
 
Abstract— In this paper, a structural damage identification 

approach is proposed which combines adaptive network-based 
fuzzy inference system (ANFIS) and wavelet packet transform 
(WPT) technologies. The approach is referred to as ANFIS-WPT. 
For each measured structure vibration response signal, WPT is 
first applied to extract a feature vector representing its energy 
distribution in different frequency bands. Based on its energy 
percentage contribution, selected elements of the obtained feature 
vector are taken as inputs for the ANFIS. The output of the 
ANFIS is a condition index, which can be a Boolean value (0 or 1) 
for level 1 damage assessment use (damage detection), or a 
number of values for level 2 damage assessment use (damage 
localisation). Provided an ANFIS model is well trained by the 
available data, it can be used for health monitoring and damage 
localisation. The proposed approach was applied to the data 
obtained from an experiment involving a cantilever beam for 
damage detection and localisation. The testing results show that 
the method is successful in detecting and classifying structural 
damage. 

 

 
Index Terms—ANFIS, Wavelet transform, Structural damage 

detection.  
 

I. INTRODUCTION 
Damage in structural and mechanical systems is defined as 

“changes to the material and/or geometric properties of these 
systems, including changes to the boundary conditions and 
system connectivity, which adversely affect the current or 
future performance of these systems.” [1]. For safety reasons 
and because of the economic benefits that can result, the 
interest in the ability to detect and locate structural damage at 
the earliest possible stage is pervasive throughout the civil and 
aerospace engineering communities.  

Damage identification methods can be classified into four 
levels of damage assessment [2]: level 1 (detection): 
determination that damage is present in the structure; level 2 
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(localisation): level 1 plus determination of the geometric 
location of the damage; level 3 (quantification): level 2 plus 
quantification of the severity of the damage; level 4 
(prediction): level 3 plus prediction of the remaining service 
life of the structure. 

The objective of this study is to develop methods for 
structural damage detection and localisation (i.e. level 1 and 
level 2 damage assessments) based on the WPT and ANFIS 
technologies. The work of this paper is organised as follows. In 
section II a short background to WPT and ANFIS are given. 
Section III discusses the utilisation of WPT as feature extractor 
for structural damage identification. Then, in section IV, the 
ANFIS-WPT approach to structural damage identification is 
presented. The effectiveness of the proposed method is 
demonstrated in section V by analysing the vibration response 
data from a cantilever beam. Concluding remarks are given in 
section VI. 

II. BACKGROUND 

A. Wavelet Transform 
In the wavelet transform (WT), a signal )(tf  is written as a 

series expansion in terms of wavelet families [3]: 
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where the father wavelet family { )( kt −ϕ , Zk ∈ } is used to 
describe the smooth part of )(tf , the mother wavelet family {

)(, tkjψ , 0≥j } is used to describe the details of )(tf  at 
different levels. This kind of expansion can expose the 
information originally hidden in )(tf . 

An efficient way to implement the WT, and its inverse (IWT), 
is to use filter banks and down-sampling/up-sampling 
techniques developed by Mallat [3]. Moreover, the connection 
of WT with filter banks is a tool to understand the frequency 
allocation property of WT. For example, Fig. 1(a) shows a 
2-level discrete wavelet decomposition and reconstruction 
which demonstrates the idea of using filter banks to calculate 
WT and IWT. The original signal )(tf  is broken down into 
three sub-signals: 2A , 1D  and 2D . From )(tf  to 2A , 2D , 1D , 
the whole process could be seen as passing )(tf  through three 
filters (see Fig. 1(b)). Each filter has different frequency 
characteristics and thus a frequency allocation is achieved via 
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wavelet analysis. For example, the spectrum of the three filters 
associated with a two-level Haar wavelet analysis is shows in 
Fig. 1(c). Note that the spectrum is plotted over the range [0, 
0.5], where 0.5 corresponds to the Nyquist frequency (half of 
the sampling frequency). The figure clearly shows that the filter 
1 acts as a low pass filter, the filter 2 serves as a band pass filter 
and the filter 3 can be taken as a high pass filter. 

 

 

 
Fig. 1. The filtering process of DWT and IDWT, (a) 2-Level 
DWT decomposition and IDWT reconstruction using filter 
banks; (b) the 3 Filters in (a); (c) the frequency spectrum of the 
three filters associated with a two-level Haar wavelet analysis: 
-·-·- Filter 1, ···· Filter 2, — Filter 3. 

