1981 TEEE Computer Society workshop on Q

COMPUTER ARCHITECTURE >
for Pattern Analysis g
and Image Database
Management

Hot Springs, Virginia
November 11—13, 1981

IEEE Catalog No 81CH1697-2

COMPUTE
Library of Congress No 81-82808 SOCIETY o
IEEE Computer Society Catalog No. 378 PRESS
.

o THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. INC
.

ARTAGA 48

Reprinted from IEEE COMPUTER SOCIETY WORKSHOP ON COMPUTER ARCHITECTURE
FOR PATTERN ANALYSIS AND IMAGE DATABASE MANAGEMENT, November 1981

A HETERARCHICAL MULTI-MICROPROCESSOR LISP MACHINE

Adelfo Guzman

Computing Systems Dept., TIMAS
National University of Mexico
Apdo. Postal 20-276
México 20, D.F.

ABSTRACT

This article presents the architecture of a
parallel, general purpose computer that uses Lisp
as its main programming language. It is built from
several dozens of microprocessors (z-80's), each of
them executing a part of the program.

The machine processes in parallel programs
written in high level languages capable of being
expressed in the lambda notation (applicative lan-
guages). It is formed by a collection of general
purpose processors which are weakly coupled and
without hierarchy among them. Asynchronous computa-
tion is permitted due to each processor evaluating
a part of a program.

The architecture presented here has been de-
veloped for the Lisp language, though other appli-
cative languages can be utilized. The implementa-
tion of function calls, argument passing, and se-
quencing of tasks are a part of hardware rather
than software. The primitive operations of Lisp are
executed by processors, of which each is a Z-80
microprocessor that has been programmed to do these
operations.

Doing I/0 is avoided in the machine for it
operates through a general purpose minicomputer.
Moreover, all interactions between the machine and
the user(s) are done by the normal operating systems
of the mini.

I. INTRODUCTION AND PROJECT GOALS

Within the Computing Systems Department,
there are about six full-time people that are in-
volved in a project of building a machine. The pro-
ject is called AHR (Arquitecturas Heterdrquicas Re-
configurables).

'
Goals
Some of the goals of the Project AHR are:

* To have a machine in which it will be possible to
develop software and parallel processing languages
Currently, the AHR machine Supports parallel pure
Lisp.

* To explore new ways to perform parallel processing.

* For students to use this machine as a tool for
learning and practicing parallel concepts in hard-
ware and software.

CH1697-2/81/0000/0309$00.75 © 1981 IEEE

Main Features
—aln reatures

The AHR machine has the following character-
istics:

* parallel processors.
* general purpose.

* All the processors are heterarchical. This means
there is no 'master' processor, or controller.

* asynchronous operation.
* Lisp is its main programming language.

* processors do not communicate directly one to
another. They simply 'leave the work' that is
needed to be done for the next processor without
having to tell it what is expected from it.

* gradually expandible. As additional computing
power is needed more microprocessors can be ad-
ed [9).

* no input/output. This is conducted by a minicom-
puter to which the AHR machine is attached.

* no operating system (software). The majority of
the Lisp operations, as well as the garbage col-
lector, are written in Z-80 machine language.
Also, special hardware helps to handle list struc-
tures, free-cells lists, and queues.,

* the AHR machine works as a slave to the general
purpose minicomputer.

Project Status

There are now several versions of the AHR ma-
chine. The design of the first version of the ma-
chine, Version 0 [see reference 3) was not built,
but it was used to produce Version 1{12), which was
simulated using the language SIMULA. This second
version, Version 1, is being built and it is ex-
pected to be operational by the end of 1981 [5).
Afterwards a faster version will be built, possibly
incorporating changes and ideas that resulted from
our experiences with Version 1.

This last version will be used to try to at-
tain the aboved-mentioned goals. Picture processing,
finite element methods, engineering calculations,
and distributed Processing are also some of the
expected uses of the machine.

Parallel Evaluation and Functional Notation

The AHR machine works with pure lisp, without

SETQ's, GOTO's, Label's, RPLACA, and other opera-
tors. It obtains its parallelism by parallel eval-
vation of the arguments of functions. This is in
accordance with the rule for evaluation of a
function:''to evaluate a function, the arguments
have to be already evaluated". That is, evaluation
occurs from bottom up, or from the inside to the
outside of the expression. For instance, in
f(a,b,g(u,g(x,b))), first x and b are evaluated;
then g of them, in parallel with u; afterwards g of
the result, in parallel with a and b.

