A MULTI-MICROPROCESSOR THAT EXECUTES PURE LISP IN PARALLEL

Adolfo Guzméan
Comouting Systems Dept., IIMAS
National University of México
Apdo. Postal 20-726
01000 México, D. F.

Abstract

The architecture presented here allows parallel computation of high level lan-
guages, with some advantages: (1) the programmer is unaware that he is writing
programs for a parallel computer; the machine automatically parallelizes appro-
priate portions of a single program and executes them simultaneously; (2) the

processors

communicate little with each other, so that
lems are minimized; (3) & given processor
sors there are, or what they are doing;

interconnection prob-
is unaware of how many other proces-

(4) a processor never waits for another

process to have finished, nor does it awake or interrupt another processor.

The machine processes in parallel programs written in high level lan?uages capa-

ble of being expressed in the lambda notation (applicative languages

. It is for

med by a collection of general purpose processors which are weakly coupled and
without hierarchy among them. Asynchronous computation is permitted due to each

processor evaluating a part of a program.

This article presents the architecture of a parallel, general purpose computer,
called the AHR machine, that uses pure Lisp as its main programming language. It
is built from several dozens of microprocessors (Z-80's), each of them executing

a part of the program.

The architecture described here has been constructed for the Lisp language,

though other applicative language

s can be utilized. The implementation of func-

tion calls, argument passing, and sequencing of tasks are a part of hardware rath

er than software.
which each is a Z-
tions.

The primitive operations of Lisp are executed by processors, of
80 microorocessor that has been programmed to do these opera-

The main programming language of the AHR machine is pure Lisp (applicative Lisp);

hence, it does not contain labels, transfers of control,

assignment statements

or iterative statements. Instead, pure Lisp contains argument bindings, recursive
calls, conditionals and the Lisp primitives.

Doing 1/0 is avoided in the machine for it operates through a general purpose
minicomputer. Moreover, all interactions between the machine and the user(s) are
done by the normal operating systems of the mini.

1. INTRODUCTION AND PROJECT GOALS

Within the Computing Systems Department, there are

involved in a project of building a machine. The -
project is called AHR (Arquitecturas Heterarquicas
Reconfiourables).

1.1 GOALS

Some of the goals of the Project AHR are:

SH Mot ST L

ADOLF? GuzMAN

froc.
T I

*To have a machine in which 1t will be possible to
develop software and parallel processing languages.
Currently, the AHR machine supports parallel pyre
Lisp. :

*To explore new ways to perform parallel Processing,
*For students to use this machine as a tool fop

learning and practicing parallel concepts in harg-
ware ang software.

368
Conf on Sy shtem Se@r0z 1QE2

Articulo 52

1.2 PROJECT STATUS

The design of the first version of the machine,
Version O (see reference 3) was not built, but it
was used to produce Version 1 (12), which was simu
lated using the language SIMULA. This second ver-
sion, Version 1, is being built and it is expected
to be operational by the beginning of 1982 (5). A1l
of the hardware (cf. Section 4) and software (cf.
SectionS) has been finished and tested individual-
ly. Global tests are well under way. The machine
is available for demonstration of short Lisp pro-
grams. Afterwards a faster version [17] will be
built, possibly incorporating changes and ideas
that resulted from ourexperiences with Version 1.
Nelly Gayosso has already designed [17] and is
currently building for the faster version a fast
distributor (cf. Section 2), embodied in hardware.
[S{ig] obtains guidence from the current distributor

This last version will be used
aboved-mentioned goals. Picture processing, finite
element methods, engineering calculations, and
distributed processing are also some of the ex-
pected uses of the machine.

1.3 MAIN FEATURES

to try to attain the

The AHR machine has the following characteristics:

General purpose.

Parallel processors.

Lisp as its main programming language.
A1l the processors are heterarchical.
there is no 'master’ processor,
Asynchronous operation.
Evaluation of a program causes it to become (to

cnange into) the result; hence, the original
program gets destroyed. &

Processors do not commun
another. They simply

»

*

*

This means
or controller.

-

icate directly one to
‘leave the work' that is
needed to be done for the next processor without
having to tell it what is expected from it.

Gradua!ly expendible. As additional computing
;;g:?;)is needed more microprocessors can be ad-

.

Ho input/output. This is conducted by a general
purpose computer to which the AHR machine is at-
tached.

