
ENCLOSING TREES

ERNESTO BRIBIESCA1, ADOLFO GUZMÁN2, LUIS A. MARTÍNEZ3

1 Departamento de Ciencias de la Computación,

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,

Universidad Nacional Autónoma de México,

Apdo. 20-726, México, D.F.,

01000. Fax: (5255)5622-3620,

ernesto@leibniz.iimas.unam.mx

2Centro de Investigación en Computación,

Instituto Politécnico Nacional,

07738 México City, México,

a.guzman@acm.org

3Instituto de Astronomı́a,

Universidad Nacional Autónoma de México,

lamb@astroscu.unam.mx

(Dated: March 23, 2010)

Abstract

A method is described for representing voxel-based objects by means of enclosing trees. An

enclosing tree is a tree which totally covers a voxel-based object, the vertices of the enclosing

tree correspond to the vertices of the enclosing surface of the analyzed voxel-based object. An

enclosing tree is represented by a chain of base-five digit strings suitably combined by means of

parentheses. The enclosing-tree notation is invariant under rotation and translation. Furthermore,

using this notation it is possible to obtain the mirror image of any voxel-based object with ease.

The enclosing-tree notation preserves the shape of voxel-based objects, allowing us to know some of

their topological and geometrical properties. Also, the proposed enclosing-tree notation is a good

tool for storing of voxel-based objects.

1



Keywords: Voxel-based objects; enclosing trees; enclosing surfaces; chain coding; 3D tree

representation

1 INTRODUCTION

Representation of voxel-based objects is an important topic in computer vision and pat-

tern recognition. This paper deals with voxel-based object representation by means of

enclosing trees. The enclosing trees totally cover voxel-based objects, the vertices of an

enclosing tree correspond to the vertices of the enclosing surface of the analyzed voxel-based

object. An enclosing tree is represented by means of a chain of base-five digit strings suit-

ably combined by means of parentheses. In order to describe enclosing trees, we use the tree

descriptor which was presented in [1]. Tree structures cover a wide variety of applications

[2]. In the content of this work, we use volumetric representations for rigid solids by means

of spatial occupancy arrays [3]. The solids are represented as 3D arrays of voxels which are

marked as filled with matter. Spatial occupancy arrays are very common in computer-aided

tomography [3]. The enclosing trees describe trees of maximum degree six in three dimen-

sions. This is due to the fact that we exclusively consider face-connected voxels, i.e. voxels

with six-connectivity.

In graph theory there is no unique way of drawing a graph; the relative positions of points

representing vertices and lines representing edges have no significance [2]. However, in the

proposed method for representing voxel-based objects via enclosing trees, the topology and

geometry of 3D tree structures should be preserved. The enclosing-tree notation is invariant

under rotation and translation. Furthermore, using this notation it is possible to obtain the

mirror image of any voxel-based object with ease. The enclosing-tree notation preserves the

shape of voxel-based objects, allows us to know their topological and geometrical properties.

The proposed method for representing the topology and geometry of voxel-based objects

using enclosing trees preserves information and allows a considerable data reduction, which

is an important advantage in computer vision, image representation, and pattern recognition.

This paper is organized as follows. In Section 2 we present a set of concepts and defini-

tions, which are important for introducing the proposed method of enclosing trees. Section

3 gives the method for generating enclosing trees. Section 4 describes some properties of the

enclosing trees. Section 5 presents some results using objects of the real world as examples.

2



Finally, in Section 6 we present some conclusions and discussions.

2 CONCEPTS AND DEFINITIONS

In order to introduce our proposed method of enclosing trees, a number of concepts and

definitions are presented below:

• An important consideration is the assumption that an entity has been isolated from

the real world. This is called the object, and is defined as a result of previous processing

[4, 5].

• Shape is referred to as shape-of-object, and an object is considered to be a geometric

entity composed of voxels.

• Area is a numerical value expressing 2D extent in a plane, but sometimes it is used to

mean the interior region itself [6].

• The term sphere means the enclosing surface together with its interior.

• The area of every face of each voxel is considered equal to one.

• The length l of each edge of voxels is considered equal to one.

• There are three ways of connecting voxels: by edges, vertices, and faces. In the content

of this paper, we only consider face-connected voxels, i.e. voxels with six-connectivity.

• Volumetric representations are used for rigid solids by means of spatial occupancy

arrays. Thus, the solids are represented as 3D arrays of voxels which are marked as

filled with matter.

• The area of the enclosing surface A of a rigid solid composed of a finite number n

of voxels, corresponds to the sum of the areas of the external plane polygons of the

voxels which form the visible faces of the solid.

• The tree descriptor of a tree is defined by the computation of the chain elements of all

its branches using the parenthesis notation.

3



2.1 The tree descriptor

In order to have a self-contained paper, we summarize the main concepts of the tree

descriptor which was presented in [1]. The tree descriptor will be a useful tool to represent

the proposed enclosing trees. A graph is composed of a set of points called vertices v, joined

by edges (branches) e. A graph is connected if there is a path between any two vertices of

the graph. A tree is a connected graph which contains no cycles [2]. In a tree, any two

vertices are connected by a unique path and the number of edges is equal to the number of

vertices minus one, i.e.

e = v − 1. (1)

The degree of a vertex in a tree is the number of edges incident to it. The enclosing

trees describe trees of maximum degree six in three dimensions. This is due to the fact

that enclosing trees are only represented voxel-based objects, we exclusively consider face-

connected voxels.

DEFINITION 1. A chain a is an ordered sequence of n elements, and is represented by

a = a1a2 . . . an = {ai : 1 ≤ i ≤ n}. (2)

DEFINITION 2. Branches of trees are composed of constant straight-line segments (the

length l of each straight-line segment is considered equal to one). Two contiguous straight-

line segments of a branch define a direction change and two direction changes define a chain

element.