B. Wavelet Packet Transform 
One possible drawback of the WT decomposition is that 

produces a logarithmic frequency allocation: the low 
frequencies have narrow bandwidths and the high frequencies 
have wide bandwidths. This frequency allocation property is 
appropriate for some applications but may not be for the current 
case. In the current study, the WT is used to reflect the energy 
redistribution in the response signal caused by damage. Since 
the energy redistributions caused by damage normally take 
place in the high frequency range, a finer frequency resolution, 
especially in the high frequency region, may be preferred. This 
finer distribution is easily accomplished by the wavelet packet 
transform (WPT). In the WPT, the details as well as the 
approximations are split. Therefore, the WPT provides a finer 
and adjustable resolution of frequencies at high frequency 
regions. For a better comparison, the frequency allocations 
produced by the full four-level db15 WPT and four-level db15 
WT are illustrated in Fig. 2. It is clear that the frequency 
resolution, especially at a high frequency range, is much finer 
than that for the WT. 

 

 
Fig. 2. The frequency allocation by 4-level db15 WT (upper) 
and WPT (lower). 

C. ANFIS 
There are several approaches to integrate artificial neural 

networks (ANN) and fuzzy inference systems (FIS), and it can 
be said that ANFIS is one of the most successful approaches. 
For a matter of space, the reader interested in a full explanation 
of ANFIS is referred to [9]. Here it is only said that an ANFIS 
structure is used for damage classification. The way in which 
this structure is designed for this task is explained in section IV. 

III. FEATURE EXTRACTION USING WPT 
Yen and Lin [4] first adopted the wavelet component 

energies as the feature vector to detect structural damage. This 
feature vector is then used by Sun and Chang [5], [6] as an input 
to neural network models for higher level damage assessment. 
In the present work, a similar feature vector is used, but differs 
in that the percentage energy contribution of some selected 
sub-signals to the original signal is formulated and taken as the 
feature vector. In addition, instead of using a feedforward ANN 
for classification, an ANFIS is used. The reason why the 
percentage energy values are chosen as feature vector lies in the 
fact that, for a structural response signal, damage in the 
structure will cause the redistribution of the energy in different 
frequency bands, which can be easily calculated by WPT. 

Here, for convenience, it is assumed that only one 
accelerometer measuring the structure vibration response is 
used. For an L - level wavelet transform, the original signal 

)(tf  is decomposed into 1+L  sub-signals: i.e. LA , LD , 1−LD

… 1D . The energy of a discrete signal T
Nxxxx ]...,[ 21=  is 

defined as the sum of its squared modulus:  
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The ratio of energy of these 1+L  sub-signals from )(tf  is 
then defined as: 
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where 

LAε ,
LDε , …

1Dε  are defined by (2), denoting the energy 

of the sub-signals LA , LD , … 1D , respectively. The term fε  
is the energy of the original signal )(tf . 

Note that (3) is not directly used as the feature vector. 
Instead, some sub-signals are selected and their percentages are 
calculated to form the feature vector. The selection is based on 
the following two criteria: 1) The sub-signals selected should 
be significant sub-signals contributing large energy percentages 
in )(tf . The reason for this criterion lies in the fact that the 
insignificant sub-signals generated by wavelet transform are 
normally contributing to noise and should be removed. 
Empirically, it is assumed that a sub-signal is significant if its 
ratio of energy contribution to the original signal is no less than 
3%. 2) The sub-signals selected should be sensitive to the 
damage. Damage usually has different effects on different 
frequency bands. Hence different sub-signals have different 
sensitivities to damage. By selecting the sub-signals sensitive to 
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the damage, it is guaranteed that the damage could be 
effectively captured. The sensitivity analysis can be derived 
either by finite element model analysis of the structure 
(analytical method) or by prior experiments (experimental 
method). For convenience, in this study only the significant 
sub-signals are chosen to form the feature vector. 

Having chosen the energy percentage vector as the feature, 
the procedures for damage identification depend on the 
availability of the a-priori data. In an ‘unsupervised learning 
mode’, where data are only available from the undamaged 
structure, damage identification methods are based on feature 
comparison: two features, one extracted from the system in 
undamaged condition and the other from the current system, are 
compared in some way to obtain the damage indicator. The 
damage indicator is then compared to some threshold value and 
the conclusion about if the structure has deviated from the 
reference condition is obtained. On the other hand, in a 
‘supervised learning mode’, where data from a system in 
different structural conditions (including the undamaged and 
some damaged conditions) are known in advance, the damage 
identification techniques are based on pattern classification: a 
database including models of the structure in different 
conditions is established using feature vectors for the a-priori 
data sets. Given a new data set which is to be classified as one 
of the conditions of the system, the task is to search through the 
database for the model which gives the best fit to the data. The 
corresponding condition of this database model is then applied 
to the data. 

