ik a?!

Chapter Eighteen

A Parallel Heterarchical Machine
for High-level Language Processing

Adolfo Guzman

1. INTRODUCTION AND PROJECT STATUS

This chapter presents the architecture of a parallel general purpose computer
that has LISP as its main programming language. It is built of several dozens of
microprocessors (Z-80's), each of them executing a part of the program.

1.1 Goals

The goals of the Project AHR (Arquitecturas Heterarquicas Reconfigurables)
are:
(a) to explore new ways to perform parallel processing;
(b) to have a machine in which it will be possible to develop parallel
processing languages and software;
(c) to have a tool for students to learn and practice parallel concepts in
hardware and software.

1.2 Project status

Version 0 [3] of the machine has been designed and simulated. This produced
Version 1 [12], which was simulated using SIMULA.

We are building Version 1 of the machine, expected to be operational [5] in
the first quarter of 1981. Subsequently, a faster version will be built, possibly
incorporating changes and ideas sprung from our experience with the first
machine. Finally, this fast version will be used to try to attain the goals
mentioned above.

‘n‘LRan\gg; and Ar chitectures for
bmage Processing.” Duff and Leyialdi, eds.

Acadumic Press, t98)

ARTAGA 47

230 Adolfo Guzmdn

About six people are involved in the project full-time. The expected uses of
the machine also include picture processing, finite element methods, engineer-
ing calculations, and distributed processing.

1.3 Main features

The AHR machine has the following characteristics:

(a) general purpose;

(b) parallel processor;

(¢) heterarchical. It means that there is no hierarchy among the processors;
there is no “master’” processor, or controller. All the processors are at
the same level;

(d) asynchronous operation;

(e) it has LISP as its main programming language;

(f) processors do not communicate directly amongst themselves. They only
“leave work” for somebody else to do it;

(g) no input/output. This is handled by a minicomputer to which the AHR
machine is attached;

(h) no operating system (software). Most of the LISP operations, as well as
the garbage collector, are written in Z-80 machine language;

(i) the AHR machine works as a slave of a general purpose computer (a
mini);

(j) gradually expandable. More microprocessors can be added as additional
computing power is needed [9].

1.4 Funtional notation

The AHR machine obtains its parallelism by parallel evaluation of the argu-
ments of functions. For instance, in f(a,b, g(u,g(x,b))), first x and b are
evaluated; then g of them, in parallel with u; then g of the result, in parallel
with a and b. That is, evaluation occurs from bottom up, or from the inside to
the outside of the expression. This is in accordance with the rule for evaluation
of a function: “to evaluate a function, the arguments have to be already
evaluated”.

Recursion is handled [3] by substituting the function name
(“FACTORIAL?”) by its function definition (LAMBDA (N) (IF (EQ N O)
1..)) when evaluating it.

The machine works with pure LISP, without SETQ’s, GOTO’s, Label’s,
RPLACA.

A parallel heterarchical machine 231
2. THE PARTS OF THE AHR MACHINE

In this section the constituents of the machine are described; section 3 explains
how the machine works. Refer to Fig. 2—“The AHR machine”.

2.1 Passive memory

This memory holds lists and atoms; it holds partial results and parts of
programs that are not being executed at the moment.

Originally, the programs to be executed reside here, and they are copied to
the grill (see below) for their execution. As new data structures are built as
partial results of the evaluation, they come to the passive memory to reside.

2.2 The grill

This memory holds the programs that are being executed. A program, once in
the grill, is being transformed into results, as the result of its evaluation.
Programs reside in the grill in the form of nodes (see Fig. 1). Each node is
pointed at by its sons (its arguments), and its nane field contains the number of
non-evaluated arguments. Nodes with nane = 0 are ready for evaluation.

2.3 The LISP processors

These active units are microprocessors (about several dozens of Z-80’s) that
obtain from the grill nodes ready for evaluation, and, after evaluation, return
results (s-expressions) to the grill. Each LISP processor knows how to execute
every LISP primitive. Each of them works asynchronously, without com-
municating with other processors.