Recursion is handled {3) by substituting the
function name ("FACTORIAL") by its function defini-
tion (LAMBDA (N) (IF (EQ N 0) 1. . .)) when evalua-
ting it.

I11. THE CONSTITUENTS OF THE MACHINE

The parts of the AHR machine are described
in this section (refer to figure 2 "The AHR ma-
chine"); section II1 explains how the machine works.

The Grill

Also known as "active memory", holds the pro-
grams that are being executed. Once in the grill, a
program is evaluated and being transformed into
results.

Programs residing in the grill are in the
form of nodes and are about to be evaluated, as fig-
ure | illustrates. Each node is pointed to by
its "sons" (its arguments), and its nane (nimeros
de argumentos non-evaluados) field contains the
number of nonevaluated arguments. When nodes have
nane = 0, they are ready for evaluation.

The grill consists of 2'° words of 32 Hits
and is divided logically in nodes, each with 7
words. Version 1 will have BK words, with an access
time of 55 nanoseconds.

Passive Memory

This memory holds lists and atoms; it also
holds partial results and parts of programs that
are not being executed at the moment.

In the beginning of the process the programs
to be executed reside here in passive memory, and
they are copied to the grill for their execution.
As new data structures are built, representing par-
tial results of the evaluation, they also come to
reside in the passive memory.

It consists of upto 220 words of 22 bits;
it also has a parity bit. This memory contains the
input ports, list space, output ports and atom
space.

Version | will have only 64K words, with an
access time of 150 nanoseconds.

Variable Memory

This memory contains pairs, a variable name
and its value. It is organized as a tree, or a col-
lection of a-lists, where each pair (variable,
value) points to older pairs. It is accessed by the
Lisp processors, and it is augmented (a branch of
the tree grows) after each LAMBDA binding.

Since the evaluations are made in parallel,
the a-lists grow in parallel as well. For instance,

(LIST (CONS (CAR A)

(CDR B))
Y)
LIST | 3
CONS | 2
VAR] O VAR 0
"Yll "x"
¥
CDR | 1 CAR l1
R
var [o VAR] 0
= B" "AH
Figure 1

NODES IN THE GRILL

Above, the Lisp expression to be
evaluated. Below, how it 4s struc-
tured Ainto nodes, each node being
a function on a variable. Each node
shows a number: its nane, or number
o4 non-evaluated arguments. When a
node has a nane of zero, £t means
that such node 48 ready for evalua-
tion.

Empty wonds are sfots where the
results of evaluation will be inser-
ted. Fon instance, the nesults of
(COR B) wifl be insented in the sfoi
marked "*".

consider the following expression: BODYO
(list((lambda(X) BODY1l) 3) (lambda(X) BODY2) 4))
that will be evaluated with the following

THE USER CONSOLE

In the foreground, the user cons ole (@.
In the tackground, the AHR mach {ne.

(A) (B)
* b

OVERVIEW OF THE AHR MACHINE

(A) and (B) are tefevisions that spy the
contents of the private memory of the
Lisp processons (1) in the upper hight
pLicture).

(C) 48 Zhe console 0f the 7280
michophocesson (D) that helps to de tug
the software of the Lip processons (1),

(E) &8 the consofe of Version 0
of the distrhibuton (F).

(G & the user comsole. Mone than
one console can (o added: the AHR
mach4ine 48 a mubtiusen mach.ine.

(H) 48 the upper pant of the
AHR machine.

311

ONE LISP PROCESSOR

One of the sevenal Lisp processons (1)
of the AHR machine.

BEBUGGING A LISP PROCESSOR

The software of the Lisp processon (1)
shown 5 being debugged from a 28
michophocess on (D) in the picture at
the Left] through an "umbillLical cond."

(1) 48 the Line to the TV Sy (A),
from the Lisp processox.

a-list:

((x,4) (Y,B) (z,9)) ALISTO

Then, when evaluating BODY1l, the a-list is:

((x,3) x,A) (,B) (2,9)); ALIST1

and when evaluating BODY2, the a-list is:

((x,4) (x,a) (v,B) (2,9)). ALIST2
But since the evaluation of BODY1l and BODY2
can be carried in parallel (hy two different Lisp
processors), this means that ALIST1 and ALIST2 co-
exist at the same time in variable memory, but BODYl
points to ALIST1 and BODY2 points to ALIST2. So
each processor has its "appropriate" a-list to work

with.

