.

OF AHR COMPONENTS

ent AHR design was devoted only to the Lisp system and the obvious
AHR to systems other than Lisp were not explored. However, if
little bit as to the nature of these applications, several

further work become evident. For example, if we look at hardware

es, we can easily see than any part of this hardware may be

other circuit, whether it be analog, digital, hybrid, or even a

al purpose computer, assuming that we satisfy input/output conditions.
the same is valid for pieces of Lisp code, and for pieces of the

IDE SYNCHRONIZATION |

her area of investigation has to.do with the possibilities of

n of computing processes with other processes in the environment
ter, or with processes inside the AHR system. On the other

AHR Version 1 design, the approach was exactly the opposite: the
liminate completely any artificial synchronization. The current

this goal to be attainable. However, in sompe practical

such as in real time control systems, it is necessary to synchronize
s with a real time clock or with other events.




DEBUGGING A LISP PROCESSOR

The software of the Lisp processor (1)
shown 48 being debugged from a 280 --
michoprocessdon (D) 5
through an "umbillical cord"(UW),
(J) 48 zthe Zine to the TV spy (A),
grom the Lisp processon.



BILITY

~ Included in the initial concept of the AHR machine was that of
ability. However, in the first prototype version of AHR, we

e possibility of reconfigurability and made the cajas universal.
ly, this simplified the software, required a single fifo and

the design of the arbiter associated with the distributor. The

not inciuding the feature of reconfigurability was that the "caja's"
‘increased and, at the same time, that it very much limited the
primitives which can be used in a real program. The fact that
bility was not included in AHR Version 1 does not mean that it is

f further attention and research. Any further effort should include
ntioned generalization of node definition.

ersion 1 of AHR is not well balanced. The size of its memories, the
jas" (Lisp processors), and the speed of the data exchange do not
is was due to the fact that such balance could not have been known
but as a result of the construction of the first prototype, we now
ugh data for achieving the desired balance in future designs.

POINTS

‘handicaps that we have mentioned up to now are structural in nature.
‘e engineering drawbacks too. These will be mentioned briefly and in

. One of the engineering weak points is that the AHR machine has
amount of interconnection wires. For example, each "caja" has 290

- the rest of the AHR machine. The well known ways of reducing the
ctions by multiplexing, time sharing, etc., were not used. Another
at the decomposition of the computer into its constituent printed
was not done in such a way as to make each card simple and therefore
And finally, because of the random collaboration of many people in
the interconnection system of the computer becomes cumbersome.

of the drawbacks mentioned up to now* do not invalidate the main
project. Moreover, we have some proposals to eliminate them or at

their effect. Most of these proposals do not require making any

in the hardware, but we prefer to expose them later in the report,**

.et in a final report to include for completion all weak points and
today, it is easy to know and to remember them. As time passes, our

ng of them will become more fuzzy, less clear and eventually they will
ly, forgotten.

them because of their different natures. A final report should also
osals for future realization that render the design more complete
to perfection.
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In the next section, we will only trace the possible solutions,
‘that further work will be done for improving the AHR design and ideas.

However, before we go to the next section, we would like to mention

ing the AHR machine design, we did not preoccupy ourselves with issues
_ production. This is not a drawback of the design, but we should,

sless, devote later in the report same space to this issue.



Paradoxically, despite the fact that we believe in the high efficiency

wide range of applications in the future of AHR-like machines, the particular

lementation of AHR ideas or concepts in terms of a machine which processes

‘Lisp and consists of units which are not useful by themselves does not have
iciently large commercial market to warrant mass production. Even in the

ed States, home of Artificial Intelligence, the demand for such machines

s between 10 or 20 machines a year. In Mexico, the demand may be 1 ox. 2

hes every six years. It is therefore obvious that it will never be profitable

oduce Lisp machines on a mass production basis in Mexico, unless of course,

Federal Government decides that areas of research in which Lisp machines are

ssary must be heavily funded. But a more realistic view of the situation

11d cause us to define the problem as to what to do with the results of the AHR

search in terms of finding the proper decomposition of the whole computer into

ate units, which in turn, can be sold separately. The market would no longer

that of Lisp machines, but of parts that have commercial, industrial or

siness applications in a much larger market. It goes without saying that if
need arose, the parts could be assembled into a Lisp machine. Each of these

parate parts will then be (a) useful by itself, and (b) useful as component

a Lisp machine.