No operating system

(software). The majority of
the Lisp operations, as well as the garbage col-
lector, are written in Z-80 machine language.
Also, special hardware helps to handle 1ist
structures, free-cells lists, and queues.

The AHR machine works as a slave to 2 general
PULPRSE L OMDURETE i SR et o~
1.4 PARALLEL EVALUATION AND FUNCTIONAL NOTATION

The AHR machine
GOTO's, Label's,
tors. It obtains

-

works with pure Lisp,
RPLACA, and other si

R milar opera-
1ts parallelism by

parallel eval-

yithout SEIQ's

369

uation of the arguments of functions. This is in
accordance with the rule for evaluation of a func-

tion: "to evaluate a function, the arguments have
to be already evaluated”. That is, evaluation oc-
curs from bottom up, or from the inside to the
outside of the expression. For instance, 4n
f(a,b,a{u,9(x,b))), first x and b are evaluated;
then g of them, in parallel with u; afterwards g of
the result, in paralle) with a and b,

Recursion is handled (3) by substituting the func-
tion name ("FACTORIAL") by its function definition
(LAMBDA (N) (IF (EQ N 0) 1 ...)) when evaluating it.
Iteration does not exist.

2. THE CONSTITUENTS OF THE MACHINE

The parts of the AHR machine are described in this
section (refer to figure 2 “The AHR machine");
section 3 explains how the architecture works.

The constituents of the AHR computer can be clas-
sified in memories (Variable memory; The grill or
active memory; Passive memory; and the fifo or node
queve), processors (the Lisp processors each with
their private memory), and buses or interconnections
(the Distributor with its arbiter; the 1gh Spee s
Bus connecting the distributor to the Lisp proces-
sors; and The Low Speed Bus, which connects the
Lisp processors with the 1/0 processor). In addi-
tion, the AHR machine uses an 1/0 processor.

2.1 VARIABLE MEMORY

This memory contains pairs, 2 Lisp variable name
and its value. It is organized as a tree, or a col-
lection of a-lists, where each pair (variable,
value) points to older pairs. It is accessed by

the Lisp processors, and it is augmented (a branch
of the tree grows) after each LAMBDA binding.

Since the evaluations are made in paraliel, the a-
lists grow in parallel as well. For instance, con-
sider the following expression:

(1ist((1ambda(X) BODY1) 3) (1ambda(X) BODY2) 4))
that will be evaluated with the following a-list:
((x,A) (Y,B) (2,9))

Then, when evaluating BODY1, the a-list is:

ALISTO

((x.3) (x,A) (Y,B) (2.9)); ALISTI
and when evaluating BODY2, the a-list is:
((x,8) (x,A) (Y,B) (2,9)). ALIST2

But since the evaluation of BODY1 and BODYZ can be
carried in paraliel (by two different Lisp proces-
sors), this means that ALISTI and ALIST2 coexist at
the same time in variable memory, but BODY1 points
to ALIST]1 and BODY2 points to ALIST2. So each pro-
cessor has its “appropriate" a-1ist to work with.

ALISTO grew in two directions, like a tree, giving

rise to ALISTI1 and ALIST2 simultaneously. Both
ALIST1 and ALIST2 share ((X,A) (Y,B) (Z.9)) between
them. This explains the affirmation that "the vari-
able memory contains a tree of a-lists".

The variable memory consists of up to 219 words of
32 bits. The variable memory also contains real
numbers, in its lower half. In its upper half it
has "environments", which are lists of cells of

5 words each.

Version 1 will have 16K words, with an access time
of 150 nanoseconds.

2.2 THE GRILL

Also known as "active memory", holds the programs
that are being executed. Once in the grill, a pro-
gram is evaluated and being transformed into re-
sults.

Programs residing in the grill are in the form of
nodes and are about to be evaluated, as figure 1
illustrates. Each node is pointed to by its “sons"
(its arguments), and its nane (nimero de argumen-
tos no-evaluados) field contains the number of
nonevaluated arguments. When nodes have nane = 0,
they are ready for evaluation.

The grill consists of ,2‘19 words of 32 bits and is

divided lo?\'caﬂy in nodes, each with 7 words. Ver
sion 1 will have 8K words, with an access time of

55 nanoseconds.

As nodes residing in the grill get their nane
made zero, they will be picked up by the distrib-
utor and given to the Lisp processors for evalua-
tion.

2.3 PASSIVE MEMORY

This memory holds lists and atoms; it also holds
partial results and parts of programs that are not
being executed at the moment.

