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Abstract

A novel organization for digital com-
puters, linking a multitude of small dedi~-
cated processors (operaticnal mits) and/
.oy special purpose hardware is presented.

The architecture of the machine is
pased on the concept of dynamic medifica-
tion of its structure to tailor it to the
algorithm being executed. In this way a 3
. configurable design is obtained, wnich
executes as much code as possible in
parallel fasion.

The machine has no centralized command
_contrel or decoder unit; it has been de-
sign to executed applicative languages,
(such as LISP, isomorphic to the lamhda
notation. A single program is executed

(evaluated) in parallel.
The machine is formed by a set of op-
.erational units that perform the primitive
functicns of the language; 2 collection of
 mempries to store code, environments vari-
. able bindings) and gueues of work ready to
|be done, and a multiplexor or dispatcher

that handles the multiple access paths and
| provides blocking of critical sections.
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Introduction

Centralized sequential control in a
computer dHcts in a limiting fashion for
algorithms that are naturally parallel.
They have to be sequentially evaluated or
the parallelism has to be simulated.

Linear memery (each cell has scalar
address) and the addressing schemes of
most machines are not natural te handle
list and trees.

Faster computers appear each year [3].
But there is a limit in the speed attained
by electronic circuits, when you take into
account swithching times, propagation
delays, and other effects. The need to
compute faster induces the designer to
propose parallel architectures [ 29,42] .

In the lambda caleulus, the order (the
time) of evaluation either does not mattex,
‘or it is fully specified by the user in a
natural, "unconsciocus"” way: |

£ (g (w,v,x), h{x(t)))
tells precisely that the order of evalua-
tion of u,v, x and £ is inmaterial (hence
could be done in parallel), but t has to
be evaluated befoxe r(t), and h has to
wait until r finishes. The rule is simple:
before you evaluate a function, its
arguments have to be evaluated [2s].

Finally, most of the hardware produced
today is fixed. But a given program could
profit, at certain stage of its exeaation,
£yom mora exponential boxes beox that
performs eX that those pought with the
machine, while most of the sine boxes sit
iddle.
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The Problem to Solve

We would like to address the design of
a machine that:

(1) Executes in parallel several por-
tions of the same program; (2) Frees the
programmer from the need tc specify what
things are computed before, simultanecusly
or after other things; (3) Dynamically
reconfigures itself to the algorithm being
exeguted. The machine should sense the need
of different execution boxes at diffexent
times, and should convert the non-used
boxes to more useful ones; (4) Exhibits
tolerance to failures; (S) Has self-check-
.ing capabilities.

The Solutioﬁ'
The medel propesed consists of:

1. The grill (work memory). It holds
the program(s) being executed.

2. The (passive) memory. It contains
programs, data and results that are not in
the grill. 3

3. The boxes (operational units). Each
‘box performs a primitive operation of the
|language, such as MULTIPLY, SINE, LIST. A
MULTIPLY box searches the grill, through

the blackboard, for 2 multiplication imme-

|diately. It leaves the result in the same
'grill cell which previcusly contained the
multiplication ready to be done. Then it
'goes to look for another multiplication.

| 4. The blackboard (dispatcher). It
points to places in the grill containing
functions ready to be evaluated. The boxes
Yook in the blackboard for work to do in
‘the grill, instead of searching directly
the grill itself. :

An expression to be evaluated is placed
in the memory by some I/C machanism. At the
end of the I/0O mark on the blackboard is
placed. Such mark is a pointer o the head
of the expression in memory. A markx on the
blackboard is a demand for attention of the
boxes. In the particular case of the ini-
tiation of an execution (an evaluation} a
START box is called in order to build the
head node in the grill, from the code (the
expression) placed in memory, and £xom then

on a tree is built (a tree of stacks) on

the grill [7].

Each call for a function (each node of
the tree on the grill) has a counter of

nevaluated arguments that is decremented

in one for each evaluated argument. (Notice
that the arguments are evaluated in paral-
lel). This decrement is performed by each
box that evaluates an argument. In additiocn,
the box that converts such counter to zero
will place a mark on the blackboard, mean-—
ing that this function, because it has a
counter of zerc, is now ready for evalua-
tion.

The wvalues simply replace (take the
place of) the avaluated expression, in the
grill. Eventually the whole tree of the
original program will collapse to a data-
object (a numbexr, a list), this being the
end of the evaluation of the expression
(that is, the end of the execution of the
program).

Example:

1. The expression to be evaluated is

(MULTIPLY X (SIN ¥) Z).
3. 0 1 0 O

The numbers pelow are the counters of
unevaluated arguments. Variables X, Y and
Z are ready for evaluation.