One problem remains to be resolved, which is the selection 
of the appropriate wavelet. The selection of a wavelet depends 
on the signal to be processed and on the particular application at 
hand. Taking an example of a 2-level wavelet analysis, Fig. 3 
compares the shape and the frequency allocation property of the 
Haar wavelet with that of the db15 wavelet (one of the 
Daubechies’ wavelets). The irregularity of Haar wavelet causes 
a large overlap of the frequency allocation; on the contrary, 
wavelets like the db15 have longer support and are smoother, 
which could provide a much sharper division. This shaper 
division in frequency is preferred for the damage identification.  
 

 
Fig. 3. Comparison of Haar Wavelet and db15 Wavelet. 

IV. ANFIS-WPT STRUCTURAL DAMAGE DETECTION 
A structural damage assessment method combining WPT 

with ANFIS is proposed in this section. This method is called 
ANFIS-WPT method. The procedures of the method include 
the following five steps: 1) Determine the architecture of the 
ANFIS. The architecture includes: a) the number of input 
variables, b) the number of linguistic values for each input 
variable, c) the type of MFs for each input linguistic value, d) 

the number of output variables, e) the number of linguistic 
values for each output variable, and f) the type of MFs for each 
output linguistic value. 2) Determine the rules for the ANFIS. 
3) Prepare the training data sets (containing the input and 
desired output data pairs) for the ANFIS. 4) ANFIS training 
using the training data sets. 5) Pass the new data through the 
trained ANFIS and the damage information of the new data is 
obtained. 

The steps above are detailed as follows. For convenience, it 
is assumed that data from a single sensor measurement are 
used. The number of all possible conditions for the system is 

1+r  (one healthy condition denoted as 0D  and r  damaged 
conditions rDD ~1 ). For each condition, a total of N  
measurement data are available. This results altogether in 

Nr ×+ )1(  data sets and they are arranged as a data matrix: 
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where }{ _ iD jy ( Ni ...1= , rj ...0= ) are output measurement 

data from the thi  test at condition jD . Each row of the matrix 
contains all the available data sets for a certain condition. 

Select a typical measurement signal }{y  in the data matrix 
(4) and perform WPT analysis on it. The original signal }{y  is 
decomposed into a number of sub-signals, from which p  
sub-signals are selected and the energy percentages of these 
sub-signals are calculated. In the current study, these energy 
percentages of the selected sub-signals are the inputs to the 
ANFIS model. Therefore, the number of input variables to the 
ANFIS is p . Three linguistic values characterised using 
linguistic terms as ‘small’, ‘medium’ and ‘large’ are defined for 
each of the p  input variables. The type of these MFs for these 
linguistic values is ‘bell-shape’ and defined by: 
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There is only one output variable defined in the ANFIS: the 

structural condition. It is normally represented by a condition 
index for convenience. A zero-order Sugeno fuzzy model has 
been adopted in the ANFIS structure, which means that 
singleton values are defined for the output variable and the type 
of the corresponding MF is a distinct constant.  

So far, only the architecture of the ANFIS model has been 
determined: It contains p  inputs (corresponding to p  energy 
percentages) and one output (condition index). Each input 
variable has ‘small’, ‘medium’ and ‘large’ linguistic values 
characterised by three bell-shape MFs. The number of ANFIS 
rules is determined by the combination of linguistic values for 
the input variables. For p  input variables, each with three 
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linguistic values, the number of resultant combinations is p3 . 
Correspondingly, the number of rules is p3 . For example, 
assume only two sub-signals are selected ( 2=p ). The two 
input variables and one output variable are denoted respectively 
as 1x , 2x  and z . For each input variable, three linguistic 

values denoted as { 1
1
xM , 1

2
xM , 1

3
xM } (for 1x ) and { 2

1
xM ,

2
2
xM , 2

3
xM } (for 2x ) are defined. Therefore, a total of nine 

rules are contained in the ANFIS model: 
 

 
 
