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Preface 

This book is about a new approach in computational 

linguistics related to the idea of constructing n-grams 

in non-linear manner, while the traditional approach 

consists in using the data from the surface structure of 

texts, i.e., the linear structure. 

In this book, we propose and systematize the concept 

of syntactic n-grams, which allows using syntactic 

information within the automatic processing methods 

such as classification or clustering. It is a very 

interesting example of application of linguistic 

information in the automatic (computational) 

methods. Roughly speaking, the suggestion is to 

follow syntactic trees and construct n-grams based on 

paths in these trees. There are several types of non-

linear n-grams; future work should determine which 

types of n-grams are more useful in which natural 

language processing (NLP) tasks. 

The book, first and foremost, is intended for 

specialists in the field of computational linguistics. 

However, we made an effort to explain in a clear 

manner how to use n-grams; we provide a large 

number of examples, and therefore we believe that the 
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book is also useful for graduate students who already 

have some previous background in the field. 

We want to emphasize that no profound knowledge 

of computing or mathematics is required; the 

proposed concepts are intuitively very clear; we use 

very few formulas and if they appear, they explained 

in detail. 

Grigori Sidorov 

September 2013 
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Introduction 

In this book, we discuss an idea poorly studied in the 

field of computational linguistics: the construction of 

n-grams in a non-linear manner. 

First, we discuss the concept of the vector space model 

in detail—a conceptual framework for comparison of 

any type of objects, and then its applicability to the 

text-related tasks, i.e., its use in computational 

linguistics. Concepts related to word frequency (tf-idf) 

are discussed, and the latent semantic analysis that 

allows reducing the number of dimensions is briefly 

presented. 

We mention important concepts concerning the 

design of experiments in computational linguistics 

and describe the typical scheme of experiment in this 

area. 

We present the concept of traditional (linear) n-grams 

and compare it with the concept of n-grams obtained 

in a non-linear manner: syntactic, filtered and 

generalized n-grams. 
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Syntactic n-grams are n-grams constructed by 

following paths in syntactic trees. The great 

advantage of syntactic n-grams is that they allow 

introducing pure linguistic (syntactic) information 

into machine learning methods. The disadvantage is 

that syntactic parsing is required for their 

construction. 

We consider both continuous and non-continuous 

syntactic n-grams. When constructing continuous 

syntactic n-grams, bifurcations (returns, 

interruptions) in the syntactic paths are not allowed; 

when removing this constraint, non-continuous 

syntactic n-grams are obtained: all sub-trees of length 

n of a syntax tree are considered. It is noteworthy that 

continuous syntactic n-grams is a special case of non-

continuous syntactic n-grams. 

We propose a metalanguage for the representation of 

non-continuous syntactic n-grams, i.e., a formal way 

to represent a non-continuous syntactic n-gram using 

brackets and commas, e.g., “a b [c [d, e], f]”. In this 

case, brackets and commas are a part of the n-grams. 

In this book, we also present several examples of 

continuous and non-continuous syntactic n-grams 
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construction for syntactic trees obtained using the 

FreeLing and the Stanford parsers. 

We show that the application of syntactic n-grams in 

one of the traditional computational linguistics tasks, 

the task of authorship attribution, gives better results 

than using traditional n-grams. 

At the end, we present several ideas concerning the 

other types of non-linearly constructed n-grams: 1) 

filtered n-grams: a filter of words or features is built 

using a certain criterion before constructing n-grams, 

then n-grams are constructed using only the elements 

that passed through the filter, 2) generalized n-grams: 

words “are generalized” using lexical relations, 

especially synonymy and hypernymy, in this way, the 

set of elements used for constructing n-grams is 

reduced. 

Many experimental studies are required in order to 

determine which construction parameters of 

continuous and non-continuous, filtered and 

generalized n-grams are the best and for which 

existing tasks in computational linguistics. 

The book systematizes the recent author’s proposals 

on the non-linear construction of n-grams and their 
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use in the vector space model; thereby, some parts of 

the book are based on the author’s previous works 

published in various journals and conferences with 

updates and necessary adjustments. 

Work done under partial support of Mexican 

government (CONACYT, SNI), Mexico City 

government (ICYT-DF PICCO10-120 project), 

National Polytechnic Institute, Mexico (projects SIP 

20120418, 20131441, COFAA), and FP7 PEOPLE-2010 

IRSES: Web Information Quality—Evaluation 

Initiative (WIQ-EI) European Commission project 

269180. 
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PART I.  

VECTOR SPACE MODEL  

IN THE ANALYSIS OF 

SIMILARITY  

BETWEEN TEXTS 
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Chapter 1. Formalization in 

computational linguistics 

Computational linguistics 

Computational linguistics is an important area within 

the field of linguistics. Computational methods used 

in computational linguistics originate from computer 

science, or, to be more specific, from artificial 

intelligence. However, the primary object of study of 

computational linguistics remains the modeling of 

human language, and therefore it continues to be a 

part of the field of humanities.  

Computational linguistics studies how to construct 

language models so as to be understandable by the 

computers, that means that it not only analyzes the 

use of language in human behavior, but also applies 

specific formal methods that allow the exact 

formulation of the hypotheses and their subsequent 

automatic evaluation using linguistic data (corpora) 

[16, 28, 35]. 
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Computational linguistics and 

artificial intelligence 

The formal part of computational linguistics is related 

to the methods of artificial intelligence [27]. In general 

terms, we can define the purpose of the science of 

artificial intelligence as formal modeling of human 

intelligence; i.e., the questions that artificial 

intelligence answers are: what is intelligent behavior? 

How do humans solve so many practical problems on 

a daily basis, in most cases without committing 

errors? Not all areas of artificial intelligence are 

related to human language, for example, vision or 

troubleshooting, etc. However, in artificial 

intelligence, several methods applicable to any type of 

data have been developed: methods of machine 

learning; precisely these methods are applied in 

modern computational linguistics turning it into a 

formalized science. To some extent, computational 

linguistics becomes an empirical science, where 

hypotheses are verified based on the experiments. 
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Formalization in computational 

linguistics 

Computers are the most important modern tools that 

have ever been created by mankind. However, the 

nature of computers is a simple binary logic: zeros, 

ones and some logical operations upon them. How to 

transform such a complex phenomenon as human 

language into this simple logic? For this reason, 

computational linguistics uses both the knowledge 

we have about the human language and the existing 

tools in the area of computer science and 

mathematics: various types of formal models, 

programming languages, etc. [6]. 

Indeed, it is curious that many modern studies in the 

field of computational linguistics increasingly 

resemble other areas of computer science and artificial 

intelligence, especially machine learning related 

areas: automatic classification or automatic clustering. 

Nevertheless, we insist that without the linguistic part 

these methods cannot be applied in human language 

models. In this case, the part related to linguistics 

consists in selecting the features (and their values) 

that are introduced into the classification and 

clustering algorithms. So why the step towards the 
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use of formal methods was taken precisely in recent 

years? From our point of view, this is related to the 

advances of the Internet where a large number of texts 

are freely available these days. These texts are an 

excellent source for learning automatic systems. 

Although it seems that modern automatic systems can 

do magic – to take data and perform tasks so much 

like a human being—in fact, they are based on the 

application of machine learning methods to 

exceedingly big data sets. 

The most common and probably the only way to 

apply machine learning methods is to use the vector 

space model. Obviously, it is one of the most 

commonly used models in modern computational 

linguistics. The following chapters briefly explain this 

concept and discuss possible values that can be 

represented in vector space in case of texts. 
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Chapter 2.  Vector space model 

The main idea of the vector space 

model 

First of all, everything that will be explained below is 

very simple and does not require any computational 

knowledge, rather only a common sense. Therefore, 

we suggest the reader to continue without the fear of 

encountering profound mathematics; we try to 

explain the few formulas that appear here as clearly 

as possible. 

The vector space model is a widely used model in 

computer science. Its wide use is due to the simplicity 

of the model and its very clear conceptual basis that 

corresponds to the human intuition in processing 

information and data. The idea behind the model is 

very simple, and it is an answer to the question, how 

can we compare objects in a formal way? It seems that 

the only way to describe the objects is to use a 

representation with features (characteristics) and their 

values. It is a universal idea, and it even seems to be 

the only possible way to work with formal 

objects [49]. 
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Perhaps, the other option could be the use of 

associative memories [27], in this case, instead of the 

features and their values, the relations between the 

objects are used; the relations are expressed through 

artificial neurons with corresponding connections; the 

connections have the corresponding weights. There is 

a large amount of literature on this subject; however, 

we will not discuss it in this book. 

Well, now we know how to represent two (or more) 

objects by selecting the features and their values. Note 

that, in this case, to select the features means to build 

a model of our objects. Thus, the selection of the 

features is subjective, but the subsequent comparison 

is already completely objective. 

It is necessary to mention that the selection of the 

values scale for the features also affects the model we 

are building, and this is a decision to be made, for 

example, it is not the same to measure in grams or in 

tons. 

Example of the vector space model 

To get a clear picture, let us provide an example. 

Suppose we want to compare two books. Which 



20 

 

features shall we select? As mentioned above, it to a 

great extent depends on our needs, i.e., there is no 

unique and correct set of the objects features. 

However, some features are more common than 

others, for example, in the case of books, the “number 

of pages” would be an important feature for many 

purposes. There could also be such features as “cover 

color”, “author”, “publisher”, “sociological profile” of 

the people who liked this book, etc. 

The value of the “number of pages” feature would be 

numeric, i.e., it would be represented by a number. 

For the “publisher”, the values would be a list of 

possible publishers. For the feature “sociological 

profiles”, the values would be a little harder to 

represent, for example, “undergraduate students of 

the first year” or “university professors between 40 

and 50 years old”, etc. We stress once again that the 

selection of both features and their values is our own 

choice, i.e., we are the ones who are building the 

model, and it would be a matter of its practical 

application to see whether it is useful or not. This idea 

is very clear in the case of features; moreover, it is 

often applied to values. For example, we can measure 

the weight in kilograms or grams—this decision will 
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greatly affect the subsequent comparisons between 

objects. 

Now we have the representation of two objects in 

terms of features and their values. What is the next 

step? What else is needed to build a vector space 

model? Should it be something very complex? 

Certainly not, in fact, the model is already built. It is a 

space of N dimensions; each dimension in this space 

corresponds to a feature: the number of dimensions is 

equal to the number of features of the object in our 

model. 

One can imagine a dimension as an axis in which we 

can mark the values of a feature/dimension. If the 

values are numeric, the interpretation is clear—it is 

the distance from the point with coordinates (0,0,...). If 

the values are naturally ordered, for example, age 

ranges, it is also clear how to treat them, although we 

have to assign them some numerical values. If the 

values are not related, for example, the cover color of 

a book, the easiest solution is to use a random order 

and equally assign numerical values to each symbolic 

value. 

Note that if we want to handle this situation properly, 

we can introduce as many new dimensions (features) 
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as many values we have for each feature, and their 

values can be “present-absent” (1 or 0). The advantage 

is that, in this case, we do not have to sort the values, 

the drawback is that the number of dimensions 

significantly increases. 

The next step is related to the following questions: 

where the vectors are and why is it a vector space? As 

already mentioned, each object is a set of features and 

their values, which corresponds to exactly one point 

in a space of N dimensions (the dimensions 

correspond to the features). This point corresponds to 

a vector (an arrow in the geometric representation) of 

N dimensions (n-dimensional vector), which starts at 

the point with the coordinates (0,0,0,..) in this space. 

For example, let’s consider a 100 page book with red 

cover and compare it with a 50 page book with green 

cover. This is a two-dimensional space: “number of 

pages” and “cover color”, and each book is a point 

with coordinates [100, red] and [50, green]. Note that 

we have to choose which numerical values 

correspond to red and green. 

The dimensions correspond to the position of the 

particular values in the vector, i.e., feature number 1 

has the position 1 in the vector, feature number 2 has 
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the position 2, etc. In this case, as all dimensions are 

equal, the ordering of the features never affects the 

model. 

Another question is how can we formally represent 

the vector spaces? As already mentioned, each object 

is a set of values of the selected features, for example, 

one book is presented as X = [(number of pages = 100) 

(cover color = red)] and the other one as Y = [(number of 

pages = 50), (cover color = green)]. Two questions arise: 

(1) Is there a need to repeat each time the name of the 

feature? and (2) What can be done if an object does not 

have any value of a given feature? 

Table 1: Example of the vector space tabular 

representation. 

