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Abstract— In this paper a development of an adaptive Bothw andv, are assumed to be uncorrelated zero-mean
Kalman filter through a fuzzy inference system (FiS Gaussian white noise sequences with covariances
outlined. The adaptation is concerned with the isifjan of

conditions under which the filter measurement noise . [Qe, 1=Kk 3)
covariance matriR or the process noise covariance mafix E{WkWi }— 0 i £k

are estimated. The adaptive adjustment is carngdising a _

FIS based on the whiteness of the filter innovasequence E{v V_T}= {Rk' =k 4)
(IS) and employing the covariance-matching techaidé a K 0 i#k

statistical analysis of the IS shows discrepanciéth its E{kar}: 0 for all k andi (5)

expected statistics then the FIS adjusts a fabtough which

the matricesR or Q are estimated. This fuzzy adaptive . . .
Kalman filter is tested on a numerical example. Tesults WhereE{llis the statistical expectation, supersciipdenotes

are compared with these obtained using a conveaitioffaNSPOSEQk is the process noise covariance matrix, Bpts

Kalman filter and a traditionally adapted Kalmahefi The e measurement noise covariance matrix.
fuzzy-adapted Kalman filter showed better resufttant its

traditional counterparts. The Kalman filter algorithm has two groups of efipras

[Welch and Bishop, 1995],
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adaptation; innovation sequence; covariance-magchih 1IMe update (or prediction) equations:
technique. L ~

Xrr = AX T Buy (6)

1. Introduction P = AR AJ +Qy 7).
The Kalman filter is an optimal recursive data @g8ing . ) .
algorithm [Maybeck, 1979] that provides a lineanpiased, ~~ These equations project, from time skefp stepk+1, the
and minimum error variance estimate of the unkn®hate current state and error covariance estimates tairolhe a

vector x. (J1" at each instark = 1,2 (indexed by the priori (indicated by the super minus) estimates for teet n
Kk 145y

. . . . time step.
subscripts) of a discrete-time controlled procebat tis P

governed by the linear stochastic difference equati i) Measurement update (or correction) equations:

= 1 - - -

X = A + Bl + W, @) K,=P HI[H,P HI +R]" (®)
wherex is an @ x 1) system state vectoh is an  x n) X =Xt Ky[z, = H X 9)
transition matrix,u, is an { x 1) vector of the input forcing P, =[l —KH]PR, (10).
function, By is an 6 x |) matrix, andwy is an @ x 1) process
noise vector. The discrete vector measuremgni] [ ™ is These equations incorporate a new measuremerthiao
given by priori estimate to obtain an improvagosteriori estimate.

z, = H, X +Vv, 2 In the above equations, is an estimate of the system

state vectok,, andPy is the covariance matrix corresponding
wherez is a (n x 1) measurement vecto, is a (n x n) to the state estimation error defined by

measurement matrix, ang is a (n x 1) measurement noise
vector. P = E{(xk - X)X, = xk)T} (13),



the term H, X, is the one-stage predicted outpi, and problem of having imperfect a priori information dan

Aoy L provides an improvement in performance over thedifilter
(z, —H,/X,) is the one-stage prediction error sequencgnnroach.

also referred to as the innovation sequence orduaki

generally denoted asand defined as: The procedures used to adapt a Kalman filter can be
classified into two main approaches: innovationeoas
o =(z, —H.X) (14). adaptive estimation (IAE) and multiple-model-base@dptive

estimation (MMAE) [Mohamed and Schwarz, 1999]. he t

The innovation represents the additional inforomati former the adaptation is made directly to the staal

available to the filter in consequence to the ndseovation mformaﬂon matncesR and/orQ based on the changes in the
. , . . . filter innovation sequence. In the second, a bahKaman
z, . For an optimal filter the innovation sequence ai

S filters runs in parallel with different models fohe filter's

sequence of independent Gaussian random varialbles. statistical information. In both techniques the @ept of

weighted innovationK , [z, — HX, ], acts as a correction toutilising the new information available in the irvaion (or

the predicted estimat&, to form the estimationx, ; the residual) sequence is used but they differ in their
implementation. In this work only the first apprbawill be

weighting matrixK, is commonly referred to as the filter gaisxamined, for the second approach the reader ésreef to

or the Kalman gain matrix. Brown and Hwang [1997].

