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Abstract—In this work the recently developed fuzzy logic-based 
adaptive Kalman filter (FL-AKF) is used to build adaptive 
centralized, decentralized, and federated Kalman filters for 
Adaptive MultiSensor Data Fusion (AMSDF). The adaptation 
carried out is in the sense of adaptively adjusting the 
measurement noise covariance matrix of each local FL-AKF to 
fit the actual statistics of the noise profiles present in the 
incoming measured data. A fuzzy inference system (FIS) based 
on a covariance-matching technique is used as the adaptation 
mechanism. The effectiveness and accuracy of the proposed 
AMSDF approaches is demonstrated in a simulated example. 

I. INTRODUCTION 

In the literature three Kalman filter-based multisensor data 
fusion (MSDF) architectures are reported: centralized 
Kalman filtering (CKF), decentralized Kalman filtering 
(DKF), and federated Kalman filtering (FKF) [1], [2]. In all 
these approaches exact knowledge about the sensed 
environment and the sensors is required. However, in real 
applications, only certain information is known about the 
sensed environment and sensors are rarely perfect. 
Therefore, there is scope for the development of Kalman 
filter-based MSDF architectures capable of adaptation to 
changes in the sensed environment and to deal with 
imperfect sensors. In the literature, some approaches to 
adaptive MSDF (AMSDF) are reported. There are those 
based on Kalman filtering methods [3], [4], and those based 
on recent ideas from soft computing technology [5], [6]. 
However, little work has been done in exploring the 
combination of both these approaches [7]-[9]. In this work 
three novel AMSDF architectures that combine Kalman 
filtering and fuzzy logic techniques are proposed. They are 
referred to as: fuzzy logic-based adaptive CKF (FL-ACKF), 
fuzzy logic-based adaptive DKF (FL-ADKF), and fuzzy 
logic-based adaptive FKF (FL-AFKF), and grouped together 
they are simply termed as hybrid AMSDF (HAMSDF) 
architectures (the term hybrid refers to the actual 
combination of Kalman filtering and fuzzy logic techniques). 
The HAMSDF architectures are constructed based on the 
fuzzy logic-based adaptive Kalman filter (FL-AKF) recently 
developed by Escamilla and Mort [10], [11]. 
 The general idea explored here is the combination of the 
advantages that both Kalman filtering and fuzzy logic 
techniques have. On the one hand, Kalman filtering is one of 
the most powerful traditional techniques of estimation [12]. 
On the other hand, the main advantages derived from the use 
of fuzzy logic techniques are the simplicity of the approach, 
the capability to deal with imprecise information, and the 

possibility of including heuristic knowledge about the 
phenomenon under consideration [13]. 
 In the remainder of this paper, first a clear definition of the 
problem under consideration is given in section II. Then, in 
section III, the proposed HAMSDF architectures are 
described. Next, in section IV the effectiveness of the 
HAMSDF approaches is demonstrated through simulating an 
example. Finally, conclusions are given in section V. 

II. PROBLEM FORMULATION 

Assume that a discrete-time process can be modeled by, 
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       (1) 

ikkikik vxHz += , i = 1,…,N    (2) 
 

where n
kx ℜ∈  is a state vector at an instant of time denoted 

by the subscript k, Φk 
nn×ℜ∈  is a state transition matrix, Bk 

ln×ℜ∈  relates the control input uk ∈ ℜl to the state vector xk, 
wk 

nℜ∈  represents the modeling errors characterized by the 
error covariance matrix Qk. There are N measurement models 
described by (2), each of which corresponds to a local 
measurement. Thus, the local vector zik mℜ∈  describes the 
measurement made by sensor i at instant of time k. Hik 

nm×ℜ∈  is the i-th measurement sensitivity matrix. The noise 
(or error) in each measurement is represented by the vector 
vik and specified by the measurement noise covariance matrix 
Rik. Thus, the precision of the sensors is reflected by matrices 
Rik. wk and vik are modeled as uncorrelated zero-mean 
Gaussian noise sequences satisfying: 
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where E{⋅} is the statistical expectation operator. 
It is assumed that the known information about the sensed 

environment and sensors is captured in the known matrices 
Φk, Hik, and Qk, while the unknown matrices Rik model the 
uncertain and inaccurate information about these 
components. Hence, the objective of this work is to develop 
AMSDF architectures capable of obtaining a fused estimated 
state vector 

kx̂  that determines the parameters being 

measured as precisely as possible by combining the 
information coming from N sensors. By adaptive we mean 
that the AMSDF process is capable of adjusting on-line the 
unknown matrices Rik to fit, as closely as possible, the actual 
statistics of the noise profiles present in the measured data. 