ALISTO grew in two directions, like a tree,
giving rise to ALIST1 and ALIST2 simultaneously.
Both ALIST1 and ALIST2 share ((X,A) (Y,B) (Z,9))
between them. This explains the affirmation that
"the variable memory contains a tree of a-lists".

The variable memory consists of up to 219w©rds
of 32 bits. The variable memory also contains real
numbers, in its lower half. In its upper half it has
"environments", which are lists of cells of 5 words
each.

Version 1 will have 16K words, with an access
time of 150 nanoseconds.

The Fifo

The fifo is a first-in-first-out memory that
holds pointers to nodes (in the grill) ready to be
evaluated. The distributor fetches such nodes
through the head of the fifo, while new nodes to be
evaluated are inserted through its tail (5]).

It is of a maximum size of 219 words of 19 bits
containing pointers to the nodes in the grill. Ver-
sion | will be of 4K words, with an access time of
55 nanoseconds.

The Lisp Processors

Each Lisp processor works asynchronously, with-
out communicating with other processors. Each of
them knows how to execute every primitive function
of Lisp.

The Lisp processors have access to the passive
memory, (where lists and atoms reside), and to the
variable memory, (where the values of variables are
stored).

A Lisp processor is always either occupied
(evaluating a node) or ready to accept more work
(another node).

These active units are microprocessors (about
several dozen of Z-80's). Nodes that are ready for
evaluation are taken from the grill by these micro-
processors and after evaluation return results (s-
expressions) to the grill.

The Lisp processors get new work to be done
from the distributor, through the high speed bus.
This work comes as a node ready to be evaluated.

312

Only nodes with nane = 0 come up to the Lisp
processors for evaluation. So, for example,
(CAR '(A B C)') will evaluate to A. The node (CAR
'A B C)') has become the result A. After evaluation
of this node, the following steps have to be per-
formed by the distributor:
l.- Free the grill space that was occupied by the
node (CAR'(ABC)').

2.- Insert the new result 'A' in the cell (of the
grill) pointed to by the node (CAR'A B C)').
That means the insertion of the result in a slot
of the father of the evaluated node (see such
slots in figure 1).

3.~ Subtract 1 from the nane of the father.

4.- If the new nane (of the father) is zero, it

writes in the fifo a pointer to the father, which
means the father is now ready for evaluation.

Even though the distributor itself performs
the above steps (1) to (4), they are initiated by
the Lisp processor by signalling to the distributor
that it has finished evaluating a node and that the
results should be handled in the "normal termination’
mode (12).

Notice that with this approach the grill
doesn't have to be searched looking for nodes with
nane=0, because as soon as they appear they are in-
serted into the tail of the fifo.

The Private Memory of the Lisp Processors

Each Lisp processor has 16K bytes of private
memory (ram + rom).

The High-Speed Bus. The high-speed bus goes into the
private memory of each Lisp processor and connects
each processor with the distributor. The new node
that the distributor makes available is inserted
into the private memory of the selected processor,
through this bus.

The processor is then signaled to proceed.

The Low-Speed Bus. It is not shown in the diagrams,
nor is it explained any further in this article (see
{5)). There are 16 bits to this bus; 8 of them in-
dicate which Lisp processor is addressed, the other
8 bits carry data.

An additional use of the low speed bus is to
transmit to the Lisp processors the number of a
program that needs to be stopped or aborted.

It runs from the I/0 processor (the mini or
micro to which the AHR machine is connected) to each
of the Lisp Processors. Prior to starting the machine
each processor is loaded withprograms through this
bus. Also, in the debugging stage, the slow bus is
used to pass statistical information to the 1/0
processor. The low-speed bus is not used during
normal execution of Lisp programs.

The Distributor
This piece of hardware provides communication

of the grill with the Lisp processors. The distribu-
tor keeps in the fifo (a memory) an array of nodes

ready to be evaluated. These nodes are made avail-
able, one of them in each cycle of the distributor,
to the Lisp processors that are ready to accept new
work. An arbiter decides which Lisp processor re-
ceives the node, after which an exchange is done
(through the high speed bus) between that Lisp pro-
cessor and the distributor, the processor accepting
the node and releasing the result of the previous
evaluation to the distributor. The distributor
stores the result in the grill, (in the address in-
dicated within the result). Specifically, this
result is stored in a slot of the node which is

the father of the node just evaluated.

oS [S i
[on) .- oo ~
[B
— o RS Tt .
wn by = 0 o)
o S s e M.
e
e =S =
« = e
4 (=]
o VARTABLE
° MEMORY
152
¥5]
v
&}
PASSIVE
MEMORY

GRILI

FIGURE 2
THE AHR MACHINE

Lisp processor 2 is ready to accept more
wonk. The distributor fetches a node (to
be evaluated] from the fifo and sends it
to phocessor 2, while accepting the re -
Sults of the previous evaluation performed
by such processon. That nesult s stoned
An the ghill, in a place indicated in the
destination address of the result.