The matrices\, B, andH, are assumed to be know@ The 1AE approach is based on the improvement ef th
and R, are nonnegative definite matrices whose values &fger performance through the adaptive estimatbthe filter
also assumed known. The Kalman filter algOflthmtSthth statistical information, the matrice@ and/or R. The
initial conditions atk =0 being: X, , and P, . With the adaptation mechanism is based on the whitenedsedfilter

progression of time, as new measurementsbecome InNnovation sequence, Eq. (14).
available, the cycle estimation-correction of statsd the

corresponding error covariances can follow recetgivad The value of the innovation at the current instacannot
infinitum. be predicted from previous values. Therefore, timovation

represents the additional information availabléhi filter as
a result of the new measuremenf . For this reason the

2. Statement of the problem innovation sequence represents the informationecnh the

The Kalman filter formulation as described previgusnew observation and is considered the most reles@nte of

assumes completa priori knowledge of the process andnformation for the filter adaptation. The occurenof bad

measurement noise statistics, matri@andR. However, in data first shows up in the innovation vector. lis tvay the

most practical applications these statistics ardially innovation sequence reports the discrepancy between

estimated or in fact are unknown. The problem keteat the predicted and actual measurement. If all preregsisire met,

optimality of the estimation algorithm in the Kalmdilter the innovation sequence is a zero-mean white rsgigeence

setting is closely connected to the quality of éhespriori [Dall, 1998

process noise and measurement noise statisticsvfBemd

Hwang, 1997; Mehra, 1970; Fitzgerald, 1971]. It theen The adaptation procedure in this work is concerwét

shown that inadequate initial statistics of theefilwill reduce the imposition of conditions under which the filsatistical

the precision of the estimated states or will idtrce biases to information matricesR or Q are estimated via the available

the estimates. In fact, wrong a priaxformation could cause new information given by the filter innovation semae. We

practical divergence of the filter [Fitzgerald, 197 note that these matrices are considered as cosstarthe

Additionally, insufficient a priori information anda conventional Kalman filter.

frequently changing estimation environment will ezff the

accuracy of the Kalman filter. From the aforememtid it

may be argued that using a fixed Kalman filter gesd by 3. Adaptive Kalman filtering

conventional methods in a changing dynamic envirmnis

a major drawback. From this point of view it canéoected 3.1. Adaptive estimation of the measurement nais@iGance

that an adaptive estimation formulation of the Kanfilter matrix R with Q fixed.

will result in a better performance or will prevefilter

divergence. The covariance matriR represents the accuracy of the
measurement instrument. The enlargement of thericmee

Different adaptive procedures have been devisechflJe matrix R for measured data means that we trust this medsure
1972; Moghaddamjoo and Kirlin, 1989; Mohamed anghta less and more on the prediction. Assumingttiganhoise
Schwarz, 1999] since the development of the Kalfil&er covariance matrixQ is completely known, an algorithm to

[Kalman, 1960]. The main advantage of the adapti¢gtimate the measurement noise covariance matdan be
technique is its weaker reliance on the a prioatistical derived.
information. An adaptive filter formulation dealsitlv the



Here an IAE algorithm to adapt the matfkhas been | ¢\ g (this mean{C,, andSare equal) then maintain
derived. The technique known as covariance-matching

[Mehra, 1972] is used to adapt the covariance m&riThe Runchanged.

basic idea behind this technique is to make thedwets 2. |f DoM > 0 (this meansérk is smaller thanS then
consistent with their theoretical covariance [Moleaihmand

Schwarz, 1999]. The innovation sequengcéas a theoretical decreas® .
covariance, 3. If DoM < 0 (this meansC,, is greater tharf) then
increaseR.

=HPRH, + (15)
> FHR, And R is adjusted on this way

obtained from the Kalman filter algorithm. If it ioticed that

the actual covariance of, has discrepancies with its Ra =R+ AdiR (18).
theoretical value, then adjustments have to be ntadrein
order to correct this mismatch. whereAdjR is the factor that is added or subtracted flem

AdjR is the FIS output.
To monitor the discrepancy 8fand its actual value a new
variable is defined. This variable is called Degreé 3.2. Adaptive estimation of the process noise covariance
Matching (DoM), matrix Q with R fixed.

DoM, =S, _érk (16). The covariance matrix) represents the uncertainty in the
process model. An increase in the covariance m@trixeans

that we trust less the process model and more on the

" measurement. Assuming that the noise covariance niisix

covariance C, in Eq. (16) is approximated by its sampleompletely known an algorithm to estimate mat@can be

covariance through averaging inside a moving esiima derived.
window of sizeN [Mohamed and Schwarz, 1999],

Having available the innovation sequengeg its actual

The idea behind the process of adaptationQofs as
follows. Eqg. (15) can be rewritten as:

. K
C, = %Zri r’ (17) .
=lo S =H (ARA +QHy +R, (19)

where j; =k-N+1 is the first sample inside the estimation 5,4 from Eq. (19) it may be deduced that a variatio@ in
window. The window sizel, is chosen empirically to givewill affect the value ofS If Q is increased, ther® is
some statistical smoothing. increased, and vice versa. Thus, if a mismatch betSeeml

. - . [ i h h

DoM is used to indicate the degree of dlscrepancC):/rk is observed then a correction can be made throug

between the theoretical value of the innovation covarigc@ugmenting or diminishing the value Q¢ The next three
. A . general adaptation rules are defined:
and its actual valu€,, . If DoM is around zero that mea8s

and C,, match almost perfectly, then no changes are neededf DoM 0O (this mean<C,, andSare equal) then maintain
If DoM is greater than zero this means the actual value@ftinchanged.

