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Abstract—In this work the recently developed fuzzy logic-basd  possibility of including heuristic knowledge abotie
adaptive Kalman filter (FL-AKF) is used to build adaptive phenomenon under consideration [13].
centralized, decentralized, and federated Kalman fiers for In the remainder of this paper, first a clear mitifin of the
Adaptive MultiSensor Data Fusion (AMSDF). The adapation  hroplem under consideration is given in sectioriThen, in
caried out is in the sense of adaptively adjustingthe — gociion ) the proposed HAMSDF architectures are
measurement noise covariance matrix of each localLFAKF to . : - .

described. Next, in section IV the effectiveness tio¢

fit the actual statistics of the noise profiles prgent in the . . .
incoming measured data. A fuzzy inference system (&) based HAMSDF approaches is demonstrated through simgatm

on a covariance-matching technique is used as thelaptation ~€xample. Finally, conclusions are given in sectfon
mechanism. The effectiveness and accuracy of the gmosed
AMSDF approaches is demonstrated in a simulated exrale. Il. PROBLEM FORMULATION

Assume that a discrete-time process can be mobgled
I. INTRODUCTION
In the literature three Kalman filter-based muhiser data X = P X, + Bou, +w, (1)
fusion (MSDF) architectures are reported: centealiz z, =H,x +v,,i=1..N (2)
Kalman filtering (CKF), decentralized Kalman filteg
(DKF), and federated Kalman filtering (FKF) [1].]{An all  here y O s a state vector at an instant of time denoted
these approaches exact knowledge about the sensede k
environment and the sensors is required. Howevergal by the subscripk, @, OO™" is a state transition matrig
applications, only certain information is known abdhe 00" relates the control inpuf O 0' to the state vectog,
sensed environment and sensors are rarely perfegf. 00" represents the modeling errors characterized dy th
Therefore, there is scope for the development dinia  error covariance matriQy,. There aréN measurement models
filter-based MSDF architectures capable of adamtato described by (2), each of which corresponds to allo
changes in the sensed environment and to deal Witfeasurement. Thus, the local vectro O™ describes the
imperfect sensors. In the literature, some appe®c® measurement made by sensoat instant of timek. Hi
adaptive MSDF (AMSDF) are reported. There are thosgmn js thei-th measurement sensitivity matrix. The noise
based on Kalman filtering methods [3], [4], andsiadased (or error) in each measurement is represented dyektor
on recent ideas from soft computing technology [8]. . and specified by the measurement noise covarimatex

However, little work has been done in exploring they, Thuys, the precision of the sensors is refleciethatrices
combination of both these approaches [7]-[9]. lis thork Ri. W, and vi are modeled as uncorrelated zero-mean
three novel AMSDF architectures that combine Kalmag s ssian noise sequences satisfying:

filtering and fuzzy logic techniques are propos€bey are
referred to as: fuzzy logic-based adaptive CKF #IKF), Q. i=k: { T}_ R., Jj=k 3)
fuzzy logic-based adaptive DKF (FL-ADKF), and fuzzy E{WkWJ}‘{ 0 jzk S ‘{ 0 jzk
logic-based adaptive FKF (FL-AFKF), and groupedetbgr

they are simply termed as hybrid AMSDF (HAMSDF)where E{Jis the statistical expectation operator.
architectures (the term hybrid refers to the actual |tis assumed that the known information aboutstiesed

The HAMSDF architectures are constructed basedhen ®,, Hy, andQ,, while the unknown matrice®, model the

fuzzy logic-based adaptive Kalman filter (FL-AKF§cently
developed by Escamilla and Mort [10], [11].