Such exchange of new workeprevious

313

result s performed at each cycle of
the distrnibuton.

Vernsion 2 of the AHR machine
WLl gadn speed over Version 1, main-
Ly by building a faster distributon.

The Lisp processons also have
aceess (connections not shown) fo
the varniable and passive memories.

The Arbiter. If several Lisp processors become
ready to accept more work, the arbiter (a hardware)
selects one of them, to receive the node made avail-
able by the distributor.

If every process is busy, the cycle of the
distributor is wasted, since no processor accepts
the node the distributor has made available.

The I/0 Processor

As it has been said, the AHR machine can be
seen as aperipheral of a general purpose minicomput
er. But this minican also be considered as a periph
eral of the AHR machine; therefore we speak of such
mini as the I/0 processor.

I/0 will be described in the following section.

IIT. FUNCTIONING OF THE AHR MACHINE.

Input

The user uses a terminal of the mini (I/0 pro-
cessor) which is master of the AHR machine. He uses
a common editor, disks and the normal operating
system of the mini. When the user is ready to run a
program, he loads it from disk into a part of the
address space of the mini (which is really the pas-
sive memory of the AHR machine-See figure 3). In
this way, the program is loaded as list cells in the
passive memory. A signal from the I1/0 processor to
the AHR machine causes Lisp execution to begin.
Along with this signal, an address is also passed,
indicating where in passive memory the program to
be evaluated resides.

Starting

At this point it is assumed that each Lisp
processor already has had its programs loaded into
its private memory.

When the AHR machine has received the "start"
signal, the distributor makes available a node
(called the RUN node) to some Lisp processor. This
node points to the program which will start to be
evaluated.

The program (in passive-memory) is then copied
(i.e., transformed from its passive-memory repre-
sentation, which is in list notation, to its grill-
representation, which is composed of nodes) by more
Lisp processors into the grill. (The amount of
leaves or branches a program has decides the number
of processors that will be needed to help copy it).
Nodes with nane=0 are inserted by the Lisp proces-
sors into the fifo, so that other Lisp processors
will execute them.

NOTE: At a given time, there are some Lisp

s
h’e? [
5{.
."'.'_r |
(4.2)
R
= [<
m by >
e 3& [
2= 6, o >
m I.O-O.. '<CB '
“aun e -
e 1
§§ 2o
B [!
I .0'. 3
= K 2 ; 1
m [B0 7
°%s i = {
. -
= : ! ’/
£ e A
1 7/
! ’
| | ’
P 4
1’
| ﬂ DISK
-
-
” |
-
= !
- 1
- '

MAIN
MEMORY

:
N iR
MINI COMPUTER CRU —

STVNIWAL

(170 PROCESSOR)

FIGURE 3

"THE AHR MACHINE AS A SLA. .

The AHR computer £s shown as another
perdiphenal of a general putpose
ménicomputer. The address space of

the mind comprises the passive memory
of AHR, Zhrough a movable window of 4k
addresses.

processors copying the program while nodes with
nane=0 are being evaluated by other Lisp processors.

Evaluation

When a Lisp processor is idle, it gives a sig
nal to the distributor indicating it is ready to
accept more work.

The distributor is very fast in comparison to
the speed of the Lisp processor. This is even more

34

evident if "complicated'lLisp functions (such as
MEMBER OF FACTORIAL) are coded in Z-80 machine lan-
guage, instead of "simple' Lisp functions, such as
CDR.

Due to a large difference in speed, the dis-
tributor can have and continuously keep working many
Lisp processors. For example, if the distributor is
100 times faster than the (average) Lisp function,
it could keep 100 Lisp processors functioning. It
is therefore worthwhile to have a fast distributor.

The distributor selects (with the help of an
arbiter) one of several idle processors, and through
the high speed bus it introduces a new node (taken
from the grill through the head of the fifo) into
the private memory of the processor. 1t then signals
that processor to start.