2. Twe variables boxes attach
themselves to ¥ and Z, and (after some time)
yield values:

| (MULTIPLY X (SIN 30) 20}
S e Ay

- =
Notice that the variable box that

evaluated Z places '20' instead of Z, and

a 2 instead of a 3 as counter of MULTIPLY.

3. The variable pox that evaluated Z
now goes on to evaluate X, and a SIN box
now comes to evaluate (SIN 30). After they
€inish, the expression is:

(Multiply 3 0.5 20)

0 v =

4. The zero under MULTIPLY triggers
+he visit of a MULTIPLY box; altex its
execution the expression becomes
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30.

completely replacing the original (MULTIPLY
X (SIN ¥) Z}).

One has to notice that this process is
peing held in parallel; the grill is chang-
ing and the boxes are placing constant de-
mands on the blackboard, whexs other boxes
are continucusly searching for operations
to perform. The limiting factor in paral-
lization is the amount of toxes. A Drocess
of reconfiguration (explained later) takes
place whenever demands for certain type of
boxes exceed its availability.

| In order to easily incorperate concepts
of high level languages, the grill's archi-
tecture is based on a tree structured memo-—
ry [7] where the nodes Zfig. 1 axe stacks
providing an environment to handle frees
variables, bindings and return's to the
calling environment (static and dynamic
links) and a set of pointers to the argu-
ments.

The grill is organized in active nodes
that are being preccessed, and a peel of
free nodes. We may think that each node
is a memory bank with asyncronous access
to it. (Figure 2). Nodes may be exhausted
causing a machine errox.

Blackboard.- The blackboard is a linear
memory divided into areas where boxes place
marks pointing to nodes demanding evalua-
tion. Areas are divided by box tyre; the
division is with soft registexs that can
‘be moved as demands Jrow. The blackboard
may be exhausted (eg. in an infinite
‘recursion), causing a machine error. Boxes
place marks in the first free slot avail-
able. The blackboard makes a "searcher"
mechanism [33] unnecessary.

Memory.- Passive memory contains pro-
grams, data and results. The grill usually
points to scme of these. Certain boxes copy
programs from memory to the grill for
evaluation, and copy results freom the grill.
1/0 transactions take place heltween memory
and external devices. '

The Lisp Machine

To pinpoint scme of these ideas we
propese a LISP machine, that is, a machine

that processes LISP [ 24] programs residing
in memory as S-expressions. We consider
"pure LISP". S-expressions are copied inte
the grill by some boxes as evaluation take
place.

Wwe have boxes for the LISP primitives
CAR, CDR, CONS, ATCM, EQ, plus some program
ming functions LAMBEDA, IF', AND, etc. [ax)=
The following classes of boxes are needed:

- Primitive and programming operations
CAR, LAMEDA,...

- Boxes that handle calls from users
defined functions.

- Converter (special box. See RECCN-
SIGURABILITY).

- 1/0 (Special kox, see INPUT-OUTPUT).

An s-expression is read into memory
by the I/0 box, and a node pointing to it
is created in the grill; then execution
begins.

The performance of the LISP machine is
now explained.

- VARIABLES. A variable is evaluated by
finding its wvalue in the current a-list.
In our case a stack is formed in each
LAMEDA node, and a peinter is held to the
calling environment.

- TF. The format of this expression is
(IF P Q R). If P is true, 0 is evaluated;
otherwise R is evaluated [31] . Initally an
IF node is created, having only the argument
P and a pointer to the rest of the code in
passive memory. P is evaluated leaving a
TRUE or FALSE value. The IF box goes inte
action bringing Q@ or R and also setting the
peinter to the cede to nil, the counter of
unevaluated arguments to 1 and then allows
the evaluation of the argument to proceed.
If the pointer to the code is nil this means
that the argument to be evaluated is ©Q or R.
Since the IF delivers values at various
stages (first P and then Q or R}, it frees
nodes.

— LAMBDA. Binds variables in LISP and
evaluates an expression (form). It can be
used as a primitive: ((X{X) (CDR X)) (QUOTE
(A B C))) or in a function definition. The
binding takes place in the stack built in
the node (see figure 3). Notice that the
access and control links both peint te the
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calling frame. Bindings for free variables
are traced up in the call structure chain.
A special case is the FUNARG proplem where
access and control links de not point to
the same places [81].

Whenever a LAMEDA is placed on the
grill, the arguments are evaluated, produc-
ing a zero in its counter of unevaluated
arguments. Then a LAMBDA box is demanded,
which in turn binds the arcuments with its
variables, placing a 1 intec its counter and
having as argument a pointer to the form,
which is now placed on the grill by the
LAMBDA box. Rt the same time a zero is
placed in the code link indicating that
when evaluation of the form has ended, the
LAMEDA box alse should end and should leave
the node transformed into-an g-expressicn
(a result). As scon as node is not used it
gets into the pocl of free nodes ({(figure 3).