If we solve this problem of decomposing the AHR machine into commercially
able parts, we can profit from the fact that the AHR machine is not only the

L st computer built and designed in Mexico with same original ideas, but also

that it demonstrated new and rather efficient protocol conventions for data exchange
between separate parts working in parallel. (*?

Without going into details, we can describe an AHR computer as being made
g‘fup of several microprocessors, three types of memory devices, a monitor system, and

~ a data exchange system. Let us look at the characteristics of each one of these

' components in terms of what they have in common with standard computer components,

' and also in terms of their uniqueness.

The microprocessor's activities in an AHR computer is as follows. The
normal state of the processor is that it is waiting for work. It holds in its memory
the necessary programs for calculation. The other parts of the AHR computer may
then cause the microprocessor to begin a computing process, by sending it some data
in terms of a node from the fifo, or a list from the passive memory. The data is
passed to the microprocessor with all of the necessary information for computation:
program name, pointers to input variables or the input variables themselves, and
a definition of a rule for using the result, which in turn, may be a list. It should
be noted that the function name is actually the starting address in program memory,
and consequently, each microprocessor can be replaced by almost any mass-produced

srmmmem

(*) That is, we can both sell the AHR computer as a whole, or sell each of its
parts separately, since they are useful by themselves.



aring the AHR microprocessor with a conventional microcomputer, we notice
presence of an "acoplador" (coupler). This acoplador permits data to be
changed very fast. Such speed, which is vital for Lisp machines, is also very
ful for conventional systems, where data produced by one computer should be
dily available to others. 1In addition, the AHR microprocessor and the micro-
puter differ in their memory access logic. AHR's memories are smart and can
e accessed in a variety of useful modes [AHR-80-10, AHR-81-17]. But these

ood access schemes also seem to be very useful for most standard applications.
herefore we may conclude that all "specific" AHR designs of the microprocessor
e also of "general" use.

All of these properties of the AHR machine are desirable in any
application, and because of this, we must realize that just because we use the
caja" in a Lisp machine, does not imply that some of its properties are
compatible to commonly used computers.

We can also use ROM for Lisp programs resident in each Lisp processor
each caja), but this does not seem appropriate even for Lisp calculations,
_because by rewriting the content of program memory, we can produce reconfigura-
bility very easily. The situation will change considerably if we are thinking
of manufacturing our own Lisp chip, which is the path chosen by MIT's SCHEME
chip.

Memory units of the AHR computer perform specific tasks. Nevertheless,
it is evident that all of these functions may be performed using memory with
"intelligence" (a variety of reading and writing modes). It is vital for a Lisp
machine to have high speed read/write operations and data transmission, as well
. as in many other applications. Thus, an "intelligent" memory which is necessary
. for Lisp machine can be profitably used in general applications.

AHR monitor computer (the "input/output" processor) is a conventional
Zilog MCZ microcomputer.

So, "cajas", memories and the monitor system are units that can be
produced independently as useful "everyday" computer devices, as well as constituent
Lisp machine devices.

TRANSFORMING CONVENTIONAL MULTIMICROPROCESSORS INTO AHR MACHINE

Taking the observations above, we can outline two possible approaches
for applying the technical results of the AHR project.

The first approach is taking the new ideas developed in AHR and applying
them to conventional multimicroprocessor systems. A typical example of such a
system is shown in Figure "Conventional Multimicroprocessor System". It usually
consists of one monitor camputer, a number of multimicroprocessor boxes each of
which has its own memory, and a common memory. This last memory usualy possesses
some intelligence to solve access comflicts and avoid time delays. A common
difficulty in building this system is assuring a fast data exchange between the
multimicroprocessor boxes and the common memory. In AHR, this problem also exists.
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ever, it seems that the application of AHR ideas may be possible through the
le expedient of modifying the multimicroprocessor software, and will help
e the mentioned difficulties. More over, it seems that even for SIMD
ngle instruction multiple data) computers, the application of AHR ideas may
profitable. This is in fact possible because in Lisp there exists a homogeneity

een programs and data. "Multiple data" may mean that we send as data different
ting point addresses (That is, it is similar to performing different instructions).