The Lisp processor finds the node in its
memory with all the arguments already evaluated.
The Lisp processor proceeds to perform the evalua-
tion that is needed by the node. For example if it
is LIST, and its arguments are (A B), M and N, it
then has to address the passive memory in the "give
a new cell" mode. Such cell is given by a cell
dispatcher (hardware attached to passive memory).
In this case three new cells have to be requested.
The Lisp processor then forms the result: ((A B) M
N). For this result the Lisp processor has to store
pointers into passive memory [in the new cells that
have been obtained] to (A B), to M and a pointer to
N. It4then stores the result (which is a pointer
to passive memory) into a special place ("results
place") of its private memory. It then signals to
the distributor that it is finished and is ready to
accept more work. The distributor will insert new
work (another node with nane=0) into the private
memory of the processor, but it will also collect
the result ((A B) M N) (through the high speed bus;
see figure 2) from the "results place' in the pri-
vate memory of that processor. The distributor will
store this result into a slot in a node in the grill.
The address of this slot in the grill is known to
the (LIST (A B) M N) node, because each node points
to its father. Thus, the distributor has no problem
in finding where to store the result: this address
is found also in the "results place", together with
the result ((A B) M N).

After all of the above is accomplished the
distributor has to subtract one from the nane of
the father (which has just received the result
((A B) M N). If the nane becomes zero, then a point
er to the father is introduced by the distributor
into the fifo through its tail.

The last thing that the distributor does is
to free the cell of the node (LIST (A B) M N), so
that this grill space can be reused [10].

Output

Finally, after the complete program has been
converted into a single result (let us say, a list)
and deposited in passive memory, the AHR machine
then signals the mini (I/0 processor) also giving
to it the address in passive memory where the re-
sult is being stored. The mini makes access to the
passive memory as if the passive memory were a
part of its own memory (since their address spaces
overlap), and proceeds to the (serial) printing

process. Execution of the program has finished.

1V. SOFTWARE ISSUES

Editing

Editing of Lisp Programs is done outside the
AHR machine, using the operating system and editor
of the I/0 processor. After editing, the program is
filed on disk and a loader (running in the I/0 pro-
cessor) converts the Lisp program into list cells
and brings the program to passive memory. (See fi-
gure 3),

The Lisp Interpreter

A lisp interpreter runs in each Lisp proces-
sor. It interprets pure Lisp (only evaluations; no
setq's, rplacd's or other operators). The garbage
collection is not done at this time by the Lisp
processors.

In the first version of the machine, the
Lisp interpreter will do argument checking of the
Lisp functions, This will remain as an option in
the second version of the AHR machine.

First Version of the Distributor

This is a piece of software (10) running in
a 2-80 microprocessor, that emulates all the
functions that the "real (hardware) distributor
performs. Here it functions slowly, but it is
flexible and helps in the debugging of the AHR
machine, (it can be ran "step by step" to see the
flow of information). It also keeps statistics of
the uses of the hardware and software.

The Garbage Collector

In the first version of the machine, the gar-
bage collector will be a "normal" serial garbage
collector, running in the I1/0 processor. While it
is working, the Lisp processors remain idle. But
in the second version, it will be a parallel incre-
mental garbage collector, running in the Lisp pro-
cessors.

Garbage collection is done for passive memory
(list cells) and for the real number regions of
variable memory (where it compactifies memory),
There is no need to recollect garbage in the "envi-
ronment" zones of variable memory and in the grill
(nodes), because in these two places, as soon as
used space is abandoned the used space is inserted
(by hardware) into a list of free environment cells
(for variable memory) or into a list of free nodes
(for the grill).

V. HARDWARE TSSUES

The distributor

The distributor dispatches nodes from the
grill to the Lisp processors, and stores in the
8rill the results that are coming from the Lisp pro-
cessors. There are two versions of the distributor.

First version of the distributor. This first version
10} is implemented through a Z—80microprocessor,
using a program that performs all the functions of
the distributor. It runs slowly, in the sense of

distributing nodes at low speed.

315

Second version of the distributor. This version will
be a faster distributor. Lt has not yet been built.
It will become part of version 1 of the machine,
being built either from bit-slice microprocessors
or from PAL's.

The Arbiter. There are really three arbiters, one
for passive memory, a second for variable memory,
and the third for the grill.