In the beginning of the process the programs to be
executed reside here in passive memory, and they
are coniea to the arill for their execution. As
new data structures are built, reoresenting partial
results of the evaluation, they also come to re-
side in the passive memory.

It consists of uo to 220 words of 22 bits; it also
has & parity bit. This memory contains the input
ports, list space, output ports and atom space.

Version 1 will have only 64K words, with an access
time of 150 nanoseconds,

2.4 THE FIFO

The Fifo (see fig. 2) s a firs-in-first-out memory
that holds pointers to nodes (in the grill) ready
to be evaluated. The distributor fetches such nodes
through the head of the fifo, while new nodes to be
evaluated are inserted through its tail [5].

It is of a maximum size of 'L’19 words of 19 bits

370

(LIST (CONS (CAR A)

(COR B))
X
¥
ust[3
cons| 2 VAR [0 VAR [0
e e
=
cor | car |1
var [0 VAR Io
e e
Figure 1

NODES IN THE GRILL

Above, the Lisp expressicn to be
cvatuated. Below, how & {3 strue-
twred (nte nedes, each ucis bedna
a furction on a variable. Each wde
shows a numbex: <its nane, & numbea
¢4 non-evafuated arquments. When a
node has a nane of zero, & means
that such node 4s rcady fex evalua-
tion.

Empty wonds ane slots where the
nesults of evaluation will be insen-
ted. For instance, the ncsults of
{CDR B) will be {nsented (n the sfot
marked wan,

containing pointers to the nodes in the grill. Ver-
sion 1 will be of 4K words, with an access time of
55 nanoseconds.

2.5 THE LISP PROCESSORS

Each Lisp processor works asynchronously, without

w
o
(=]
o o
0—.,, w
g (&)
28 & VARIABLE
mg o MEMORY
oo
W
wa
5 o
w
w -
&3 ¥
= y
A
PASSIVE
MEMORY
GRILL
FIGURE 2

THE AHR MACHINE

Lisp processon 2 4is ready to accept more
work. The distributon detches a mode (6]
be evatuated) from the §<fo and sends it
{0 processon 2, while accepiing the ne-
sults of the previous evaluation performed
bu such processor. That result {5 stoned
<n the gnifl, <n a place indicated in the
destination address 0§ the nesuft,

Such exchange of new wonkemrevious
result Lis perfonmed at each cycle of the
distaibuton.,

The Lisp processons also have access
(connections not shown) to the variable
passive memonies.

communicating with other processors. Each of them
tqws how to execute every primitive function of
isp.

The Lisp processors have access to the passive
memory, (where lists and atoms reside), and to the
variable memory, (where the values of variables
are stored),

A 1isp processor s 2lways .e.{t'her occupied (evalu-
lt;:? a node) or ready to accept more work Lnotha'
node).

These active units are microprocessors (about sev-

eral dozen of Z-B0's). Nodes that are ready for
evaluation are taken from the grill by these micro-
processors and after evaluation return results (s-
expressions) to the grill.

The Lisp processors get new work to be done from
the distributor, through the high speed bus. This
work comes as a node ready to be evaluated.

Only nodes with nane = 0 come up to the Lisp proces
sors for evaluation. So, for example,

(CAR '(A B C)') will evaluate to A. The node (CAR
‘A B C)') has become the result A. After evaluation
of this node, the following steps have to be per-
formed by the distributor:

0 B8

Free the grill space that was occupied by the
node (CAR '(A B C)').

2.- Insert the new result 'A' in the cell (of the
grill) pointed to by the node (CAR'(A B C)' Y.
That means the insertion of the result in 2 slot
of the father of the evaluated node (see such
slots in figure 1).

3.- Subtract 1 from the nane of the father.

4.- If the new nane (of the father) is zero, it
writes in the fifo a pointer to the father,
which means the father is now ready for evalua-
tion.

Even though the distributar itself performs the
above steps (1) to (4), they are initiated by the
Lisp processor by signaling to the distributor that
it has finished evaluating a node and that the re-
sults should be handled in the “normel termination”
mode (12).

Notice that within this 2pproach the grill doesn't
have to be searched looking for nodes with nane=0.
because as soon as they appear they are inserted
into the tail of the fifo.

Each Lisp processor has 32K bytes of private memory
(ram + rom).

