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Abstract

In this work a novel approach to deal with the adissue in
both the auto-tuning procedure and the controlgoernce
for a PID-type fuzzy logic controller in a multi+ssor
environment is proposed. This approach combinesva |
order modelling method with a fuzzy logic-based e

decentralised Kalman filtering approach. The prepos
simulated benckmar

methodology is tested in several
processes. Good results are obtained.

1

In this paper a combination of three recently depedt
approaches: 1) the low-order modelling method psepoby
Wanget al [7], 2) the modified hybrid PID-type fuzzy logic
controller developed by Escamilla and Mort [4], dhd fuzzy
logic-based adaptive decentralised Kalman filtetsoa
proposed by Escamilla and Mort [5], is proposedeal with
the noise issue in both the auto-tuning proceduna the
control performance of a PID-type fuzzy logic catigr in a
multi-sensor environment. It is assumed that migtgensors,
which may have different accuracy
measurement noise amplitudes), are used to deterthim
process output. The idea of using multiple senaagsfusion
is to have a reliable control that can operatecatigaccuracy
levels even in the occurrence of sensor failures.

Introduction

Therefore, in the remaining of this paper, firsséttion 2 the
general structure for system identification and toan
designing is explained. Then, the different funatibblocks
are described. After that, in section 3 severalngtas are
presented to illustrate the effectiveness of theppsed
approach. Finally, in section 4 conclusions to thiwk are
given.

2 General system identification and control
structure

The general system identification and control dtiee
proposed in this work is shown in figure 1. Thisusture
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Figure 1: General system identification and constolcture.

consists of several functional blocks. A biasedydkeedback
experiment is used to find the process critical npoi

levels (differefpformation and the steady-state gain. A noise #oys

analyser and signal selector is used to estimatentiise
bands and the noise covariance in each sensor, &g
block selects the signal with the least noise bangerform
with it a biased relay experiment. The data obthiinem this
experiment is used by a model identifier to apprate the
process transfer function as a first order pluddeae. The
obtained transfer function is transformed to itscdéte state-
space representation. This state-space model b longeN
fuzzy logic-based adaptive Kalman filters (FL-AKFS)
configured in a fuzzy logic-based adaptive decdintd
Kalman filter (FL-ADKF). The FL-ADKF fuses and fdts all
the noisy measurements signals. The fused estinpatess
output § is used as measurement signal to compare with it

the reference signal and calculate the error sigha¢ error
signal is fed to a controller referred to as madifhybrid PID
fuzzy logic controller (MHPID-FLC). In the next dems,
each one of the functional blocks in figure 1 amgefty
explained.
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2.1 Model identifier and translator to state-space It then follows from (4) that:

representation
o -1
A large number of processes can be characteriséebfjrst- T :Tul{m 2pKe” + UK = K + 5] (8).
order plus dead-time model [6]: HK + K =&
-Ls Finally, the dead time is calculated as:
G(s) = K& (0). y
Te +1
L=TO (9).

For these kinds of processes Wagtgal [7] have recently _ o _
proposed a biased relay feedback test from whiercttiical  |f the process to be identified is of the form &by there is no
point and the static gain can simultaneously beiobd. By Measurement noise, then the parameters obtaindd thet
applying the biased relay feedback, shown in fi(@, to a biased relay method gives an almost exact |deat|t;n' of
process of the kind (1), the obtained process inpamd the the process parameters. Furthermore, because oticgra
process outpuf are shown in figure 2(b). For these processB¥ny high-order processes can be well approximayefifst-
the outputy converges to the stationary oscillation in on@'der plus dead-time models, the biased relay ndetha also

period (T, +T,,), and the oscillation is characterised by: b€ used to model processes of higher order [7]refbe, this
low-order modelling is accurate enough for PID coint

design in most cases.