The processors obtain new work to be done from the distributor, through the
high speed bus. This work comes as a node ready to be evaluated.

Only nodes with nane = 0 come up to the LISP processors for evaluation.
So, for instance (CAR (A B C)’) will evaluate to A. The node (CAR ‘(A B C))
has become the result A. The LISP processors has to do, after evaluation, the
following things:

(1) Insert the new result A in the cell (in the grill) pointed to by the node
(CAR ‘(A B C)). That is, insert such result in a slot of the father of the
evaluated node (see such slots in Fig. 1).

(2) Release the grill space occupied by node (CAR ‘(A B C)").

{3) Subtract 1 from the nane of the father.

232 Adolfo Guzmdn

{LIST (CONS (CAR A)
{COR B))

X
Y1)

LIST |3

/

warlo| |var|o Cons |2

S

cAR |1 coRr | I

VAR [O VAR | O
e "8

Fig. 1. Nodes in the grill. (above) the LISP expression to be evaluated. (below) how it is
structured into nodes, each node being a function or a variable. Each node shows a number: its
nane, or number of non-evaluated arguments. When a node has a nane of zero, it means that
node is ready for evaluation.

Empty words are slots where the results of evaluation will be inserted. For instance, the
results of (CDR B) will be inserted in the slot marked “*”.

(4) If the new nane (of the father) is zero, inscribe the father in the FIFO:

the father is now ready for evaluation.

These steps are done by the processor simply by signalling to the distributor
that it has finished, and that its results should be handled in mode *“‘normal
end” (burocracia de salida, in Spanish [12]); the distributor itself performs
the requested steps.

Notice that in this form nobody has to search the grill looking for nodes with
nane = 0, because as soon as they appear, they are inserted into the tail of the
FIFO.

The LISP processors have access to the passive memory (where lists and

<

A parallel heterarchical machine 233

atoms reside), and to the variable memory, where we have the vlaues of
variables. A LISP processor is either busy (evaluating a node) or it is ready to
accept more work (another node).

2.3.1 The high speed bus

Connecting each LISP processor with the distributor is a high speed bus that
goes into the private memory of each processor. The new node that the
distributor throws is inserted (through the high speed bus) into the memory of
the selected processor. Then, the processor is signalled to proceed.

2.3.2 The slow speed bus

This bus runs from the I/O processor (the mini to which the AHR machine is
connected) to each box. It is not shown in the diagrams, nor it is explained
furthermore in this article [see 5]. Through this bus each processor is loaded
with programs, prior to starting the machine. Also, in the debugging stage, the
slow bus is used to pass statistical information to the I/O processor.

2.4 Variable memory

This memory contains pairs of (variable, values), and it is organized as a tree,
or a collection of a-lists, where each pair of (variable, values) points to older
pairs. It is accessed by the LISP processors, and it is augmented (a branch of
the tree grows) after each LAMBDA binding.

2.5 The distributor

This piece of hardware communicates the grill with the LISP processors. The
distributor keeps in the FIFO (a memory) and array of nodes ready to be
evaluated; these nodes are thrown, one in each cycle of the distributor, to the
LISP processors that are ready to accept new work. An arbiter decides which
LISP processor obtains the node; an exchange is done (through the high speed
bus) between that LISP processor and the distributor, the processor accepting
the node and releasing the result of the previous evaluation. The distributor
stores such results in the grill, in the address indicated within the result.
Generally, this result is stored in a slot of the node which is father of the node
just evaluated. An overall view of the machine is shown in Fig. 2.

Y

234 Adolfo Guzmdn

=14

Result

Vanable memory

LISP processors

High speed bus to LISP processors

Node

Ot

Distributor

Possive memory

Grill

Fig. 2. The AHR machine. LISP processor 2 is ready 1o accept more work. The distributor
fetches a node (to be evaluated) from the FIFQ and sends it to processor 2, while accepting the
results of the previous evaluation performed by such a processor. That result is stored in the grill,
in a place indicated in the destination address of the result.

Such exchange of new work-previous result is performed at each cycle of the distributor.