2.6 THE DISTRIBUTOR

This piece of hardware provides communication of
the grill with the Lisp processors. The distribu-
tor keeps in the fifo (a memory) an array of nodes
ready to be evaluated. These nodes are made avail-
able, one of them in each cycle of the distributor,
to the Lisp processors that are ready to accept new
work. An arbiter decides which Lisp processor (of
those ready to accept new work) receives the node,
after which an exchange is done (through the high
speed bus) between that Lisp processor and the dis-
tributor, the processor accepting the node and
releasing the result of the previous evaluation to
the distributor. The distributor stores the result
in the grill, in a slot of the node which is the
father of the node just evaluated. Each node thus
points to the slot (in 1ts father) where its result
will be stored. See Fig. 1.

OVERVIEW OF THE AKR MACHINE
(A) and (B) arne todevesoony that spu the =
contents of the po =dreni v the g
Lisp processeons, peediona the s
debugg<ng of the s
[C) <a the AHR
(D) 48 the <{nput Ssun,
weth £ts consofe |
[F) 48 zhe consofe [taredu seos A2

e
the distributon.

THE FIFO

This memonu &tones pointens to the
gL, These pointers point to
“nodes with nane = 0, neady to be
evaluated, but not vet svafuated.

ANOTHER VIEW OF THE AHR MACHINE

Sintra Duke holds one of the Lisp processons.
(Gl 48 the keuboard attached to this Lisp
processon, and Lt 4s used in the debugging
stage.

(H] 48 a printer connected at this moment Lo
the distributon; it 44 mot a noamal part of
Zhe AHR machine.

THE WINDOW

1t communicates the 4/o processon with passive
. memory, at very fast dpeeds.

372

e e e ———.

2.6.1 The Arbiter.

1f several Lisp processors become ready to accept
more work, the arbiter (2 hardware) selects one
(each Lisp processor has a fixed priority; those
further away from the distributor. (Fig. 2) have
the lower priority) of them, to receive the node
made available by the distributor. If every processer
is busy, the cycle of the distributor is wasted,
since no processor accepts the node the distribu-
tor has mede available.

2.7 THE HIGH-SPEED BUS.

The high-speed bus goes into the private memory of
each Lisp processor (in a mailbox fashion) and
connects each processor with the distributor. The
new node that the distributor makes available is
inserted into the private memory of the selected
processor, through this bus. The result of the eval-
uation of the previous node is extracted from the
memory of the Lisp processor and given to the dis-
tributor through the high speed bus.

The processor is then signaled to proceed.

Through this bus, the distributor inserts a node
(7 words of 32 bits) into the private address space
{mailbox) of the selected Lisp processor. This is
accomplised in 1.2 microseconds. The high speed
bus runs from the distributor to all Lisp proces-
sors, carrying nodes and results.

2.8 THE LOW-SPEED BUS

It is not shown in the diagrams, nor is it explain
ed any further in this article (see [5]). There
are 16 bits to this bus; 8 of them indicate which

Lisp processor is addressed, the other 8 bits carry
data.

The main use of the low speed bus is to-transmit
to the Lisp processors the number of a program that
needs to be stopped or aborted.

It runs from the 1/0 processor (the computer to
which the AHR machine is connected) to each of the
Lisp Processors. Prior to starting the machine
each processor is loaded with programs through this
bus. Also, in the debugging stage, the slow bus

is used to pass statistical information to the 1/0
processor. The low-speed bus is not used during
normal execution of Lisp programs.

2.9 THE 1/0 PROCESSOR

As it has been said, the AHR machine can be seen
2s a peripheral of a general purpose computer. But
this computer can also be considered as a periph-

eral of the AHR machine; therefore we speak of such
computer as the 1/0 processor.

1/0 will be described in the following section.
3. FUNCTIONING OF THE AHR MACHINE

3.1 INPUT
The user uses a terminal of the computer (1/0 pro-

373

cessor) which is host of the AHR machine. He
uses a common editor, disks and the normal operating
system of the host. When the user is ready to run a
program, he loads it from disk into a part of the
address space of the host (which is really the pas-
sive memory of the AHR machine-See figure 3). In
this way, the program is loaded as list cells in
the passive. memory. A signal from the I1/0 processor
to the AHR machine causes Lisp execution to begin.
Along with this signal, an address is also passed,
indicating where in passive memory the program to
be evaluated resides.

3.2 STARTING

At this point it is assumed that each Lisp proces-
sor already has had its programs loaded into its
private memory.