 Book X Book Y 

Dimension 1: 

Number of pages 

100 50 

Dimension 2: 

Cover color 
red green 
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The answer to the first question is simple, the feature 

name is usually omitted, thus X = [100, red] and Y = 

[50, green]. Recall that the value of the same feature 

has the same index in the vector, i.e., the same position 

in the vector. Another explanation can be based on a 

table where the columns correspond to the objects and 

the rows to the features (or it can be the other way 

around, it does not change the model), see Table 1. In 

this regard, tabular representation (matrix) and vector 

representation are the same: the columns correspond 

to the objects and the rows to the features, while the 

value of each cell is the value of the feature of a given 

object. 

In this sense, the mere fact of knowing the column of 

the value already defines to which feature this value 

corresponds, i.e., this kind of information is directly 

known from its position in a table. 

The answer to the second question is equally simple, 

what is to be done if a feature is simply not defined 

for a given object: the corresponding positions are 

filled in with zero values. In all subsequent 

calculations, these values will not affect the result 

being equal to zero. 
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Note that the tabular representation is conceptually 

the same as the vector space model per se: the columns 

correspond to the dimensions. The only difference is 

that, in this case, it is not so natural to use geometric 

concepts that we present below, but the advantage of 

this representation is that later we can apply the 

methods of linear algebra, e.g., the latent semantic 

analysis (LSA). We will provide an example of 

application of these methods below. 

Similarity of objects in the vector 

space model 

What are the advantages of the vector space concept? 

We have already built it, how does it help us? It turns 

out that we can use the metaphor of space to calculate 

the similarity between objects, i.e., to compare objects 

based only on very simple geometrical notions, not 

more complicated than the Pythagorean theorem as 

explained below. 

Now, each object is a vector in a space of N 

dimensions. How can we compare these vectors? The 

geometric principle states that the vectors in more or 

less the same direction resemble each other. Formally 

speaking, the more acute the angle between the 

Dimension 1 
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vectors, the greater the similarity. It is very clear and 

intuitive in a two-dimensional space. For example, in 

Figure 1, the more acute the angle between each pair 

of arrows, the more “similar” the arrows of this pair, 

i.e., their directions most closely coincide. 

 

Figure 1: Example of the vector space: similarity 

between vectors. 

For example, vectors A and B resemble each other 

more than vectors B and C. And of course vectors A 

Dimension 2 
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and C are least similar to one another. Note that when 

having three vectors, we can compare three pairs of 

vectors in total. 

In a space with a larger number of dimensions, it is 

harder to imagine this similarity, therefore, we always 

suggest considering examples in a two-dimensional 

space taking into account that in a space with a larger 

number of dimensions, the principles would be 

exactly the same. 

Cosine similarity between vectors 

In order to formally express the similarity, we use the 

cosine measure of the angle between vectors: the more 

acute the angle, the greater the cosine, i.e., the greater 

the similarity between vectors, and thus, the 

compared objects are more similar. 

To calculate the cosine similarity between two vectors 

V and U, the inner product (dot product) of the 

normalized vectors is used. The normalization 

consists in dividing the result by the length of each 

vector or, equivalently, in multiplying their lengths. 

The length is called the Euclidean norm and is 

denoted, for example, by V  for the vector V.  
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We would like to remind the reader what is “to 

normalize” and why it is important. Often it is crucial 

not to compare absolute values, but relative ones. For 

example, is 10 greater or less than 20? The question 

seems to make no sense, because obviously 20 is 

greater than 10. However, what if we knew that 10 

was in the range of 30, and 20 was in the range of 100? 

In this case, if we normalize these values: 10/30 is 

greater than 20/100. This demonstrates that if the scale 

is taken into account (the same scale is used) when 

comparing values, the results depend on the 

normalization (scale). In the case of two-dimensional 

vectors, one vector can be a very long arrow, while the 

other a short arrow. In order to be able to compare 

their similarity, we have to convert them into unit 

vectors using the Euclidean norm. 

The dot product of two vectors is a value that is easy 

to obtain: multiplications of the vector values in each 

dimension are summed up. In two dimensions 

(dimension 1 and dimension 2), for vectors U and V, it 

would be: 

ὈέὸͅὴὶέὨόὧὸὠ  Ὗ ὠ Ὗ . 

That is, the first elements of the vectors are multiplied 

among themselves, then the same with the second 
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elements of the vectors, and at the end, the products 

are summed up. 

More generally: 

ὈέὸͅὴὶὴὨόὧὸὠȟὟ  ὠ Ὗ ȟ 

where m is the number of dimensions in the vector 

space model (which is equal to the vectors’ length). 

As already mentioned, the normalization of the 

vectors is the second step in the calculation of the 

cosine (the first is the calculation of the dot product). 

To this end, the length of the vectors is to be 

calculated, and the Euclidean norm is to be obtained. 

The Euclidean norm converts each vector into a unit 

vector (a vector of length 1). The normalization using 

the Euclidean norm V  is the division of the vector 

by its length. The vector length is calculated as 

follows: 

ᴁὠᴁ ὠȢ 
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In the case of two dimensions, this corresponds to the 

application of the Pythagorean theorem: 

ᴁὠᴁ ὠ ὠ ȟ 

where V1 and V2 are the values of the vector V on the 

axis 1 and 2. Actually, V1 is the value of the vector in 

the dimension 1, i.e., the length of the first leg, and V2 

is the value of the vector in the dimension 2, i.e., the 

length of the second leg, see Figure 1. In this case, the 

vector itself corresponds to the hypotenuse, and the 

Pythagorean theorem is applied. 

In the case of a larger number of dimensions, the 

corresponding elements are added to the formula in 

the same way.  

Thus, the final formula1 for calculating the cosine 

similarity consists in obtaining the dot product of two 

vectors and applying the Euclidean norm: 

                                                 

1 Translator’s remark: Note that this measure was generalized 

into soft cosine measure by Sidorov et al (2014)., when the 
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ÓÉÍὠȟὟ

ὠ Ὗ

ᴁὠᴁ ᴁὟᴁ
Ȣ 

In this case, the cosine similarity indicates to which 

extent the vectors V and U are similar. For positive 

values, the cosine ranges between 0 and 1.  

Note that the cosine similarity is defined for exactly 

two objects (two vectors). The similarity of an object 

with itself would be equal to 1. For objects that 

correspond to the orthogonal vectors (i.e., the angle 

between them is 90 )̄, the cosine similarity is equal 

to 0.  

The concepts presented in this chapter are quite 

simple; nevertheless, they allow comparing any type 

of objects using (1) the vector space model, (2) the 

corresponding spatial metaphor, and (3) basic 

geometrical notions. 

                                                 

similarity of features is taken into account, see, for example, 

Wikipedia. 
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 Chapter 3.  Vector space model 

for texts and the tf-idf measure 

Features for text represented in vector 

space model 

Now we know what a vector space model for any type 

of objects is. This model consists in selection of 

features and assignment of values to these features, 

which allows to represent our objects as vectors, and 

then to measure their similarity applying the cosine 

similarity formula. Recall that for the similarity 

calculation, exactly two objects have to be considered; 

in the case of a larger number of objects, the similarity 

(comparisons between objects) is calculated in pairs. 

Let's see how this model is applied for the comparison 

of documents (texts). That is, the objects that we want 

to compare are documents. 

The need for measuring similarity is a very typical 

situation in automatic natural language processing 

and computational linguistics tasks. For instance, the 

most common information retrieval task is precisely 
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the calculation of similarity. We will explain it in a 

little more detail. 

Information retrieval is based on a collection of 

documents; this collection can be quite large. In the 

case of the Internet search engines, this collection 

consists of all the Internet texts previously indexed by 

the “spiders”, i.e., the programs that follow the links 

on the Internet (the World Wide Web). A user makes 

a query which also has a textual form. In this case, the 

retrieval task is to find the documents in the collection 

which to a larger extent “look like” the query, i.e., they 

are similar to the query [4]. As additional criterion, 

other criteria of similarity such as user profiles or the 

collection structure (e.g., as in the PageRank algorithm) 

are often used. 

Now, if we want to compare the documents, and the 

suggested way is to use the vector space model, how 

do we select the documents features? What are the 

features and their values? As always with the vector 

space model, we have many options, and it is up to us 

which features we will consider important and how 

we will select their values. Thus, in the vector space 

model, the comparison is objective, but the selection 

of the features and their values is subjective. 
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The simplest way is to use words as documents 

features. Usually some additional procedures are 

implemented, such as stemming, i.e., all word forms 

are replaced by their lemmas. For example, the 

normalized forms worked, working, etc. correspond to 

the lemma work. Furthermore, the similarity 

calculation often excludes auxiliary words (stop 

words) such as prepositions or articles, since their 

presence in a document bears no information on the 

document itself, but determined by the characteristics 

of the language. It is common for many tasks; 

however, there are specific tasks which require the 

presence of such words, for example, authorship 

identification [2]. 

Values of text features: tf-idf 

If words are used as features, what values may they 

have? Intuitively, the values should be somehow 

related to word frequency. In this sense, the more 

frequent the word, the more important is this word for 

a document. Not everything is that simple, but this is 

the main point. 

The frequency of the word in a text document is called 

tf (term frequency), i.e., word (term) frequency shows 
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how many times the word appears in a document. 

More specifically, it is denoted by tf ij, i.e., how many 

times the word i appears in the document j. In this 

sense, it is a value that may differ for each document 

in the collection. 

Normally the frequency of a word is combined with 

another measure, called idf (inverse document 

frequency). The intuition behind the idf is related to 

the following: if a word appears in all the documents 

of our collection, then this word cannot distinguish 

between these documents, and therefore is not useful. 

Conversely, if a word appears only in one document 

of our collection, it is a very useful word for similarity 

calculation (or, for example, for information retrieval 

which, as already mentioned, is a particular case of 

similarity calculation). The idf is calculated for each 

word in a given collection, i.e., it depends on the 

collection but does not depend on a specific document 

in the collection. 

The formula for calculating the idf is the following: 

ὭὨὪÌÏÇ 
ὔ

ὈὊ
ȟ 
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where N is the total number of documents in the 

collection, DFi is the number of documents where the 

word i appears at least once, i.e., in this case, no matter 

how frequent the word is within the document, if it 

appears only once, it is already sufficient; note that 

this convention is verified by practice. 

It can be observed that if a word appears in all the 

documents, then the value of the idf is equal to 

log(N/N), which is equal to 0. The idf value is the 

highest when a word appears in only one document. 

The logarithm is used to soften the influence of the 

high frequencies; it is a typical use of logarithms in 

computational linguistics. Note that DFi can never be 

equal to zero, because we have considered only the 

words that are present in our collection. Instead of tf 

we may also use its logarithm: log(tf + 1). In this case, 

we have to anticipate the possibility of zero, so we use 

“+1”. 

In general case, it is recommended to combine tf and 

idf of a given word for each document: normally they 

are multiplied. The measure that combines these two 

metrics is called tf-idf, and it is often used as the value 

of features in the vector space model for the 
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documents comparison. One can apply not only tf-idf 

but also pure tf, normalized tf, idf, etc. [28]. 

Term-document matrix  

So, the objects we are considering are documents 

(texts). Words (terms) are features of these 

documents; each word has a tf-idf value for each 

document. That means that each document 

corresponds to a vector of tf-idf values of words.  

We can also represent all this information as a matrix. 

This matrix is called “term-document matrix”. An 

example is presented in Figure 2. 

 Doc1 Doc2 Doc3 Doc4 

Word1 0.3 0 0 0.02 

Word2 0.7 0.01 0 0.5 

Word3 0 0 0 0 

Word4 0 0 2.2 0 
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Word5 1.2 0 0 0 

…     

Figure 2: Term-document matrix. 

The documents Doc1...DocN represent the documents 

in our collection, the words Word1...WordM represent 

all the words that appear in these documents; the 

words are ordered in a specific way. The values in the 

table correspond to the assumed tf-idf values in the 

collection. 

Note that the table is usually highly sparse, i.e., it 

contains many zeros. Therefore, it is recommended to 

use the inverted index for its representation. The 

inverted index consists in converting the table into a 

list. For example, the inverted list for the figure above 

would be: 

(Doc1, Word1, 0.3), (Doc1, Word2, 0.7), (Doc1, Word5, 1.2), 

(Doc2, Word2, 0.01), (Doc3, Word4, 2.2), (Doc4, Word1, 

0.02), (Doc4, Word2, 0.5), 

In this case, there is no need to keep any elements for 

the zero values in the list. The initial matrix and the 
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inverted index contain the same information. It is a 

standard procedure that should always be applied to 

sparse matrices. 