The general idea explored here is the combinatfothe
advantages that both Kalman filtering and fuzzyidog
techniques have. On the one hand, Kalman filteisrane of
the most powerful traditional techniques of estioraf12]. measured as precisely as possible by combining the
On the other hand, the main advantages derived tihemuise information coming fromN sensors. By adaptive we mean
of fuzzy logic techniques are the simplicity of thgproach, that the AMSDF process is capable of adjustingina-the
the capability to deal with imprecise informaticemd the unknown matrice®y to fit, as closely as possible, the actual

statistics of the noise profiles present in the snesd data.

uncertain and inaccurate information about these
components. Hence, the objective of this work isdwelop
AMSDF architectures capable of obtaining a fusdonesed
state vector x, that determines the parameters being

0-7803-7924-1/03/$17.00 ©2003 IEEE 5215



I1l. HYBRID AMSDF ARCHITECTURES S, and vice versa. This means tRatcan be used to vary
_ in accordance with the value BbMy in order to reduce the
A. The standard Kalman filter discrepancies betwee® and Cr,. Because all matricegr, ,

Given a process described by (1) and a singlg R andDoM, are of the same dimension the adaptation of
measurement vecta, as those given by (2), the standardhe (i) element ofR, can be made in accordance with the
Kalman filter (SKF) algorithm is described by twigps of (i iy element ofDoM; i=1,2,...m; mesize ofz. Thus, a
equations [2]: single-input,DoM(i,i), single-outputAR,, FIS can be used
to sequentially generate the tuning or correctiactdrs for
the elements in the main diagonal Bf. The FIS is
implemented considering three fuzzy sets for thputn
DoM((i,i): N = Negative,ZE = Zero, andP = Positive; and

a) Time update (or b) Measurement update (or
prediction) equations correction) equations

Koy O = P X 0 + B (4) | Ke=RoHIHRoH +R]* (6)

. A . 7 three fuzzy sets for the outpdtR: | = IncreaseM =
PnO =P RO, +Q 5) | K =X0+Klz~HXc]l () Maintain, and = Decrease: as is shown in Fig. 1. There, the
P =[1 —KH P (8) parameters defining the fuzzy sets can be changed i

accordance with the system under considerationcéjesnly
where X, (+) represents the estimate of the system stat#ee fuzzy rules complete the FIS rule base: Doifl = N,

vectorx, Py is the state-estimate error covariance matrifh€nARc = 1; 2. if DoM = ZE, thenAR, = M; if DoM, = P,

andK is referred to as the Kalman gain matrix. then ARc = D. Then, using the compositional rule of
inference sum-prod and the center of area (COA)

B. The fuzzy logic-based adaptive Kalman filter defuzzification method [16], the adjusting factar fthe

In this section, a review of the FL-AKF developby diagonal elements d®, are sequentially obtained by a FIS,
Escamilla and Mort [10], [11] is presented. Thegdton is and the adjustments are performed by applying,
in the sense of using a fuzzy inference system)(F&Sed on
a covariance-matching technique to dynamically stdibe R.(,i)=R_,(,i)+AR, (12).
measurement noise covariance maRixfrom data as they ) ) ) )
are obtained (note that a single sensor is coresidir this C. Fuzzy logic-based adaptive Centralized Kalman Filter
development). The basic idea behind the covariancein the FL-ACKF the sensor measurements are merged t
matching technique is to make the residuals cargistith form the observation information to a central FLHAKT his
their theoretical covariance [14], [15]. In the RKF this is  is made in the following way:
completed in three steps; first, having availablee t

innovation sequence or residual =z -H,% ) itS 2, =[zy .. 21" (13)
theoretical covariance is calculated as H, =[Hg...H ] (14)
R, =block diag[Ry ... Ry] (15).

Sk:Hkﬁvﬁﬂ'+Rk w) k 1k Nk

) i _ _ Therefore, by using (13)-(15) it is straightforaido apply
in the Kalman filter algorithm. Second, the actcavariance the FL-AKF as the global estimator in an adaptive

érk of r, is approximated through averaging inside a slidingentralized data fusion scheme.

estimation window [14] of sizkf, D. Fuzzy logic-based adaptive Decentralized Kalman

K Filter
Cr. = iz r.r.” (10) . .