 

III. HYBRID AMSDF ARCHITECTURES 

A. The standard Kalman filter 

 Given a process described by (1) and a single 
measurement vector zk, as those given by (2), the standard 
Kalman filter (SKF) algorithm is described by two groups of 
equations [2]: 
 
a) Time update (or 
prediction) equations 

b) Measurement update (or 
correction) equations 
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where )(ˆ +kx  represents the estimate of the system state-

vector xk, Pk(+) is the state-estimate error covariance matrix, 
and Kk is referred to as the Kalman gain matrix. 

B. The fuzzy logic-based adaptive Kalman filter 

 In this section, a review of the FL-AKF developed by 
Escamilla and Mort [10], [11] is presented. The adaptation is 
in the sense of using a fuzzy inference system (FIS) based on 
a covariance-matching technique to dynamically adjust the 
measurement noise covariance matrix Rk from data as they 
are obtained (note that a single sensor is considered in this 
development). The basic idea behind the covariance-
matching technique is to make the residuals consistent with 
their theoretical covariance [14], [15]. In the FL-AKF this is 
completed in three steps; first, having available the 
innovation sequence or residual )(ˆ −−= kkkk xHzr  its 

theoretical covariance is calculated as 
 

k
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in the Kalman filter algorithm. Second, the actual covariance 

krĈ  of rk is approximated through averaging inside a sliding 

estimation window [14] of size M, 
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where i0 =  k − M + 1 is the first sample inside the window. M 
is chosen empirically to give some statistical smoothing. 
Third, if it is found that the actual value of the covariance of 
rk has a discrepancy with its theoretical value, then a FIS 
derives adjustments for the diagonal elements of Rk based on 
the size of this discrepancy. The objective of these 
adjustments is to correct this mismatch as far as possible. 
The size of the mentioned discrepancy is given by a variable 
called the Degree of Mismatch (DoMk) defined as, 
 

kkk rCSDoM ˆ−=        (11). 
 

 The main idea of adaptation used by a FIS is as follows. It 
can be noted from (9) that an increment in Rk will increment 

Sk, and vice versa. This means that Rk can be used to vary Sk 
in accordance with the value of DoMk in order to reduce the 
discrepancies between Sk and 

krĈ . Because all matrices 
krĈ , 

Sk, Rk and DoMk are of the same dimension the adaptation of 
the (i,i) element of Rk can be made in accordance with the 
(i,i) element of DoMk; i=1,2,…,m; m=size of zk. Thus, a 
single-input, DoMk(i,i), single-output, ∆Rk, FIS can be used 
to sequentially generate the tuning or correction factors for 
the elements in the main diagonal of Rk. The FIS is 
implemented considering three fuzzy sets for the input 
DoMk(i,i): N = Negative, ZE = Zero, and P = Positive; and 
three fuzzy sets for the output ∆Rk: I = Increase, M = 
Maintain, and D = Decrease; as is shown in Fig. 1. There, the 
parameters defining the fuzzy sets can be changed in 
accordance with the system under consideration. Hence, only 
three fuzzy rules complete the FIS rule base: 1. if DoMk = N, 
then ∆Rk = I; 2. if DoMk = ZE, then ∆Rk = M; if DoMk = P, 
then ∆Rk = D. Then, using the compositional rule of 
inference sum-prod and the center of area (COA) 
defuzzification method [16], the adjusting factor for the 
diagonal elements of Rk are sequentially obtained by a FIS, 
and the adjustments are performed by applying, 
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C. Fuzzy logic-based adaptive Centralized Kalman Filter 

In the FL-ACKF the sensor measurements are merged to 
form the observation information to a central FL-AKF. This 
is made in the following way: 
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 Therefore, by using (13)-(15) it is straightforward to apply 
the FL-AKF as the global estimator in an adaptive 
centralized data fusion scheme. 

D. Fuzzy logic-based adaptive Decentralized Kalman 
Filter 

 First, a summary of the standard decentralized Kalman 
filter (SDKF) algorithm is presented in Table I. In the SDKF 
algorithm the SKF is divided into N local SKFs and a master 
filter [2]. The SDKF process the information in two stages. 
In the first stage, the local filters process their own data in 
parallel to yield the best possible local estimates. In the 
second stage, the master filter fuses the local estimates, 
yielding the best global estimate. 