It can be noted that this representation is equal to the 

vector representation, for example, the document 

Doc1, as shown in Figure 2, corresponds to the vector 

[0.3, 0.7, 0, 0, 1.2]. 

We will use the matrix (tabular) representation when 

discussing the latent semantic analysis. 

Traditional n-grams as features in 

vector space model 

Note that when using words as features, the 

information about the syntactic relations between the 

words is lost. The words become what is called “bag 

of words”. However, for many tasks this loss of 

information is acceptable. Later in the book, we will 

propose a possible solution to avoid this loss of 

syntactic information: syntactic n-grams. 

What else, apart from the words, could be the features 

of documents? Perhaps, it is hard to come up with it 

fast from scratch, but the concept itself is very simple; 
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it refers to (traditional) n-grams. The simplicity of the 

described models is something that we have already 

mentioned when talking about the vector space 

model, and we believe that we are convincing the 

reader that it is actually so. 

Traditional n-grams are sequences of elements as they 

appear in a document [35]. In this case, the letter n 

indicates how many elements have to be taken into 

account, i.e., the length of a sequence or of an n-gram. 

For example, there are bigrams (2-grams), trigrams (3- 

grams), 4-grams, 5 -grams, and so on. Thus, if we talk 

about unigrams, i.e., n-grams constructed of a single 

element, it is the same as talking about words. 

There are different types of elements that form n-

grams. These elements can be lemmas or words; they 

can also be part of speech tags (POS tags) such as 

nouns, verbs, etc. The tags can be more detailed, i.e., 

include grammatical features, for example, a label 

VIP1S could mean “verb, indicative, present, first 

person, singular”. We can construct n-grams using 

this kind of tags. 

In recent years, character n-grams (character 

sequences taken from a text) are being used in various 

different tasks. Interestingly, for some tasks, such as 
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authorship attribution, character n-grams give fairly 

good results [52]. Their linguistic interpretation is not 

sufficiently clear and remains an open question. 

Let's see an example of traditional n-grams of words. 

For the sentence: John reads an interesting book, we can 

obtain the following bigrams (2-grams): John reads, 

reads an, an interesting, interesting book. Or the 

following trigrams (3-grams): John reads an, reads an 

interesting, an interesting book, etc. We can replace each 

word for its lemma or part of speech and construct the 

corresponding n-grams. As we can see, the process is 

very simple, but it is successfully used in the 

computational linguistic systems. 

If n-grams are used as features, what values may they 

have? As in the case of words (unigrams), these are 

the values related to their tf-idf. Note that the 

frequencies of n-grams are usually much lower than 

the frequencies of words, i.e., n-grams appear much 

less in a text. It is logical since we actually observe the 

appearance of sequences of two or more words 

together, which is a much less likely event than a 

single word. 

Thus, in order to apply the vector space model to 

texts, we can use n-grams as features. These n-grams 
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can be of various sizes, composed of elements of 

various types, and their values can be frequencies of 

tf, idf or tf- idf. 
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Chapter 4.  Latent Semantic 

Analysis (LSA): reduction of 

dimensions 

Idea of the latent semantic analysis 

After building the vector space model, we can 

represent and compare any type of objects of our 

study. Now we can discuss the question whether we 

can improve the vector space we have built. The 

importance of this question is related to the fact that 

the vector space model can have thousands of 

features, and possibly many of these features are 

redundant. Is there any way to get rid of the features 

that are not that important? 

There are several methods of analysis of the 

dependencies between features, for example, 

principal component analysis (PCA), the correlation 

coefficient, etc. In this chapter, we will briefly describe 

the method that is called latent semantic analysis 

(LSA) or latent semantic indexing (LSI) [10]. 

First of all, there is a need to clarify that although the 

idea of the latent semantic analysis applied to texts is 
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to find the words that behave similarly (based on the 

analysis of their contexts), and, in this sense, have the 

same semantics; in most cases, the results have 

nothing to do with semantics, except for the initial 

intention. That is, the idea is to search for the semantic 

distributional similarity; however, in practice, this 

similarity is very hard to find applying the latent 

semantic analysis. 

In fact, the latent semantic analysis is an application 

of a matrices processing technique taken from linear 

algebra. This technique is called singular value 

decomposition (SVD) and allows finding the rows 

with more information (large values) in the matrices, 

and thereby eliminates the rows with less information 

(small values). 

In this sense, for our purposes, the latent semantic 

analysis is just a technique to reduce dimensions of a 

vector space. Well, and why are we suddenly talking 

about matrices? And how the matrices are related to 

the dimensions? We have already discussed this issue 

in the section related to the term-document matrix: 

the objects are represented as vectors—this 

corresponds to a multidimensional space—, but the 

set of vectors represents a matrix. 
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Examples of the application of the 

latent semantic analysis  

In this book, we will not enter into mathematical 

details of the latent semantic analysis. Instead, we will 

provide a couple of simple examples. The intuition 

behind the latent semantic analysis can be represented 

in two ways. 

Let us consider a matrix that characterizes four objects 

O1 —O4 and uses four features f1—f4. It can be seen that 

the values of each pair of features are repeated. In this 

sense, one feature in each pair is redundant, see 

Figure 3. 

 O1 O2 O3 O4 

f1 1 1 0 0 

f2 1 1 0 0 

f3 0 0 1 1 
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f4 0 0 1 1 

®   LSA 

 O1 O2 O3 O4 

f1’ -1.4 -1.4 0 0 

f2’ 0 0 -1.4 -1.4 

Figure 3: Example of the application of the LSA. 

Suppose we apply the latent semantic analysis to 

these data. We have to indicate the desired number of 

dimensions at the output; in our case, we know that 

the number of dimensions is two (two features).  

Note that the number of objects remains unchanged, 

i.e., equal to four. The values corresponding to each 

feature and each object were changed; however, the 

four objects we have are well described by the two 

new features, and the elimination of the two other 

features did not affect their descriptive capacity.  
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In another example, we consider two dimensions, in 

each of which a value is marked. We can map these 

two dimensions to another dimension, as shown in 

Figure 4. The projections in the new dimension 

describe our objects just the same. 

 

Figure 4: Projections to a new dimension. 

We can use another metaphor to describe the latent 

semantic analysis. It consists in the rotation of our 

multidimensional space to keep our data with minor 

changes as possible, and, at the same time, get rid of 

some dimensions. 

Dimension 1 

Dimension 2  

New dimension  

Dimensio

n 1 

Dimensio

n 2 

New 

dimension 
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Usage of the latent semantic analysis 

As mentioned above, the latent semantic analysis is a 

way to reduce dimensions in a vector space model. It 

is considered that the latent semantic analysis reflects 

the distributional properties of its elements, i.e., 

allows capturing the contexts similarity of words or n-

grams; however, in practice, it is hard to present clear 

cases. 

When applying the latent semantic analysis, it is 

important to indicate the following parameter: how 

many dimensions should be in the new vector space, 

i.e., how many dimensions should be reduced. It is 

recommended to try values between 100 and 500 

dimensions, although it is to be verified 

experimentally for each task. 

There are libraries that implement the latent semantic 

analysis; therefore, we recommend using a freely 

available code (C, Python, etc.). The latent semantic 

analysis is a procedure that consumes some 

computational processing time; however, this 

procedure is not excessively long. 
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Chapter 5. Design of experiments 

in computational linguistics 

Machine learning in computational 

linguistics 

As we mentioned earlier in the book, in the automatic 

analysis of natural language (natural language 

processing, NLP) and in computational linguistics, 

machine learning methods are becoming more and 

more popular. Applying these methods increasingly 

gives better results [14, 19, 21, 23, 28, 36, 37, 42, 43, 45]. 

The main purpose of applying the machine learning 

methods is to try to model the hypotheses formulated 

by linguists and its further evaluation. In this case, 

human intuition is replaced by large amounts of 

textual data—possibly with additional labels made 

manually—, and by sophisticated learning methods 

based on mathematics and statistics. The intension is 

not to replace the linguists in the research process, but 

to develop tools that can be useful for them. 

Furthermore, the application of the machine learning 

methods allows an accurate evaluation of the 



50 

 

language hypotheses, the reproduction of the results, 

and, to some extent, makes computational linguistics 

a more exact science. In this sense, some branches of 

computational linguistics already require empirical 

procedures when the formulated hypothesis is 

verified using computational experiments based on 

the data, and not only on the intuition of native 

speakers or the experimenter himself. 

In the modern computational linguistics, the 

supervised machine learning methods are the most 

commonly used, i.e., manually labelled data is used 

for training. Another option is related to the use of the 

unsupervised methods, when the system itself has to 

learn directly from the data. Of course, it is much 

more complicated to use the unsupervised methods, 

because in this case, the computer itself has to analyze 

the data without any human intervention. Normally a 

huge amount of data is needed to be able to apply 

these methods. 

In computational linguistics, the most used specific 

machine learning methods are naive Bayes (NB), 

support vector machines (SVM), classifier based on 

decision trees (J48). 
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Basic concepts in the design of 

experiments 

As mentioned above, in computational linguistics, 

common concepts of information retrieval can be 

applied [4]— precision and recall—, which measure 

the viability of a hypothesis in a formal way. The 

harmonic mean of these two measures is called F1 

measure. We always recommend using the latter for 

the comparison of methods. These are relatively 

simple concepts. Assume that we have a collection of 

documents, a query, and a system that we are 

evaluating. The system generates an output, i.e., 

presents some retrieved documents which the system 

considers relevant for the query; we will call them “all 

retrieved”. 

Among these documents, some are retrieved 

correctly, i.e., these are relevant documents: “relevant, 

retrieved”. While others are retrieval errors 

committed by the system—these are “not relevant, 

retrieved” documents. That means that the set we call 

“all retrieved” consists of “relevant, retrieved” and 

“not relevant, retrieved” documents. 
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Hence the concept of precision emerges: how good is 

the answer with respect to itself? How many 

documents in the output are correctly retrieved? 

Precision (P) is the ratio of the “relevant, retrieved” 

documents to all relevant documents (“all relevant”). 

ὖ
ὶὩὰὩὺὥὲὸȟὶὩὸὶὭὩὺὩὨ

ὥὰὰ ὶὩὸὶὭὩὺὩὨ
 Ȣ 

For example, the precision is 1 when all the 

documents in the output are correctly retrieved. 

There can be, however, other documents relevant to 

the query, which the system did not manage to 

retrieve, let's call them “relevant, not retrieved”. 

Hence the concept of recall (R) emerges: how good 

(specific) was the output of the system with respect to 

the collection? Were we able to retrieve most of the 

relevant documents or only a few? Thus, recall is the 

ratio of the “relevant, retrieved” to all relevant 

documents (“all relevant”); the latter set includes 

“relevant, retrieved” and “relevant, not retrieved” 

documents. 

Ὑ
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Recall equals 1 when the system retrieves all the 

relevant documents. There is always a relation 

between precision and recall: if we try to increase one 

of those values, the other decreases. 

Finally, the formula for the F1 measure that combines 

precision P and recall R is: 

Ὂρ
ς ὖ Ὑ

ὖ Ὑ
 Ȣ 

The measure is called F1 because the same weights are 

assigned to the precision and recall, which are equal 

to 1. In the case of assigning different weights, the 

value of F1 varies. 

Another concept applied in the design of experiments 

is the so-called “baseline”. This concept corresponds 

to a commonly accepted method of the state of the art 

to solve the same problem and has to be overcome by 

the proposed hypothesis. Normally, the baseline is 

not a very sophisticated method. It is also advisable to 

make a comparison of the proposed method with the 

more complex methods of the state of the art. 

Since we are talking about the data manually 

annotated by humans (annotators), which is used for 

the evaluation of the method, the concept of “gold 
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standard” is introduced. As the data is manually 

annotated, it is not supposed to contain errors (this is 

the idea of “gold”), and if the system can reach this 

standard, it works really well. 

An interesting question is related to the agreement 

between human annotators, i.e., whether humans 

themselves annotate some linguistic phenomenon 

differently. If so, we cannot expect a machine to 

resolve properly this same phenomenon. To measure 

the agreement among the annotators “kappa statistic” 

[9] is used. 

There is also the concept of the top line, that is, the 

maximum value that can be obtained by a program, 

given a mismatch between annotators. In general, it is 

advisable to ask several annotators to do the job, and 

not just one, for better reasoned and less biased 

judgments. 

To carry out the experiments the k-fold cross 

validation technique is commonly used, where k is a 

numerical value, which normally equals to 10. The 

technique is to divide all the data sample into 10 (or k) 

subsamples. First, the subsample 1 is used for the 

evaluation of the system performance, and the 

subsamples 2-10 are used for training; then subsample 
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2 is selected for the evaluation, and the other nine 

subsamples for training, and so on. 