KTM i First, a summary of the standard decentralizedmisal
filter (SDKF) algorithm is presented in Table |.the SDKF
algorithm the SKF is divided intN local SKFs and a master
filter [2]. The SDKF process the information in twtages.
In the first stage, the local filters process th@im data in

whereip = k=M + 1 is the first sample inside the winddw.
is chosen empirically to give some statistical sthing.
Third, if it is found that the actual value of tbevariance of : ) X
r has a discrepancy with its theoretical value, therls Parallel to yield the best possible local estimates the
derives adjustments for the diagonal elemen® dfased on S€cond stage, the master filter fuses the locamats,

the size of this discrepancy. The objective of ¢hesyielding the best global estimate. L
adjustments is to correct this mismatch as far @ssiple. 1€ structure of the proposed FL-ADKF is similarthat

The size of the mentioned discrepancy is given bgrible of the SDKF, but instead of havirg local SKFs there are

called the Degree of MismatcB¢M,) defined as consideredN local FL-AKFs working in parallel. Each one
’ of the FL-AKFs is determined as described in SectibB.

DoM, =S, _érk (11). From Table | it can bg noted that the master fitbefusion

algorithm can work without any alteration when FKi#s
are used as local filters. Thus, in the FL-ADKF thsion
algorithm is applied directly using the informaticoming
from the local FL-AKFs.

The main idea of adaptation used by a FIS is ksafs. It
can be noted from (9) that an incremenRjrwill increment
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E. Fuzzy logic-based adaptive Federated KalmareFiIt

results are presented in this section The expel'fmaere

(SFKF) [1] algorithm is given in Table II. As fohe FL-
ADKF, the FL-AFKF is developed by substituting tloeal
SKFs with FL-AKFs. However, in this case, due te tise of
the information sharing principle [1] this subsdtiiten cannot
be directly applied. Observe in Table Il that themenon
process noise covariance mati@, and the fused error
covariance matrixPy(+) are affected by the factor @y
before being used in the local and master filtprediction
equations. In consequence, the local theoreticaidual

covariance matrices§, do not represent the informationo-znf

corresponding to local filters, but reflect the lugb shared

Consider the following linear system, which repms a
vehicle moving in one-dimensional co-ordinate sgage

%= Poa| [1 At] | pe N w Q= 02 0 (21)
Ser| [0 1] [s | |W 0 002
wherep, ands, are the position and velocity of the vehicle,
respectively. The kinematics of the vehicle is diésd by
two Guassian white random sequences with varianées

in position and 0.02fa? in velocity, as indicated by
matrix Qx. The system has four independent navigation

information. Thus, what is needed is to obtain loc&ensors whose measurement models are defined@ssol

theoretical residual covariance matrices represgnthe
information corresponding to local filters only.

A solution to the above problem can be formulasad
follows. First, from the SFKF algorithm, the theticel
residual covariance matrix in theh filter is obtained by,

S, =H,P.oH, +R, (16)

with
P =D Py P Ty + Qe 17)
but by wusing the information sharing factog,

Pi»)=(1/3) P+ andQy+=(1/5)Qx thus (16) transforms to,

S = Hlk[(DI(k 1)(1/ﬂ)Pf(k 1)(+)(D|(k -1 +(l/ﬂi)Qk—1]Hi1|; + Ry
=@/ Bi{Hy[® i(k—l)Pf(k—l) P ik-y T Qu.]H il P+ Ry
=@/ B)IH Py »H l] + Ry (18).

Eqg. (18) means that each local filter uses aivaqtl/3)
of the factor [H, P, (hH[] to calculate S¢. Thus, by

compensating this with the factgf its effect in Sy is
removed, this is:

=B (L] B;)[H Py HH ;] +
=H, P, oHg +R,

Rik
(19)

where 5, is the value used to calculate the local degree
mismatch values:

DoM, =S, - (20).

Therefore, by using (20) in the local FL-AKFs, tloeal
measurement noise covariance matricB can be
dynamically adjusted.