DEFINITION 3. An element ai of the set {0, 1, 2, 3, 4} of a chain indicates the orthogonal

direction changes of the contiguous straight-line segments of the 3D branch in that element

position.

Each element of the chain labels a vertex of the branch and indicates the orthogonal

direction changes of the polygonal path in such a vertex. Figures 1(a)-(e) illustrate the

only five possible chain elements [7, 8]. Formally, an element ai of a chain, taken from

the set {0, 1, 2, 3, 4}, labels a vertex of the branch and indicates the orthogonal direction

change of the polygonal path in such a vertex. Figures 1(a)-(e) summarizes the rules for

4



labeling the vertices: to a straight-angle vertex, a “0” is attached; to a right-angle vertex

corresponds one of the other labels, depending on the position of such an angle with respect

to the preceding right angle in the path. If the consecutive sides of the reference angle have

respective directions b and c (see Fig. 1(a)), and the side from the vertex to be labeled has

direction d (from here on, by direction, we understand a vector of length 1), then the chain

element or label is given by the following function,

chain element(b, c, d) =











































0, if d = c;

1, if d = b × c;

2, if d = b;

3, if d = −(b × c);

4, if d = −b;

(3)

where × denotes the vector product in ℜ3.

Thus, the procedure to find the tree descriptor is as follows:

(i) Select an arbitrary end vertex of the tree as the origin. Fig. 1(f) illustrates the selected

origin which is represented by a sphere.

(ii) Compute the chain elements of the tree. Fig. 1(f) shows the first element of the chain

which corresponds to the chain element “3”. Note that the first direction change (which

is composed of two contiguous straight-line segments) is used only for reference. The

second element corresponds to the chain element “3” too, this is shown in Fig. 1(f).

The third element corresponds to the chain element “3” again. The fourth element

corresponds to the chain element “1”. The fifth element corresponds to the chain

element “0”. The sixth element corresponds to the chain element “0”, too. Thus, in

this stage our chain is as follows: 333100.

(iii) The simplest output of a tree is the well-known parenthesis notation [9]. Using this

notation, there is a correspondence between trees and nested parentheses. In order

to define the next chain element of the Fig. 1(f), we have touched a vertex which is

a junction. In what direction to go? Generally speaking, there are only five possible

ways represented by the previous defined chain elements. In the case of the tree shown

in Fig. 1(f), there are only three possible ways represented by the chain elements “1”,

“2”, and “4”. Note that when we are traveling around a branch, in order to obtain

5



FIG. 1: An example of a tree on five vertices: (a) the chain element “0”; (b) the chain element

“1”; (c) the chain element “2”; (d) the chain element “3”; (e) the chain element “4”; (f) the chain

elements of an example of a tree and its tree descriptor.

its chain elements and find zero elements, we need to know what nonzero element

was the last one in order to define the next element. In this manner orientation is

not lost. We always select the directions in numerical order. Thus, first we select

the direction represented by the chain element “1” and we obtain 333100(120). The

nested parenthesis describe the branch whose chain is (120). Then, we come back to

the junction node and compute the chain of the next branch, which is (22), in this

stage the tree descriptor is equal to 333100(120)(22). Finally, we come back to the

junction node and compute the chain of the last branch, which is (433). So, the tree

descriptor of the tree shown in Fig. 1(f) is as follows:

333100(120)(22)(433)

A complete review of the tree-descriptor notation can be found in [1]

6



3 THE ENCLOSING TREES

The enclosing trees are trees which totally cover voxel-based objects and are represented

by means of tree descriptors. In this manner, we only have a one-dimensional representation

by each voxel-based object via a chain of base-five digit strings suitably combined by means

of parentheses. The vertices of the enclosing tree correspond to the vertices of the enclosing

surface of the analyzed voxel-based object. Topological and geometrical properties of voxel-

based objects may be obtained from enclosing trees.

3.1 How to construct enclosing trees of voxel-based objects using the tree descriptor

The method to find enclosing trees of voxel-based objects using the tree descriptor is as

follows:

(i) Select an arbitrary vertex of a voxel of the voxel-based object as the origin of the

enclosing tree. In the generation of the enclosing tree, the selection of the origin is

very important because different origins produce different enclosing trees for the same

voxel-based object. Fig. 2(a) illustrates an example of a voxel-based object which is

composed of only one voxel. Fig. 2(b) shows an arbitrary selected origin (which is

represented by a sphere) as the beginning of the enclosing tree.

(ii) In order to construct the enclosing tree, select an arbitrary direction to define the

chain elements. The first direction change is composed of two contiguous straight-line

segments which are used only for reference. Different directions generate different

enclosing trees for the same voxel-based object. Fig. 2(c) shows the arbitrary selected

direction.

(iii) Compute the chain elements of the enclosing tree. We found a junction node (see

figures 2(d) and (g)). We always select the chain elements in numerical order. Thus,

in this junction node there are only two possible ways (following the enclosing surface)

which correspond to the chain elements “3” and “4”, respectively. This is considered

as the first stage of the enclosing tree and its tree descriptor is as follows: (3)(4).

(iv) Compute the chain elements which correspond to the second stage of the enclosing

tree. We come back for the node which was generated by the chain element “3” and

7



FIG. 2: An example of a voxel-based object which is composed of only one voxel and its enclosing

tree: (a) an example of a voxel-based object; (b) a selected origin; (c) a selected direction; (d) the

first stage of the enclosing tree and the voxel-based object; (e) the second stage of the enclosing

tree and the object; (f) the enclosing tree of the above-mentioned voxel-based object; (g) the first

stage of the enclosing tree; (h) the second stage of the enclosing tree; (i) the enclosing tree of the

above-mentioned example.

we have only two possible ways represented by the elements “1” and “4”. Now, we

come back for the node which was generated by the chain element “4” and compute

the chain elements (see figures 2(e) and (h)). Note that in this case the two possible

ways were previously occupied by the growing enclosing tree, therefore chain elements

are not generated. In this stage the tree descriptor is as follows: (3(1)(4))(4).