C,« is smaller than its theoretical val8gthen an adjustment2. If DoM > 0 (this meansC,, is smaller thanS) then
is needed. Conversely, DoM is smaller than zero, thisdecrease).

means the value o€, is greater than its theoretical valBe 3. If DoM < 0 (this meansC,, is greater tharS) then
then an adjustment is needed too. increase.

The basic idea of adaptation used by a FIS to él&pas ThusQ is adjusted in this way
follows. It can be appreciated from Eg. (15) that an increment Q.. = Q. * AdiQ (20).
in R will incrementS, and vice versa. ThuR can be used to

vary Sin accordance with the value B6M in order to reduce whereAdjQ is a factor obtained with a FIS.

the discrepancies betwe&mand C,, . The next three general
adaptation rules are defined: ]
4. lllustrative example
To demonstrate the efficiency of the fuzzy-adapted Kalman
filter approach, a simple numerical example is presented. The



results are compared with those obtained with anigal filter
without adaptation (KFWA) and a traditionally-adeqbt The following performance measures were adopted for

Kalman filter (TKF). comparison purposes:
Consider the following linear system, which is adified 1a

version of a tracking model [Paik and Oh, 2000; iChad J, = _Z(Zi —ZV-)2 (23)
Chui, 1991], '

X | [0.77 0.20 000] | % | |wg 1a

X2, |=| 025 075 025| [x2 [+|wZ| (21a) J =\/HZ(Z -zg)* (24)

X2, | | 005 000 075| (x| |w} =

Xi wherez is the actual value of the positiaw; is the measured
) position; andze is the estimated position.
z.=[1 0 0] [x?|+v, (21b)

XS The traditional adaptation method proposed by Mohamed
and Schwarz (1999) was used to adBRpand Q. In this

o . R . » MmethodR orQ are adapted using the following equations,
with initial conditions X, =0, P, = 0.011,, wherex,, X,

and x> are the position, velocity and acceleration, { —C _HTPHT
respectively, of a flying object. In Eqg. 21, the systerd an I?k c . HRH (25)
measurement noise sequencesw}{ and {v} are Q. :chrkK; (26),

pseudorandom sequences (i.e., uncorrelated zero-mean

Gaussian white noise sequences) With 0.02; andR = 1. ~ T ~

where C,, is obtained with Eq. 18H, , B, and K, are
MATLAB code was developed to simulate the Kalmaghose obtained in the Kalman filter algorithm.

filter and the fuzzy logic inference system used to adhest

measurement noise covariance matiand the process noise  Taple 1 shows the performance measures obtained for

covariance matriXQ. The results obtained are presented Bhch of the three methods: KFWA — Kalman filter without

next sections. adaptation; TKF — Traditionally-adapted Kalman filter; and
. . FKF — Fuzzy-adapted Kalman filter. From experimentation it
4.1. Fuzzy Adaptation d® and comparisons. was noticed that the best results were obtained with a window

_ . _ size of 200 samples for the TKF and 50 samples for the FKF
Five fuzzy sets have been defined BwM: NM = Negative

Medium, NS = Negative SmallZE = ZEro, PS = Positive Table 1

Small, andPM = Positive Medium; and five fuzzy sets havEpgrformance] KEWA TKE FKE

been defined foAdjR: IL = Increase Largd,= IncreaseM = | measure

Maintain, D = Decrease, an®L = Decrease Large. Five 3, 0.9478 0.9478 0.9478

fuzzy rules Comprise the rule base, J, 0.3882 0.3556 0.3541
1. It DoM =NM, thenA(_jJR: From table 1 it is seen that the best adaptatioR &f
2. IfDoM =NS, thenAdJ_R:I made by the FKF. Figure 2 shows the outputs obtained from
3. IfDoM =ZE, thenAdJR: M the KFWA. Notice the discrepancy between the actual
4. If DoM = PS thenAdjR=D ~
5. If DoM = PM, thenAdjR = DL. innovation covarianc€C, and its theoretical valu&. In this

case because bofh andR are fixedDoM remains a large

The membership functions foDoM and AdjR are value. Figure 3 shows the outputs obtained from the TiKF.