V.
In this section an example is outlined to dematstthe

| LLUSTRATIVE EXAMPLE

effectiveness and accuracy of the proposed HAMSDFRMSE =

architectures. Several simulations have been choig and

{4} | { } {f} i=1,2,3,4 (22
z] sl v
Hic = Hy = Hy = Hy =|:1 0:| (23)
01

where z and z? are observations of the vehicle position

and velocity, respectively, as measured by ittfe sensor;
H, is the ith measurement sensitivity —matrix;

v, =[vi, V", 1 =1, 2, 3, 4, are uncorrelated zero-mean

Gaussian white noise vector sequences with cowaian
matrices R, defined in each particular simulation. The

process initial conditions are definedas[p ] =[0 (-

Simulation 1 The objective of this simulation is to
investigate and compare the performance of the gzexgh
HAMSDF architectures when initial measurement noise
covariance matriceRy are correctly specified and no
adaptation is performed. In a strict sense, SKEsuaed as
local filters. In consequence, optimal results Wél obtained,
which will be the base for comparison purposes. ddreect
measurement noise covariance matrices are comstdrices
defined as:

4 0 2 0 10]._ _[30] (20
Ry = [OZ}RZK{ }Rsk{ }RAK{OJ (24)

Therefore, the system defined by (21)-(24) wasukited
Rﬁgether with the three HAMSDF algorithms for 8@ seéth
a sample time ofAt = 0.2 sec. The initial conditions for
Kalman filtering in all cases were specified &s) =[0 O
and Py =101, The size of the sliding window in all FL-
AKFs was selected as 15. In all simulations theiwalf the
sharing factor was defined As= 0.2.

Results: For comparison purposes, the following root
mean squared erroRMSB performance measures were

adopted:
L2 B RMSE= T35 -8) (D)
k=1
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1L A A Simulation 3 The objective of this simulation is to
RMSE:\/LZ(XK =% (%~ %) (26) investigate the performance of the proposed HAMSDF
K architectures when the initial measurement noisargance
matrices Ry are incorrectly specified and adaptation is
, ) i i i performed. Thus, the adaptation procedure in theARES
S is the actual velocity, andt is the estimated velocity of 5 switched on in all architectures. This simulatieill show
the vehicle at. instant c_>f time X, is the actual state.vector how adaptation of the elements in the main diagafal
value, andg, is the estimated state vector value at instant ‘ﬁflatricesRio is carried out. The AMSDF algorithms and the
timek; L is the number of samples. system under consideration were simulated assuthaighe
Table Il shows the(RMSEvalues obtained by employing correct measurement noise covariance matrices,n dgye
each one of the HAMSDF architectures, together whtn (24), are unknown. Therefore, an initial guess mdenas
RMSEvalues obtained by local FL-AKFs. A comparison ofjiven by (27).
performance measures, based on the obt&M8E, values, Results Table V shows the obtained performance
can be carried out as follows. The performance oreasf measures for the local FL-AKFs and the HAMSDF
the FL-ACKF cannot be compared with local filtdbecause algorithms. Comparing these results with the optivadues
in this case there are no local filters. Howeveris t (considering theRMSE value), the following observations
comparison can be carried out in the cases of thRAIFKF  can be made. It is noteworthy to mention that, verage,
and the FL-AFKF. The fused data obtained with the F the degradation in performance observed in the EKRA
ADKEF is 38% more accurate than that obtained wittal the FL-ADKF and the FL-AFKF is less than 2%. Thisans
FL-AKF 2, which has the best individual performancdghat the adaptation carried out in each one of ethes
measure. Meanwhile, the performance measure obtdipe algorithms effectively tune the value of the copasding
using the FL-AFKF is 43.9% better than that obtdiméth measurement noise covariance matrices to fit theabooise
local FL-AKF 3, which in this case has the besfqgrnance statistics.
measure. Note that, on average, the results olotaiith Simulation 4 The goal of this simulation is to investigate
local filters in the FL-AFKF are slightly less acate than the performance of the proposed HAMSDF architesture
those obtained with local filters in the FL-ADKFIs@, note with different noise profiles in the sensors. Fdifferent
that the results of each local filter in both tHeADKF and noise profiles, with different statistics, are ddesed as is
the FL-AFKF are locally suboptimal, but when condain shown in Fig. 2. It is expected that the adjustimgcedure
(fused) they are optimal and equal to the resuhiabd with  will tune the values of matricd®y, Ru, Rk, andRy to fit, as
the FL-ACKF. well as possible, the actual statistics of the exgigofiles.
Simulation 2 The goal of this simulation is to investigateThe HAMSDF algorithms and the system under
the performance of the proposed HAMSDF architestureonsideration were simulated under the same conditihan
when initial measurement noise covariance matriRgsre those in simulation 3. The noise profiles usedaohesensor
incorrectly specified and no adaptation is perfatmghus, are those shown in the last column of Table VI.
the system under consideration was simulated uhdesame Results Table VI shows the obtained performance
conditions than those in simulation 1, but heris @aissumed measures for the local FL-AKFs and the HAMSDF
that the correct measurement noise covariance amafri algorithms and comparing these results (considethny
given by (24), are unknown. Therefore, an initiakegs is RMSE values), the following remarks can be made. Th be
made as: performance measure is obtained with the FL-ADKRe T
performance measures obtained with both the FL-AGKE
1 0} (27). the FL-AFKF are exactly the same, and are 2.17%sevor