(v) Repeat the process until all vertices of the enclosing surface be computed. Figures 2(f)

and (i) show the final stage of the enclosing tree, and its tree descriptor which is as

follows: (3(1(3))(4))(4). In this example, we have finished the computation of all the

vertices of the enclosing surface of the above-mentioned voxel-based object.

8



3.2 Examples of enclosing trees

Fig. 3 shows an example of an enclosing tree of a voxel-based object composed of 18

voxels. Fig. 3(a) illustrates the above-mentioned voxel-based object. Fig. 3(b) presents the

origin and direction which were arbitrarily selected and the first stage of the enclosing tree.

In this stage, the tree descriptor is as follows:

(0)(2)(4)

For the second stage (see Fig. 3(c)):

(0(0)(2)(4))(2(0)(4))(4(3))

For the third stage (see Fig. 3(d)):

(0(0(2)(3)(4))(2(0))(4(3)))(2(0(1)(4))(4(1)))(4(3(0)(1)))

For the fourth stage (see Fig. 3(e)):

(0(0(2(0)(1))(3(0)(1))(4))(2(0(1)))(4(3(0))))

(2(0(1(0)(3))(4))(4(1(0)(3))))(4(3(0(4)(1))(1)))

For the fifth stage (see Fig. 3(f)):

(0(0(2(0(1))(1(0)))(3(0(1)(4))(1))(4))(2(0(1(0))))(4(3(0))))

(2(0(1(0(3)(4))(3))(4))(4(1(0(3))(3))))(4(3(0(4)(1))(1)))

And for the sixth stage (see Fig. 3(g)):

(0(0(2(0(1(0)))(1(0(3))))(3(0(1)(4))(1))(4))(2(0(1(0))))(4(3(0))))

(2(0(1(0(3)(4))(3))(4))(4(1(0(3))(3))))(4(3(0(4)(1))(1)))

Fig. 4 shows the different stages of the enclosing tree of the voxel-based object presented

in Fig. 3(a). Fig. 4(a) illustrates the first stage of the enclosing tree; Fig. 4(b) the second

stage; Fig. 4(c) the third stage; Fig. 4(d) the fourth stage; Fig. 4(e) the fifth stage; and

Fig. 4(f) the sixth stage, respectively.

9



FIG. 3: An example of a voxel-based object which is composed of 18 voxels and its enclosing tree:

(a) an example of a voxel-based object; (b) a selected origin and the first stage of the enclosing tree

and the voxel-based object; (c) the second stage of the enclosing tree and the voxel-based object;

(d) the third stage; (e) the fourth stage; (f) the fifth stage; (g) the sixth and final stage.

Fig. 5 shows another example of an enclosing tree of a voxel-based object composed of

8 voxels. Fig. 5(a) illustrates the above-mentioned object. Fig. 5(b) illustrates the origin

and direction which were arbitrarily selected. Also, Fig. 5(b) shows the first stage of the

enclosing tree and the above-mentioned voxel-based object. Figures 5(c)-(f) present the

following stages of the enclosing tree of the voxel-based object shown in Fig. 5(a). In order

to improve the understanding of the above-mentioned example, we have generated the Fig.

6 which shows the images of the Fig. 5 rotated 180◦.

Finally, Fig. 7 shows the different stages (from Fig. 7(a) to (e)) of the enclosing tree

presented in Fig. 5(a). The tree descriptor of the different stages of the enclosing tree is as

follows:

(0)(1)(2)(3)(4)

(0(0)(1)(2)(3)(4))(1(3))(2(1))(3(0)(4))(4(0)(3))

10



FIG. 4: The different stages of the enclosing tree of the voxel-based object shown in Fig. 3(a): (a)

the first stage of the enclosing tree; (b) the second stage; (c) the third stage; (d) the fourth stage;

(e) the fifth stage; (f) the sixth and final stage.

(0(0(3)(4))(1(3))(2(1))(3(0)(1))(4(0)))

(1(3))(2(1))(3(0(1))(4))(4(0(3))(3(1)))

(0(0(3(1))(4))(1(3))(2(1))(3(0(1))(1(0)))(4(0)))

(1(3))(2(1))(3(0(1(0)))(4))(4(0(3))(3(1)))

(0(0(3(1))(4))(1(3))(2(1))(3(0(1(0)))(1(0)))(4(0)))

(1(3))(2(1))(3(0(1(0)))(4))(4(0(3))(3(1)))

11



FIG. 5: Another example of a voxel-based object which is composed of 8 voxels and its enclosing

tree: (a) another example of a voxel-based object; (b) the selected origin and direction, the first

stage of the enclosing tree and the voxel-based object; (c) the second stage of the enclosing tree

and the voxel-based object; (d) the third stage; (e) the fourth stage; (f) the fifth and final stage.

4 SOME PROPERTIES OF THE ENCLOSING TREES

The enclosing-tree notation preserves the shape of voxel-based objects, allows us to know

their geometrical and topological properties.