Thus, the system is evaluated 10 times on different 

data and trained 10 times on slightly different data; 

then the average of the 10 evaluations is taken as the 

final value. In this way, the effect of fluctuations in the 

data can be neutralized. 

Note that it is very important not to evaluate the 

performance of the system using the same data on 

which the system was trained; this is why it is divided 

into k subsamples. If the same data is used, the 

learning algorithm can detect the specific 

characteristics of this data, rather than generalize. 

This is called overfitting. The overfitting problem is 

always present in every learning situation, and a 

number of steps should be taken to prevent it. 

To perform all the procedures described, we have to 

represent the problem formally. Let’s briefly 

overview some of the ideas discussed above. The most 

commonly used way of representing the objects we 

are investigating is the vector space model that was 

discussed in the previous chapters. The problem is 

represented as a problem of automatic classification in 

a space, more precisely in a vector space. The objects 
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are represented as sets of features and their values, 

i.e., each object corresponds to a vector of these values 

(hence the term “vector space”). This means that each 

object is a point in the multidimensional space of 

features. This model is very easy to imagine in the case 

of two features (two dimensions). For a larger number 

of dimensions, let’s just assume that it is similar. 

After constructing the space, a metric is defined in this 

space. Typically it is the metric of objects similarity 

defined by the cosine similarity. The idea behind this 

similarity is the following: the more two objects 

resemble each other, the more acute the angle 

between the corresponding vectors in the defined 

space, and therefore, the greater is the cosine of this 

angle. 

Now, the next question is how to select the features to 

define the vector space? At this point of our process of 

designing the experiment, linguistic considerations 

begin to prevail: it is precisely the linguistic part that 

determines the features to be selected. 

For example, the simplest idea applied in information 

retrieval is to use all the words in various documents 

as their features, and then to compare these 

documents: the more “similar” the words in a pair of 
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documents, the more these documents resemble each 

other. This is the way of constructing the vector space 

for the information retrieval task. For measuring 

“similarity” of words, their tf–idf are to be used. 

Obviously, in this case, the type of linguistic 

information that can be used is restricted by the 

formal requirement of using the vector space model, 

i.e., it is our obligation to represent objects as sets of 

features and their values. 

The next option commonly used in practice that 

already has some linguistic justification, is the idea of 

using n-grams as features in the vector space model. 

As noted above, the concept of traditional n-gram—

words (or other elements) sequences as they appear in 

a text—has a linguistic justification, that is to 

introduce the syntagmatic information of words 

(follow or precede other words). 

However, it would have been much more helpful to 

use an even more “linguistic” knowledge, i.e., that 

encloses more proper linguistic information. As a 

path in this direction, in our previous works [46, 47, 

48, 49, 50, 51], we have proposed a new concept of n-

grams, which contains more information of a 

linguistic nature than traditional n-grams: syntactic n-
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grams. The idea of syntactic n-grams is to construct 

those by following paths in syntactic trees. That way, 

syntactic n-grams remain n-grams, yet allow 

introducing syntactic information into machine 

learning methods. 

In the next part of the book, we discuss syntactic n-

grams as well as some other possibilities of non-linear 

construction of n-grams: filtered and generalized n-

grams. 

Design of experiments 

After considering all the notions mentioned above, we 

can describe the design of experiments in modern 

computational linguistics which includes the 

following steps: 

1. Define the task (for example, automatic 

summarization, authorship attribution, 

information retrieval, etc.). Often defining a task 

which differs from the standard tasks contains an 

interesting scientific contribution. 

2. Select the texts for the design of experiments, 

which is equivalent to the corpus preparation. 

Several criteria for texts selection can be used. It is 
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always better to use existing corpora for a given 

task—that allows a more objective interpretation 

of the results and comparison. However, it is not 

mandatory—one can always develop the corpus 

himself. In this case, we recommend making it 

public so that others could use it as well. 

3. Prepare the gold standard. To do this, we have to 

annotate the corpus (or a part of it) manually. The 

type of annotation depends on the problem we are 

solving. It is recommended to base on judgments 

of several annotators and to calculate the 

agreement between them to determine the top 

line. 

4. Build the vector space model selecting the features 

and their values. It is advisable to try several types 

of features: unigrams, n-grams, syntactic n-grams 

as well as various elements they can be composed 

of (words, lemmas, POS tags, etc.); and several 

types of values: tf, tf-idf, etc. Furthermore, we can 

apply a specific method to make some changes in 

the standard vector space model. To a large extent, 

that would be a scientific contribution. 

5. Define and implement one or more baseline 

methods, which are very simple; and one or more 

methods of the state of the art, which are more 
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complex ones. Of course, all these methods have to 

tackle the same problem. 

6. Select and implement one or more supervised 

machine learning methods. It is recommended to 

use the methods already developed, for example, 

WEKA [25] implements dozens of machine 

learning methods. At the same time, we has to 

analyze the parameters of these methods and their 

ranges in order to subsequently test different 

combinations of these parameters. As already 

mentioned, in computational linguistics, the most 

used methods are naive Bayes (NB), support 

vector machines (SVM), and classifier based on 

decision trees (J48). Nevertheless, we recommend 

trying as many methods as possible. Moreover, at 

this point, we have to consider the option of 

applying the latent semantic analysis (or a similar 

way of the vector space transformation) to reduce 

the dimensionality of the problem. LSA is already 

implemented in WEKA. 

7. Convert the textual data into a format accepted by 

the machine learning methods based on the vector 

space model built. In the case of WEKA, these are 

ARFF (attribute relation file format) files. 

8. Conduct supervised machine learning 

experiments: these are the procedures that can be 
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performed by the machine learning methods—

they are able to automatically distinguish between 

several classes defined in the corpus based on the 

vector space model built. We recommend using 

the cross validation procedure based on 10 folds 

(subsamples). Experiments are carried out for the 

proposed model and compared with the results of 

the baseline algorithms and with the algorithms of 

the state of the art. 

9. Calculate the values of precision, recall, and 

especially of F1 measure for all of the methods 

mentioned above and perform a comparison 

between the methods. If the proposed method 

gives better results, this method is justified. 

At the current stage, the scientific contribution to a 

considerable extent consists in construction of the 

vector space model, and some additional procedures 

that allow the transformation of this model (a specific 

method proposed by a researcher). To some extent, 

the scientific contribution may also include the 

problem definition as well as the analysis that shows 

which machine learning methods, dimension 

reduction, and parameters are the best for the selected 

problem. 
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This is the current research paradigm. We hope that 

in the future, more attention will be paid to the 

development of linguistic features—manual, 

automatic or semiautomatic—, as it is already being 

realized in the generative models based on local 

linguistic features, such as Conditional Random 

Fields, given that for many tasks they produce better 

results than the traditional methods. 
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PART II.  

NON-LINEAR CONSTRUCTION 

OF N-GRAMS 
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Chapter 6. Syntactic n-grams: the 

concept 

The idea of syntactic n-grams 

As we have already mentioned, the main idea of the 

formal features applicable in computational 

linguistics is related to the vector space model and the 

use of n-grams as features in this space, which also 

includes unigrams, i.e., words. 

Recall that traditional n-grams are sequences of 

textual elements (words, lemmas, POS tags, etc.) in 

the order of their appearance in a text. Traditional n-

grams represent syntagmatic information, and they 

are widely and successfully used in various 

computational linguistics tasks. Traditional n-grams 

ignore syntactic knowledge, and they are based solely 

on syntagmatic information; the established relation 

is “follow another word”. The next question is how 

can we keep on using the n-grams technique, which is 

known to give good results, and, at the same time, 

introduce syntactic information? The solution 

proposed in this book is the special manner of 

obtaining n-grams – non-linear manner. Our general 
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proposal is to construct n-grams following paths in 

syntax trees. 

Intuitively, we still deal with n-grams but avoid the 

noise introduced by the surface structure of the 

language. This type of noise may occur, because 

syntactically unrelated words may appear together on 

the surface level. We can tackle this phenomenon if 

we follow the actual syntactic relations that link the 

words, even though those words are not immediate 

neighbors. 

Note that in this chapter, we propose to obtain a 

syntactic n-gram as a fragment of a continuous path; 

we do not consider bifurcations (returns, 

interruptions) in the path—the examples are provided 

below. In the following chapters, we present the 

concept of non-continuous syntactic n-grams (the 

general concept), where following the path in a syntax 

tree allows entering the bifurcations and going back. 

So, for now we continue with the description of 

syntactic n-grams we call “continuous” in order to 

illustrate the concept of a syntactic n-gram as such. N-

grams are “continuous” in the sense that from any 

node on the path it is possible to move to a next node. 
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One can see that it is precisely a non-linear manner of 

n-grams construction, as the elements are not taken in 

accordance with their linear order. In this case, the 

idea of linear order refers to the surface level of a text, 

where the elements necessarily have to follow each 

other—recall F. de Saussure, the linear nature of the 

signifier. 

Often the term “syntactic n-gram” implies that an n-

gram is composed of POS tags, for example, in [1]. We 

believe that it is a misuse of the term, since POS tags 

represent not syntactic but morphological 

information. Syntactic information is used for the POS 

disambiguation; however, it does not justify the use of 

the term in this way. 

An idea somewhat similar to ours has been proposed 

by [7]: to use the concept of skip-grams (jump-grams), 

i.e., to randomly form sequences of elements skipping 

some of them. It is clearly a non-linear construction; 

however, the n-grams constructed this way contain 

more noise than the traditional n-grams, and 

furthermore, their number becomes too large. 

A modification of this idea is to use not all skip-grams 

but only those with higher frequencies [26], called 

“maximal frequent sequences”. However, very 



67 

 

sophisticated algorithms are required for constructing 

these sequences, and there is still a problem of their 

interpretation—the linguistic reality that corresponds 

to them does not go beyond finding certain 

combinations of words. 

The others ideas presented in this book on how to 

build n-grams in a non-linear manner are related to 

the concepts of filtered n-grams – e.g., using the tf-idf 

of n-grams as a filter BEFORE the construction of n-

grams – and generalized n-grams. Say, for the 

generalized n-grams we can always use the first word 

in the list of synonyms (synset) or to promote the 

words in an ontology to more general concepts, then 

we can replace the words for these concepts and 

construct the n-grams out of these more general 

concepts. 

It is noteworthy that the idea of using structural 

information concerning relations between words in 

specific tasks has been already presented in [3, 24, 32]; 

however, none of these works has been widespread 

nor associated with the idea of n-grams. 

The work [41] proposes a similar idea in the field of 

semantic analysis, where the utility of syntactic 

information is shown for very specific tasks of: 
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1. semantic priming, i.e., psycholinguistic 

experiments on words similarity, 

2. synonymy detection in TOEFL tests, and 

3. ordering word senses according to their 

importance. 

In our opinion, this work does not have much 

response in other NLP tasks, precisely because the 

authors do not relate syntactic information to n-

grams, which is the main tool in the vast majority of 

tasks, nor show its utility in other tasks that are not so 

specifically semantics oriented. 

For the illustration of the concept of syntactic n-grams 

let us consider, as an example, two sentences taken 

from a book by Jules Verne. The first example is in the 

Spanish language, and the second one is in the English 

language. For the both examples, the syntax tree is 

built in advance, i.e., we have syntactic information 

represented in terms of dependency grammars. 
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Example of continuous syntactic n-

grams in Spanish 

The parser of the FreeLing system [5, 39, 40] is used to 

parse the Spanish example. The syntactic 

dependencies are shown through the indented 

analysis result, i.e., the blocks with the same 

indentation have the same main word (if another 

possible main word does not appear among those 

words). The sentence in Spanish is the following: 

El doctor Ferguson se ocupaba desde hacía mucho tiempo de 

todos los pormenores de su expedición. (lit: The Dr. Ferguson 

has been engaged upon all the details of his expedition 

since a long time ago.) ‘Dr . Ferguson had long been 

engaged upon the details of his expedition.’ 