At the beginning, 211 Lisp processors signal to the
distributor that they are ready to accept more work.

When the AHR machine has received the “start"signal,
the distributor makes available a node (calied the
RUN node) to some Lisp processor. This node points
to the program which will start to be evaluated.

The program (in passive-memory) is then copied [8
e., transformed from its passive-memory representa-
tion, which is in list notation, to its grill-re-
presentation, which is composed of nodes) by more
Lisp processors into the grill. (The amount of
leaves or branches a program has decides the number
of processors that will be needed to help copy it).
Nodes with nane=0 are inserted by the Lisp proces-
sors into the fifo, so that other Lisp processors
will execute them.

NOTE: At a given time, there are some Lisp proces-
sors copying the program while nodes with nane=0
are being evaluated by other Lisp processors.

3.3 EVALUATION

When 2 Lisp processor is iq'le.
to the distributor indicating
more work.

it gives a signal
it is ready to accept

The distributor is very fast in comparison to the
speed of the Lisp processor. This is even more
evident if “"complicated” Lisp functions (such as
MEMBER or FACTORIAL) are coded as pr\migives_(n
7-80 machine language, as opposed to “simple" Lisp
functions, such as COR.

Due to this large difference in speed, the distrib-
utor can continuously keep working many Lisp proces
sors. For example, if the distributor is 100 t::es
faster than the (average) Lisp function, it cou
keep 100 Lisp processors functioning. It is there=
fore worthwile to have a fast distributor l“l: s

The distributor selects (with the help of sn arbi-
ter) one of several idle processors. and ﬂ"“"“’" b
the high speed bus it introduces & n:' node
from the grill through the head of t
the private memory of the processor-
nals that processor to start. 3

w
=
x
o
<
=
= VARIABLE]
x MEMORY !
i !
w
EE /
PASSIVE /
MEMORY /
/
' 7
1 74
L e
o
A4
1 DisK
1
I
-
10
m
2 >
Wt R
HOST COMPUTER ® §
(170 PROCESSOR) ©

FIGURE
"THE AHR MACHINE
The AHR computer is &

3
AS A SLAVE"

hown as anothex

peripheral of a general purpose computen.

The address space of

this computer com-

prises the passive memony of AHR, through

a movable window of 4

The Lisp processor finds th
with all the arguments alre
processor proceeds to perfo
is needed by the node. For
and its arguments are (A B)
to produce the new 1ist ((A
this, it addresses the pass
2 new cell” mode. Such cell

dispatcher (hardware attached

In this case three new cell

k addresses.

e node in its memory
ady evaluated. The Lisp
rm the evaluation that
example if it is LIST,

» Mand N, it then has
B) M N). In order to do
ive memory in the "give
is given by a cell

to passive memory).

s have to be reguested.

The Lisp processor then forms the result: (AB)M

N). For this result the Lis
pointers into passive memor
have been obtained] to (A B

P processor has to store
(in the new cells that
» to M and a pointer to

N. It then stores the result (which is a pointer
to passive memory) into a special place ("results
place") of its private memory. It then signals to
the distributor that it is finished and is ready
to accept more work. The distributor will insert
new work (another node with nane=0) into the pri-
vate memory of the processor, but it will collect
first the result ((A B) M N) (through the high
speed bus; see figure 2) from the "results place"
in the private memory of that processor. The dis-
tributor will store this result into a slot in a
node in the grill. The address of this slot in the
grill is known to the (LIST (A B) M N) node, be-
cause each node points to its father. Thus, the
distributor has no problem in finding where to
store the result; this address is found also in
the "results place", together with the result
((A B) MN).

After all of the above is accomplised the distrib-
utor has to subtract one from the nane of the father
(which has just received the result ((A B) M N). If
the nane becomes zero, then a pointer to the father
is introduced by the distributor into the fifo
through its tail.

The last thing that the distributor does is to free
the cell of the node (LIST (A B) M N), so that this
grill space can be reused [10].

3.4 OuTPUT

Finally, after the complete program has been con-
verted into a single result (let us say, a 1ist)
and deposited in passive memory, the AHR machine
then signals the host (1/0 processor) also giving
to it the address in passive memory where the re-
sult is being stored. The host accesses the pas-
sive memory as if it were a part of its own memory
(since their address spaces overlap), and proceeds
to the (serial) printing process. Execution of the
program has finished.