RIBUTED AHR-LIKE SYSTEMS

In general, the above approach seems to be useful. For Mexico however,
has one essential drawback. The systems become large and make it difficult to
~constructed from nothing. The initial investment for carrying out such a

ject cannot be repaid for several years. Consequently, another approach seems
ceferable for Mexico and is illustrated in figure labeled "Distributed AHR-like
/stems. "

This last system consists only of two different elements:

= A PC (personal computer) which is supplied with interface cards A (acoplador,
or coupler), a user terminal and, if necessary, several "extra" devices.

= SM (smart memories).

e interconnection system provides fast exchange of data. It can be built using
axial cable or fiber-optic connection. Some of these PCs may exist in the

stem like slave constituents without input/output facilities. The rules for
data exchange and interconnection of devices must be similar to those of the AHR

Each PC has three modes of work: user service, systems service as a
systems service as a client.

In user service, each PC ignores system signals or, even better, time-shares
its attention between user service and system service as a slave.

In systems service as a client, the PC sends a work description in an AHR-
like way to one of the smart memories, and them becomes a slave to the
system. Data is sent (through the use of pointers) inside the node sent

4 to the smart memory. Results are routed back to this PC, which then prints
b them to its user through its private terminal.
£

|

= Systems service as a slave. When a user does not interact with his PC,
the PC automatically becomes a slave of the system. In this mode, it waits
for an order from the system. The order has the form of a node, is executed
by the PC, and its result is sent to the proper place. These nodes may be
similar to AHR nodes, or may be or a more generalized form. We will describe
this general form later. But for the time being, we can say that these
generalized nodes may produce some specific new desired performance of the
PC, such as printing some output, loading the private memory of PC with new
data (i.e., new programs), etc.
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In building such a system, we also have to design the rules of

‘or the resources used. These rules must force the user of PCs
computers) to make them available for system work (to place them
mode) for as long as possible, since in this way his personal computer
used by other people, through the distributed system, and in this way
money" from the system.

The applications outlined above of the results of the AHR project

t appropriate for Mexico because each part of the system can be

and sold separately thus providing a way to access a very large market.
eness, we will be thinking in the rest of the report only about these
ations.

ARCHITECTURE USED AS A TRANSMISSION NETWORK

A very good property of these PC (personal computers) is that,

of hooking to them ordinary input/output devices (when they are inter-
d to form a distributed system), we can connect rather complicated

t, such as large computers. Our network of PCs now will work as a
exchanger among several large computers. Each microprocessor could
otocol translation, error recovery, retransmission, package assembly
ssassembly, etc. In addition, each microcomputer (if there is cpu time
ble on it) may be used as a personal computer, as already mentioned above.
dition, the whole community of PCs (or, rather, the idle PCs) may execute
programs: it is a distributed AHR computer.

CIRCULATION IMPROVEMENT

In future projects related to AHR, it will be necessary to pay more
tion to the analysis of data circulation than we have up to now. This is
acially true with regard to those aspects that have to do with the sequence
loading nodes in passive memory, in the grill and in the fifo. The section
Critical Analysis of this report seems to suggest that it is more efficient
to perform the loading of nodes in a sequence that is opposite to that used in
AHR, that is, it will be more efficient to load them from the leaves to the
root of the program. This change seems feasible and, not only that, we may
consider using the proposals described in [Naranija 214]. In that cut-line
. representation, each string contains pointers to the sons and a pointer to the
| father (it seems that many other representations are also possible). Consequently,
the nodes can be sent in any desired sequence to passive memory and to the grill.
| Moreover, it is possible to select the fathers in accordance with the sons that
. are sent to passive memory, requiring that only part of the computing program
| resides in fast memory --and we may begin its execution immediately. This is
similar to vxrtuallmemorles found in many computing PREDICTIVE PAGING
systems. However, in our system there exists the --
added advantage that the AHR system sends to the --
grill (where the nodes are evaluated) nodes which are guaranteed to be evaluated
in predictable time in the future. Thus, we have a scheme of "predictive paging"



or "predictive swapping", because each node "knows" that his father should be
evaluated soon after him.

In addition, it seems useful to generalize the definition of a node
in AHR. For example, we can permit some nodes not
to have a real father. And we can have a node that GENERAL NODE DEFINITION
is considered as "no operation." Also, with refe~
rence to figure "Improving Data Paths in AHR", when the PC is working as a client,
it sends nodes to the "smart" memories (which are equivalent to passive memory)
in a sequence that guarantees that the nodes appearing in passive memory are
ready to evaluate.