The FreeLing parser generates the following output in 

terms of dependency grammars: 

grup - verb/top/ ( ocupaba ocupar  VMII1S0 - ) [  

  morfema - verbal/es/(se se  P0000000 - )  

  sn/subj/ (doctor doctor NCMS000 - ) [  

    espec - ms/espec/ ( El el  DA0MS0 - )  

    w- ms/sn - mod/ (Ferguson ferguson NP00000 - )  

  ]  

  prep/ modnomatch/(desde desde  SPS00 - )  

  grup - verb/modnomatch/ ( hacía hacer  VMII1S0 - ) 

[  
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    sn/cc/(tiempo tiempo  NCMS000 - ) [  

      espec - ms/espec/ (much o mucho DI0MS0 - )  

      sp - de/sp - mod/(de de  SPS00 -  ) [  

        sn/obj - prep/ (pormenores  pormenor  NCMP000 

- ) [  

          espec - mp/espec/(todos todo  DI0MP0 - ) 

[  

            j - mp/espec/(los el  DA0MP0 - )  

          ]  

        ]  

      ]  

      sp - de/sp - mod/(de de  SPS00 -  ) [  

        sn / obj - prep/(expedició n expedición  

NCFS000 - ) [  

          espec - fs/espec/(su su  DP3CS0 - )  

        ]  

      ]  

    ]  

    F- term/term/ ( ..Fp  - )  

  ]  

]  

The corresponding tree is illustrated in Figures 5 and 

6. It can be seen that the parser committed several 

errors. For example, it placed the groups of words de 

su expedición ‘of his expedition’ and de todos los 

pormenores ‘upon all the details’ as dependents of the 

word tiempo ‘time’ instead of the verb ocuparse 

‘engage’. Parsers can commit such errors due to 

various types of syntactic ambiguity, which is difficult 

to solve automatically. Nevertheless, in many cases, 

this does not significantly affect the system 
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performance, since the vast majority of dependencies 

are established correctly, and these errors are not 

severe enough to ruin the tree structure. In the tree 

below, we indicate the parser errors with dotted lines. 

Moreover, for the automatic processing, the output 

format of this parser is not very handy. 

 

Figure 5: Example of a syntax tree in Spanish. 

We have developed a software that converts the 

FreeLing output format into another format, which is 

similar to the one of the Stanford parser. The software 

is freely available on the author's personal web page. 
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We present the result of the format conversion below. 

Note that in this case, the words numbers correspond 

to the lines in the output generated by the FreeLing 

parser and not to the actual numbers of their positions 

in the sentence. 

 

Figure 6: Example of a syntax tree with tags in 

Spanish. 

top(root - 0, ocupaba - 1)  

es(ocupaba - 1, se - 2)  

subj(ocupaba - 1, doctor - 3)  

espec(doctor - 3, el - 4)  

sn - mod(doctor - 3, Ferguson - 5)  

modnomatch(ocupaba - 1, desde - 6)  
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modnomatch(ocupaba - 1, hacía - 7)  

cc(hacía - 7, tiempo - 8)  

espec(tiempo - 8, mucho - 9)  

sp - mod(tiempo - 8, de - 10)  

obj - prep(de - 10, pormenores - 11)  

espec(pormenores - 11, todos - 12)  

espec(todos - 12, los - 13)  

sp - mod(tiempo - 8, de - 14)  

obj - prep(de - 14, expedición - 15)  

espec(expedición - 15, su - 16)  

Using the tree, we can obtain the following 

continuous syntactic n-grams. 

The bigrams are the following: 

ocupaba se ‘engaged’ 

ocupaba doctor ‘engaged dr.’  

doctor el  ‘dr. the’ 

doctor ferguson  ‘dr. ferguson’  

ocupaba desde  ‘engaged since’ 

ocupaba hacía  ‘engaged ago’ 

hacía tiempo  ‘ago time’ 

tiempo mucho  ‘time long’ 

tiempo de  ‘time upon’ 

de pormenores ‘upon details’  

pormenores todos ‘details all’  

todos los ‘all the’  

tiempo de ‘time of’  

de expedición ‘of expedition’  
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expedición su ‘expedition his’ 

The obtained trigrams are the following: 

ocupaba doctor el ‘engaged dr. the’ 

ocupaba doctor ferguson ‘engaged dr. ferguson’ 

ocupaba hacía tiempo ‘engaged ago time’ 

hacía tiempo mucho ‘ago time long’ 

hacía tiempo de ‘ago time upon’ 

hacía tiempo de ‘ago time of’ 

tiempo de pormenores ‘time upon details’ 

de pormenores todos ‘upon details all’ 

pormenores todos los ‘detail all the’ 

tiempo de expedición ‘time of expedition’ 

de expedición su ‘of expedition his’  

The number of the 4-grams is a little less: 

ocupaba hacía tiempo mucho ‘engaged ago time long ’ 

ocupaba hacía tiempo de  ‘engaged ago time upon’2 

ocupaba hacía tiempo de ‘engaged ago time of’ 

                                                 

2 This n-gram is repeated because there are two different words 

de (‘of’ and ‘upon’) in the sentence. This means that the frequency 

of this n-gram is equal to two in our example. 
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hacía tiempo de pormenores ‘ago time upon details’ 

hacía tiempo de expedición ‘ago time of expedition’ 

tiempo de pormenores todos ‘time upon details all’ 

de pormenores todos los ‘upon details all the’ 

tiempo de expedición su ‘time of expedition his’ 

There are several 5-grams: 

ocupaba hacía tiempo de pormenores ‘engaged ago time 

upon details’ 

ocupaba hacía tiempo de expedición ‘engaged ago time of 

expedition’ 

hacía tiempo de pormenores todos ‘ago time upon details 

all’ 

hacía tiempo de expedición su ‘ago time of expedition his’ 

tiempo de pormenores todos los ‘time upon details all the’ 

In this case, three 6-grams can also be obtained: 

ocupaba hacía tiempo de expedición su ‘engaged ago time 

of expedition his’ 

ocupaba hacía tiempo de pormenores todos ‘engaged ago 

time upon details all’ 

hacía tiempo de pormenores todos los ‘ago time upon 

details all the ’  

And finally, there is only one 7-gram: 
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ocupaba hacía tiempo de pormenores todos los ‘engaged 

ago time upon details all the’  

The methodology for obtaining continuous syntactic 

n-grams is the same for all languages. As we can see, 

it is true in the case of English and Spanish; moreover, 

dependency-based trees have the same structure for 

all languages. 

Example of continuous syntactic n-

grams in English 

For the example in English we use the Stanford 

parser3 [8]. First, we present the output of the parser 

as generated by the program itself, and then, in 

Figures 7 and 8, we illustrate the dependency-based 

tree using multilevel arrows. The depth of the syntax 

tree is an important concept: starting from the root of 

a sentence and moving down while following the 

                                                 

3 Parser is a program that generates syntactic trees. The trees are 

usually based on formal grammars of various types. 



77 

 

syntactic path. The sentence in English is the 

following: 

The wildest cheering resounded on all sides; the name of 

Ferguson was in every mouth 

 

Figure 7: Example of a syntax tree. 

The direct output of the parser consists of two parts. 

In the first part, the information is presented in terms 

of constituency grammars, where a greater indent of 

a line corresponds to a greater depth of each element. 

However, for our purposes, the second part of the 

output, where the information is presented in terms 

of dependency grammars, is of more interest; in this 
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part, we can see the pairs of words and syntactic 

dependencies between them. From this second part 

we can directly build a syntax tree, as shown in 

Figures 7 and 8. 

 

 

Figure 8: Example of a syntax tree with tags. 

Note that in the automatic parser, various errors may 

occur. In the figures below, one type of such errors is 

marked with the dotted line, where the word wildest 

was parsed as a noun and the word cheering as a 
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participle; when the correct way would be to parse 

cheering as a noun and wildest as an adjective. 

The first part of the output corresponds to the 

constituency formalism: 

(ROOT  

 (S  

  (S  

   (NP  

    (NP (DT The) (NN wildest))  

    (VP (VBG cheering)))  

   (VP (VBD resounded)  

    (PP (IN on)  

     (NP (DT all) (NNS sides)))))  

  (: ;)  

  (S  

   (S  

    (NP  

     (NP (DT the) (NN name))  

     (PP (IN of)  

      (NP (NNP Ferguson))))  

    (VP (VBD was)  

     (PP (IN in)  

      (NP (DT every) (NN mouth)))))  

(. .)))  

The second part of the output is presented in terms of 

dependency grammars: 

det(wildest - 2, The - 1)  
nsubj(resounded - 4, wildest - 2)  

partmod(wildest - 2, cheering - 3)  

root(ROOT - 0, resounded - 4)  
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prep(resounded - 4, on - 5)  

det(sides - 7, all - 6)  

pobj(on - 5, sides - 7)  

det(name - 10, the - 9)  

nsubj(was - 13, name - 10)  

prep(name - 10, of - 11)  

pobj(of - 11, Ferguson - 12)  

parataxis(resounded - 4, was - 13)  

prep(was - 13, in - 14)  

det(mouth - 16, every - 15)  

pobj( in - 14, mouth - 16)  

One can see that for each pair of words the parser 

indicates the type of the syntactic relation between 

them and the number of the word in the sentence. This 

information is important, because if a word is 

repeated in a sentence, there would be no way to 

determine to which of the two instances of that word 

the given pair refers. 

The same syntax trees are shown in Figures 7 and 8, 

the only difference is that in Figure 8, the name of the 

corresponding syntactic dependency is shown above 

each arrow. 

After the explanation above, it is quite obvious which 

n-grams can be obtained from this sentence. 

For example, the following bigrams can be obtained: 

resounded wildest  

wildest cheering  
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wildest the  

resounded on  

on sides  

resounded was  

was name  

name of  

of Ferguson  

was in  

in mouth  

mouth every 

Also the following trigrams can be extracted: 

resounded wildest the 

resounded wildest cheering 

resounded on sides 

on sides all 

resounded was name 

resounded was in 

was name the 

was name of 

name of ferguson 

was in mouth 

in mouth every 

There are six 4-grams: 
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resounded on sides all 

resounded was name the 

resounded was name of 

resounded was in mouth 

was name of ferguson 

was in mouth every 

And finally, there are only two 5-grams: 

resounded was name of ferguson 

resounded was in mouth every 
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Chapter 7. Types of syntactic n-

grams according to their 

components 

N -grams of lexical elements 

So, we have already learned how to obtain syntactic 

n-grams (although, at the moment, we are considering 

only continuous syntactic n-grams). Now let’s discuss 

what types of syntactic n-grams exist depending on 

the elements they are formed of, i.e., what kind of 

elements (components) can be parts of syntactic n-

grams. In fact, the considerations to be discussed are 

the same for any type of n-grams. 

It is clear that the use of words is the most obvious 

option, as in all the examples mentioned above. It is 

also clear that instead of words we can use their 

normalized forms—lemmas—obtained by 

morphological normalization. Another similar option 

is to use the stems of words (the process of obtaining 

the stems is called stemming). In this sense, the lemma 

and the stem have the same function: they represent 

the entire set of grammatical forms that correspond to 
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a word. The advantage of using morphological 

normalization is that the number of elements that can 

compose n-grams and, therefore, the number of n-

grams are reduced, i.e., there are fewer dimensions in 

the vector space model. 

N -grams of POS tags 

Similarly, instead of words we can use the 

grammatical information of each word (POS tag), for 

example, in the case of Spanish, we can use the tags 

that are produced by the parsers or morphological 

analyzers, as in the FreeLing system: NCFS000, 

VMII1S0, etc. The tags used in FreeLing are a de facto 

standard for encoding morphological information in 

Spanish; the standard is called EAGLES. In this case, 

the first letter corresponds to the grammatical class: 

“N” stands for noun, “V” for verb, etc. The second 

letter reflects a number of lexical properties, for 

example, in the case of nouns, “C” stands for common 

name (another value of this feature could be “P” - 

proper noun), etc. The subsequent letters reflect 

grammatical features, e.g., in the case of nouns, “F” 

corresponds to female gender, “M” to male gender, 

etc. 
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N -grams of syntactic relations tags 

In order to form syntactic n-grams, there is also an 

additional option of using new types of elements as 

compared to traditional n-grams: tags of syntactic 

relations (SR-tags) in a syntax tree, for example, 

nsubj  or pobj  in the case of English (Figure 8), or 

espec  or obj -prep  in the case of Spanish (Figure 6).  

In this case, an n-gram would be a sequence of SR-

tags, for example, sp - mod obj - prep espec  ( in the 

presented example, it is a trigram). 

N -grams of characters 

The last option that exists for traditional n-grams 

construction is the use of characters as elements of n-

grams. For example, in the phrase John reads, there are 

the following bigrams: “jo”, “oh”, “hn”, “n ”, “ r”, “nr”, 

“re”, “ea”, “ad”, “ds”. Here the space between the 

words is used as an element of the n-grams; one can 

also use punctuation marks. However, for some tasks, 

it is better not to consider auxiliary characters. 