where p, is the actual positionp, is the estimated position,

0 6 than the obtained with the FL-ADKF. A graphical wief
the obtained results can be seed in Fig. 3, wheeattual
It is expected that the performance measure valilebe and estimated position of the vehicle in a typieallization,
significantly degraded with respect to those olgdirin made by each one of the local FL-AKFs and the FLKAD
simulation 1 (the optimal). is plotted from time 40-50 sec; while in Fig. 4 theaning
Results Table IV shows the performance measureRMSE values obtained for the FL-ADKF and each onef it
obtained with the HAMSDF architectures as well lasse local filters are shown. The way in which the FiSse the
obtained with local filters. By comparing theseules with  values of the diagonal elements of matriBas Ry, R, and
the optimal performance measures (consideringRRESE, R, in each of the local FL-AKFs of the FL-ADKF can be
value), obtained in simulation 1, it is observedttthe FL- appreciated in Fig. 5. Note that good adaptationthi®
ACKF, FL-ADKF, and FL-AFKF performance measures argtatistics of the noise profiles is obtained incalted.
degraded by 15.6%. These results show that hawrighed
off the adaptation procedure in the local FL-AKRSI{ is V. CONCLUSIONS

hav!ng SKFs) ‘and using incorrect measurerjner.\t. r'OiseNoveI HAMSDF architectures integrating Kalman
statistics, the AMSDF performances are S|gn|f|(;emtlfiltering and fuzzy logic techniques have been enéad.

degraded. These approaches exploit the advantages that both

R10 = RZO = R30 = R4O :|:
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techniques have: the optimality of the Kalman fikked the
capability of fuzzy systems to deal with
information using “common sense” rules. In this r@eh
the linear estimations obtained by individual Kafnfdters
are improved through dynamically tuning the meawmerns

noise covariance matri®, by means of a FIS. This prevents/t®!

filter divergence and relaxes the a priori assuomptbout

the initial value ofR.. It is particularly relevant that only

three rules are needed to carry out the adaptatimmresults
obtained in the illustrative example show that ineposed
HAMSDF architectures are effective in situations eveh
there are several sensors measuring the same paranteit

each one has different measurement dynamic ande noi

statistics. Thus the general idea of exploringcbination
of traditional (Kalman filtering) with non-traditi@l (Fuzzy
logic) techniques for
appears to be a good avenue of investigation.
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TABLE | SUMMARY OF THE STANDARD DECENTRALIZED KALMAN FILTER

Local KFs Master filter

grediction equations:

designing AMSDF architectures

Prediction equations:

S\((kﬂ)(‘) = q)k;(k(*) + Bkuk
— T _ T

Pi(k+1)(’) =Py B (n®y +Qy P(k+1)(’) =, BR®, +Q

and invert to geP % (-

Xi(kay O = Py Xy (01 + By Uy

and invert to geFf(’klﬂ) )

. Correction equations:

i=1,..N N N

Correction equations: Rw =R+ Y. Riw =2 Rle)
i=1 i=1

K =RHHROH+R]™ andinvertto gep, )
i) = %) + Ky [ 2 = Hi X -]
P =[1 = Ky Hy IR

N N

%= R(({Pk_l(f)fq((f) +> Rlo% 0 —Zl?k'l(f)fgk(f)}
i= i

and invert to geP, ()