This process of sending nodes is done continuously, and at the same
time, passive memory starts to send nodes to the "cajas" for their transformation

The transformation is performed as in AHR Version 1 except that, if
the transformed node has nane=0, it does not leave
the caja, but is evaluated immediately. Its value HOW TO AVQID,«SUPERFLUOUS
is sent to its father. If the father exists in the CIRCULATION OF NODES
grill, the result is Processed in the normal way.
However, if the father does not exist, a new node with the function-name "no
operation" is created with nane = 0 and is then sent to the fifo. Aafter being
in the fifo, the node goes to the caja, then to the fifo again, etc., until its
father appears in the grill.

The sequence of copying just described guarantees that the father will
exist in the grill in most cases, and the dummy operation is necessary only in a
few cases in which the father does not exist.

HOW TO PERFORM

There are other ways to guarantee the ITERATIONAL PROCEDURES
existance of the father. wWhen the node come --
out of the fifo, it already has a pointer to the father, which means that we can
check the presence of the father immediately (as soon as his son comes out of fifo)
and , while the son is being evaluated by a caja, another caja could use that time
to ensure the existence of the father. BAll of this does not require any change in
hardware, but it does require reprogramming. If the father exists in the grill,
further flow is as in Version 1. Tt is very important that we allow the pointer
to the father to be "IBID". 1In this case, the node stays in the caja and the
calculations are repeated until some condition becomes true. When this happens,
the "pointer to father" replaces "IBID" by a pointer to its true father (the true
father pointer was stored in the caja, outside the node, while the iteration was
in progress) and the iteration ends. TIf we make this specific pointer to father
to be a function of computational results, we can very easily perform most of
iterational procedures, reducing in this way the need for duplicating similar
fathers in the grill.
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LIQUID FLOW ANALOGY

To clarify our proposals, let us use a chemical-hydraulic analogy.
We will consider data as a suspension of different substances in a liquid. Each
substance represents a particular type of data. For example, one may represent
nodes, and another some final results of a node evaluation (that is, values).
We can consider calculations as similar to chemical processes which transform
nodes substances to walue substances. To illustrate this analogy, we use the
figqure "Liquid Flow Model For AHR". 1In it appears the "necessary chemical
equipment" such as tanks, filters, reactors, pumps, cocks, valves and mixers.
We arrange the cemical processors to produce substances which are equivalent to
final results, that is, values.

By inspecting the diagram, we can see the analogy with different parts
of the AHR computer:

{ Tank USEM = user memory. Contains the data which is in the user's PC
| (personal computer).

Two tanks FAPA = fast passive memory and NOCO = "not copied yet", both
represent fast passive memory. We need two tanks to represent
data copying. In the AHR machine, we duplicate data in the
process of copying, but in the liquid flow model, it is
impossible to duplicate liquid. 1Instead, use "double quantity"
of the liquid by putting it in two tanks: one to reflect data
actually residing in fast passive memory, and the other to
reflect data which is in passive memory but not yet copied.

»

Tank SLOP = slow passive memory. Represents passive memories which are disks,
tapes or similar secondary storage devices. The liquid arrives
to this tank via filter VFL3 which removes substances from the
liquid coming out of above tank FAPA. If some of the substances
are not extracted by the filter VFL3, then the same substances
are brought dowm from the "not copied yet" tank NOCO through a
special slanted tube. Naturally, it is not very intelligent to
send a large amount of data to slow memory before they are copied.
Consequently, the fact that some substances are not affected by
VFL3 will guarantee zero flow through the tube that connects
NOCO and VFL3. 1If necessary, PUMP1 returns these substances to
FAPA and NOCO but they are filtered by VFL1 first. This last
operation represents the addressing of the contents in slow
passive memory.

Tank FIFO = fifo. Represents the data in fifo. We assume that this tank is
long and thin, and suppose that PUMP2 has an elastic input tube
which is always touching the liquid surface. The long and thin
characteristic of the tank guarantees the first-in-first-out
effect of the liquid.

Tank PARA. It represents the grill of the AHR system.