Fach arbiter takes 400 nanoseconds to respond,
and it may handle up to 64 processors. Each proces-
sor has a different unique fixed priority, varying
from 1 to 64. Since all of the Processors are equal
(they are able to perform exactly the same tasks),
the assignment of priorities to processors really
does not matter, Of course, if there are many pro-
cessors available, those with lowest priorities
will never obtain work (nodes) to do.

Lisp Processors

The first version of the machine will have 5
Lisp processors, and the I/0 processor will be a
normal mini, or perhaps another Z-80 micro. Each
Lisp processor will have 16K bytes of private mem-
ory, where will reside a pure-Lisp interpreter (8).

The maximum number of Lisp processors is 64.
The number of Lisp processors could be increased,
but a new arbiter would need to be designed.

The High~Speed bus., Through this bus, the distri-
butor inserts a node (7 words of 32 bits) into the
private address space of the selected Lisp proces-
sor. This is accomplised in 0.5 microseconds. The
high speed bus runs from the distributor to all
Lisp processors, carrying nodes and results.

The I/0 Processor

Although initially contemplated to be a mini-
computer, it is actually built around a 2Z-80 micro
processor that works as a general purpose computer,
Its main functions are:

* to communicate with the users; reading
their input and printing the results.

* to store user files in its disk.
* to initialize the AHR machine.

* to load into passive memory, through the
window, the programs loaded from disk.

* to begin garbage collection.

* to end garbage collection.
(The garbage collector actually runs in the TI/0
processor).

VI. RELATED WORK AND MACHINES

Parallel Lisp Machines

The machine of [7 | is a loosely coupled multi
processor for applicative languages such as Lisp.
In its application, this machine closely resembles
ours. Another Lisp machine [15] uses three proces-
sors that collaborate with each other.

Greenblatt's Lisp Machine

This is a single processor machine (14) built
for high speed Lisp computations. It does not claim
to be an experiment in parallel hardware. This
Lisp machine acquires its speed and power from care
ful design of the software and machine architecture,
as well as from the experience of the builders with
the Lisp language.

Data Flow Machines

These machines [13) resemble the AHR archi-
tecture in that data is directed through "boxes"
that process them. The flow of executions is con-
trolled, like in our design, by what previous re-
sults are ready (available). The cited article de-
scribes a machine that uses different color tokens
to mark "this result", "previous result', and so m.

The Language "L" for Tmage Processing

"M is a language suitable for processing of
images. It is mentioned here because it may be im-
plemented in a parallel machine (4}, such as the
AHR computer. This language is described elsewhere
{1). The language was designed mainly as a result
of our experience in picture processing of multi-
spectral images {6). "L" has not been implemented.

Zmob .

This machine is a collection of Z-80 micro-
processors around a conveyor belt {11}); it may be
applied to image processing and numerical calcula-
tions. Each microprocessor has its own private me-
mory. The microprocessors have direct access to a
common memory (as AHR does), but behind one of the
micros, a hugh central memory Or mass memory may
reside. It does not process Lisp.

PM4

This is a machine suitable for image proces—
sing [2). It is a dynamically reconfigurable multi-
microprocessor— based machine, It can be partitioned
into several groups of processors which may be as-—
signed to execute multiple independent SIMD proces-—
ses and MIMD processes.

VII. CONCLUSIONS

Performance of the Machine

At this time no figures can be given, since

the AHR machine isn't yet completed.

New Advances as of August 1981.¢

The hardware is now functioning and the soft-
ware is completed. Extensive tests are under way,
and several bugs have been found and fixed.

Final Remarks

The architecture of the AHR computer demon-—
strates that it is possible to build a multiproces-
sor of the MIMD type, where each processor does not
explicitly communicate with other processors. In
the AHR design, a processor does not know how many
other processors exist, or what they are doing. It
is not possible to address a processor: "here T
have a message for processor number 4."

316

Finally, the AHR machine demonstrates how it is
possible to design a heterarchical system, whereby
all of the processors have the same priority level.

Once the machine has been built, experimenta-
tion will begin in the design of parallel languages
and ways to express "power ful" commands in heterar—
chical fashion. It may be possible to place each
micro in a remote place, consequently achieving
some class of distributed computing, if the amount
of access to memories for each processor is low.
That is, a micro can process local work (through
Basic, for instance) as well as remote (Lisp) work.

By connecting the machine to a general purpose
computer, therefore being able to use already avail-
able operating systems for time sharing, text edi-
tors and loaders, the construction of new software
has been kept low.