The structure of the proposed FL-ADKF is similar to that 
of the SDKF, but instead of having N local SKFs there are 
considered N local FL-AKFs working in parallel. Each one 
of the FL-AKFs is determined as described in Section III.B. 
From Table I it can be noted that the master filter or fusion 
algorithm can work without any alteration when FL-AKFs 
are used as local filters. Thus, in the FL-ADKF the fusion 
algorithm is applied directly using the information coming 
from the local FL-AKFs. 



 

E. Fuzzy logic-based adaptive Federated Kalman Filter 

 A summary of the standard federated Kalman filter 
(SFKF) [1] algorithm is given in Table II. As for the FL-
ADKF, the FL-AFKF is developed by substituting the local 
SKFs with FL-AKFs. However, in this case, due to the use of 
the information sharing principle [1] this substitution cannot 
be directly applied. Observe in Table II that the common 
process noise covariance matrix Qk and the fused error 
covariance matrix Pfk(+) are affected by the factor (1/βi) 
before being used in the local and master filters’ prediction 
equations. In consequence, the local theoretical residual 
covariance matrices Sik do not represent the information 
corresponding to local filters, but reflect the global shared 
information. Thus, what is needed is to obtain local 
theoretical residual covariance matrices representing the 
information corresponding to local filters only. 
 A solution to the above problem can be formulated as 
follows. First, from the SFKF algorithm, the theoretical 
residual covariance matrix in the i-th filter is obtained by, 
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with 
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but by using the information sharing factor βi, 
Pik(+)=(1/βi)Pfk(+) and Qik(+)=(1/βi)Qk, thus (16) transforms to, 
 

ik
T
ikki

T
kikfikiikik RHQPHS ++ΦΦ= −−+−− ])/()/([ )()()()( 1111 11 ββ    

ik
T
ikk

T
kikfkiiki RHQPH ++ΦΦ= −−+−− }][){/( )()()()( 11111 β

ik
T
ikfkiki RHPH += − ])[/( )(β1              (18). 

 

 Eq. (18) means that each local filter uses a fraction (1/βi) 
of the factor ][ )(

T
ikfkik HPH −  to calculate Sik. Thus, by 

compensating this with the factor βi its effect in Sik is 
removed, this is: 
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where *
ikS  is the value used to calculate the local degree of 

mismatch values: 
 

ikikik rCSDoM ˆ* −=        (20). 
 

 Therefore, by using (20) in the local FL-AKFs, the local 
measurement noise covariance matrices Rik can be 
dynamically adjusted. 

IV. ILLUSTRATIVE EXAMPLE 

 In this section an example is outlined to demonstrate the 
effectiveness and accuracy of the proposed HAMSDF 
architectures. Several simulations have been carried out and 

results are presented in this section. The experiments were 
developed under the MATLAB simulation environment. 
 Consider the following linear system, which represents a 
vehicle moving in one-dimensional co-ordinate space [1]: 
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where pk and sk are the position and velocity of the vehicle, 
respectively. The kinematics of the vehicle is described by 
two Guassian white random sequences with variances of 
0.2m2 in position and 0.02m2s-2 in velocity, as indicated by 
matrix Qk. The system has four independent navigation 
sensors whose measurement models are defined as follows: 
 





+




=



2

1

2

1

ik

ik

k

k
ik

ik

ik

v

v

s

p
H

z

z ;   i = 1, 2, 3, 4   (22) 





====

10

01
ikikikik HHHH     (23) 

 

where 1
ikz  and 2

ikz  are observations of the vehicle position 

and velocity, respectively, as measured by the i-th sensor; 

ikH  is the i-th measurement sensitivity matrix; 
T

ikikik vvv ][ 21= , i = 1, 2, 3, 4, are uncorrelated zero-mean 

Gaussian white noise vector sequences with covariance 
matrices 

ikR  defined in each particular simulation. The 

process initial conditions are defined as TTspx ][][ 00000 == . 