4.1 Independence of rotation for enclosing trees

The enclosing-tree notation is invariant under rotation. Fig. 8 shows different rotations

of the voxel-based object and its enclosing tree illustrated in Fig. 5(f). Fig. 8(a) presents a

rotation on the axis “X” of the voxel-based object and its enclosing tree shown in Fig. 5(f)

and its tree descriptor is equal to:

(0(0(3(1))(4))(1(3))(2(1))(3(0(1(0)))(1(0)))(4(0)))

(1(3))(2(1))(3(0(1(0)))(4))(4(0(3))(3(1)))

12



FIG. 6: The example of the voxel-based object and its enclosing tree shown in Fig. 5 rotated

180◦: (a) the voxel-based object shown in Fig. 5(a) rotated 180◦; (b) the voxel-based object and

the enclosing tree shown in Fig. 5(b) rotated 180◦; (c) in Fig. 5(c) rotated 180◦; (d) in Fig. 5(d)

rotated 180◦; (e) in Fig. 5(e) rotated 180◦; (f) in Fig. 5(f) rotated 180◦, respectively.

Fig. 8(b) illustrates a rotation on the axis “Y” of the voxel-based object and its enclosing

tree presented in Fig. 5(f) and its tree descriptor is as follows:

(0(0(3(1))(4))(1(3))(2(1))(3(0(1(0)))(1(0)))(4(0)))

(1(3))(2(1))(3(0(1(0)))(4))(4(0(3))(3(1)))

Fig. 8(c) shows a rotation on the axis “Z” of the voxel-based object and its enclosing

tree presented in Fig. 5(f) and its tree descriptor is equal to:

(0(0(3(1))(4))(1(3))(2(1))(3(0(1(0)))(1(0)))(4(0)))

(1(3))(2(1))(3(0(1(0)))(4))(4(0(3))(3(1)))

Fig. 8(d) illustrates the enclosing tree of the voxel-based object shown in (a). Fig. 8(e)

presents the enclosing tree of the object illustrated in (b). Fig. 8(f) shows the enclosing

13



FIG. 7: The different stages of the enclosing tree of the voxel-based object shown in Fig. 5(a): (a)

the first stage of the enclosing tree; (b) the second stage; (c) the third stage; (d) the fourth stage;

(e) the fifth and final stage.

tree of the object presented in (c). Notice that all tree descriptors of the enclosing trees are

equal. So, they are invariant under rotation.

4.2 Mirror images of enclosing trees

The mirror image of any enclosing tree is obtained with ease.

DEFINITION 4. Let a be a tree descriptor of an enclosing tree, mirror a is the descriptor

obtained by replacing in a each occurrence of 1 by 3 and vice versa.

THEOREM 1. Let a be a tree descriptor, then mirror (mirror a) = a

Considering Definition 4 and Theorem 1 for tree descriptors: the descriptor of the mirror

image of an enclosing tree is another descriptor (termed mirroring descriptor) whose elements

“1” are replaced by elements “3” and vice versa, preserving its nested parentheses. Fig. 9

shows the mirror images of the enclosing tree shown in Fig. 7(e). In Fig. 9(a) the mirroring

14



FIG. 8: Independence of rotation: (a) a rotation on the axis “X” of the voxel-based object and

its enclosing tree shown in Fig. 5(f); (b) a rotation on the axis “Y” of the voxel-based object and

its enclosing tree illustrated in Fig. 5(f); (c) a rotation on the axis “Z” of the voxel-based object

and its enclosing tree presented in Fig. 5(f); (d) the enclosing tree of the voxel-based object shown

in (a); (e) the enclosing tree of the object illustrated in (b); (f) the enclosing tree of the object

presented in (c).

plane is aligned with the standard plane “XY”. In Fig. 9(b) the mirroring plane is aligned

with the plane “XZ” and in (c) with the plane “YZ”, respectively. Thus, the tree descriptor

of the enclosing tree presented in Fig. 7(e) is as follows:

(0(0(3(1))(4))(1(3))(2(1))(3(0(1(0)))(1(0)))(4(0)))

(1(3))(2(1))(3(0(1(0)))(4))(4(0(3))(3(1))).

And its mirroring descriptor is equal to:

(0(0(1(3))(4))(3(1))(2(3))(1(0(3(0)))(3(0)))(4(0)))

(3(1))(2(3))(1(0(3(0)))(4))(4(0(1))(1(3)))

15



FIG. 9: Mirror images of the enclosing tree shown in Fig. 7(e): (a) the mirroring plane is aligned

with the standard plane “XY”; (b) with the plane “XZ”; and (c) with the plane “YZ”, respectively.

Notice that the elements “1” and “3” of the mirroring descriptor were changed. Thus, this

change does not depend on the orthogonal mirroring plane used, it is valid for all orthogonal

planes. In order to enhance the mirroring property of the descriptors of the enclosing trees,

we have not sorted the parentheses (in the mirroring descriptor) in numerical order as it was

mentioned in Subsection 2.1.

4.3 Some geometrical properties of enclosing trees

The vertices of the enclosing tree correspond to the vertices of the enclosing surface of the

analyzed voxel-based object. This means that the enclosing tree representation is a lossless

transformation of an object, since its surface is exactly described by all its vertices, and

these are also exactly described by the tree.

DEFINITION 5. Let a be a tree descriptor of an enclosing tree and m the number of vertices

of an enclosing surface S of a voxel-based object. Then, n = m − 3, where n is the number

of chain elements of the tree descriptor.

16



FIG. 10: An example of a voxel-based object which has several holes. It is possible to obtain the

enclosing tree for this kind of objects.

The Definition 5 is due to the fact that the first three points of the tree descriptor corre-

spond to the two contiguous straight-line segments which are only considered for reference.

The enclosing trees can be obtained for voxel-based objects which may have holes. For

instance, Fig. 10 presents an example of a voxel-based object which has several holes, it

is possible to find the enclosing tree of this kind of object. However, when objects have

inner holes it is necessary to find the enclosing tree for each hole, this is due to the fact that

this kind of objects have several inner enclosing surfaces. Note that each enclosing surface

corresponds to an enclosing tree.