Having determined the ANFIS architecture and the rules, it is 

necessary to prepare data sets for training use. For each 
available output data }{ _ iD jy ( Ni ...1= , rj ...0= ) in the data 
matrix (4), perform the same WPT analysis as were done on the 
typical }{y  and the same p  sub-signals are selected. Their 
energy percentages are arranged as a vector denoted as 

iD jPer _ . This procedure is applied to all the data set in (4) and 
an Energy Percentage Matrix (EPM) is obtained: 
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The vector }{ _ iD jPer , containing p  elements, is taken as 

an input vector for the ANFIS. Matrix (6) contains a total of 
Nr ×+ )1(  such input vectors for ANFIS. They are used as 

training data for ANFIS. The current ANFIS use a supervised 
learning algorithm, which means the target output for each 
input vector is needed. It has been mentioned that the output is 
the structural condition represented by a condition index. 
Depending on the level of damage assessment conducted, 
different output index patterns are adopted. If the ANFIS is 
used only to identify damage occurrence (level 1 damage 
assessment), the output indices are Boolean values (0 for 
healthy condition 0D , 1 for damaged cases rDD ~1 ). In this 
situation, the data matrix (6) contains a total of Nr ×+ )1(  
input and desired output data pairs: 
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If the ANFIS is used for the damage localisation (level 2 
damage assessment), a total of 1+r  condition indices each 
corresponding to a structural condition need to be defined. 

Defining j  as the index for condition jD , the data matrix 
containing the input and desired output data pairs is: 
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Data matrices (7) and (8), are used respectively for training 

ANFIS with two different levels of damage assessment.  
The next step is ANFIS training. The number of the premise 

parameters to be determined is p×× 33 . This comes from the 
fact that for each of the p  input variables, we use three MFs 
each decided by three premise parameters (a, b and c in (5)). 
The number of the consequent parameters to be determined is 

p3 . The ANFIS architecture uses a hybrid learning algorithm 
[9] to estimate these pp 39 +  premise parameters all together 
with the consequent parameters. 

After the ANFIS model has been well trained, this ANFIS 
model can be used to find out the structure condition for new 
data. Given new data, the same WPT is performed and the same 
p  sub-signals are selected. The energy percentages of these 

selected sub-signals are used as inputs to the trained ANFIS. 
The condition for the new data can be seen from the output 
(condition index) of the ANFIS. 

So far, only the measurements from one sensor have been 
used. If there is more than one sensor, the method above is 
applied to each sensor separately and the final result for 
evaluating the condition of current data is the average of results 
from each ANFIS. 

V. APPLICATION OF THE PROPOSED APPROACHES TO A 
CANTILEVER BEAM 

In this research, an experimental study involving 
shaker-excited vibration tests of an aluminium cantilever beam 
was carried out in the laboratory. The beam is 90cm length and 
cross section 2.545 × 0.647cm. Zero-mean band-limited 
(0~500Hz) Gaussian white noise was used as the input signal to 
the amplifier. The amplifier gain was controlled manually and 
the shaker provided an approximately 10 N peak, via a random 
force input to the beam. A force gauge screwed on the bottom 
surface of the beam was used to directly measure the input. The 
shaker was attached with this force transducer through a stinger. 
Fig. 4 shows the experimental setup. 

Six accelerometers (7g each) were screwed to the top surface 
along the centreline at selected positions (15cm, 30cm, 45cm, 
60cm, 75cm, 90cm from the left fixed point, respectively). The 
data from each test came from these 6 accelerometers and 1 
force transducer. The data were collected at a sampling rate of 
10kHz for a duration of 4 seconds. 

Five damage scenarios (E1~E5) were simulated by adding a 
lumped mass (22g) at 30cm, 45cm, 60cm, 75cm, and 90cm, 
respectively (see Fig. 4.). A summary of the experimental 
damage conditions is provided in Table 1 
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Fig. 4. Cantilever beam for experiment 

 

 
A. ANFIS-WPT results 
The experiment was repeatedly carried out under each of the 

six possible conditions of the system. The system response data 
and the corresponding condition were recorded during the test. 
From each condition, 20 test data are used, within which the 
first 10 are for the training use and the remaining 10 are for the 
testing use. Therefore, altogether there are available 60 training 
data sets and 60 test data sets. 

The response data are not used directly in the ANFIS model. 
Wavelet-based transforms are carried out first on these data. In 
the proposed ANFIS-WPT method, each response signal is 
applied by the five-level db15 WPT (db15 wavelet is adopted in 
this study for the reasons described at the end of section III). 
The signal is then decomposed into 32 sub-signals, from which 
three sub-signals are selected. These three energy percentages 
are taken as the three input variables for the ANFIS model.  