 Simulation 1: The objective of this simulation is to 
investigate and compare the performance of the proposed 
HAMSDF architectures when initial measurement noise 
covariance matrices Ri0 are correctly specified and no 
adaptation is performed. In a strict sense, SKFs are used as 
local filters. In consequence, optimal results will be obtained, 
which will be the base for comparison purposes. The correct 
measurement noise covariance matrices are constant matrices 
defined as: 
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 Therefore, the system defined by (21)-(24) was simulated 
together with the three HAMSDF algorithms for 80 sec with 
a sample time of ∆t = 0.2 sec. The initial conditions for 
Kalman filtering in all cases were specified as: T

ix ][ˆ )( 000 =−  

and 
20 10IPi =−)( . The size of the sliding window in all FL-

AKFs was selected as 15. In all simulations the value of the 
sharing factor was defined as βi = 0.2. 
 Results: For comparison purposes, the following root 
mean squared error (RMSE) performance measures were 
adopted: 
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where 
kp  is the actual position, 

kp̂  is the estimated position, 

sk is the actual velocity, and ŝk  is the estimated velocity of 
the vehicle at instant of time k. xk is the actual state vector 
value, and 

kx̂  is the estimated state vector value at instant of 

time k; L is the number of samples. 
 Table III shows the RMSE values obtained by employing 
each one of the HAMSDF architectures, together with the 
RMSE values obtained by local FL-AKFs. A comparison of 
performance measures, based on the obtained RMSEx values, 
can be carried out as follows. The performance measure of 
the FL-ACKF cannot be compared with local filters, because 
in this case there are no local filters. However, this 
comparison can be carried out in the cases of the FL-ADKF 
and the FL-AFKF. The fused data obtained with the FL-
ADKF is 38% more accurate than that obtained with local 
FL-AKF 2, which has the best individual performance 
measure. Meanwhile, the performance measure obtained by 
using the FL-AFKF is 43.9% better than that obtained with 
local FL-AKF 3, which in this case has the best performance 
measure. Note that, on average, the results obtained with 
local filters in the FL-AFKF are slightly less accurate than 
those obtained with local filters in the FL-ADKF. Also, note 
that the results of each local filter in both the FL-ADKF and 
the FL-AFKF are locally suboptimal, but when combined 
(fused) they are optimal and equal to the result obtained with 
the FL-ACKF. 
 Simulation 2: The goal of this simulation is to investigate 
the performance of the proposed HAMSDF architectures 
when initial measurement noise covariance matrices Ri0 are 
incorrectly specified and no adaptation is performed. Thus, 
the system under consideration was simulated under the same 
conditions than those in simulation 1, but here it is assumed 
that the correct measurement noise covariance matrices, 
given by (24), are unknown. Therefore, an initial guess is 
made as: 
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 It is expected that the performance measure values will be 
significantly degraded with respect to those obtained in 
simulation 1 (the optimal). 
 Results: Table IV shows the performance measures 
obtained with the HAMSDF architectures as well as those 
obtained with local filters. By comparing these results with 
the optimal performance measures (considering the RMSEx 
value), obtained in simulation 1, it is observed that the FL-
ACKF, FL-ADKF, and FL-AFKF performance measures are 
degraded by 15.6%. These results show that having switched 
off the adaptation procedure in the local FL-AKFs (this is 
having SKFs) and using incorrect measurement noise 
statistics, the AMSDF performances are significantly 
degraded. 

 Simulation 3: The objective of this simulation is to 
investigate the performance of the proposed HAMSDF 
architectures when the initial measurement noise covariance 
matrices Ri0 are incorrectly specified and adaptation is 
performed. Thus, the adaptation procedure in the FL-AKFs 
is switched on in all architectures. This simulation will show 
how adaptation of the elements in the main diagonal of 
matrices Ri0 is carried out. The AMSDF algorithms and the 
system under consideration were simulated assuming that the 
correct measurement noise covariance matrices, given by 
(24), are unknown. Therefore, an initial guess is made as 
given by (27). 
 Results: Table V shows the obtained performance 
measures for the local FL-AKFs and the HAMSDF 
algorithms. Comparing these results with the optimal values 
(considering the RMSEx value), the following observations 
can be made. It is noteworthy to mention that, on average, 
the degradation in performance observed in the FL-ACKF, 
the FL-ADKF and the FL-AFKF is less than 2%. This means 
that the adaptation carried out in each one of these 
algorithms effectively tune the value of the corresponding 
measurement noise covariance matrices to fit the actual noise 
statistics. 
 Simulation 4: The goal of this simulation is to investigate 
the performance of the proposed HAMSDF architectures 
with different noise profiles in the sensors. Four different 
noise profiles, with different statistics, are considered as is 
shown in Fig. 2. It is expected that the adjusting procedure 
will tune the values of matrices R1k, R2k, R3k, and R4k to fit, as 
well as possible, the actual statistics of the noise profiles. 
The HAMSDF algorithms and the system under 
consideration were simulated under the same conditions than 
those in simulation 3. The noise profiles used in each sensor 
are those shown in the last column of Table VI. 
 Results: Table VI shows the obtained performance 
measures for the local FL-AKFs and the HAMSDF 
algorithms and comparing these results (considering the 
RMSEx values), the following remarks can be made. The best 
performance measure is obtained with the FL-ADKF. The 
performance measures obtained with both the FL-ACKF and 
the FL-AFKF are exactly the same, and are 2.17% worse 
than the obtained with the FL-ADKF. A graphical view of 
the obtained results can be seed in Fig. 3, where the actual 
and estimated position of the vehicle in a typical realization, 
made by each one of the local FL-AKFs and the FL-ADKF, 
is plotted from time 40-50 sec; while in Fig. 4 the running 
RMSEp values obtained for the FL-ADKF and each one of its 
local filters are shown. The way in which the FISs tune the 
values of the diagonal elements of matrices R1k, R2k, R3k, and 
R4k in each of the local FL-AKFs of the FL-ADKF can be 
appreciated in Fig. 5. Note that good adaptation to the 
statistics of the noise profiles is obtained in all cased. 