TABLE Il SUMMARY OF THE STANDARD FEDERATED KALMAN FILTER

Local KFs Master filter
Divide global information:  Prediction equations:
Qi = 1/ B;)Q ;(M(kﬂ)(‘) = @ Ky )+ By Uy,

Py =1/ B)Pr»
i (+) = R (+)

i=1,...NM

' o iy
Subject to ;ﬁ. =1 Pf—k1(+) - Z P‘Izl(+) + PN*”t(_)
Prediction equations: and invert t‘;lgelp'k )
Kigery O = Py Ky (0 + By Uy N
0 RN PN

Py ) = Py Py #PL +Q, = Pfk({PMk(?)XMk(i) +§Rk (+)>§k(+)}
i=1,..N
Correction equations:
Kic = ReoHkHi RoHg +RJI™
X ) = Ky + Ky [ 2, = Hy K 0]
Per =1 = Ky Hy IR0

— T
PM(k+1)(‘) = @\ Puc 0@y + Qi

and invert to geP,t, ()

Fusion equations:

-1
ik (+)

i=1,...N

TABLE Illl PERFORMANCEMEASURES SIMULATION 1

MSDF RMSE, RMSE  RMSEK Conditions

Architecture
FL-ACKF 0.4720 0.2924 0.5552 Fused data, Corre&, and no

adaptation(optimal case)

FL-ADKF 0.4720 0.2924 0.5552 Fused datgoptimal case)
FL-AKF 1 0.8334 0.4791 0.9613 CorreRf; and no adaptation
FL-AKF 2 0.6892 0.3347 0.7661 Corrdi, and no adaptation
FL-AKF 3 0.6038 0.4890 0.7770 CorreRRdy and no adaptation
FL-AKF 4 0.8771 0.4425 0.9824 CorreRl; and no adaptation
FL-AFKF 0.4720 0.2924 0.5552 Fused datgoptimal case)
FL-AKF 1 0.8270 0.4245 0.9296 CorreRty and no adaptation
FL-AKF 2 0.7708 0.3995 0.8682 Corrdi, and no adaptation
FL-AKF 3 0.7133 0.3603 0.7991 Corrdj, and no adaptation
FL-AKF 4 0.8924 0.3675 0.9651 Corrd}, and no adaptation




TABLE IV PERFORMANCEMEASURES SMULATION 2 29 ! T
MSDF RMSE, RMSE  RMSEK Conditions 28+ —*— Actual p .
Architecture —— Fused §
FL-ACKE 05403 03464 06418  Fused data, incorreR, and no 27 —— B:IFL-AKE 1 | |
adaptation B E:: QQE %
FL-ADKF 0.5403 0.3464  0.6418 Fused data 26 P FL_AKF a
FL-AKF 1 1.0010 0.5457 1.140 IncorreRf, and no adaptation P 8
FL-AKF 2 0.7472 0.4265 0.8604 Incorré®s; and no adaptation 251
FL-AKF 3 0.6065 0.5019 0.7872 IncorreRy, and no adaptation o,
FL-AKF 4 0.9773 0.4892 1.0930 IncorreRf; and no adaptation 24+
FL-AFKF 0.5403 0.3464  0.6418 Fused data
FL-AKF 1 1.3160 0.4207 1.3820 IncorreRf; and no adaptation 231
FL-AKF 2 0.9182 0.3535 0.9840 Incorrd®f, and no adaptation
FL-AKF 3 0.6899 0.3992 0.7971 Incorrd®f, and no adaptation 2ol
FL-AKF 4 1.2190 0.4024 1.2830 Incorré®f, and no adaptation
21 q 5
40 42 44 1ime (secyd6 48 50
TABLE V PERFORMANCEMEASURES SMULATION 3 . . o .
Fig. 3. Actual and estimated position of the vehichade by each one of
Xriﬁifecmre RMSE, RMSE  RMSK Conditions the local FL-AKFs and the FL-ADKF from time 40 t6 Sec.
FL-ACKF 0.4753 0.3038 0.5642 Fused data, incorre®, and
adaptation 3.5 r T .
FL-ADKF 0.4745 0.3041 0.5636 Fused data
FL-AKF 1 0.8537 0.4712 0.9751 IncorrelRi, and adaptation
FL-AKF 2 0.7019 0.3467 0.7829 IncorrelRf, and adaptation 3r b
FL-AKF 3 0.6118 0.4743 0.7741 IncorrelRf, and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 IncorreRi, and adaptation 25 . FL-ADKF
FL-AFKF 0.4753  0.3038  0.5642  Fused data : - FL-AKF 1
FL-AKF 1 0.8672 0.4222 0.9646 IncorrelRf, and adaptation - FL-AKF 2
FL-AKF 2 0.7907 0.3965 0.8845 IncorrelRf, and adaptation 2 - FL-AKF 3 i
FL-AKF 3 0.7156 0.4000 0.8198 IncorrelRy, and adaptation .
FL-AKF4  0.8917  0.3946  0.9751 IncorreRl, and adaptation : FL-AKF 4
1.5
TABLE VI PERFORMANCEMEASURES SMULATION 4 \
MSDF RMSE, RMSE RMSE; Conditions
Architecture - ]
FL-ACKF 0.3213 0.2291 0.3946 Fused data nmmm =
Sensor 1 vl = noise 1y’ = noise 2
Sensor 2 vki = noise 2sz = noise 1 . .
Sensor 3 VK = noise 3y” = noise 4
Sensor 4 v,! = noise 4y, = noise 3 40 60 80