Version 2 of the AHR machine will gain speed over version 1, mainly by building a fast
distributor.

The LISP processors also have access (connections not shown) to the variable and passive
memories.

2.5.1 The FIFO

The FIFO is a first in-first out memory that holds pointers to nodes (in the
grill) ready to be evaluated. The distributor fetches such nodes through the
head of the FIFO, while new nodes to be evaluated are inserted through its
tail [5].

A parallel heterarchical machine 2335
2.5.2. The arbiter

If several LISP processors become ready to accept more work, the arbiter (a
hardware) selects one of them, which will receive the node thrown by the
distributor. If every processor is busy, the cycle of the distributor is wasted,
since no processor accepts the node that the distributor is offering.

2.6 The /O processor

It has been said that the AHR machine can be seen as a peripheral of a general

purpose minicomputer. But this mini can also be considered as a peripheral of

the AHR machine; we thus talk of such a mini as the I/O processor.
Input/ouput will be described in the next section.

3. HOW THE MACHINE WORKS

3.1 Input

The user sits at a terminal of the mini (I/O processor) which is master of the
AHR machine. He uses a common editor, discs and the normal operating
system of the mini. When he is ready to run a program, he loads it from disc
into a part of the address space of the mini which is really the passive memory
of the AHR machine (see Fig. 3). In this way, the program is loaded (already as
list cells) in the passive memory. A signal from the I/O processor to the AHR
machine signifies that execution should begin. Together with this signal an
address is passed, indicating where in passive memory the program to be
evaluated resides.

3.2 Starting

It is assumed that each LISP processor already has its programs loaded in its
private memory.

When the AHR machine receives the “start” signal, the distributor throws a
node (called the RUN node) to the LISP processor. This node points to the
program which will start.

The program (in passive memory) is copied by more and more LISP
processors (the more leaves or branches a program has, the more processors
help to copy it) into the grill. Nodes with nane = 0 are inserted by the LISP

236 Adolfo Guzman

\ g
\ }—— fé
\\ E x
\ e
\ QU
\ Possive L -
\ memary -
\
N |
\ |
N |
Ny
|
~N
Terminals Dise i
| \\
~
Q\ S
CPU e Il
LJ__-] memaory
Q/Mmicompuier

Fig. 3. The AHR machine as a slave. The AHR computer is shown as another peripheral ofa
general purpose minicomputer. The address space of the mini comprises the passive memory of
AHR, through a movable window of 4 K addresses.

processors into the FIFO, so that some other LISP processor with execute them.
Finally, the program has been copied into the grill. Notice that at the same
time of copying, some nodes with nane = 0 could have been evaluated by some
other LISP processors.

3.3 Evaluation

When a LISP processor is idle, it signals to the distributor, meaning that it is
ready to accept more work.

The distributor chooses (with the help of an arbiter) one of several idle
processors, and through the high speed bus it injects a new node (taken from
the grill through the head of the FIFO) into its private memory. It then signals
such a processor to start.

The LISP processor “discovers” the node in its own memory, with all the
arguments already evaluated. The LISP processor proceeds to perform the
evaluation that the node demands. Suppose it is LIST, and its arguments are
(A B), M and N. It then has to address the passive memory in the mode “‘give a
new cell”. Such a cell is given by a cell dispatcher (hardware attached to passive
memory). Three new cells have to be requested. Then the LISP processor
forms the result: ((A B) M N). For this, it has to store pointers to (A B),to M
and to N, into passive memory, in the new cells already obtained. Then, it
stores the result (which is a pointer to passive memory) into a special place

4’

A parallel heterarchical machine 237

(“results place”) of its private memory. It has finished. It signals to the
distributor that it is ready to accept more work. The distributor will insert new
work (another node with nane = 0) into the private memory of the processor,
but it will also collect (through the high speed bus; see Fig. 2) from the “‘results
place™ in private memory, the result ((A B) M N). The distributor will store
this result into a slot in a node in the grill. The address in the grill of this slot
was known to the (LIST (A B) M N) node, because each node points to its
father. Thus, the distributor has no problem in finding where to store the
result: such address is found also in the “results place”, together with the
result ((A B) M N).