presented in figure 1. The model described by Eq. 21 WBS  se once the first value cﬁ?
simulated for 500s with a sample time of 0 @swvas fixed as

0.02;. The actual value dR is unity, but it has been assume@djustment ofR is continuously made. It can be seen how

is available the

unknown. The starting value Bfwas selected to be, DoM remains at a very small value whikealmost reaches its
true value. The filter performance improvement is obvious.
R, =5R (23) Figure 4 shows the outputs obtained from the FKF. Aken

TFK case, once the first value cérk is available the
The value ofR is continuously adjusted once the firsadjustment oR starts. In this case because the window size is
value of C, was available. Recall that this last parameter dgnaller the adaptation starts earlier. Observe §oand érk
obtained from a moving estimation window of site remain almost equal (DoM is around zero) @dscillates



around its tr'ue va!ue. Here It Is deduceo! thgt W“:‘“ from the FKF. It can be seen that in this c§sollows Ck
performance is obtained because the adaptatiachisved in _ _ _ T

a gradual manner and starts early. The same witewgas @ little more precisely than in the previous cas@s gives a
tried in the TFK but in that case no improvement #@sult thatis a better improvement in the filterfpormance
performance was obtained. In fact, for the TKF tmest than before.

performance was obtained with the window size o0 20

samples as reported earlier. .
5. Conclusions

4.2. Fuzzy Adaptation & and comparisons. In this paper a fuzzy inference system to adapt the
measurement noise covariance maRiwr the process noise
Five fuzzy sets have been defined oM with the same Covariance matriQ of a Kalman filter have been presented.

labels but different membership functions than ¢hos the This method uses the covariance-matching technigue
previous case. In this case only three fuzzy saete tbeen determine if adjustments t& or Q are needed. An example

defined for AdjQ: | = Increase,M = Maintain, andD = Showing the efficiency of this method was presentedhis
Decrease. Thus, five fuzzy rules comprise the bale, example, only five rules were needed to carry du t
adaptation in each case. It was observed that rbette
1. If DoM =NM, thenAdjQ =1 performance was obtained with the fuzzy-adaptedmigal
2. 1fDoM = NS, thenAdjQ = filter than that. obtainegj with both KFWA gnd TKR. ib
3. IfDoM = ZE, thenAdjQ =M relevant to notice that, in the case of the adaptaif R, the
4. 1fDoM =PS, thenAdjQ=M window size used to calculate the current innovatio
5. 1f DoM = PM, thenAdjQ = D. covariance is 3 times smaller in the FKF than tisad in the

TKF. However, for the adaptation Qfthe same window size
The membership functions for the variablbsM and C€an be used. The dependence on the window sizgoiod
AdjQ are presented on figure 5. The model describeBdy adaptation in both TKF and FKF is an open line to
21 was simulated for 500s with a sample time 00L& this Investigate. In this case only single-input, siAgleput
caseR was fixed as unity. The actual value@fs 0.02;, but (SISO) FISs were used and good results were ohtaine
it has been assumed as unknown. The starting wéiQewas However, better results can be expected if more thae

selected to be, input to the FISs is used. This is another lineeskarch. The
system used to explore the efficiency of the predamethod
Q, =5Q (23) was simple, so the design of an alternative mefopd more

0 .

sophisticated system may be needed to give mongosum
. _ . the efficiency of the approach.
The value ofQ was continuously adjusted ones the first

value of érk was available. Table 2 shows the performané8=FERENCES _
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Figure 6. Kalman filter without adaptatiad@,andR
fixed.

12 B N 5 N I }Jv\ j}
) i /

AN AT

| MJW \ WJ \\Lcm Y b WV

" ”JM v ) D"M\:VHNL \

02 ‘w W AM th/ ij MWIMW \R

o |

500

Output

Output

Traditionally-adapted Kalman filter

14 ‘ ‘ | ‘ ‘
12va i S\k\ ! N\ & fﬁﬁ
o J/M \ i Mwﬂ (v
n
B o
el
06
041 -
N,
2+ A Lok i
" w el A
g y
; ! \ w
}
02k
R I R R A
Time (sec)
Figure 7. Traditionally-adapted Kalman filter,
R fixed.
5 Fuzzy-adapted Kalman filter
141
1.2[7 ! mk /SK J f/
b s W W\N
WW‘” ™
06
04 .
Jq (“m DoM “\m
Y IN 1 0
fip % A w / i
AT ¥
R I T R
Time (sec)

Figure 8. Fuzzy-adapted Kalman filter,
Q fixed.