4.4 Compression efficiency of the enclosing trees to describe voxel-based objects

The encoding efficiency to represent voxel-based objects is very important for pattern

recognition and computer vision. The proposed method of enclosing trees is a powerful

tool for storing of voxel-based objects. This enclosing-tree notation may be used for lossless

compression of voxel-based objects because it preserves information and allows considerable

17



Plane of growth + 0 + 1 or + 3 + 2 or + 4

x y x y y z y x

y x y x x z y x

x z x z z y z x

z x z x x y x z

y z y z z x z y

z y z y y x y z

TABLE I: Equations for the plane of growth of a tree.

data reduction. However, fixed-length coding is not fair in comparison to the variable-length

Huffman codes. The well-known Huffman code is a widely used compression method that

relies on the concept of entropy. So, it is necessary to apply Huffman method to compress

enclosing trees by obtaining probability of appearance of each symbol. In this manner, it is

possible to obtain a good compression rate.

4.5 Equations for changing the plane of growth of a tree

The “plane of grow of a tree” is defined as the plane of the “handle”. For instance, for

Fig. 11, the plane of the handle is x − y; hence, this is also the plane of growth of a tree.

The plane of growth does not change as long as we keep adding 0s, 2s and 4s to the tree.

(To be rigorous, a 2 changes the plane a− b into the plane b− a, and a 4 changes a− b also

into b− a. But for most purposes, planes a− b and b− a are the same). By adding 1s or 3s,

the plane of growth changes; these changes are shown in Table I.

These equations can be represented by:

a b + 0 = a b (4)

a b + 1/3 = b c (5)

a b + 2/4 = b a. (6)

18



FIG. 11: The initial plane of grow of the tree is x y because the handle lies in that plane.

Where a, b and c represent three different axes, 1/3 represents “1 or 3” and “2/4” stands

for “2 or 4”. With them, it is easy to know in each voxel the plane of growth of a given

(portion of a) tree.

5 RESULTS

5.1 Hamiltonian representation of vox-solids

Other method for describing voxel-based objects corresponds to the Hamiltonian repre-

sentation of vox-solids [10]. Thus, a vox-solid is defined as a solid digitalized into voxels

whose boundary is a surface. The face adjacency graph embedding of a voxel-based object

is the graph whose vertices are the boundary faces of voxels, and the edges relate pairs of

boundary faces sharing exactly one side. The main conjecture of this representation says

that every face adjacency graph is Hamiltonian.

Fig. 12(a) shows an example of a voxel-based object composed of eight voxels. Fig.

12(b) presents the above-mentioned object and its enclosing tree. Fig. 12(c) illustrates the

19



enclosing tree of the object shown in (a). Finally, Fig. 12(d) presents the tree descriptor of

the object presented in (a). Fig. 13 presents an example of a vox-solid (Fig. 13(a)) and its

face adjacency graph. Fig. 13(b) shows the labels of the visible faces of the above-mentioned

vox-solid and in (c) the face adjacency graph is shown.

5.2 Comparison between the proposed tree descriptor and the Hamiltonian repre-

sentation of vox-solids

The enclosing-tree notation preserves the geometry of voxel-based objects. The face

adjacency graph does not preserve the shape of vox-solids, two different objects may have

the same face adjacency graph. Other difference: the proposed enclosing-tree notation is a

good tool for storing of voxel-based objects, the tree descriptor is represented by a chain of

base-five digit strings suitably combined by means of parentheses, it is a one-dimensional

notation. On the other hand, the face adjacency graph is represented by a matrix, i.e. a

two-dimensional array of numbers.

5.3 Examples of some voxel-based objects of the real world

In order to test our proposed enclosing-tree method, we present some voxel-based objects

of the real world as examples. In this case, we analyzed Digital Elevation Model (DEM)

data. DEMs are digital representations of the earth’s surface. Generally speaking a DEM

is generated as a uniform rectangular grid organized in profiles. In order to analyze DEM

data by means of the proposed enclosing-tree notation, the models are represented as binary

solids composed of regular polyhedrons (voxels).

DEMs have a large number of applications [11]. Some of these applications include:

urban and regional planning, production of slope, aspect, hill shaded maps, engineering

calculations, geomorphology, navigation, line-of-sight calculations, components in complex

models, and geographic information systems. Thus, the importance of new representations

on DEM data is evident.

In this work the DEMs are represented as three-dimensional (3D) arrays of cells (voxels)

which are marked as filled with matter [3]. Several authors have been using different kinds

of representations for solids: constructive solid geometry schemes are presented in refs [12]

20



FIG. 12: An example of a voxel-based object and its enclosing tree: (a) An example of an object

composed of eight voxels; (b) the voxel-based object shown in (a) and its enclosing tree; (c) the

enclosing tree of the above-mentioned object; (d) the tree descriptor of the object presented in (a).

and [13]; generalized cylinders as 3D volumetric primitives are shown in refs [14], [15], and

[16]; rigid solids represented by their boundaries or enclosing surfaces are shown in refs [17]

and [18]; and superquadrics in ref. [19].

Fig. 14 illustrates the DEM of “El Valle de México” (Valley of Mexico City). The left-

hand side of the figure corresponds to the north of “El Valle de México”, the right-hand

side to the south, the upper side to the east and the lower side to the west, respectively.

On the left-hand side there is a group of hills called “La Sierra de Guadalupe”, and on the

right-hand side there are more hills which correspond to “El Ajusco”. The elevation data

values of the models presented in this study were increased to enhance their characteristics.

Fig. 15 shows the voxelized versions of the volcanoes: “La Malinche” and “Popocatepetl”.