The distributor has to do one more thing: it has to substract one from the
nane of the father (which has just received the result (A B) M N)). And if such
nane becomes zero, then a pointer to the father is insterted by the distributor
into the FIFO through its tail. Finally, the distributor has to free the cell of the
node (LIST (A B) M N), so that this grill space could be re-used [10].

The distributor is very fast compared with the speed of the LISP processor.
This will be even more true if we code “complicated” LISP functions (such as
MEMBER OR FACTORIAL) in Z-80 machine language, instead of ““simple”
LISP functions, such as CDR.

Due to such differences in speed, the distributor can keep many LISP
processors working; if the distributor is 100 times faster than the (average)
LISP function, it could keep 100 LISP processors functioning. It pays to make
a fast distributor.

3.4 Output

Finally, the whole program has been converted into a single result (let us say, a
list) deposited in passive memory. The AHR machine now signals the mini (or
I/O processor), giving it also the address in passive memory where the result
lays. The mini now accesses the passive memory as if it were part of its own
memory (remember, their address spaces overlap), and proceeds to the (serial)
printing process. Execution has now finished.

4. HARDWARE CONSIDERATIONS

4.1 LISP processors

The first version of the machine will have 5 LISP processors, and the “mini” or
I/O processor is another Z-80. Each LISP processor will have 4 K bytes of
private memory, where a pure-LISP interpreter will reside [8].

238 Adolfo Guzmdn

The maximum number of LISP processors is 64. It could be increased
further, but a new arbiter needs to be designed in that case.

4.1.1 The high speed bus

The distributor inserts a node (7 words of 32 bits) into the private address space
of the selected LISP processor, through the high speed bus. It does this in
0.5 ws. It runs from the distributor to all LISP processors. It carries nodes and
results.

4.1.2 The low speed bus

In a 16 bits low speed bus, 8 of the bits indicate which LISP processor is
addressed, the other 8 bits carry data. It runs from the I/O processor to the
LISP processors.

An additional use of the low speed bus is to broadcast to the LISP processors
the number of a program that needs to be stopped or aborted.

4.2 Passive memory

It consists of up to 1024 K words of 22 bits; it contains the input ports, list
space, output ports and atom space. Version 1 will have only 64 K words.
Access time is 150 ns. It has a parity bit.

4.3 The grill

It consists of up to 512 K words of 32 bits. It is divided logically in nodes, each
with 7 words. Version 1 will have 8 K words. Access time is 55 ns. The grill
contains the nodes that are about to be evaluated.

4.4 Variable memory

It consists of up to 512 K words of 32 bits. This memory contains names of
variables and their values at a given time. The variable memory also contains
real numbers, in its lower half. In its upper half it has “‘environments’’, which
are lists of cells of 5 words each. Version 1 will have 16 K words. Access time is
150 ns.

A parallel heterarchical machine 239
4.5 The distributor

The distributor passes nodes from the grill to the LISP processors, and stores
in the grill the results coming from the LISP processors. There are two
versions of the distributor.

4.5.1 First version of the distributor

This first version [10] is implemented through a Z-80, using a program that
performs all the functions of the distributor. It runs slowly, in the sense that it
distributes nodes at low speed. It is further described in section 5.

4.5.2 Second version: fast distributor

This version is not yet built; it will become part of version 1 of the machine. It
will be built either from bit-slice microprocessors, or from PAL’s.

4.5.3 The FIFO

Of a maximum of 512 K words of 19 bits, the FIFO contains pointers to the
nodes in the grill. Version 1 will be of 4 K words. Its access time is 55 ns.

4.5.4 The arbiter

There are really three arbiters—for passive memory, variable memory and for
the grill. Each arbiter takes 400 ns to respond, and it may handle up to 64
processors. Each processor has a fixed priority, varying from 1 to 64. Each
processor has a different (unique) priority.