4. HARDWARE ISSUES
4.1 THE DISTRIBUTOR

The distributor dispatches nodes from the grill to
the Lisp processors, and stores in the grill the
results that are coming from the Lisp processors.
There are two versions of the distributor.

4.1.1 First Version of the Distributor.

This first version (10) is implemented through a
2-80 microprocessor, using a program that performs
all the functions of the distributor. It runs
slowly, in the sense of distributing nodes at low
speed (it transmits a node in about 200 HS),

4.1.2 Second Version of the Distributor.

This version [17] will be a faster distributor. It
has not yet been built. It will become part of ver-
sion 1 of the machine, being built either from
bit-s1ice microprocessors or from PAL's.

4.1.3 The Arbiter.

There are really threee arbiters, one for passive
memory, & second for variable memory, and the
third for the grill.

Each arbiter takes 400 nanosenconds to respond,
and it may handle up to 64 processors. Each proces
sor has a different unique fixed priority, varying
from 1 to 64. Since all of the processnrs are
equzl (they are able to perform exactly the same
tasks), the assignament of priorities to proces-
sors rezlly does not matter. Of course, if there
are many processors available, those with Jowest
priorities will never obtain work (nodes) to do.

4.2 LISP PROCESSORS

The first version of the machine will have 5 Lisp
processors, and the 1/0 processor is another Z-80
micro. Each Lisp processor has 32K bytes of pri-
vate memory, where the interpreter resides (8).

The maximum number of Lisp processors is 64. The
number of Lisp processors could be increased, but
a new arbiter would need to be designed.

4.3 THE 1/0 PROCESSOR

Although initially contemplated to be a mini-com-
puter, it is actually built around 2 Z-80 micro -
processor that works as a general purpose computer.
Its main functions are:

* To communicate with the users; reading
their input and printing the results.
To store user files in its disk.

* To initialize the AHR machine.

* To load into passive memory, through the
window, the proorams loaded from disk.

To begin garbage collection.
To end garbage collection.

*

(The garbage collector actually runs in the 1/0
processor). The 1/0 processor can be considered
the host computer, and the AHR machine its “smart
peripheral”, which receives S-expressions (Lisp
programs) and transforms them into results.

5. SOFTWARE 1SSUES
5.1 EDITING

Editing of Lisp programs is done outside the AHR
machine, using the operating system and editor

of the 1/0 processor. After editing, the program
is filed on disk and a2 loader (running in the

1/0 processor) converts the Lisp program into list
cells and brings the program to passive memory.
(See figure 3). i)

5.2 THE LISP INTERPRETER

A Lisp interpreter runs in each Lisp processor.

375

The garbage collection is not done at this time by
the Lisp processors.

In the first version of the machine, the Lisp in-
terpreter does argument checking of the Lisp func-
tions. This will remain as an option in the second
version of the AHR machine.

The Lisp interpreter is somewhat large (32K bytes),
because it was written in PLZ and then compiled.

5.3 THE GARBAGE COLLECTOR

In the first version of the machine, the garbage
collector will be a “normal" serial garbage collec-
tor, running in the 1/0 processor. While it is
working, the Lisp processors remain idle. But in
the second version, it may be a parallel incremen-
tal garbage collector, running in the Lisp proces-
sors.

Garbage collection is done for passive memory (1ist
ceHS? and for the real number regions of variable
memory (where it compactifies memory). There is no
need to recollect garbage in the “"environment"
zones of variable memory and in the grill (nodes),
because in these two places, as soon as used space
is abandoned the used space is inserted (by hard-
ware) into a list of free environment cells (for
variable memory) or into a list of free nodes (for
the grill).

6. RELATED WORK AND MACHINES
6.1 DATA FLOW MACHINES

These machines (13) resemble the AHR architecture
in that data is directed through “boxes" that
process them. The flow of executions is controlled,
like in our design, by what previous results are
ready (avaihb!eg. The cited article describes a
machine that uses different color tokens to mark
“this result", “previous result", and so on.

6.2 PARALLEL LISP MACHINES

The machine of [7] is a loosely coupled multipro-
cessor for applicative languages such as Lisp. In
its application, this machine closely resembles
ours. Another Lisp machine [15] uses three proces-
sors that collaborate with each other.

6.3 GREENBLATT'S LISP MACHINE

This is a single processor machine (14) built for
high speed Lisp computations. It does not claim
to be an experiment in parallel hardware. This
Lisp machine acquires its speed and power from
careful design of the software and machine archi-
tecture, as well as from the experience of the
builders with the Lisp language.