Fig. 16 illustrates the upper side of the volcano “La Malinche” and its enclosing tree. In this

case, we have only considered seven layers of voxels of the volcanoes. In order to improve

21



FIG. 13: An example of a vox-solid and its face adjacency graph: (a) an example of a vox-solid

composed of eight voxels which corresponds to the voxel-based object shown in Fig. 12(a); (b) the

labels of the visible faces of the above-mentioned vox-solid; (c) the face adjacency graph;

our examples of the chain elements, we have colored the straight-line segments which are

defined by their corresponding chain elements. Thus, the straight-line segment defined by

the chain element “0” in green, “1” in cyan, “2” in yellow, “3” in magenta, and “4” in

red, respectively. This may be observed on the electronic version of the paper. The tree

descriptor of the upper side of the volcano “La Malinche” is as follows:

(3(1(0(2(0(2(0(1(1(0(0(2(0(2)(3(0(0(0(0(2(1))(3))(2(1))(3))(2(1)(4(1))))(3))(3)))(2)(3(0)

)))(1(0(1(0(2))(2(3(0)(2(2)))))(2(2(2))))(1))(2))(1)))(2(0(1(0(2(0)(2(2))(3(2))))(1(1(0)(

2(2))))(2))(2(0(2(0)(2(2))))(2)))(1)(2))(3))(1(1(0(0(2(0(2))(2)))(2))))(3(0(3(0(0(2(0(2))

(2)))(2))))(3(0))))(3(0(2(0(0(2(0(2))(2)))(2))))(2(0))))(1(0(2(0(0(2(0(2(0)(2(0(0(1(1)(2(

0(2(1))(3))(2(1)))))(1(1)))(1(1))(2))))(2))))(2(2))))(1)(2)))(3))(1(1(0(2(0(2(0(0(2(0(1(1

)(2(3)))(2))(1)(2)))(2))))(2(0))))(2)))(2)(3(0(3(0(2(0(0(0(1(1(0(1(0(1)(2(2(2))))(1)))(1)

))(2(2(2(2(2(2(0(2))(2))))))))(1(1(0)))(2(0(0))))(2(0(0))))(2(0))))(2)))(3)))(2(1(0(1(0(1

22



(0(0(1(1(0(1(0(0(2(2(1(1))(2))(3(0(2))(2))))(2(3(0(2)))))(1(1(2(0(2))(2)))(2)))(2(0(2(2(2

))))(2)))(1(0))(2)))(2(2(0(2(0(2(0(2))(2)))(2)))(2))))(1(1(2(2(2(2(2(2)))))))))(1(1)))(2(

0(2(1(1(1(0(2(0(2))(2)))(2)))(2))(2(2(2(2(2(2))))))))(2)))(1(0))(2)))(1(1(0(2(0(2(0(2(0(2

(0(2))(2)))(1)(2)))(2)))(2)))(2))))(2(2(2(2(2(0(2))(2)))))))(3(0(2(0(2(0(2(2(1(1(0(1(0(1(

1))(2))(1(0(0(1))(1))(1)))(2(0(0(0(0(2))(2))(2)))))(1)(2(0))))(2(2(2(2(2))))))(3(0(2(2(0(

0(2(2(0(0(0(0(2))(2))(2))(2))(2))))(2))(2))))(2))))(1(0(1(0(2(0(0(0(0(0(0(2(2(2))))(2))(2

))(2))(2)))))(2(0))))(1))(2))(3(0(0(0(2(0(2(0(0(0(0(2(2(2)))))))))(2(0(0)))))(2))(1)(2)))

)(2)(3(0))))(1(0(1(2(0(2(0(2(0(0(0(2(2(2(2(2))))))(2)))))(2(0))))(2))))(1))(2))(4(0(2(2(0

(2(2(0(2(2(0(2(0(2(0(2))))(2)))(2)))))))(2))))))(4)

Fig. 17 shows the upper side of the volcano “Popocatepetl” and its enclosing tree. The

tree descriptor of the upper side of the volcano “Popocatepetl” is as follows:

(0(2(0(0(1(0(1(1(1(0(1(0)(1(0(0)))(2(2(0(2(0)))(1(0(0(0(1(0)(1(2))))(1(1(2))))(1(1(2))))(

1(1(2))))(2))(3(0(0(0(2(0))))))))(2(0(0(2(0(2(2)))(2)))(2))))(1)(2)))(2(2(2(2(2(2(2(0))))

)))))(2(2(2(2(2(2(2(2(2(2)))))))))))(2)))(1(0)))(1(0(1(1(1(1(2(2(2(2(2(0)))))))))(2(2(2(2

(2(2(2(0))))))))))))(3(0(0(1(0(0(0(0(2(2(1(1(0(1(1)(2))(2(2)))(1)(2)))(2(2(2(0)))))(3(2(2

(2(0)))))))(2(3(2(2(2(0)(2(2))))))))(1(1(0(2(0(2(0)))(2)))(2)))(2))(1(1(2(2(2(2(0))))))))

(1(1(2(2(2(2(0)(2(2)))))))))(2(0(2(0(2(0(2(0)))(2)))(2)))(2)))(1(0(0)))(2))(1))(4))(2(0(0

(1(0(0(2(0(1(1(0(1(0(2(0)(2(2))(3(2))))(2(3)))(2(0(0(2(0)(1(2))(2(2))))(2)(3(3(0)(2(2))))

)(3)))(1)(2(0))))(2(2(2(2(2(2(2))))))))(1(1(2(0(2(0(2(0(2))(2)))(2)))(2)))))(3(0(2(0(2(0(

2(0)(2(2))))(2)))(2)))(2)))(2)(3))(2)))(1(0(3(2(2(2(2(2(2(2(2(2)))))))))))))(1(0(3(2(2(2(