VFL2 FIGURE 7 "LIQUID FLOW MODEL FOR AHR"

Data circulation in AHR computer

COCK can be represented by a liquid
flow model.
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Different filters have different permeabilities to substances. This is specified
as follows:

VFL1 Variable filter which does NOT Stop substances that are to be returned to
the FAPA tank, as explained above. Therefore, its permeability to these
substances must vary durying time.

VFL2 The permeability of this filter on substances also depends on time, and
it determines the Sequence of substances being loaded into the system,
such as for example, from the leaves to the roots.

VFL3 Its effect on the liquid assures the removal of substances in FAPA which
are redundant. This redundancy is due to the fact that they have already
been copied.

VALU It presents no obstacle to those substances which correspond to variables
in the AHR system.

NOIB Does not affect those substances which correspond to nodes with nane # o,
and with a pointer to a father not equal to IBID (both conditions should
hold).

NAZE Does not affect nodes with nane = 0.

FYES and FNOT. Does not affect substances corresponding to nodes which have
fathers that do and do not exist in the grill, respectively.

PURE It stops everything except liquid.

In the figure, there are only two types of reactors, which transform one substance
to another.

CAJA It produces substances which represent either nodes or values, that is,
final or intermediate results.

MIXE Guarantees the transformation of additional necessary substances into pure
liquid. The reason for MIXE is to compensate for the initial substances
which disappear after reactions, and for assuring there is a new amount of
substance in the "not-copied-yet" (NOCO) tank. MIXE is also necessary
because of the impossibility of substance duplication.

VALV This valve prevents incorrect flow of liquid. It does not affect anything
in the system; it ensures unidirectional flow (from top to bottom),
preventing the liquid pumped by PMP2 to enter tank NOCO.

COCK This spigot is necessary to stop or start liquid and substances flow.

Before simulation, all tanks are empty. Then the user fills his tank,
USEM, with liquid and a proper mixture of substances. Then he opens the cock



e liquid flows and fills FAPA and NOCO. The tank FAPA holds the liquid.
quid from NOCO flows to "cajas", and in those "cajas", reaction begins.
substances will stay in cajas until they become variable-substance or nodes
nane ¥ 0 and pointer to the father # IBID. The products of this reaction
through filters FYES and NOIB to the tank PARA (which simulates the grill)
hrough the filter FNOT to the FIFO. If FIFO is not empty, the pump PMP2
rise substances back to the "cajas." At the end of the simulation, the
USEM and NOCO become empty and all of the substances in the grill PARA
replaced by variables-substance. This is the end of the reaction.

This analogy, as almost any one, is not perfect. But it seems to us
close to reality, and very flexible. It can be used as a background
future simulations and, in particular, it can help to reach proper balance
een different parts of the AHR computer.

IBILITIES ARISING FROM DATA CIRCULATION IMPROVEMENT

v The data path innovations that have been proposed in this section may
low the following possibilities:

A very big effective size of passive memory. This is possible because we can
use a hierarchy of memories of different speed (such as fast ram; disks) to
help passive memory ~--more to the point, they "become part" of passive
memory (they enlarge it)--. We already mentioned that this kind of virtual
memory is especially effective in AHR because prediction of the nodes that
need to be evaluated next (and, therefore, need to be brought to fast passive
memory) is straightforward.

. Reducing the grill and fifo. In this case, most of the nodes residing in these
memories will be nodes that are close to be evaluated.

F3. Synchronization with a real clock or external events. To achieve synchronization,

i we can use the "IBID" father and replace it by a real name of a father if a
time value or external event satisfies a given condition.

This is "busy waiting." All other types of waiting: hardware waiting
(interrupts), monitor waiting, semaphores, can be performed by using specialized
dummy "waiting nodes," which entails only periodic checking of the predicates.
The process of "busy waiting" actually uses the universal caja as if it were
specialized hardware. Therefore, when such use is constant, there are cases in
which it seems profitable to replace the universal "caja" by simpler hardware
which does the waiting.

"Busy waiting" cajas or similar hardware can also be used as "daemons"
for the synchronization of processes, including application processes, as is
described in the Thesis of Rafael Dominguez "Daemons in the administration of
a computer center", UPIICSA-IPN, 1980. (In Spanish).

4. Execution of iterative and recursive processes. As explained above, this can
be achieved by using the "IBID" pointer.



uNlCATlNG THROUGH THE LOW-SPEED BUS

nira Duke uses a key board to Lssue

mmands to the Lisp procesdsons through
e Lowspeed bus (Section 11), normally
nnected £o the 1/0 processon.