- RECURSION is handled by expanding the
tree in the grill, replacing the name of
the function (each time is called) by its
definition. We examine the case where
user-defined functicns are evaluated. As-
sume that the name of a function and its
arquments are already on the grill, in some
node. Its arguments are evaluated and a
zero is placed in its counter. The box that
decrements the counter and makes it zexo
‘also places a demand in the blackkbeard in
the section of the DEFINED-FUNCTION boxes.
Once this demand is attended such box
lerases the name node replacing it by a
LAMEDA node; in its counter places a zero
\and the grill continues its evaluation as a
regular LAMBDA. When it finds the recursive!
call, the process is repeated. Notice that
the name node and the IF node in the exam-
ple are replaced and the only thing that
remains is a chain of TIMES nodes, that
unwinds when n is zere, transmitting a
result to higher nodes. (figures 4, 5).

Cther LISP functicns are computed in a
similar manner. For instance, (AND F1l F2
F3 ...) places Fl on the grill and holds
its other arguments in passive memory. If
Fl is PALSE, the AND becomes FALSE itself;
otherwise F2 is placed on the grill, etc.

Reconfigurability

Our machine consists of a mixture of
boxes; this mixture may not be optimal for
the whole execution of a program, hence the

need to change it. It is through this
change of composition that the machine
reconfigures itself.

To make these changes, the machine
needs:

1) Te detect which type of boxes are idle
most of the time t, where t is a small
interval. Reconfiguration occurs at the
end of each period t.

To detect which tvpe of boxes are very
busy during the same pericd t. These

two actions (1) and (2) are performed
with the help of a "laziness" counter
attached to the blackbcard of each type
of boxes. It contains the number of

times hoxes of the type in question
didn't £ind anything to &o, in the pexiod
t.

To decide what box(es) to change into
what other(s).

\

4) To make the change, that is, to recon-—
figure. A CONVERTER box seizes the
(iddle) box chosen in step 3 for meta-
morphosis, and plants in it a new micro-
program, converting it into one c¢f the

desired type. '

5) To reset to zero the "LAZINESS" counters
of (2). To initiate a new recenfiguration

pericd t.

6) To have some statistics ready to answer
the owner's question "what new boxes
should I buy next?". This feature is

optional.

INPUT OUTPUT

We can regard our LISP machine as shar-
ing its passive memory with a general pur-
pose computer, which perfcrms the necessary
I/0.

Other Properties of the Machine

{a) The machine can process any language

expressed as a lambda calculus formalism.
(b) Unless the user explicitly wishes to do
it, there is no way to specify sequen=
tial evaluation when it is not needed or
desired.



(e)

(c)

(e)

(£}

(g)

(h}

(1)

&)

There are ne GOTO's, LABELS or CRLL
EXIT (STOP. The machine never stops:
when a program gets evaluated (reduced)
to an s-expression, all the boxes be-
come iddle, locking for work to do.

The machine does not need a compiler or
interpreter to execute the high lewvel
language.

There is no central control, or program
counter. There is no machine cycle. It
is an asynchroncus architecture.

There are no interrupts, deadlocks or
pricrities. A box never interrupts its
execution.

Roxes of different speeds, configura-
tions and complexity can ccexist.

The machine is modularly expandible.

(2].

rhe machine performs maximal parallel-
ization: given a program, the machine
tends tec perform the algorithm in the
fastest possible way. To show this,
first observe that there are no waiting
bhoxes: each box is either fully busy
gerforming its function, or it is look=-
ing for scmething to do. Functicns get
evaluated as socn as thelr arguments
become ready, except when all the boxes
of its type are busy. Evén this situa-

tion is detected at the next reconfioura

tion period, which may possibly create
new boxes of the type mest urgently
needed. 2

of course, faster ccmputation could ke
achieved if we: change the algoxithm;
make (some of) the boxes faster; add
more toxes.

The machine¢ has self-checking capabil -
ity. A TESTER box periodically checks
the boxes.

Related Work

There is much activity in the field of

parallel computation [5,14,29] . MHost com=
puters offer some xind of parallelism com-

putation [1,20,40,43].
recent meetings [33,36,38).

There have been
Several uni-

versities engage in this research (34,39,

a3).

Ltambda-calculus machines. In 1971, (7]
formalizes the way to evaluate lambda-expre
ssions in a machine. Of course, McCarthy's
paper [25] is classical.

High level language machines. The idea
to use a high-level language as & machine
language is not new. M Fortran machine [4]
has been proposed. Hewlett-Packard has a
BASIC machine. APL machines also exist.
B5500 and B6700 are inspired in Algol [18].
Deutch [12] presents an architecture special
1y suited to LISPE.