6.4 IMOB
This machine is a collection of Z-B0 microproces-

sors around a conveyor belt (11); it may be ap- ..
plied to image processing and numerical calcula= :

tions. Each microprocessor has its own private me-
mory. The microprocessors have direct access to a
common memory (as AHR does), but behind one of the
micros, a huge central memory or mass memory may
reside. It does not process Lisp.

6.5 PASM

PASM is a partitionable SIMD/MIMD multimicropro-
cessor system being designed at Purdue University
for image processing [16]. A major consideration
in its desian is the choice of interconnection
network to provide communication for all of the N
(which may grow to 1024) microprocessors. They
operate in paraliel.

6.6 PM4

This is a machine suitable for image processing)
It is a dynamically reconfigurable multi-micropro-
cessor-based machine. It can be partitioned into
several groups of processors which may be assigned
to execute multiple independent SIMD processes and
MIMD processes.

6.7 THE LANGUAGE "L" FOR IMAGE PROCESSING

“ " js a language suitable for processing of images.
It is mentioned here because it may be implemented
in a parallel machine (4), such as the AHR computer.
This language is described elsewhere (1). The lan-
quage was designed mainly as a result of our ex-
perience in picture processing of multi-spectral
images (6). "L" has not been implemented.

7. CONCLUSIONS
7.1 PERFORMANCE OF THE MACHINE

At this time no figures can be given, since the
AHR machine isn't yet completed.

7.2 "NEW ADVANCES AS OF NOVEMBER 1981.

The hardware is now functioning and the software
is completed. Extensive tests are under way, and
several bugs have been found and fixed. Demonstra-
tions of short programs are done. The interpreter
runs fully compiled.

7.3 FINAL REMARKS

The architecture of the AHR computer demonstrates
that it is possible to build a multiprocessor of
the MIMD type, where each processor does not explic
itly communicate with other processors. In the AHR™
design, a processor does not know how many other
processors exist, or what they are doing. It is mot
possible to address a processor: “here I have 2
message for processor number 4."

Finally, the AHR machine demonstrates how it is
possible to desian a heterarchical system, whereby
all of the processors have the same priority level.

Once the machine has been built, experimentation
will begin in the design of parallel languages and
ways to express "powerful" commands in heterarchical

376

fashion. It may be possible to place each micro
in a remote place, consequently achieving some
class of distributed computing, if the amount of
access to memories for each processor is low. That
is, a micro can process local work (through Basic,
for instance) as well as remote (Lisp) work.

By connec ting the machine to a general purpose com-
puter, therefore being able to use already avail-
able operating systems for time sharing, text edi-
tors and loaders, the construction of new software
has been kept Tow.

7.4 ACKNOWLEDGEMENTS

The AHR machine is being built by the members of
the AHR Project, to whom I express my appreciation
for their time, effort and enthusiasm.

Work herein described has been partially supported
by Grant # 1632 from CONACYT, the National Council
for Science and Technology (Mexice).

7.5 REFERENCES

1. Barrera, R., Guzmin, A., Ginich, A., and
Radhakrishnan, T. Design of a high level lan-
guage for image processing. In Languages and

rchitectures for Image Processing, M.J.B. Duff

A
and 5. Levialdi (eds). 1981. Academic Press

2. Briggs, F.A., Fu, K.S., Hwang, K., and Patel, J.
H. PM4: a reconfigurable multiprocessor system
for pattern recognition and image processing,
1979. Technical report TH-EE-79-11. School of
Electr. Eng., Purdue University (USA)

3. Guzman, A., and Segovia, R. A parallel reconfig-
urable LISP machine. 1976. Proceedings of the
International Conference on Information. Sci.
and Systems. Univ. of Patras, Greece. 207-211.

4. Guzman, A. Heterarchical architectures for paral-
lel processing of digital images. In Lanauages
and Architectures for Image Processing, M.J.B.
Duff and S. Levialdi (eds). 1981. Acaaemir. Press.

5. Guzman, A., Lyons, L., et al. The AHR Computer:
construction of a multiprocessor with LISP as
its main language. (in Spanish). 1980. Technical
report AHR-80-10. IIMAS, National University of
Mexico.

6. Guzman, A., Seco, R., and Sanchez, V. Computer
Analysis of LANDSAT images for crop identifica-
tion in Mexico. 1976. Proceedings of the Inter-
national Conference on Information Sciences and
Systems. University of Patras, Greece. 1-366.