2(2(2(2(2(2)))))))))))))(3(0(4(1(0(0(0(1(1(1(1(1(1(1(0(1(1(1))(2))(2(2)))(1)(2)))(2(2(2(0

)))))(2(2(2(2(0)))))))(2(2(2(2(2(0)))))))(2(2(2(2(2(2(0)))))))))(1(1(2(2(2(2(2(0)))))))))

(1(1(2(2(2(2(2(0)))))))))(1(1(2(2(2(2(2(0)))))))))(2(2(2(2(2(2(2(0)(2(2)))))))))))(4(1(0)

)))(4(3(0(2(0(0(2(2(2(2(2(2(2(0)))))))))(2))))(2))))

Finally, Fig. 18 illustrates the enclosing trees of both volcanoes. Table II shows the

comparison between the tree descriptor and the Hamiltonian representation of the above-

mentioned volcanoes. The advantages of the enclosing trees are evident.

23



FIG. 14: The DEM of “El Valle de México” (Valley of Mexico City).

Volcano Vertices of adjacency graphs Elements of graph matrices Elements of tree descriptors

La Malinche 436 190096 1386

Popocatepetl 350 122500 1121

TABLE II: Comparison between the tree descriptor and the Hamiltonian representation of the

above-mentioned volcanoes.

6 CONCLUSIONS AND DISCUSSIONS

6.1 Conclusions

A method has been described for representing voxel-based objects by means of the en-

closing trees which are represented by chains of base-five digit strings suitably combined by

means of parentheses. Enclosing trees totally cover voxel-based objects, the vertices of the

enclosing tree correspond to the vertices of the enclosing surface of the analyzed voxel-based

object. The enclosing-tree notation preserves the shape of voxel-based objects, allows us to

24



FIG. 15: The voxelized versions of the volcanoes: “La Malinche” and “Popocatepetl”, respectively.

know their topological and geometrical properties. Also, it is possible to obtain enclosing

trees of voxel-based objects with holes. The enclosing-tree notation is invariant under ro-

tation and translation. The article also tells how to compute with ease the mirror image

of any voxel-based object. Finally, the proposed enclosing-tree notation is a good tool for

storing of voxel-based objects.

6.2 Discussions

6.2.1 Shape comparison

The enclosing trees just found are good to describe three dimensional objects. If we want

to compare the shape of two of these objects through their respective enclosing trees, some

additional normalizations are necessary.

• Rotation of axes. Subsection 4.1 shows that rotation of an object preserves its enclosing

tree. Nevertheless, if the object is rotated with respect to the coordinate axes, then

25



FIG. 16: The volcano “La Malinche” and its enclosing tree, we have only considered seven layers

of voxels of the volcanoes.

the tree representation changes, in general. Thus, it is desirable to derive from the

object itself the three orthogonal directions that define the axes. For instance, we can

find the two voxels furthest apart, the axis passing through them could define the x

axis [20]. A better way to find the three axes deducing them from the object itself is

outlined in [21, 22]. In this way, rotating the object will make the axes rotate, too,

and full invariance with respect to rotations is achieved.

• Voxel normalization. The enclosing tree of an object will change if we change the

resolution (the size of a voxel). To normalize against size change, once the axes

are found, we could enclose the object inside the bounding box that just encloses

it, and declare that the sides of this enclosure are each of size 100, say. In this

way the enclosing prism contains 1 million voxels while the object itself will occupy

less. The size of the voxels shall be selected so as to capture all desired nuances

(valleys, protuberances, holes) of the object, while keeping a reasonable number of

26



FIG. 17: the volcano “Popocatepetl” and its enclosing tree, we have only considered seven layers

of voxels of the volcanoes.

voxels occupied by the object. See [20] for this technique for 2D objects.

• A unique origin for the enclosing tree. Changing the place where the tree starts

growing (the “root” of the tree) has the effect of changing the tree representation. It

is, therefore, desirable to locate in the object an origin that can be easily found if the

object rotates or changes size. If possible, the origin location should also be somewhat

invariant to small changes in the surface of the object. A good candidate for the root

is the center of mass of the 3D object. Unfortunately, the center of mass will not be

on the surface, in general. We propose as root of the tree the surface point closest to

the center of mass.

27



FIG. 18: The enclosing trees of the volcanoes “La Malinche” and “Popocatepetl”, respectively.

6.2.2 Detecting flat surfaces

A flat surface is spanned by trees that are of the form 0/2/4 -; 0/2/4 (an arbitrarily long

combination of 0s, 2s and 4s). The surface is parallel to the plane a − b (a is one of x, y, z

and b is one of the remaining two axes). Remark. Although the “plane a b” and the “plane

b a” are the same plane in space, notice that a b + 2/4 = b a. That is, growth when we had

a b as the “handle” was going along the b axis, but the addition of a 2 (or a 4) makes the

growth (still in the a b plane) to be now along the a axis.

6.2.3 Detecting surfaces that are considerably parallel to a given a − b plane

An almost flat surface (which sometimes we call a planoid) is a surface that is for most

of its area parallel to some plane (to plane a− b, to be general) and occasionally curves out

of the plane, to return to it shortly thereafter. A tree that grows in the a− b plane and then

deviates from it has the form (a− b− some 0, 2 or 4s 1/3 . . . ) that is, a− b− some 0s and

28



2s and 4s followed by a 1 or a 3.

• If a tree starts growing in the a b plane, an even number of 2s and 4s returns the

growth to the a b plane, whereas an odd number of 2s and 4s returns the growth to

the b a plane. In any case, 0s interspersed among 2s and 4s do not change.