Pipelines. The idea of many units
jointly transforming a set of data is used
in pipeline architectures [27,37] . We can
regard the pipeline as a special type of
grill, where flow of partial results follows
rigid paths.

mag machines. B6700 already has tag
bits 18] . Feustel [15] generalizes this
concept.

Asynchronous computation. Patil [34]
studied the asynchronous evaluation of
lambda-expressions. Rumbaugh [39] designed
a highly parallel machine for programs exX-=
pressed in a data flow language. He has
dormant as well as active programs: nis data
structures are vectors of values. A struc-
ture is shared instead of copied, for use by
several concurrent activations.

Register transfer modules. Bell 3]
postulates boxes that can be easily connect-
ed and reconnected te perform arbitraxy com—
putations.
|

Architectures resembling ours. Miller
[232,33] describes a configurable machine
based on a searcher that feeds the opera-
tional units with new tasks to perform. It
is not configurable in our sense. He uses
an n by n interconnecticn network for re-
configuration. Glushkov (17] presents a
recursive computer architecture that is simi-
lar to curs in the sense that all progxam
elements for which cperands are available
are to be executed by boxes. As in our ma=
chine, his architecture allows the remcval
of interruption processing programs. Actors
{21] are relevant. Xautz [26] also places
logic into the memory. A theory which is
also relevant is [28).




Error recovery has to be taken inte
account: the machine needs changes to
handle LISP errors.

Current Troubles

We do not like the complexity surround
ing each box. They are simple in themselves,
pbut they have to secarch the backbeard, subs 555595559529555
tract one te the father of the ncde just
evaluated, have a "laziness counter”, etc.
To suppert such overnead, the boxes will
have to be big (perform large operations),
thus increasing the probability that large
parts of the hardware are not doing any-
thing useful, because inside each box com=
putation takes place mostT likely in a
serial fashicn. Said differently, I will
rather place an adder in an ADDER hex so©
as to have it free to look for work at the
grill (any addition to perform), than place
such adder inside a SINE box, because then
such adder will work only when there are
sines to compute; and even then only during
part of the sine cycle. Hence this adder is
idadle most of the time. The overhead
associated with cach box is large (in
number of circuits, say) and forces us to
use larger poxes. Hence, a cheaper over-
head will allow mere "elementary" boxes to
access the blackboard directly, proveking a
better utilization of hardware.

mo Mario Magidin, of Universidad Metro-
politana.
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FIGURE 3.
EVALUATION OF A LAMBDA EXPRESSION.

EXAMPLE: { (LAMBDA (X) (CDR X)) (QUOTE(A B C)))

U] z'
<« [ramEDa |0
...\\ (o The arcument has to be evaluated.
(ARBC)
AV eV
| B A
T ] £ lo A call to the LAMBDA bex is placed
N2t and binding of argument X will take
L\/\/\/\/ e "
1
ok .
0[ A 1 A zero is placed on the code link -
I =% (CORX) and a 1 on the counter.
= X
[;- —1 (A B Q)
A
e
of & |n SIS 3
SliEse ] CoRE| 0 The X is replaced by its value.
— I X (A B C)
[: {3 B C)
LM/\/\/ NN
(.—Tﬁ
. l .
[ K T
(B C) 3 The value (3 C) is passed To a hig.o:
level.
The LAMBDA node disappears.



FIGURE 4.

THE RECURSIVE FUNCTION FACT IS EVALUATED.

DEFINITION: (FACT (LAMBDA (N)
(IF (2ZERD N) 1

EXAMPLE: (FACT 2). (TIMES N (FACT (SUB N 1))
1))
I3
coded— | fact |1
2 This is the initial node
= Enct €
- | fact IO
2
4 I .
<+ ILAHBDAIO FACT disappears and is replaced by ILAM3DA, -
2 having a 0 on its counter. This zero triggers
the visit of A-box, that binds the argument -
with the wvariable.
NS
ey |
I

(XF (2ERO P M) 1 [T Zvsoa In
(TIMES N FACT “1—
(sus w100 (= [ x

The LAMBDA BOX has finished; a 1 is placed and

the body is passed as the argument of A.

N
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LAMBDA

TIMES |2

N

(FACT (SUB N 1))

NN
\ l |
TIMES |2
N
AAAANAA DAMBLA]
(3 ot yepiacl

FIGURE 5.

The only nodes that remain are the A

and the TIMES nwies.

Here we expand the (TIMES N ...).

The process finishes when N=O.

CONTINUATION OF THE EVALUATION OF THE RECURSIVE FUNCTION FACT.