7. Keller, R.M., Lindstrom, G., and Patil. S. A
loosely-coupled applicative multi-processing
system. AFIPS 1979 Conference Proceedings, Vol.
48, 613-822.

8. Norkin, K., and Gomez, D. A new description for
data transformations in the AHR computer. 1979.

T igal t AHR-79-4 4
ssg;nofa*;?ggr IIMAS, National Univer

10.

11.

12.

13.

14.

15,

17

\ r
. Norkin, K., and Rosenblueth, D. Towards opti- :

. Siegel,

mization in AHR. Technical report AHR-79-5, @
1IMAS, National Univ. of Mexico 1979.

Pefiarrieta, L. Error detection in the AHR com-
puter. (In Spanish). 1980. Technical report
AHR-B0-9, IIMAS, National University of Mexico.

R1eger C. ZMOB: doing it in paranel Proceed-
981 JEEE Worksho Arch.
ﬁ:r Patt. Analysis and Imace Database qut

Rosenblueth, D., and Velarde, C., The AHR ma-
chine for paranel processing: lst stag

(In Spanish). 1979. Technical Report AHR 79-2
T1IMAS, National University of Mexico.

Watson, lan, and Gurd, John. A prototype data-
flow computer with token labeling. AFIPS 1979
Conference Proceedings, 48, 623-628.

Weinreb, C., and Moon, D. Lisp machine manual
}979.) M.I.T.A.1. Laboratory, Cambridge, Mass.
USA

Williams, R. A Multiprocessmg system for the
direct execution of Lisp. 4" Workshop on
Computer Architecture for non-numeric proces-
sing. 1978. ACM Sigarch Vol. VII Ro.Z2 (Sigmod
Vol. X No.1). Pages 35-41.

H.J., and McMillen, R.J. Using the
augmented data manipulator network in PASM.
Computer 14,2, Feb. 81, 25-33.

Gayosso, Nelly. A microprogrammable distributor
for the AHR machine.B. Sc. Thesis (in Spanish),
ESIME-IPN. México 1981.

A VIEW OF THE AHR LABORATORY

Novel desZgns (such as the AHR
machine] are possible 4in a Laboratory
that combines hardware and software.

377

THE LISP PROCESSOR COUPLER

Thaee coupfers are shown £n the picture. One
0§ them 4s needed for each Lisp processonr.
The purpose of thia circudit £s Zo coupfe the
2-§0 microprocesson (and {4 private memory)
2o the nemainden of the AHR machine.

The coupfen afse contains the mail box
04 its corresponding Lisp phocessoxr, which
allows fas? access throuah the high speed bus.

THE MEMORY CONTROLLER

Passive and variable memory have several
"smant" modes of being accesed. These
modes are handled bu the memory controllex.
Two of the units are used, one foxr each
memoru. The ghill 4is handted by the
distributon, not bu another controller.

PREFACE TO THE PROCEEDINGS

This volume is one of two that comprise the Proceedings of the
Fifteenth Hawaii International Conference on System Sciences (HICSS)
held in Honolulu, Hawaii on January 6-8, 1982." The Conference is an
annual presentation of refereed papers in the information and system
sciences to provide a forum for the interchange of ideas, advances
and applications among the academicians and practitioners. HICSS is
sponsored by the University of Hawaii and the University of South-
western Louisiana, in cooperation with the ACM, and the IEEE Computer
Society Technical Committee on Computational Medicine. The fifteenth
conference emphasized developments in the areas of Software, Hardware,
Decision Support Systems, and Medical Information Processing. Our
most sincere thanks to all those Paper presenters, attendees, chair-
persons, referees, and administrative support people who made the
conference a success.

Bruce D. Shriver
Ralph H. Sprague, Jr.
Conference Co-Chairmen

Volume I - SOFTWARE, HARDWARE, DECISION SUPPORT SYSTEMS, SPECIAL

TOPICS

Edited by - William Riddle
Ken Thurber
Peter Keen

: Ralph H. Sprague, Jr.
Volume II - MEDICAL INFORMATION PROCESSING
Edited by - Bruce D. Shriver
Ralph R. Grams

Terry H. Walker
Ralph H. Sprague, Jr.

e,

Copyright © 1982 y
HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES

Distributed by Western Periodicals Company
13000 Raymer Street
North Hollywood, California 91605