The ANFIS used here contains 27 rules, with three bell-shape 
MFs assigned to each input variable. The total number of 
parameters is 54, including 27 premise parameters and 27 
consequent parameters. 

ANFIS is used for the purpose of structural damage 
identification. However, there are various levels of damage 
assessments. Two ANFIS models, ANFIS1 and ANFIS2 are 
established accordingly. ANFIS1 is used to identify damage 
occurrence (level 1 damage assessment) while ANFIS2 is used 
for damage localisation (level 2 damage assessment). The 
architecture of these two ANFIS models is the same, but they 
produce different output values. ANFIS1 is only used to 
distinguish healthy and damaged conditions; therefore the 
output is a Boolean value (0 for healthy, 1 for damaged). The 
output of ANFIS2 needs to differentiate all the possible 
conditions and hence is a little more complicated. One option is 
to define it as a numerical value j  ( 5~0=j ), where j  
corresponds to condition jD .  

Applying WPT on the 60 training data sets, 60 training input 
sets each containing three input values are obtained. The target 
output data is the corresponding condition (Boolean values for 
ANFIS1 model and 0~5 for ANFIS2). These 60 input and 
desired output data pairs are used to train the ANFIS model. For 
ANFIS1 models, the training process stopped when the number 
of iterations reached 200. For ANFIS2 models, the training 
process stopped when the number of iterations reached 500. 

After the two ANFIS models are trained, the testing data are 
used for verifying the identified ANFIS models. If the proposed 
method is effective, then these ANFIS models should be able to 
classify the testing data set to the right condition. 

Note that in the ANFIS-WPT method, the information from 
each sensor is used separately. Each of the six sensors 
corresponds to an ANFIS model. The six ANFIS models for 
level 1 damage assessment are denoted as ANFIS1-Sensor1, 
ANFIS1-Sensor2⋅ ⋅ ⋅ANFIS1-Sensor6 for convenience. The six 
ANFIS models for level 2 damage assessment are defined in a 
similar way as ANFIS2-Sensor1⋅ ⋅ ⋅ANFIS2-Sensor6.  

Fig. 5 illustrates the MFs of ANFIS1-Sensor1 model before 
and after training. Notice that two MFs of the first input 
variable have been changed significantly after training. 

Fig. 6 shows the ability of the six trained ANFIS1 models in 
identifying damage occurrence when evaluated by the testing 
data. The residual shows the difference between the expected 
output (real condition index) and the actual output from ANFIS 
model. The ‘ rms ’ is root mean square of the residual 
sequences and is used as a criterion for testing error. It can be 
seen that, no matter what the chosen sensor is, the proposed 
method can successfully classify all the conditions. 

 

 
Fig. 5. Initial and final MFs for three input variables 
(ANFIS1-Sensor1, ANFIS-WPT method). 

 

 
Fig. 6. Testing results and the corresponding error curves 
(ANFIS1, ANFIS-WPT method, using 6 sensors separately) 
 

Fig. 7 shows the ability of the six trained ANFIS2 models in 
identifying damage locations when evaluated by the testing 
data. It can be seen that all the ANFIS models perform well and 
can successfully classify the input data to the right condition. 
However, the testing error is increased compared with Fig. 6. 
This is not surprising because the current six ANFIS2 models 
are required to define more associations than the previous 
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ANFIS1 models. The larger testing error is caused by the 
complexity accompanied with damage localisation.  
 

 
Fig. 7. Testing results and the corresponding error curves 
(ANFIS2, ANFIS-WPT method, using 6 sensors separately). 

VI. CONCLUSION 
In this paper, an approach to structural damage detection 

combining ANFIS and WPT has been introduced. The 
structural vibration response signal is decomposed by the WPT 
into a number of sub-signals, from which some are selected 
based on their energy percentages. The energy percentages of 
the selected signals are taken as inputs to the ANFIS model. 
The output of the ANFIS is a condition index, which can be a 
Boolean value (0 or 1) for level 1 damage assessment use, or a 
number of values for level 2 damage assessment use. Provided 
an ANFIS model is well-trained by the available data, it can be 
used for health monitoring and damage localisation. The 
proposed method has been applied to the data from a cantilever 
beam for damage detection and localisation. The testing result 
shows that the method is successful in detecting and localising 
damage. Therefore, the proposed damage assessment 
methodology of combining ANFIS with wavelet transform has 
great potential in structural health monitoring systems 
(monitoring systems which are able to interrogate sensor 
measurements autonomously for indications of structural 
damage). 
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