V. CONCLUSIONS 

 Novel HAMSDF architectures integrating Kalman 
filtering and fuzzy logic techniques have been presented. 
These approaches exploit the advantages that both 



 

techniques have: the optimality of the Kalman filter and the 
capability of fuzzy systems to deal with imprecise 
information using “common sense” rules. In this approach 
the linear estimations obtained by individual Kalman filters 
are improved through dynamically tuning the measurement 
noise covariance matrix Rk by means of a FIS. This prevents 
filter divergence and relaxes the a priori assumption about 
the initial value of Rk. It is particularly relevant that only 
three rules are needed to carry out the adaptation. The results 
obtained in the illustrative example show that the proposed 
HAMSDF architectures are effective in situations where 
there are several sensors measuring the same parameters, but 
each one has different measurement dynamic and noise 
statistics. Thus the general idea of exploring the combination 
of traditional (Kalman filtering) with non-traditional (Fuzzy 
logic) techniques for designing AMSDF architectures 
appears to be a good avenue of investigation. 
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TABLE I SUMMARY OF THE STANDARD DECENTRALIZED KALMAN FILTER 
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TABLE II SUMMARY OF THE STANDARD FEDERATED KALMAN FILTER 

 

Local KFs Master filter 
Divide global information: 
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TABLE III PERFORMANCE MEASURES: SIMULATION 1 

 

MSDF 
Architecture 

RMSEp RMSEs RMSEx Conditions 

FL-ACKF 0.4720 0.2924 0.5552 Fused data, Correct Ri0 and no 
adaptation (optimal case) 

FL-ADKF 0.4720 0.2924 0.5552 Fused data (optimal case) 
FL-AKF 1 0.8334 0.4791 0.9613 Correct R10 and no adaptation 
FL-AKF 2 0.6892 0.3347 0.7661 Correct R20 and no adaptation 
FL-AKF 3 0.6038 0.4890 0.7770 Correct R30 and no adaptation 
FL-AKF 4 0.8771 0.4425 0.9824 Correct R40 and no adaptation 
FL-AFKF 0.4720 0.2924 0.5552 Fused data (optimal case) 
FL-AKF 1 0.8270 0.4245 0.9296 Correct R10 and no adaptation 
FL-AKF 2 0.7708 0.3995 0.8682 Correct R20 and no adaptation 
FL-AKF 3 0.7133 0.3603 0.7991 Correct R30 and no adaptation 
FL-AKF 4 0.8924 0.3675 0.9651 Correct R40 and no adaptation 

 

 
 



 

TABLE IV PERFORMANCE MEASURES: SIMULATION 2 
 

MSDF 
Architecture 

RMSEp RMSEs RMSEx Conditions 

FL-ACKF 0.5403 0.3464 0.6418 Fused data, incorrect Ri0 and no 
adaptation 

FL-ADKF 0.5403 0.3464 0.6418 Fused data 
FL-AKF 1 1.0010 0.5457 1.140 Incorrect R10 and no adaptation 
FL-AKF 2 0.7472 0.4265 0.8604 Incorrect R20 and no adaptation 
FL-AKF 3 0.6065 0.5019 0.7872 Incorrect R30 and no adaptation 
FL-AKF 4 0.9773 0.4892 1.0930 Incorrect R40 and no adaptation 
FL-AFKF 0.5403 0.3464 0.6418 Fused data 
FL-AKF 1 1.3160 0.4207 1.3820 Incorrect R10 and no adaptation 
FL-AKF 2 0.9182 0.3535 0.9840 Incorrect R20 and no adaptation 
FL-AKF 3 0.6899 0.3992 0.7971 Incorrect R30 and no adaptation 
FL-AKF 4 1.2190 0.4024 1.2830 Incorrect R40 and no adaptation 