4.6 The l/0 processor

This is actually built around a Z-80 that works as a general purpose computer.
Its main functions are to:

(a) talk to the users; to read their input and to print their results;

(b) store user files in its disc;

(c) initialize the AHR machine;

(d) load into passive memory, through the window, the programs loaded

from disc;

(e) begin garbage collection;

(f) end garbage collection;

(g) Actually, the garbage collector runs in the I/O processor.

240 Adolfo Guzmdn

5. SOFTWARE CONSIDERATIONS

5.1 The LISP interpreter

A LISP interpreter runs in each LISP processor. It interprets pure LISP (only
evaluations; no SETQs, RPLACDs or other operators). The garbage col-
lection is not done by the LISP processors at this moment.

For the first version, the LISP interpreter will do argument checking of the
LISP functions. This will remain as an option in the second version of the
AHR machine.

5.2 The garbage collector

For the first version of the machine, this will be a “normal” serial garbage
collector, running in the I/O processor. While it is working, the LISP pro-
cessors remain idle. For the second version, it will be a parallel incremental
garbage collector, running in the LISP processors.

Garbage collection is done for passive memory (list cells) and for the real
numbers region of variable memory (where it compactifies memory). In the
“environments’’ zone of variable memory and in the grill (nodes), there is no
need to re-collect garbage, because used space, as soon as it is abandoned in
these two places, is inserted (by hardware) into a list of free environment cells
(for variable memory) or into a list of free nodes (for the grill).

5.3 The distributor (first version)

This is a piece of software [10] running in a Z-80, that emulates all the
functions that the ‘“real” (hardware) distributor performs. It is slow in this
sense, but it is flexible and helps in the debugging of the AHR machine; it may
be run “‘step-by-step” to see the flow of information. It also keeps statistics of
use of hardware and software.

5.4 Editing

Editing of LISP programs is done outside the AHR machine, using the
operating system and editor of the I/O processor. After editing, the program is
filed on disc. From here, a loader (running in the I/O processor) converts it
into list cells and brings the program to passive memory (see Fig. 3).

A parallel heterarchical machine 241

6. RELATED WORK AND MACHINES

6.1 Greenblatt’'s LISP machine

This is a single processor machine [14] built for high speed LISP comput-
ations. It does not pretend to be an experiment in parallel hardware; it gains its
speed and power from careful design of the software and machine architecture,
as well as from the experience of the builders with the LISP language.

6.2 Parallel LISP machine

This machine [7] is a loosely coupled multiprocessor for applicative languages
such as LISP. It is the machine most closely resembling ours, in its application,

6.3 Data flow machines

These machines [13] resemble the AHR architecture in that data is directed
through ““boxes’ that process them. The flow of executions is controlled, like
in our design, by what previous results are ready (available). The cited article
describes a machine that uses different colours of tokens to mark ““this result”,
“‘previous result”, and so on.

6.4 ZMOB

A collection of Z-80’s around a conveyor belt, this machine [11] may be applied
to image processing and numerical calculations. Each microprocessor has its
own private memory. They do not have direct access to a common memory (as
AHR does), but behind one of the micros, a huge central memory or mass
memory may reside.

6.5 PM4

This is a machine [2] suitable for image processing. It is a dynamically
reconfigurable multimicroprocessor-based machine. It can be partitioned into
several groups of processors which may be assigned to execute multiple
independent SIMD processes and MIMD processes.

K

242 Adolfo Guzmdn

6.6 The language “L"” for image processing

“L” is a language suitable for processing of images. It is mentioned here
because it may be implemented in a parallel machine [4], such as the AHR
computer. The language is described elsewhere [1] in this book. It was
designed mainly as a result of our experience in picture processing of multi-
spectral images [6]. “L’" has not been implemented.

7. CONCLUSIONS

The architecture of the AHR computer shows that it is possible to build a
multiprocessor of the MIMD type, where each processor does not explicitly
communicate with other processors. In the AHR design, a processor does not
know how many other processors are there, or what they are doing. It is not
possible to address a processor: “here I have a message for processor number
4.7

The construction of new software has been kept low by connecting the
machine to a general purpose computer, thus being able to use already avail-
able operating systems for time sharing, text editors and loaders.