• If a tree originally growing in the a b plane adds 0s, 2s and 4s, and then adds an 1 or

a 3,

– A. The plane of growth changes to the b c plane if the number of 2s and 4s

(appearing before the 1 or the 3) is even (refer to Fig. 19);

– B. But it changes to grow in the a c plane if the number of 2s and 4s (appearing

before the 1 or the 3) is odd.

To go back to grow in the (original) a b plane,

1. For case A (even number of 2s and 4s), the tree needs two more numbers different

from 0 (immersed in any quantity of 0s), the first must be a 1, 2, 3 or 4 (to produce

a change from the b c to the c a plane), the second number must be a 1 or a 3.

That causes the growth resume at plane a b.

2. For case B, odd number of 2s and 4s, the tree needs two more numbers different

from 0 (immersed in any quantity of 0s), the first must be a 1, 2, 3 or 4 (to

produce a change from the a c plane to c b plane), the second number must be a

1 or a 3, to change from c b to the b a plane).

Thus, in any case, after a 1 or a 3 (immersed in 0s, 2s and 4s, perhaps) occurs, two

more numbers (immersed in any quantity of 0s), a 1, 2, 3, 4 followed by a 1 or a 3,

restore the original plane a b (or b a).

6.2.4 Symmetries

Fig. 20 shows clearly the symmetries between trees.

Acknowledgements

29



FIG. 19: Cases A and B of paragraph 5.2.3. Case A shows an even number of 2s and 4s (just two

2s) between the handle and the first 1 or 3 (in this case, an 1). After that, either direction 1, 2,

3 or 4 returns the growth of the tree to the a b (or b a) plane. Case B shows an odd number of

2s and 4s (just one 2) between the handle and the first 1. After that, either direction 1, 2, 3 or 4

returns the growth of the tree to to the a b (or b a) plane.

This work was supported by IIMAS-UNAM and by SNI-CONACyT. LAM acknowledges

to PASPA-UNAM program. DEM data used in this study was provided by INEGI.

REFERENCES

[1] E. Bribiesca, “A method for representing 3D tree objects using chain coding”, Journal of

Visual Communication and Image Representation 19, 184-198 (2008).

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, MacMillan Press, London

(1976).

[3] D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, New

Jersey (1982).

30



FIG. 20: The left figure shows a tree 0 3 2 3 2 1 and its symmetric tree, 0 1 2 1 2 3. As the text

of the article shows, the mirror image (irrespective of the plane of the mirror) of one of these trees

is the other tree. Notice also that the tree symmetric with respect to the origin to one of these

trees is the other tree. The right drawing shows the trees 2 2 2 2 . . . , 1 1 1 1 . . . and 3 3 3 3 . . . ,

respectively.

[4] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons, Inc.,

New York (1973).

[5] R.C. Gonzalez, R.E. Woods, Digital Image Processing, Second Edition, Prentice Hall, Upper

Saddle River, New Jersey 07458 (2002).

[6] W. Karush, Webster’s New World Dictionary of Mathematics, Webster’s New World, Simon

& Schuster, Inc. New York (1989).

[7] A. Guzmán, “Canonical shape description for 3-d stick bodies”, MCC

Technical Report Number: ACA-254-87, Austin, TX. 78759 (1987). In

http://www.divshare.com/download/6279793-67e.

[8] E. Bribiesca, C. Velarde, “A formal language approach for a 3D curve representation”, Com-

puters & Mathematics with Applications 42, 1571-1584 (2001).

31



[9] A. Cayley, “A theorem on trees”, Quart. J. Math. 23, 376-378 (1889).

[10] F. Sagols. “Hamiltonian representation of vox-solids”, Computación y Sistemas 4, 213-217

(1999).

[11] L. Kikuchi, J. A. Guevara, D. Mark, and D. F. Marble, Rapid display of digital elevation mod-

els in a mini-computer environment, in Proceedings of ISPRS Commission IV, Environmental

Assessment and Resource Management, Crystal City, Virginia, U.S.A., 1982, pp. 297-307.

[12] H. B. Voelcker and A. A. G. Requicha, Geometric modeling of mechanical parts and processes,

Computer 10, 1977, 48-57.

[13] J. W. Boyse, Data structure for a solid modeller, NSF Workshop on the Representation of

Three-Dimensional Objects, Univ. Pennsylvania, 1979.

[14] B. I. Soroka, Generalised cylinders from parallel slices, in Proc., PRIP, 1979, pp. 421-426.

[15] B. I. Soroka and R. K. Bajcsy, Generalized cylinders from serial sections, in Proc., 3rd IJCPR,

1976, pp. 734-735.

[16] R. Brooks, Model-based 3-D interpretations of 2-D images, IEEE Trans. Pattern Anal. Mach.

Intelligence 5 (2), 1983, pp. 140-150.

[17] A. A. G. Requicha, Representations of rigid solid objects, Computer Surveys 12, 4, 1980.

[18] P. Besl and R. Jain, Three-dimensional object recognition, ACM Comput. Surv. 17 (1), 1985,

75-145.

[19] A. Pentland, Perceptual organization and the representation of natural form, Artificial Intel-

ligence 28, 1986, 293-331.

[20] E. Bribiesca, A. and Guzmán, How to describe pure forms and how to measure differences

in shapes using shape numbers. (1980) Invited paper to the IEEE Conference on Pattern

Recognition and Image Processing. Chicago, USA. Also in Pattern Recognition 12, 101-112

(1980).

[21] J. M. Galvez, M. Canton, Normalization and shape recognition of three-dimensional objects

by 3D moments, Pattern Recognition 26, 667-681 (1993).

[22] H. Bullow, L. Dooley, D. Wermser, Application of principal axes for registration of NMR

image sequences, Pattern Recognition Letters 21, 329-336 (2000).

32