A, =ty + ()K@A-€"T) +e e (2)
A, = (U - KA-e Ty —g et (3) The above method still gives good results for thsecwhere
Ut there is noise in the measurements. However, inctiee, the
T —Tip2HKe” + UK - K+ (4) parameterk, A, andAq have to be calculated by averaging
u UK + K —¢ over those values obtained over several cycles.islt
LT B recommended to average over eight cycles of statjon
T,=TlIn 2UKe” K~ fK *e (5). oscillations [7].
HK = K - €
Therefore, once the biased relay experiment isechout, an
u approximated model of the process is availablefasteorder
KT H S transfer function. In order to use this model ie #L-AKFs
T g (see figure 1) it is necessary to translate ittsostate-space
. representation. This is performed in two stagesstFihe
) 1 5 ) transfer function in continuous time is transformied its
- £ d T . .
\V y corresponding state-space representation. Secoadngh
(a) Ho—H b available the continuous state-space representatios is

translated to its corresponding discrete form. Thaving
available the process model in its discrete stptee
representation, this model can be used by the FK{ADo
perform multi-sensor data fusion (MSDF).

Figure 2: (a) biased relay, (b) waveforms undeiaadd relay
feedback.

The above four equations are the accurate expresgo the
period and the amplitude of the limit cycle ostida of the
first order plus dead-time process. Therefore, keasaring

any three of\,, Ay, T,;, andT,,, the parameters of the modefrhe noise amplitude analyser and signal selectoiones

K, T andL can be calculated from (2) to (5). Solving thesgveral tasks. First, it determines the noise bandsach
equations is a tedious task. However, the calaratcan be sensor. The noise band can be estimated by megstinen
simplified if K is obtained by an alternative procedure. ThReak-to-peak amplitude of the output signal whenpfocess

procedure consists in calculating as the ratio of DC is in steady-state [1]. Second, an estimation oé th
components in the output and input: measurement noise covariance valRg, of each sensor is

performed over the data collected during a cenpariod of
ITmTuz (t)dt time. Finally, the signal with the minimum noisendais
= YRS (6). selected as the output signal of this block.
K T T
J' u1 u?2 u (t)dt
0

2.2 Noise amplitude analyser and signal selector

2.3 Fuzzy logic-based adaptive decentralised Kalman
Having available the value &f, the normalised dead-time of 6"

the proces®=L/T can be obtained from (2) as: In the standard decentralised Kalman filter (SDEjorithm
the information is processed in two stages. IrfilsestageN

o=ipHtHK-£ (7). local standard Kalman filters (SKFs) process tlo@in data

(M + K - A, in parallel to yield the best possible local est#saln the

second stage, a master filter fuses the local estsnyielding
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the best global estimate [2]. The structure offheADKF is 2.5
multiple noisy sensors

similar to that of the SDKF, but instead of haviNglocal
SKFs there are considered local FL-AKFs working in
parallel [5]. The adaptation in each FL-AKF is lretsense o
dynamically tuning the measurement noise covarianaix
R or the process noise covariance mafyigmploying a fuzzy
inference system (FIS) based on a covariance nmafchi
technique. For a matter of space the complete igéiser of
the FL-AKF cannot be presented here. The readeréested
is referred to [3, 5].

2.4 The modified hybrid PID-type fuzzy logic contrdler

2.

The structure of the modified hybrid PID-type fuziogic

controller (from here referred to as MHPID-FLCpigsented
in figure 3(a). The fuzzy control system (FCS) desithe
MHPID-FLC structure consists of four fuzzy rules:

R;: If Eis N andCE is N thenu = p;*E + *CE + 1,
Ry If Eis N andCEis P theru =p,*E + q,*CE + 1,
Rs: If Eis P andCEis N thenu = ps*E + gs*CE + 13
Ry If Eis P andCEis P theru = ps*E + q,*CE + 1,4

where the coefficient constanis= g, = 1, andr; = O; fori =
1, 2, 3, 4. The linguistic labels for the fuzzyssetean P =
Positive and N = Negative, they are shown in figd(ta).

Degieeof A
N membership 1‘

(b)

4

4 0
Figure 3: (a) MHPID-FLC structure, (b) Fuzzy sets.

Based on GE GCE GU GCU
Ko Ty 1 E*TL, 03* K, 1% Ky
4 u
Kp, Ki;, Kp 1 2*& Ky K,
Kop 2
Ke, Ti, Ta 1 2% T, Ke Ko
2 T

Table 1: Relationship between the scaling factdrsthe

MHPID-FLC, the traditional PID control gains, antiet 5.