Acknowledgements

The AHR machine is being built by the members
of the AHR Project, to whom I express my apprecia-—
tion for their time, effort and enthusiasm.

1 wish also to add thanks to Sintra Duke, one
of our Computer Science students, who entirely
rewrote an earlier manuscript (41, giving a better
English version of it.

Work herein described has been partially
supported by Grant #1632 from CONACYT, the National
Council for Science and

Technology (Mexico).

THE AHR COMPUTER

The pécture shows the cineulan s thueture
of the AHR machine. Under the table, tww
Zilog 180 michocomputersd : the 1/0 pho -
cosson (Left), and the distrl utor,
Vension 0 [(night).

References 14. Weinreb, C., and Moon, D. lisp machine manual.

1979. M.I.T.A.I. Laboratory, Cambridge, Mass.

1. Barrera, R., Guzman, A., Ginich, A., and (USA)

Te

. Guzman, A. Heterarchical architectures for paral-

. Guzman, A., Lyons, L., et al. The AHR Computer:

. Norkin, K., and Rosenblueth, D. Towards opti-

10.

11

12.

13

Radhakrishnan, T. Design of a high level lan-

guage for image processing. In Languages and 15. Williams, R. A Multiprocessing system for the

Architectures for Image Processing, M.J.B. Duff direct execution of Lisp. 4th Workshop on Com-

and S. Levialdi (eds). 198l. Academic Press puter Architecture for non-numeric processing.
1978, ACM Sigarch Vol. VII No.2 (Sigmod Vol. X

. Briggs, F.A., Fu, K.S., Hwang, K., and Patel, No.1). Pages 35-41.

J.H. PM4: a reconfigurable multiprocessor system
for pattern recognition and image processing,
1979. Technical report TH-EE-79-11. School of
Electr. Eng., Purdue University (USA)

Guzman, A., and Segovia, R. A parallel reconfig-
urable LISP machine. 1976. Proceedings of the

International Conference on Informatiom. Sci. and
Systems. Univ. of pratras,Creece. 207-211.
Sy s

lel processing of digital images. In Lan-
guages and Architectures for Image Processing,
M.J.B. Duff and S. Levialdi (eds). 1981. Academ-
ic Press.

construction of a multiprocessor with LISP as
its main language. (in Spanish). 1980. Technical
report AHR-80-10. TITIMAS, Natiomal University of
Mexico.

. Guzman, A., Seco, R., and Sanchez, V. Computer

Analysis of LANDSAT images for crop identifica-
tion in Mexico. 1976. Proceedings of the Inter-
national Conference on Information Sciences and
Systems. University of Patras, Greece. 361-366. Not o be confused with the fifo (Sec. 1),
the fifo ifo (not discussed in the text)

Keller, R.M., Lindstrom, G., and Patil, §. A i a piece of hardware that the Lisp
loosely-coupled applicative multi-processing processons use to do input/and output
system. AFIPS 1979 Conference Proceedings, Vol. with the 1/0 processon: it holds
48, 613-622. S-expressions to ke read o printed.

The variable memony 48 behind the
Norkin, K., and Gomez, D. ‘A new description for §ibo -<ho.
data transformations in the AHR computer. 1979.
Technical report AHR-79-4, IIMAS, National
University of Mexico.

mization in AHR. Technical report AHR-79-5,
IIMAS, National Univ. of Mexico, 1979.

Pefiarrieta, L. Error detection in the AHR com—
puter. (In Spanish). 1980. Technical report
AHR-80-9. IIMAS, National Un;vetsity of Mexico.

Rieger, C., Bane, J., and Trigg, R. ZMOB: a
highly parallel multiprocessor. 1980. Technical
report TR-911, Dept. of Comp. Science, Univ. of
Maryland (USA).

Rosenblueth, D., and Velarde, C., The AHR ma-
chine for parallel processing: lst. stage.
(In Spanish). 1979. Technical Report AHR-79-2, COMMUNTCATING THROUGH THE LOW-SPEED BUS
1IMAS, National University of Mexico.

Sintha Duke wdes a key teand to £8sue
Watson, Ian, and Gurd, John. A prototype data- commands to the Lisp phocessors Hrough
flow computer with token labeling. AFIPS 1979 the Lowspeed b (Section 11),nonmally
Conference Proceedings, 48, 623-628. connected to the 1/0 processon.

317