Time (sec)
FLUADKE 03ty 02285 03802 Skus_eﬁod,s;alvkz —noise2  Fig. 4. RunningRMSEpvalues obtained in the FL-ADKF and each one of
FL-AKF 2 0.4393 0.3334 0.5516 v, = noise 2y’ = noise 1 its local FL-AKFs.
FL-AKF 3 0.6403 0.3534 0.7314 v vos = noise 3y’ = noise 4
FL-AKF 4 0.5430 0.4009 0.6749 1 = noise 4y, = noise 3 T T T T T T T

FL-AFKF 0.3213  0.2291  0.3946 Fused data 5\\ : .
FLAKFL 05219  0.3137  0.6089 = noise 1y’ = noise 2 o2 [\ | =—Ru(®.1) ===Ru(22 ]
FL-AKF 2 0.4803 0.3155 0.5736 v’ = noise 2y’ = noise 1 2515 e : 4
FL-AKF 3 0.5872 0.3364 0.6767 v,* = noise 3y’ = noise 4 Seeol
FL-AKF 4 0.5746 0.2879 0.6427 v,! = noise 4y,2 = noise 3 0 T ! ; “SE===s =
0 10 20 30 40 50 60 70 80
5K . : : . : : .
I E RN T o |\ [ —Rulll) -—-Ru(22 ]

Degree of membership
Degree of membership

=
=3

5 25 Do, 0 25 5 .03 A0 0 AR, 03
Fig. 1. Membership functions f@oMy andAR.

NmsnE Uniform distribution nois e( 11

i

Noise 1: Constant variance Gaussian noise N(0.0.5)

05

Y
\w“

‘M’ \“,t }‘ ‘w\“ “ I '”1 r‘“‘ \\1!\(“ ‘,\mvf‘\ \k‘r \wh{w I ﬁ‘

°ll
ol
1)

40
Time (sec)
. Fig. 5. Adjustment of the elements in the main die of matriceRy,

o

Noise 4: Uniform distrib

- orm distribution noise dacraasing with time (-4.41 Rok, Rsk, andRyk in each of the local FL-AKFs of the FL-ADKF.

,h‘ W‘w \.

W ’HM =

Fig. 2. Noise proflles used in S|mulat|0n 5; (a)smol constant variance
Gaussian noise sequeng§0,0.5); (b) noise 2: uniform distribution noise
sequence [-1,1]; (c) noise 3: uniform distributimmise sequence increasing
with time [-4,4]; (d) noise 4: uniform distributiomoise sequence
decreasing with time [-4,4].
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