Ziegler Nichols frequency response tuning formulae.

The control output of the MHPID-FLC is equivalewnt its
traditional counterpart witg = 0.5 [4]:

k
Upip, :KP*IB* Y, -Kpy, +K, *Zq* TS—KD*% (10).

i=0

The scaling factors of the MHPID-FLC can be caltrda
from the traditional PID gains or from the ultimagain and
the ultimate frequency obtained from a relay experit [4].
Table 1 gives the formulae for these calculations.

ID-121

Identification and auto-tuning procedure using

¢ Therefore, from the previous sections and refertm§gure
1, the proposed identification and auto-tuning prhoe is
summarised as follows:

SW1is in position 1;SW2is in position 1. First, in the
“listening period”, 0-12 sec, the noise bands ahe t
measurement noise covariance in each sensor are
estimated. The sensor signal with the smallesterioésd

is selected to be feedback to the biased relay.
SWi1lswitches to position 2 and a biased relay is agpli
at timet = 12 sec.

Data is registered over five cycles of stationary
oscillations. By averaging the values obtained dkiese
five cycles, the parametek§ A, andAy are calculated
and the values of;; andT,, are measured over the fifth
cycle. With these parameters, the value of the atsed
process © is calculated using (7). SimilarlyT is
calculated from (8). Then, the dead tiinés calculated
from (9) and the process transfer function is medehs

a first-order plus dead-time. The obtained transfer
function is transformed to its corresponding camndins
and discrete state-space representations.

At the end of the fifth cycle all the FL-AKFs are
activated using the state-space representatidmegblant
and MSDF is performed using the FL-ADKF; then the
fused output is used as process outBit/2is switched

to position 2. The initial conditions for the FL-Als are
defined as;(0) = 0, x(0)= 0,i= 1,2,...N. Because an

estimation of the measurement noise covariance Rlue
for each sensor has been obtained in step 1, these values
are used in the corresponding FL-AKFs. Therefore, while
the covariance valud® are assumed to be known, they
are not adapted in the FL-AKFs. Instead, the unknown
values of the process noise covariance matfgeahich
represent the uncertainty in the process model, are the
ones that are adaptively adjusted in the FL-AKFs. This
will compensate for the modelling errors, recalling that
the model used is an approximated model.

During the sixth cycle, the ultimate gain and the ultimate
frequency are calculated as:

- M (11)
YomA+IAD/2
T,=T,+T,, (12)

where is the value of the relay amplitude when the bias
is taken out.
With K, and T, available, the scaling factors of the
MHPID-FLC are calculated using the formulae given in
Table 1.
Finally, at the end of oscillation &W1is switched to
position 3 and the loop MHPID-FLC — process is closed.
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Afterwards, the performance of the controller can land Qq(t) in the FL-AKF 1, fed by sensor 1, are plotted for

investigated by introducing a set-point change and a loadch one of the examples. RememberRandQ control the

disturbance at particular time steps. In order to test thendwidth of the filter. Thus, whilR is maintained constant,

effectiveness of the proposed approach, three examples@res constantly changing increasing or decreasing the

presented in the next section. bandwidth of the filter and, in consequence, increasing or
reducing the filtering action.

3 ”IUStrative examp|eS Example Process Biased relay test results Model parameters
Tu T A A K T L

The viability of the previously described approach is o 2s

demonstrated by simulating three processes taken from [7]* 2s+l 0% 40 1714 13021009 1871 2021

The experiments were developed under the Matlab/Simulink o2

simulation environment. It is assumed that there are two? (2s+1)? % 0% 1543 A27LIE 458 2849

sensors in the scheme shown in figure 1. The measurement g0ss

. . . . . 3 - 335 2106 -1.6721.215 1.592 1.892
noise in each sensor, for all the experiments, is defined as a (s+1)(s +s+1)