ONE LISP PROCESSOR

One of the several Lisp processons (1)
0f the AHR machine.
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f;GENERALIZATIONS OF THE LISP MACHINE (AHR) FOR OTHER SYSTEMS
“AND RETURN TO RECONFIGURABILITY

4 The AHR architecture permits the execution of programs written in languages
@other than Lisp with very little changes in hardware. In fact, to guarantee this,
| we need only to replace one string in program memory by another. For example, in
. a PC, a program string can first be devoted to Lisp primitives but later it can be
. replaced by a string devoted to a specialized Lisp function.

i As a second example, we can imagine the caja performing the sequential

. execution of a Fortran program, or any other type of non-applicative program, after
its program memory has been reloaded with a Fortran interpreter. Incidentally,
the reloading of PC program memory may be thought of as the execution of a
generalized node with a non-existant dummy father.

| The capability of loading and reloading the program memory is already

. part of the current AHR design. In this way, by mainly changing the software,

. we can achieve reconfigurability and the execution of programs other than those
of Lisp. Naturally, we reduce parallelism in computations by executing code of
non-applicative languages, but sometimes this may be better than to rewrite
complicated old programs.

COMMERCIAL PRODUCTION OF PARALLEL COMPUTERS

At the end of this report, we must mention, albeit rather superficially,
. something about the future technological alternatives for mass producing parallel
computers based on the AHR concepts. However, first we should review some simple
but basic and essential properties of parallel computers.

Let us assume that:

1. The computational part of the computer costs C°N, where C is the
cost of the microprocessor, and N is the number of such processors
in the system.

2. The cost of the peripheral equipment is P.
3. The cost of the software is S.

Consequently, the cost of the computer system will be:
L=P+C'N+ S/n
where n is the number of computer systems produced using the same software.

Computing speed of N parallel computers is walways less than V-N, where
V is the speed of a single computer. 1In AHR, its speed is better than V-NO'S,

as we can see in AHR-79-5, pages 25-26, for programs which possess enough
parallelibility.



Let us assume first that this speed is V-No's. This means that a

reasonable price for parallel computer is

R (B 40) N>

Profit gain conditions may be written as

(P + C*N + S/n)

£ A

® + c)-n°>

where A is a given constant 0£A<1.

In the case that all of the components are imported, (1-A) determines
those manufactured computers which can be distributed in the country where they
are produced. A determines that portion of the production bulk which must be
exported, to assure non-negative import/export balance. This non-negative
balance is important in the case of Mexico because Mexican regulations for
minicomputer manufacturers establish that a computer company that sells computers
in Mexico should have imports whichincure preferably less than or equal to (but
never more than) the costs of the exports. From manipulating the formula
mentioned above, it seems appropriate that the value of A be about 0.5 Naturally,
if A is near 1, most of the computers must be exported, thus obtaining only
income from the computer production. If A is near 0, then the situation is
very favorable because all of the computers will remain in the producing country.
However, this value of A is very difficult to reach, as it will become clear later.

In the meantime, let us consider the following analysis. Taking into
account the relation P/C, and if we assume that the software contribution for
one computer is also the cost C (in reality, it will be more), we can calculat-
the set of curves which are shown in the figure "RELATION BETWEEN THE NUMBER OF
PROCESSORS AND A".

The set at the top of this figure is calculated for P/C = 1,5,10,20,50.
From this set, it is clear that parallel computers made from imported components
may be appropriate for mass production in positive trade balance countries, only
in situations where parallelization is associated with relatively expensive
peripherals. This gives us the key to being able to determine more exactly the
efficient applications.

In addition, we may note that we can assume S/n = C. If software becomes
more expensive, the competitiveness of parallel computers goes down. For this
reason, we may assume that the competitiveness of AHR-like computers will be
better than other ones because of the simplicity of the AHR software. To underscore
this fact, it should be mentioned that it took two people six months to finish the
software of version One of AHR. Another factor which assures the competitiveness
of AHR is that its speed is in fact better than V.NO:5,

The bottom set of curves in the above mentioned figure illustrates the
influence of the speed on A. The highest curve in the set is for NO-5 dependggge.
Nearest to theIQN axis is for N dependence. Intermediate ones are for N
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0.75 0.
N and N e respectively. It is very important to understand that the

increase of the power from 0.5 to 0.625 also increases the competitiveness
significantly, thus making A 1less than 0.5 for an entire range of systems
including simple ones in which P/C = 10. But for AHR, as it can be seen in
the report AHR-79-5, page 26, even if high parallel instructions are 40%, the
power is almost equal to 0.625.