In the same way as in the case of traditional n-grams, 

one can also use characters as elements of syntactic n-

grams; however, there is a need to obtain syntactic 
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bigrams or trigrams of words in advance, and then to 

consider the sequence of words in a syntactic n-gram 

as a source for constructing n-grams of characters. It 

is a matter of future research to determine whether 

this type of syntactic n-grams is useful. It turns out 

that the application of traditional n-grams of 

characters gives the best results in certain tasks, for 

example, in the task of authorship attribution [52]. 

However, in our point of view, the application of n-

grams of characters is somewhat counter-intuitive, 

and it is necessary to analyze the reasons of its good 

performance (see the section concerning filtered n-

grams of characters below). 

Mixed n-grams 

Finally, mixed n-grams may exist, which means that 

some elements of an n-gram are of a certain type, 

while other elements of the same n-gram are of 

another type. It seems that characters cannot be used 

in the mixed n-grams construction, as they are of a 

different nature: characters represent parts of words, 

while other types of elements represent words. 

Concerning the mixed n-grams, it should be analyzed 

in the future, which combinations of elements (words, 
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POS tags, SR-tags) in which positions (in the 

beginning, in the middle, or in the end of an n-gram) 

give better results. 

Classification of n-grams according to 

their components 

To sum up, we can say that there are syntactic n-

grams of:  

¶ lexical elements (words, lemmas, or stems);  

¶ part of speech tags (POS tags);  

¶ tags of syntactic relations (SR-tags);  

¶ characters; 

¶ mixed syntactic n-grams (combinations of the 

above).  

In [41], the idea of weighting the relations between 

elements of a syntactic n-gram is mentioned. This idea 

does not seem directly applicable within the context 

of the vector space model, where n-grams are the 

features (dimensions). However, this idea can prove 

useful when calculating the weights of syntactic n-
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grams, apart from the traditional values of tf-idf 

measure. 
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Chapter 8. Continuous and non-

continuous syntactic n-grams 

Continuous syntactic n-grams 

In the previous chapters, we introduced the new 

concept of syntactic n-grams, i.e., n-grams obtained 

following paths in syntax trees. 

As we show in the following chapters, syntactic n-

grams can give better results than traditional n-grams 

in various NLP tasks. Note that syntactic n-grams can 

be applied in any tasks where traditional n-grams are 

used, because they allow the construction of the 

vector space. We will analyze their applicability for 

the task of authorship attribution. 

The disadvantage of syntactic n-grams consists in the 

fact that previous syntactic processing is required for 

their construction, which takes some processing time; 

however, it is not a serious limitation. One more 

limitation is that for some languages, there are no 

existing automatic parsers; nevertheless, the parsers 

do exist for the more widely spoken languages such 

as Spanish or English. 
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The discussion that follows in this chapter addresses 

the comparison of continuous syntactic n-grams with 

non-continuous syntactic n-grams. 

The sentence to be analyzed is the following4: 

Tomé el pingajo en mis manos y le di un par de vueltas de mala 

gana (lit: I took the scrap in my hands and gave it a pair of 

turns without enthusiasm) ‘I took the scrap in my hands 

and turned it a couple of times unwillingly’. 

The syntax tree of the sample sentence is shown in 

Figures 9 and 10, using the dependency and 

constituency formalisms [15, 22, 51]. Note that the 

expression de_mala_gana (lit: without enthusiasm) is 

considered as one word. 

                                                 

4 A sentence from one of the books by A. Conan-Doyle. 
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Figure 9: Dependency-based tree (generated by the 

FreeLing parser). 

All the syntactic n-grams considered in the previous 

chapters are continuous, regardless of the type of 

elements they are formed of. That means that 

syntactic path we are following is never bifurcated. 

For example, in Figure 11, the path marked with the 

bold arrows corresponds to the continuous syntactic 

5-gram, y di par de vueltas (lit: and gave pair of turns).  
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Figure 10: Constituency-based tree (generated by the 

FreeLing parser). 

 

Figure 11: Continuous syntactic n-grams from the 

syntax tree fragment, a 5-gram. 
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We present another type of syntactic n-grams below, 

for which bifurcations are allowed.  

Non-continuous syntactic n-grams  

In this section, we present a generalization of the 

concept of continuous syntactic n-grams: non-

continuous syntactic n-grams [50, 51].  

As shown in the previous section, the intuition behind 

the concept of continuous syntactic n-grams is mainly 

related to the fact that a sequence of related words can 

be considered as such, as a whole.  

However, there are other interesting linguistic 

concepts that do not fit into the model of a one-

dimensional sequence, for example, verb valency 

patterns. 

For instance, the verb to buy has the following actants: 

who, what, from who, for how much money. It would be 

interesting to have them presented in an n-gram at the 

same time.  

However, both in the case of traditional n-grams and 

continuous syntactic n-grams, all these components 

would be separated into different n-grams. Thus, the 
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intuition behind the concept of continuous syntactic 

n-grams is precisely the intention to merge 

semantically related words, even though they do not 

have a continuous path, but a path that connects them. 

It is very easy to give a formal definition of non-

continuous syntactic n-grams: these are all the sub-

trees of length n of a syntax tree. 

 

Figure 12: Non-continuous syntactic n-grams from 

the syntax tree fragment, a 5-gram.  

Two examples of non-continuous syntactic n-grams 

that are fragments of the sentence considered above 
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are shown in Figures 12 and 13. The n-grams are 

marked with the bold arrows. 

In the first case (Figure 12), the 5-gram is y di par [un, 

de] ‘and gave pair [a, of]’. Note that it is necessary to 

introduce a metalanguage for the representation of 

non-continuous syntactic n-grams in order to resolve 

the ambiguity. The metalanguage is discussed in the 

next chapter. 

 

Figure 13: Non-continuous syntactic n-grams from 

the syntax tree fragment, another 5-gram.  
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In the second case (Figure 13), the 5-gram is y di [le, par, 

de_mala_gana] ‘and gave [it, pair, 

without_enthusiasm]’. 

Thus, in a formal way, continuous syntactic n-grams 

are defined as all the sub-trees of length n without 

bifurcations of a syntax tree. Another way to put it 

formally is that each node of the path is connected to 

a single node. 

Applying the proposed definitions, it follows that 

continuous syntactic n-grams are a particular case of 

non-continuous syntactic n-grams. The length of a 

tree is the number of branches in this tree, which 

corresponds to the value of n (in the case of n-grams). 

Another term that we propose in order to denote the 

non-continuous syntactic n-grams is t-n-grams (tree 

n-grams), i.e., n-grams of trees. There is also an option 

to use the term “arboreal n-gram”.  A. Gelbukh 

suggestion is to use the term “tree grams, t-grams”; 

however, in our opinion, the term “tree n-grams” 

seems more justified, since, in this way, there is a 

relation established between the proposed term and 

the traditional concept of n-grams. A consideration in 

favor of the term “t-gram” is its simple form; 
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however, we prefer to adhere to the term “syntactic n-

gram”. 

It is a matter of future work to determine the 

application of which type of n-grams (continuous or 

non-continuous) is more suitable for which 

computational linguistics tasks. It is possible that one 

type of n-grams is better for some tasks, while the 

other is better for other tasks. 

It is noteworthy that the number of non-continuous 

syntactic n-grams is greater than the number of 

continuous syntactic n-grams, since the latter is a 

particular case of the former. 

The construction algorithm (or the algorithm for 

obtaining) of continuous syntactic n-grams is 

relatively simple. For the root node, all the possible 

combinations of its children, whose size is not greater 

than n, are to be considered; this procedure should be 

repeated recursively for each child node. In this way, 

we are to go successively through all the nodes of a 

syntax tree. 
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Chapter 9. Metalanguage of 

syntactic n-grams representation  

The question arises, how to represent non-continuous 

syntactic n-grams without resorting to their graphic 

form? Recall that continuous syntactic n-grams are 

simply sequences of words (obtained by following 

paths in a syntactic tree), but the case of the non-

continuous syntactic n-gram is rather different. 

We propose to use the following conventions. Note 

that these are conventions, so they can be modified in 

the future. Within each non-continuous syntactic n-

gram, there may be continuous parts and one or 

several bifurcations. Let's separate the continuous 

elements of n-grams with whitespaces and put 

commas in the bifurcation parts; we will also use 

parentheses to mark the bifurcation parts in order to 

avoid the structural ambiguity in the future. 

Note that we have always considered the highest level 

element to appear on the left side (the main word of 

the relation), and the component of the lower level on 

the right side (the word dependent on the syntactic 
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relation). It is the most natural way; nevertheless, it is 

necessary to mention it explicitly. 

Two examples of the non-continuous syntactic 5-

grams are shown in Figures 12 and 13, y di par [un, de] 

‘and gave pair [a, of]’; y di [le, par, de_mala_gana] ‘and 

gave [it, pair, without_enthusiasm]’. 

Note that we cannot avoid using the brackets or 

commas in our metalanguage, as otherwise it becomes 

ambiguous. In our examples, it seems that we can 

avoid using the brackets if the comma indicates that 

the previous word is a part of a bifurcation. It is only 

possible when the elements in the bifurcation do not 

contain a path. For example, in the 5-gram, y di [par un, 

de_mala_gana] ‘and gave [pair a, 

without_enthusiasm]’, the word un ‘a’ is a dependent 

of par ‘pair’, which is expressed with the whitespace; 

however, in this case, it is clear that we cannot avoid 

the brackets. 

It is noteworthy that the brackets and the commas are 

parts of the n-grams now; however, this in no way 

precludes the possibility to identify the similarity 

between syntactic n-grams. Although they now 

contain some additional symbols and not only words, 

they can still be compared without any complications. 
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Here is another example of a possible ambiguity. Let’s 

consider the case in which an n-gram has two 

bifurcations and multiple contiguous fragments. For 

example, the n-grams “a [b, c [d, e, f]]” and “a [b, c [d, e], 

f]” have a node f as the third node below the node c, 

or as the third node below the node a, see Figure 14. 

 

Figure 14: Example of a possible ambiguity in 

bifurcations. 

Now, there are two ways to tackle the bifurcation 

parts, i.e., the parts separated by commas: 

1. as they appear in the text, which is the most 

natural way, or 

2. to sort then in a certain way, for example, 

alphabetically, which decreases the number of 

n-grams. 
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The latter option allows us to take into account the 

changes related to the word order. However, further 

research is required in order to determine which of the 

two options is better and for which NLP tasks. 

Another possibility that we would like to mention is 

to mark the depth directly in the non-continuous 

syntactic n-grams. The intuition behind this idea is 

that, for some types of non-continuous syntactic n-

grams, the position in the syntax tree of a sentence can 

be important. In this case, the notation would be: y1 di2 

par3 [un4, de4] ‘and1 gave2 pair3 [of4, a4]’, y1 di2 [le3, par3, 

de_mala_gana3] ‘and1 gave2 [it3, pair3, 

without_enthusiasm3]’. Technically, it would be 

sufficient to mark the level of the first word only; we 

can mark the other levels as well, but it is not strictly 

necessary. 

Note that this notation can also be used to denote the 

structure of an n-gram by replacing commas and 

brackets. It has to be taken into account that all the n-

grams should originate from the level “1”—regardless 

of their actual level in a sentence—, since in the 

opposite case, it will not be possible to identify the 

similar n-grams that belong to different levels. 
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Considering this complication in the n-grams 

construction, we tend to use brackets and commas.  

We consider two examples of non-continuous 

syntactic n-grams construction below, one for Spanish 

and another for English, and compare them with 

continuous syntactic n-grams. 
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Chapter 10. Examples of non-

continuous syntactic n-grams 

construction 

Example for Spanish 

In this section, we provide examples of the continuous 

and non-continuous syntactic n-grams construction 

for Spanish. We analyze the sample sentence 

provided in the previous chapter: 

Tomé el pingajo en mis manos y le di un par de vueltas de mala 

gana (lit: I took the scrap in my hands and gave it a pair of 

turns without enthusiasm) ‘I took the scrap in my hands 

and turned it a couple of times unwillingly’. 

In order to construct syntactic n-grams automatically, 

it is necessary to parse the text beforehand using a 

parser. For the Spanish language we use the FreeLing 

parser [5, 39, 40], which is freely available online. 

The parser can generate syntax trees in terms of two 

formats: constituency and dependency. The 

dependency-based tree is shown in Figure 9, and the 

constituency-based in Figure 10. Both formats have 
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essentially the same information on words relations. 

For the syntactic n-grams construction, it seems better 

to use the dependency format, since this 

representation is more transparent. However, one can 

use the constituency-based tree in the same way. 