 

 
TABLE V PERFORMANCE MEASURES: SIMULATION 3 

 

MSDF 
Architecture 

RMSEp RMSEs RMSEx Conditions 

FL-ACKF 0.4753 0.3038 0.5642 Fused data, incorrect Ri0 and 
adaptation 

FL-ADKF 0.4745 0.3041 0.5636 Fused data 
FL-AKF 1 0.8537 0.4712 0.9751 Incorrect R10 and adaptation 
FL-AKF 2 0.7019 0.3467 0.7829 Incorrect R20 and adaptation 
FL-AKF 3 0.6118 0.4743 0.7741 Incorrect R30 and adaptation 
FL-AKF 4 0.8652 0.4612 0.9804 Incorrect R40 and adaptation 
FL-AFKF 0.4753 0.3038 0.5642 Fused data 
FL-AKF 1 0.8672 0.4222 0.9646 Incorrect R10 and adaptation 
FL-AKF 2 0.7907 0.3965 0.8845 Incorrect R20 and adaptation 
FL-AKF 3 0.7156 0.4000 0.8198 Incorrect R30 and adaptation 
FL-AKF 4 0.8917 0.3946 0.9751 Incorrect R40 and adaptation 

 

 
TABLE VI PERFORMANCE MEASURES: SIMULATION 4 

 

MSDF 
Architecture 

RMSEp RMSEs RMSEx Conditions 

FL-ACKF 0.3213 0.2291 0.3946 Fused data 
Sensor 1    vk

1 = noise 1, vk
2 = noise 2 

Sensor 2    vk
1 = noise 2, vk

2 = noise 1 
Sensor 3    vk

1 = noise 3, vk
2 = noise 4 

Sensor 4    vk
1 = noise 4, vk

2 = noise 3 
FL-ADKF 0.3113 0.2285 0.3862 Fused data 
FL-AKF 1 0.4796 0.2833 0.5570 vk

1 = noise 1, vk
2 = noise 2 

FL-AKF 2 0.4393 0.3334 0.5516 vk
1 = noise 2, vk

2 = noise 1 
FL-AKF 3 0.6403 0.3534 0.7314 vk

1 = noise 3, vk
2 = noise 4 

FL-AKF 4 0.5430 0.4009 0.6749 vk
1 = noise 4, vk

2 = noise 3 
FL-AFKF 0.3213 0.2291 0.3946 Fused data 
FL-AKF 1 0.5219 0.3137 0.6089 vk

1 = noise 1, vk
2 = noise 2 

FL-AKF 2 0.4803 0.3155 0.5736 vk
1 = noise 2, vk

2 = noise 1 
FL-AKF 3 0.5872 0.3364 0.6767 vk

1 = noise 3, vk
2 = noise 4 

FL-AKF 4 0.5746 0.2879 0.6427 vk
1 = noise 4, vk

2 = noise 3 
 

 

 
Fig. 1. Membership functions for DoMk and ∆Rk. 
 

 
Fig. 2. Noise profiles used in simulation 5; (a) noise 1: constant variance 
Gaussian noise sequence N(0,0.5); (b) noise 2: uniform distribution noise 
sequence [-1,1]; (c) noise 3: uniform distribution noise sequence increasing 
with time [-4,4]; (d) noise 4: uniform distribution noise sequence 
decreasing with time [-4,4]. 

 
Fig. 3. Actual and estimated position of the vehicle, made by each one of 
the local FL-AKFs and the FL-ADKF from time 40 to 50 sec. 
 

 
Fig. 4. Running RMSEp values obtained in the FL-ADKF and each one of 
its local FL-AKFs. 
 

 
Fig. 5. Adjustment of the elements in the main diagonal of matrices R1k, 
R2k, R3k, and R4k in each of the local FL-AKFs of the FL-ADKF. 
 

(a) (b) 

(c) (d) 
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