Naturally, what we have presented is not comprehensive and does not
provide an unequivocal answer with respect to the best policy for mass producing
AHR systems. However, it does seem to provide good guidance in estimating a
policy for the future.
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OVERVIEW OF THE AHR MACHINE

(A) and (B) are televisions that spy the
contents of the private memory of the
Lisp processons (1),

(C) 4s the console of the 280 micro-
processon (D) that helps to debug the
s0ftware of the Lisp processons (I).

(E) 4is the console of Vension 0 of the
distrnibuton (F). :

(G) 48 the usern console. More than
one console can be added: the AHR machine
L4 a multiuser machine.

(H) 48 the upper parnt of the AHR
machine.



CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS:

1. For a country like Mexico, it is fruitful to continue research in the field
of parallel computation, but without losing sight of its practical applications
and spin-offs.

2. We are of the opinion that AHR ideas will be in wide use in the future.

3. Built during the project stage which has now concluded, Version 1 of AHR
shows the practicality of a multiprocessor system based on an applicative
language. However, it seems that non-applicative (iterative) languages
can also be embedded naturally in the AHR design.

4. Two areas of applications emerge for immediate concentration:

a. Distributed computing systems operating under AHR data exchange rules.

b. The improvement of multi-microprocessor system performance by using
applicative languages in its design and programming.

5. The degree to which hardware in AHR takes charge of resource management seems
to be very reasonable. We expect that in the future that hardware will assume
more system administrative and data flow control chores than are commonly
done by present hardware systems.

6. The design of AHR seems to be very flexible, because many important improvements
in its performance can be achieved by very small changes.

RECOMMENDATIONS :

We of the AHR project recommend the following:

1. To investigate the applications of AHR ideas to parallel computation, for
SIMD and MIMD computers.

2. To do the preliminary design of distributed systems. This entails specifying
in detail the interconnection of computational elements, the data flow paths,
and data circulation, but not, however, going into the internal design of
each element. In accordance with this report, each part of the system (smart
memories, personal computers, "acopladores" (couplers), etc.) should be useful
by themselves, and preferably should be stand-alone.

3. To evaluate the results of (1) and (2), and determine the technological policy
for this area, both by hand calculation and by computer simulation.

4. To investigate the current state of the national industry with respect to its
capability in mass producing parallel computer systems. Then, add a set of
recommendations as to how this state can be improved.

5. In carrying out this project, the Institute (IIMAS) should follow the
recommendations given in Appendix 1 of this report.
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APPENDIX I- HOW TO ORGANIZE COMPLICATED PROJECTS IN THE FUTURE.

To us, the following list of rules seems to be very
useful for assuring the successful completion of a project
which has, as an important part, the design and construction
of a complicated piece of hardware:

1-The goals of the project should be defined exactly, including
the exact definition of the "width-depth" balace. (to be
explained)

2-The variety of problems to be solved in the project should
be limited, but in accordance to (1).

3-A project leader must have a reputation for reliably producing
new ideas, for finishing what he has started, and for
motivating people under and around him to work hard but
without negative psychological effects.

4-A project leader must have an administrative assistant who
is in charge of:
a-carrying out administrative chores.
b-purchasing equipment.
c-providing visitors with information about the project.
d-controlling the project administration.

5-A project leader should not be working on other projects. And
in so far as possible, he should not be involved in other
adminstrative or scientific organizational functions.

6-A project leader must have the ability to motivate the most
useful members of the project. He must also have the power
to remove those members he considers unproductive in the
project.

7-By working very hard himself, the project leader demonstrates
to the other members how to work. But he must understand that,
on the average, most of the members of his group will tend
to work a little less than he will.

8-It is obligatory that the project leader retain control on
the work in progress on a weekly basis. It is bad for him
to delegate this control to the administrative assistant.
The control must be carried out in a firm, but tactful manner.
This may even improve the psychological climate of the project.