It is noteworthy that the parser performs 

morphological analysis and lemmatization in the first 

place. As can be seen, a lemma and grammatical 

information correspond to each word in the sentence, 

e.g., Tomé tomar VMIS1S0 ‘Took take VMIS1S0’. First 

comes the word, then the lemma, and finally the 

grammatical information. 

We have already mentioned that in order to represent 

the grammatical information, the EAGLES coding 

scheme is applied, which is a de facto standard for the 

automatic morphological analysis of Spanish. For 

example, considering the VMIS1S0 tag, the first letter 

“V” stands for verb (“N” for noun, “A” for adjective, 

etc.), “I” stands for indicative, “S” for past, “1” for first 

person, and the other letter “S” for singular. As can be 

seen, each position encodes a specific type of 

grammatical information, and each tag contains at 

most seven positions, some of which may not be used 

in certain cases, for example, in the case of nouns. 
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First, we present the results of the parsing of the 

sentence above using the constituency formalism 

(Figure 10). 

+ co or - VB_[  

  grup - verb_ [  

    +verb_ [  

      +( Tomé tomar  VMIS1S0 - )  

    ]  

    sn _[  

      espec - ms_[  

        +j - ms_[  

          +(el el  DA0MS0 - )  

        ]  

      ]  

      + grup - nom- ms_[  

        +n- ms_[  

          +(pingajo  pingajo  NCMS000 - )  

        ]  

      ]  

    ]  

    grup - sp_ [  

      +prep_ [  

        +(en en SPS00 - )  

      ]  

      sn_ [  

        espec - fp_ [  

          +pos - fp _[  

            +(mis mi  DP1CPS - )  

          ]  

        ]  

        +grup - nom- fp_ [  

          +n- fp_ [  

            +( manos mano  NCFP000 - )  

          ]  
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        ]  

      ]  

    ]  

  ]  

  +(y y CC - )  

  grup - verb_ [  

    patons_ [  

      +paton - s_ [  

        +(le le PP3CSD00 - )  

      ]  

    ]  

    +grup - verb_ [  

      +verb_ [  

        +(di  dar  VMIS1S0 - )  

      ]  

    ]  

    sn_ [  

      espec - ms_[  

        +indef - ms_[  

          +(un uno  DI0MS0 - )  

        ]  

      ]  

      +grup - nom- ms_[  

        +n- ms_[  

          +(par par NCMS000 - )  

        ]  

      ]  

      sp - de_ [  

        +(de de SPS00 - )  

        sn_ [  

          +grup - nom- fp _[  

            + n - fp_ [  

              +(vueltas vuelta  NCFP000 - )  

            ]  

          ]  

        ]  

      ]  
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    ]  

    sadv_ [  

      +( de_mala_gana de_mala_gana  RG - )  

    ]  

  ]  

  F- term_ [  

    +( ..Fp  - )  

  ]  

]  

Similar information is presented using the 

dependency formalism (Figure 9). 

coor - vb/top/ (y y  CC - ) [  

  grup - verb/co - v/ ( Tomé tomar VMIS1S0 - ) [  

    sn/dobj/(pingajo  pingajo  NCMS000 - ) [  

      espec - ms/espec/(el el  DA0MS0 - )  

    ]  

    grup - sp/sp - obj/(en e n SPS00 - ) [  

      sn/obj - prep/ (manos mano  NCFP000 - ) [  

        espec - fp /espec/(mis mi  DP1CPS - )  

      ]  

    ]  

  ]  

  grup - verb/co - v/(di dar  VMIS1S0 - ) [  

    patons/iobj/ ( le le  PP3CSD00 - )  

    sn/dobj/ (par par NCMS000 - ) [  

      espec - ms/espec/(un uno  DI0MS0 - )  

      sp - de/sp - mod/(de de  SPS00 -  ) [  

        sn /obj - prep/ (vueltas vuelta  NCFP000 - )  

      ]  

    ]  

    sadv /cc/ (de_mala_gana de_mala_gana RG - )  

  ]  

  F- term/modnomatch/ ( ..Fp  - )  

]  
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As mentioned above, it is easier to use dependencies, 

because in this case, they practically contain syntactic 

n-grams. 

It can be seen that the three words de_mala_gana (lit: 

without enthusiasm) actually represent a single 

adverb. 

Now, let’s present the extracted syntactic n-grams. 

First, we present the continuous syntactic n-grams. 

The syntactic bigrams (basically, there is no difference 

between continuous and non-continuous bigrams) 

are: 

y tomé ‘and took’ 

tomé pingajo ‘took scrap’ 

pingajo el ‘scrap the’ 

tomé en ‘took in’ 

en manos ‘in hands’ 

manos mis ‘hands my’ 

y di ‘and gave’ 

di le ‘gave it’ 

di par ‘gave pair’ 

par un ‘pair a’ 

par de ‘pair of’ 

de vueltas ‘of turns’ 
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di de_mala_gana ‘gave without_enthusiasm’ 

The continuous trigrams are: 

y tomé pingajo ‘and took scrap’ 

y tomé en ‘and took in’ 

tomé pingajo el ‘took scrap the’ 

tomé en manos ‘took in hands’ 

en manos mis ‘en hands my’ 

y di le ‘and gave it’ 

y di par ‘and gave pair’ 

y di de_mala_gana ‘and gave without_enthusiasm’ 

di par un ‘gave pair a’ 

di par de ‘gave pair of’ 

par de vueltas ‘pair of turns’ 

The continuous 4-grams are: 

y tomé pingajo el ‘and took scrap the’ 

y tomé en manos ‘and took in hands’ 

tomé en manos mis ‘took in hands my’ 

y di par un ‘and gave pair a’ 

y di par de ‘and gave pair of’ 

di par de vueltas ‘gave pair of turns’ 

We present the non-continuous syntactic n-grams 

without repeating the same elements (continuous n-
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grams), although they are also a part of the non-

continuous syntactic n-grams. Note that in this case, 

we have to use the proposed notation for the non-

continuous n-grams in order to be able to distinguish 

them from other possible configurations. The notation 

forms a part of the n-grams; it is the n-gram itself (not 

something additional). Thus, the new non-continuous 

trigrams (compared to the continuous n-grams) are: 

tomé [pingajo en] ‘took [scrap in]’  

di [le par] ‘gave [it pair]’ 

di [le de_mala_gana] ‘gave [it without_enthusiasm]’ 

di [par de_mala_gana] ‘gave [pair 

without_enthusiasm]’ 

par [un de] ‘pair [a of]’ 

The new non-continuous 4-grams are: 

tomé [pingajo el, en] ‘took [scrap the, in]’  

tomé [pingajo, en manos] ‘took [scrap, in hands]’ 

di [le, par un] ‘gave [it, pair a]’ 

di [le, par de] ‘gave [it, pair of]’ 

di [le, par, de_mala_gana] ‘gave [it, pair, 

without_enthusiasm]’ 

di [par un, de_mala_gana] ‘gave [pair a, 

without_enthusiasm]’ 
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di [par de, de_mala_gana] ‘gave [pair of, 

without_enthusiasm]’ 

par [un, de vueltas] ‘pair [a, of turns]’ 

Example for English 

In this section, we discuss the construction of syntactic 

n-grams for the English language. To simplify the 

comparison with Spanish, we consider the translation 

of the sentence provided in the previous section. Note 

that in this case, the figure that corresponds to the tree 

has been generated automatically; the code, which 

allows it, is freely available on the author's personal 

web page5. 

I took the scrap in my hands and turned it a couple of times 

unwillingly  

One can use the same parser as in the previous 

examples, i.e., FreeLing; however, let's try to use 

another parser for English that we have already 

                                                 

5 http://www.cic.ipn.mx/~sidorov 
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mentioned before – the Stanford parser [15]. The 

constituency-based tree is shown in Figure 15. 

 

Figure 15: Constituency-based tree for the example in 

English. 

As mentioned above, most parsers generate their 

output in both dependency and constituency 

formalisms. The output in terms of constituency 

grammars is the following: 

(ROOT 

  (S  

    ( NP (PRP I) )  

    (VP  

      (VP ( VBD took )  

        (NP (DT the) ( NN scrap) )  

        (PP (IN in)  

          (NP ( PRP $ my ) ( NNS hands) )))  

      (CC and)  
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      (VP ( VBD turned )  

        (S  

          ( NP (PRP it) )  

          (NP 

            (NP (DT a) ( NN couple) )  

            (PP (IN of)  

              (NP (NNS times) ( NN 

unwillingly )))))))  

    ( .. ) ) )  

As we have already discussed, in the Stanford parser, 

a very simple but expressive representation of a 

dependency-based tree is used: relation name and 

two words—or their POS tags or lemmas, depending 

on the type of elements we want to consider—along 

with the corresponding numbers of their positions in 

a sentence. The main word is mentioned first and then 

the dependent word, i.e., the order of the words is 

important. This information allows building the 

syntax tree in a unique way. The following is the 

output of the parser in the format mentioned above. 

nsubj(took - 2,  I - 1)  

root ( ROOT- 0,  took - 2)  

det ( scrap - 4, the - 3)  

dobj(took - 2,  scrap - 4)  

prep(took - 2, in - 5)  

poss(hands - 7, m y- 6)  

pobj ( in - 5, hands - 7)  

cc(took - 2, and - 8)  
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conj(took - 2, turned - 9)  

nsubj ( couple - 12, it - 10)  

det(couple - 12, a - 11)  

xcomp(turne d- 9, 12- couple )  

prep ( couple - 12, of - 13)  

nn( unwillingly - 15, time s- 14)  

pobj(of - 13, unwillingly - 15)  

It can be seen that although the sentence is very 

similar to the one above, the other parser applied 

different rules, to be more precise, handled the 

conjunction in a different way and also committed 

some errors: for example, the word unwillingly  was 

incorrectly related to of instead of turned; the word it  

was related to couple and not to turned. However, the 

parser errors do not conceptually affect our 

discussion, since our task is not to improve the parser 

but to apply existing tools. It is also worth mentioning 

that eventually the parsers are improving. Another 

interesting consideration that has been already 

mentioned is that parser errors are usually related to 

various types of syntactic ambiguity. 

Now we proceed to the construction of continuous 

and non-continuous syntactic n-grams. Syntactic 

bigrams—recall that in principle, there is no 
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difference between continuous and non-continuous 

syntactic bigrams—are the follows: 

took I 

took scrap 

scrap the 

took in 

in hands 

hands my 

took and 

took turned 

turned couple 

couple it 

couple a 

couple of 

of unwillingly 

unwillingly times 

The continuous syntactic trigrams are: 

took scrap the 

took in hands 

in hands my 

took turned couple 

turned couple it  
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couple turned a 

turned couple of 

couple of unwillingly 

of unwillingly times 

The continuous syntactic 4-grams are: 

took in hands my 

took turned couple it 

took turned couple a 

took turned couple of 

turned couple of unwillingly 

couple of unwillingly times 

As in the previous example, we do not repeat the same 

elements, although the continuous syntactic n-grams 

are also a part of the non-continuous syntactic n-

grams. 

The non-continuous syntactic trigrams—the new ones 

(some of them may be parser errors; however, it does 

not affect the proposed idea, as these are errors of 

another type and can be corrected by improving the 

parser itself)—are: 

took [I, scrap] 

took [I, in]  
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took [I, and] 

took [I, turned] 

took [scrap, in] 

took [scrap, and] 

took [scrap, turned] 

took [in, and] 

took [in, turned] 

took [and, turned] 

couple [it, a] 

couple [it, of] 

couple [a, of] 

The non-continuous 4-grams (the new ones) are: 

took [I, scrap the] 

took [in, scrap the] 

took [and, scrap the] 

took [turned, scrap the] 

took [I, in hands] 

took [scrap, in hands] 

took [and, in hands] 

took [turned, in hands] 

took [I, scrap, in] 

took [I, scrap, and] 

took [I, scrap, turned] 

took [scrap, in, and] 
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took [scrap, in, turned] 

took [in, and, turned] 

couple [it, a, of] 

couple [it, of unwillingly] 

couple [a, of unwillingly] 

Note that in this case, we took the elements of the non-

continuous syntactic n-grams in the order of their 

appearance in the text. As mentioned above, another 

option is to sort them in some way, for example, 

alphabetically. 
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Chapter 11. Automatic analysis of 

authorship using syntactic n-

grams 

Corpus preparation for the automatic 

authorship attribution task 

We have conducted various experiments [46] in order 

to test the usefulness of the concept of syntactic n-

grams. Essentially, we consider the task of authorship 

attribution, i.e., there are texts for which the authors 

are known and a text for which we have to determine 

the author (among the considered authors only). In 

our case, we use a corpus composed of texts written 

by three different authors. 