Gaussian zero-mean white noise sequence with variances

0.008 and 0.033 for, andv,, respectively. Table 2: Estimated parameters from biased relay experiment.
The FCS inside the MHPID-FLC works with normalisedexample Process Scaling factors MHPID-FLC
inputs, in the range [-1, 1]. This normalisation is ie@rrout — GE GCE GCU GU

by dividing the inputs between the maximum range of 1 2657+1 1 1.837 0.2757  0.5065
variation of the error signal, which in this case is asslito —

&
(2s+1)2

-0.5s

be [-10, 10]. Therefore, the normalisation factor is (1/10) 2 1 3.0 0.1812  0.5437

applied to both inputse and—y. Obviously, the controller o
output needs to be denormalised; hence, the controller output * (s+1)(st+s+1) 1,575 02568 0.4045
is multiplied by a denormalisation factor, 10 in this case.

Table 3: Scaling factors obtained from the auto-tuning

The processes studied and the corresponding parame%‘?gecjure'
obtained from the biased relay experiment are listed in Tahle
2. The scaling factors of the MHPID-FLC obtained from thgxample Process Consequent parameterslodified cons. parameters

Rule p q r Rule p q r
auto-tuning procedure for each process are shown in Table—3: ry T E—— 15 03 O
In order to analyse the set-point and load-disturbance? Zes+ 1 2 e 2 04 040
responses, a step change of 10 units and a load disturbance, 4 1 1 0 4 18 03 0
also of 10 units, are applied at appropriate time steps. The set, e GBS A S
point and load-disturbance responses under MHPID-FLC for (2s+1)° 3 1 1 0 3 04 04 0
the plant in examples 1, 2 and 3 are shown in figures 4(a) oo ‘I i i 8 ‘11 gg 83 8
5(a), and 6(a), respectively. From these figures it can be noted®  Gip+s+y 5 1 1 o 5 91 91 9
that slightly sluggish set-point and load-disturbance mresg® 4 1 1 0 4 25 02 0
are obtained. This is more noticeable in examples 2 andr3ble 4: Modified consequent parameters.
However, the control performance can be further improved by
modifying the value of the consequent parametferg,andr, ‘ —
in the fuzzy rules of the FCS inside the MHPID-FL(: : . » o : J ,
structure. Therefore, to improve the control performance, i £ / sone |l |
consequent parameters are modified as is indicated in tabl, | f ; i ! d' | ‘,
The improved set-point and load-disturbance responses ur e T b ‘ |
MHPID-FLC for the plants in examples 1, 2 and 3 are sho\ f ( . ‘ | “
in figures 4(b), 5(b), and 6(b), respectively. Note that tl ‘ “‘ | Il
scaling factors found in the auto-tuning procedure are | / | ‘ |
unchanged. i | 1" \ |
Note in figures 4 to 6 that as the order of the proce: i | I g /‘H/\ ‘
increases, less noise is filtered by the FL-ADKF. In oth /W | HiAm }
words, this means that a quite accurate model is obtail “?H”H‘J”“l!\f‘% -0 M'MLW b
when the plant is effectively of first-order. However, it m\\\m (@) Ww“ ,‘\ (b)

order of the plant increases, then the accuracy of " ‘ 2 L
. 0 N0 8 B M 0 0 M e w0 0 0 4 6 8 10 120 0 t60 180 20

approximated model decreases. As a result, the value of — Tie(s

process noise covarian€g which is adaptively adjusted, isFigure 4: Set-point and load-disturbance responses for the

increased to take into account this increased modelling ergant in example 1, (a) with original consequent parameters,

This can be appreciated in figure 7, where the valuég(9f (b) with modified consequent parameters.
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Figure 5: Set-point and load-disturbance responses for = ]
plant in example 2, (a) with original consequent paramete _,,| —-—-— R (©

(b) with modified consequent parameters.
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Figure 7: (a) Values d®;(t) andQq(t) in the FL-AKF 1, fed
by sensor 1, example 1; (b) ValuesRft) and Qq(t) in the
FL-AKF 1, fed by sensor 1, example 2; (c) ValuesRefft)

andQ(t) in the FL-AKF 1, fed by sensor 1, example 3.
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