9-The actual number of members of the project must be 10 to
20 percent greater than is needed to meet unforseen problems.

10-Al11l of the vital needs of the members of the project must
be satisfied no later than six months after the commencement
of the project. As is defined in the field of scientific



management, vital needs are those necessities such as a good
salary, job stability, an office, good working conditions, etc,
which are essential to correct performing of a human being.

11-Increases in salary and other incentives during the project
must correspond to the contribution of the members of the project,
judged among same level people

12-The project must enforce an "early-death" policy. This means
that, from the beginning of the project, the work load must
be heavy. In this manner, the "weak" members will with-
draw from the project early on, and the project leader
will therefore have time to find the appropriate replacements.
Also, the remaining members will get accostomed to the high
standards of productivity.

13-Exceptional attention must be paid to the adminstrative
aspects of the design process, including the design se-
quence and the design rules.

14-At the beginning of the project, the man-month requirements
for carrying out the project (hardware and software) must
be precalculated. These requirements depend on the forcasted
complexity of the project at hand, which may be measured
using the probable number of chips in the design. The
following formula seems to be applicable:

M=k N*

where N is the number of chips, K and @ are constants, and M is
the man-month requirement.

15-First of all, there must be a master design file. All
final decisions and changes in the design must be re-
corded in this file. Secondly, all of the members of the
project must carry out their work according to the
specifications in the master file, and must abstain from
making changes in the design without authorization and
without documenting them in the master file.

16-The first step in the design process must be an exact
specification of the machine to be developed. The final
version of the specification may filed in many different
places, but it is obligatory that it be always in the
master file. The "master file version" of the design is
to be considered always correct.

17-The next step must be the choice of the technology. There
must be a written report on the analysis of the possible
alternatives, as well as, the final decision that was taken.
This report must also reside in the master file.
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18-Next, the design is decomposed into cabinets, units, pc
boards, and standard design solutions. The description
of the decomposition must be in the master file, together i
with the specifications of the standard design solutions.
All members of the project must apply these standard
design solutions as much as possible. However, if this
cannot be done, they are encouraged to propose additions
to the specifications of the standard design solutions.
And oniy if this is not possible, then they have the
right to invent new non-standard solutions.

19-What has been described above with regard to hardware can
also be applied to software: each member of the project
is encouraged,as much as possible, to use already existant
standard subroutines. However, later, he may propose additions
or alterations to these subroutines if they are warranted.
But only as a last resort, he may write a subroutine from
scratch. In either case, he must file the specifications
of the subroutines in the master file.

20-Next, the interconnection design between the pc boards, and
cabinets is worked out. Also, the input-output parameters
are specified. The final version of this effort must
be in the master file.

21-0Only after finishing steps 15 to 20, can the team proceed
with the final design of the pc boards and units. Tt
should be noted that the preliminary design (step 14)
was carried out but without using a master file. Moreover,
this preliminary design can come in useful while carrying
out steps 15 through 20. However, in the exact design of the
hardware, project members must posses exact information
on the availability of components which they intend to
specify in the design of the system. This may require
being in direct contact with suppliers or using databases
containing information as to the where abouts of the
products required.

22-Upon acquiring pc cards and other components, the project must
perform tests on them so as to assertain their quality.
a-some components should be tested individually, others
can be approved by testing a sampling in a batch,
others under a variety of temperatures, etc.
b-it is advisable to buy chips from known manufactures,
such as, National Semiconductor, Texas Instruments, etc.
In this case, the need for (a) dissappears.
c-if the chip to be used is new to the designer, he must
become familiar with its characteristics by carefully
reading the technical sheets supplied by the manufac-
turer, and possibly by developing some designs which
use it.
The methods for checking completely the componets must also
be specified at this stage.



23-Software must be developed before hardware. It is very
useful to simulate hardware components or subsystems with
software in a way that permits the gradual replacement of
different subroutines with hardware. For example, in the
AHR project, we first wrote a software version of the
distributor, and later replaced it by a hardware distributor

with no difficulty.

24-After each "big" project, the project leader is responsible
for writing or editing the rules which we have just described.
We write "big" because we are sure that changing the rules
too frequently is bad. 1In any case, this practice will permit
the accumulation of recorded experiences in the participation
of large projects. A final remark: one must always
a-finish a project (we do not believe in eternal projects).

b-write a report on the entire project.