Once the machine is built, experimentation will begin in the design of
parallel languages and ways to express “powerful” commands in heterarchical
fashion. Also, if the amount of access to memories for each processor is low, it
may be possible to place each micro in a remote place, thus achieving some
class of distributed computing. That is, a micro can process local work
(through Basic, for instance) as well as remote (LISP) work.

Finally, the AHR machine shows how it is possible to design a heterarchical
system, where none of the processors tells the others what to do, in what order
to do it, or what resources are available to whom.

ACKNOWLEDGEMENTS

The AHR machine is being built by the members of the AHR Project, to whom
I express my appreciation for their time, effort and enthusiasm.

Work herein described has been partially supported by Grant 1632 from
CONACYT, the National Council for Science and Technology (Mexico).

A parallel heterarchical machine 243

r'llllll

|
y

Jk* L w ik‘ 'L IL

Fig. 4. The FIFO. This figure shows the FIFO memory that stores pointers to the grill,
containing nodes ready to be evaluated.

REFERENCES

[1] Barrera, R., Guzmin, A., Ginich, A. and Radhakrishan, T. (1981). “Design of a high
level language for image processing”™. In Languages and architectures for image processing.
M. J. B. Duff and S. Levialdi (eds). Academic Press, L.ondon and New York.

[2] Briggs, F. A., Fu, K. S., Hwang, K. and Patel, J. H. (1979). “PM4: A reconfigurable
multiprocessor system for pattern recognition and image processing”. Tech. Rep.
TR-EE-79-11, School of Electr. Eng., Purdue University.

[3] Guzman, A. and Segovia, R. (1976). “A parallel reconfigurable LISP machine”. Proc.
Int. Conf. on Inf. Sci. and Syst., University of Patras, Greece, pp. 207-211.

[4] Guzman, A. (1979). “Heterarchical architectures for parallel processing of digital images”.
Tech. Rep. AHR-79-3, IIMAS, Nat. Univ. of Mexico.

[S] Guzman, A., Lyons, L. et al. (1980). “The AHR computer: construction of a multi-
processor with LISP as its main language” (in Spanish). Tech. Rep. AHR-80-10,
IIMAS, Nat. Univ. of Mexico.

[6] Guzman, A., Seco, R. and Sanchez, V. (1976). “Computer analysis of LANDSAT
images for crop identification in Mexico™. Proc. Int. Conf. on Inf. Sci. and Syst.,
University of Patras, Greece, pp. 361-366.

(71
(8]
(91
[10]
[11]
(12]
(13]

(14]

244 Adolfo Guzmdn

Keller, R. M., Lindstrom. G. and Patil, S. (1979). “A loosely-coupled applicative
multi-processing system”. AFIPS Conf. Proc. 48, 613-622.

Norkin, K. and Gomez, D. (1979). “A new description for data transformations in the
AHR computer”. Tech. Rep. AHR-79-4, IIMAS, Nat. Univ. of Mexico.

Norkin, K. and Rosenblueth, D. (1979). “Towards optimization in AHR”. Tech. Rep.
AHR-79-5, IIMAS, Nat. Univ. of Mexico.

Penarrieta, L. (1980). “Error detection in the AHR computer” (in Spanish). Tech. Rep.
AHR-80-9, IIMAS, Nat. Univ. of Mexico.

Rieger, C., Bane, J. and Trigg, R. (1980). “ZMOB: a highly parallel multiprocessor”.
Tech. Rep. TR-911, Dept. of Comp. Sci., University of Maryland.

Rosenbleuth, D. and Velarde, C. (1979). “The AHR machine for parallel processing: Ist
stage” (in Spanish). Tech. Rep. AHR-79-2, IIMAS, Nat. Univ. of Mexico.

Watson, L. and Gurd, J. (1979). “A prototype dataflow computer with token labeling”.
AFIPS Conf. Proc. 48, 623-628.

Weinreb, D. and Moon, D. (1979). LISP machine manual. M.1.T.A.I. Lab,, Cambridge,
Massachusetts.