The task of authorship attribution is clearly a 

classification task: the authors correspond to the 

names of the classes, the classes are the texts for which 

the authors are known, and the task is based on the 

decision to which class a text belongs [2, 29, 33, 52]. 

The features that we use are traditional n-grams and 

syntactic n-grams ranging in size from two to five. We 

also employ a tool that makes it easy to apply various 
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available classification algorithms: the WEKA system 

[25]. 

We use a corpus composed of works by the following 

authors: Booth Tarkington, George Vaizey, Louis 

Tracy (the authors wrote in English in the nineteenth 

century). The composed corpus contains five novels 

by each author for training, in total 11 MB, and three 

works by each author for classification, in total 6 MB 

[46, 47, 48]. The Stanford parser is used to obtain the 

syntactic n-grams. 

Evaluation of the authorship 

attribution task using syntactic n-

grams 

For the design of experiments, we use profiles of 

various sizes. The term “profile” means that we use 

the corresponding number of the most frequent n-

grams, for example, for the profile of 400, we use 400 

n-grams with greater frequency in the training 

corpus, etc. 

We apply a standard classification algorithm called 

“support vector machine” (SVM). It is known that for 
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many tasks the support vector machine algorithm 

outperforms other classification algorithms. 

Classification results (for the authorship attribution 

task) for bigrams are shown in Table 2, and for 

trigrams in Table 3. To compare the results, we apply 

other ways of features selection: n-grams of words, n-

grams of POS tags, and n-grams of characters. 

Table 2: Results of the authorship attribution task for 

bigrams. 

Profile 

size 

Syntactic 

n-grams 

of SR-

tags 

N-

grams 

of 

POS 

tags 

N-grams 

of 

characters 

N-

grams 

of 

words 

400 100% 90% 90% 86% 

1,000 100% 95% 95% 86% 

4,000 100% ND 90% 86% 
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7,000 100% ND ND 86% 

11,000 100% ND ND 89% 

Table 3: Results of the authorship attribution task for 

trigrams. 

Profile 

size 

Syntactic 

n-grams 

of SR-

tags 

N-

grams 

of 

POS 

tags 

N-grams 

of 

characters 

N-

grams 

of 

words 

400 100% 90% 76% 81% 

1,000 100% 90% 86% 71% 

4,000 100% 100% 95% 95% 

7,000 100% 100% 90% 90% 
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11,000 100% 95% 100% 90% 

“ND” means that not many n-grams were found for 

the specific profile, i.e., the number of n-grams was 

relatively small.  

As can be seen, the method based on syntactic n-

grams gives the best results. However, it is 

noteworthy that the top line (facility of obtaining the 

results) for the considered problem is quite high, as 

we have a great amount of training data and use only 

three classes (authors). The detailed information on 

the experiments and the experimental data for a larger 

number of authors can be found in our previous 

studies [46, 47, 48], so we do not present the detailed 

description in this book. 
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Chapter 12. Filtered n-grams 

Idea of filtered n-grams 

In this and the following chapters, we present two 

ideas related to the non-linear construction of n-

grams. Recall that the non-linear construction consists 

in taking the elements which form n-grams in a 

different order than the surface (textual) 

representation, i.e., in a different way than words 

(lemmas, POS tags, etc.) appear in a text. 

In the previous chapters, we discussed the concept of 

syntactic n-grams, where the order in which the 

words are taken is defined by a syntax tree. 

Another option to obtain n-grams, in a different from 

taking the elements as they appear in a text way, is to 

filter out certain elements in a text. In this way, the 

words that are not neighbors can be considered as 

such. 

In fact, in its simplest version, this idea can be widely 

applied—stop words are filtered out during the 

construction of n-grams. 
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What we propose in this chapter is to apply this idea 

consistently and to filter out words in texts using 

some criteria. The most obvious criterion is to use the 

tf-idf measure, which is discussed in detail in the first 

part of this book. However, one can apply other 

measures. Somewhat similar happens with the stop 

words whose tf-idf values are very low due to their 

low idf. 

The next step is to choose a threshold in order to filter 

out the words. It is a matter of future experiments to 

determine the optimal thresholds. Note that we 

recommend considering not only one threshold to 

discard the upper or the lower part, but a combination 

of two thresholds in order to discard the upper part 

and the lower parts simultaneously. This corresponds 

to the intuition that the most important values are in 

the middle. We can generalize this idea and use not 

only two thresholds but a series of pairs of thresholds, 

although it seems unlikely that there are specific 

optimal ranges for the values of the features. 

Note that this idea can be easily combined with the 

idea of syntactic n-grams: we just skip the filtered 

words according to the selected thresholds in our path 

in a syntax tree. In this case, an interesting question 
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arises, what is to be done in the case of bifurcations? 

We believe that we should follow all the possible 

paths that originate from a bifurcation, although we 

should not consider the word itself in this bifurcation. 

Example of filtered n-grams 

Let’s consider a simple example of the filtered n-

grams construction. Let’s assume that we are to 

analyze the sentence that has been already used as an 

example in the previous chapters. 

Tomé el pingajo en mis manos y le di un par de vueltas de mala 

gana (lit: I took the scrap in my hands and gave it a pair of 

turns without enthusiasm) ‘I took the scrap in my hands 

and turned it a couple of times unwillingly’. 

Suppose that we want to obtain traditional n-grams 

constructed out of the filtered words. We will present 

a table with the tf-idf values of each word in an 

imaginary collection, see Table 4. 
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Table 4: Possible values of tf-idf of words 

Word tf-idf 

manos ‘hands’ 1.5 

de_mala_gana 

‘without_enthusiasm’ 

1.46 

upper threshold, < 1.3  

vueltas ‘turns’ 1.23 

tomé ‘took’ 1.2 

par ‘pair’ 0.9 

pingajo ‘scrap’ 0.7 

lower threshold, > 0.1 

di ‘gave’ 0.003 



128 

 

Word tf-idf 

el ‘the’ 0 

en ‘in’ 0 

mis ‘my’ 0 

y ‘and’ 0 

le ‘it’ 0 

un ‘a’ 0 

de ‘of’ 0 

Now, let’s assume that we filter out the words with 

very high or very low tf-idf values. For example, we 

select the thresholds: 1) “> 0.1” and 2) “< 1.3”. Only the 

words in bold tomé ‘took’, pingajo ‘scrap’, par ‘pair’, 

and vueltas ‘turns’ are in the considered range. 
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Note that the comparison signs of the thresholds can 

differ from our example, i.e., for the upper threshold 

we use “less-than, <” sign; one can try “greater-than, >“ 

sign and use the words above the threshold, and not 

the ones below, as in the example. 

Using the words that are still under consideration, we 

can construct the n-grams. For example, the 

traditional bigrams would be: 

tomé pingajo ‘took scrap’ 

pingajo manos ‘scrap hands’ 

manos par ‘hands pair’ 

par vueltas ‘pair turns’ 

The continuous syntactic bigrams would be: 

tomé pingajo ‘took scrap’ 

tomé manos ‘took hands’ 

par vueltas ‘pair turns’ 

If we also consider non-continuous syntactic bigrams, 

the following bigram will be added: 

[tomé, pingajo] ‘[took, scrap]’ 

It is quite curious, because as we have stated above, 

continuous and non-continuous bigrams coincide. 
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This situation changes when we start filtering out the 

elements of a syntax tree without deleting paths. To 

check how this latter bigram is constructed, please 

refer to Figure 9. We start with the root, which is 

filtered out based on the thresholds. Since we are in a 

bifurcation, we mark it with brackets, and then look 

for two unfiltered elements on each side of the 

bifurcation, which we separate by commas. It is 

noteworthy that a situation like this can only occur 

while constructing filtered n-grams. 

Filtered n-grams of characters 

Another idea that we would like to present in this 

book is related to the non-linear construction of n-

grams of characters. In this case, one option is to filter 

out the words in the first place—for example, using tf- 

idf—and then to construct the n-grams of characters 

out of the remaining words. This idea is similar to the 

one already discussed in this chapter. 

However, there is another option, which consists in 

filtering out the characters before we start 

constructing n-grams out of them. Basically, the idea 

is to filter out the characters that occupy certain 

positions in words or have certain features.  
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More specifically, regarding the features, we can filter, 

for example, the vowels and construct n-grams out of 

the remaining characters. One can try several types of 

characters features for various tasks. 

When it comes to the positions of characters, we can 

consider, for example, only the first three or the last 

three characters of each word and ignore (filter out) 

the remaining characters of the word. When dealing 

with the Spanish language, this filtering strategy 

should take into account affixes (suffixes, prefixes, 

inflexions) and assign less weight to the n-grams that 

represent the stems of words. It is worth mentioning 

that one can do the opposite: consider the n-grams of 

characters that correspond to the stems and try to 

discard the n-grams that are related to the 

grammatical elements. 

It is known that n-grams of characters give good 

results in the task of authorship attribution, i.e., reflect 

the personal style. The reason for this is not entirely 

clear, and we believe that experiments with various 

strategies of the non-linear construction of n-grams of 

characters can clarify which lexical or grammatical 

phenomenon is behind this type of n-grams. It is 

necessary to perform experiments with various 
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parameters and with various n-grams construction 

strategies. 
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Chapter 13. Generalized n-grams 

Idea of generalized n-grams 

Another idea related to the non-linear construction of 

n-grams, i.e., using distinct elements or distinct order 

of their appearance in a text, is the idea of replacing 

words by their synonyms or by the generalized 

concepts that correspond to the words according to a 

certain ontology. 

We will call this type of n-grams “generalized n-

grams”. Their construction is non-linear, because the 

n-grams are not constructed out of words according 

to their appearance in a text. 

When replacing words by their synonyms, we are at 

the same ontology level, and when using their 

hypernyms, we are moving to a higher ontology level. 

In both situations, it is highly desirable to perform the 

word sense disambiguation task beforehand, since the 

selection of correct synonyms and hypernyms greatly 

depends on this task. 

The general idea behind generalized n-grams is to 

reduce the lexical variety of texts, since in this way, 
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the number of n-grams is substantially decreased. It is 

quite clear that this idea can be easily combined with 

the ideas of syntactic and filtered n-grams. 

The application of information concerning synonyms 

is rather simple: for each word we compose the list of 

synonyms, e.g., we can use WordNet synsets or any 

thesaurus and replace the word by the first synonym 

in the list, and then proceed to the n-grams 

construction. 

There are several strategies for using hypernyms 

available in ontologies. We can always use the current 

level of each word plus a constant. 

hypernym_level = word_level + c 

In this case, we have to move c levels higher in the 

ontology we are using. 

Another possibility is to set a reasonably low ontology 

level and always move up from this level. If we come 

across a word of a very high level, it is advisable to 

leave it alone and not to move down to the 

corresponding level. 
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In this way, we replace the words by their synonyms 

or hypernyms and then construct the n-grams out of 

these new elements. 

Example of generalized n-grams 

The case of synonyms seems quite obvious. Let's 

consider an example of hypernyms.  

Let's use the same sample sentence as in the previous 

chapter. Assume that we use the filtering strategy and 

remain with the following filtered words: tomé ‘took’, 

pingajo ‘scrap’, manos ‘hands’, par ‘pair’, vueltas ‘turns’.  

As an example we use the strategy of moving only one 

level up in the ontology.  

Assume that we have the following hypernyms: 

manos ‘hands’  brazos ‘arms’ (strictly speaking, it is a 

holonym; however, it serves our purpose), tomé ‘took’ 

 actué ‘acted’, pingajo ‘scrap’  herramienta ‘tool’, 

vuelta ‘turn’   movimiento ‘movement’, par ‘pair’  

número ‘number’. Obviously, this information 

depends on the specific ontology, where the words 

and correspondences are to be found. 
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Now we can construct the n-grams using generalized 

concepts and not words as such, e.g., the bigram tomé 

pingajo ‘took scrap’ is replaced by actué herramienta 

‘acted tool’ or actuar herramienta ‘act tool’. The 

usefulness of this replacement depends on our 

purposes. The advantage is that the words martillo 

‘hammer’, cuchillo ‘knife’, etc. would have the same 

hypernym herramienta ‘tool’; in the same way, the 

words tomé ‘took’, clavé ‘stabbed', corté ‘cut’, etc. 

would have the hypernym actúe ‘acted’ or actuar ‘to 

act'.  

It is a matter of future studies to determine the 

usefulness of generalized n-grams, and the tasks for 

which their application would give better results than 

using the other types of n-grams. 
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