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Abstract - In thiswork a novel Multi-Sensor Data Fusion
(MSDF) architecture is presented. First, each
measurement-vector coming from each sensor is fed to a
Fuzzy Logic-based Adaptive Kalman Filter (FL-AKF);
thus there are N sensors and N FL-AKFs working in
parallel. The adaptation in each FL-AKF isin the sense of
dynamically tuning the measurement noise covariance
matrix R employing a fuzzy inference system (FIS) based
on a covariance matching technique. Second, another
FIS here called a fuzzy logic assessor (FLA), is
monitoring and assessing the performance of each FL-
AKF. The FLA assigns a degree of confidence, a number
on theinterval [0, 1], to each one of the FL-AKF outputs.
Finally, a defuzzfication scheme obtains the fused state-
vector estimate based on the confidence values. The
effectiveness and accuracy of this approach is
demonstrated in a simulated example. Two defuzzfication
methods are explored and compared; results show good
performance of the proposed approach.
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and fuzzy logic techniques have. On the one hiatinan
filtering is recognized as one of the most powerful
traditional techniques of estimation: thH€alman filter
provides an unbiased and optimal estimate of a state-
vector in the sense of minimum error variance [7]. On the
other hand, the main advantages derived from the use of
fuzzy logic techniques, with respect to traditional schemes,
are the simplicity of the approach, the capability of fuzzy
systems to deal with imprecise information, and the
possibility of including heuristic knowledge about the
phenomenon under consideration.

The remainder of this paper is organized as follows.
In section 2, after describing the traditionkalman
filtering approach, the fuzzy logic-based adaptiaman
filter (FL-AKF) is summarized. Section 3 describes the
proposed MSDF architecture. The effectiveness of this
approach is demonstrated in a simulated example outlined
in section 4. Finally, in section 5 the conclusions and
perspectives of this work are given.

2 Formulation of the fuzzy logic-
based adaptive Kalman filter

2.1 Thetraditional Kalman filter

The Multi-Sensor Data Fusion (MSDF) approach is
described as the acquisition, processing, and synergisticGiven a discrete-time controlled process described by the
combination of information gathered by various |inear stochastic difference equations:

knowledge sources and sensors to provide a better

ur_lderstandlng of a phenomenon under consideration [1]. Xp = AX, + B, + W, 1)
Different MSDF techniques have been explored recently.

These techniques vary from those based on well- _

establishedkalman filtering methods [2], [3], to those Zi = HyXy vy @)

based on recent ideas from soft computing technology [4],
[5]. However, little work has been done in exploring wherek represents the discrete-time indrxis the system
architectures that consider the combination of both thesestate-vectoryy is the input vectorg is the measurement-
approaches. In this work a novel MSDF architecture that vector, w, and v are uncorrelated zero-mea@aussian
combines these approaches is explored. This architecturewvhite noise sequences with covariance matrigeand R,
is built integrating the fuzzy logic-based adapt@man respectively; th&alman filter algorithm can be described
filter developed recently by Escamilla aktbrt [6] and a by next group of equations [9],
fuzzy logic performance assessment scheme.
a) Time update (or prediction) equations:
The general idea explored in this approach is the

combination of the advantages that b&timan filtering X = AX, +B.u, (3)
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P, = AkpkAlj +Q, (4). formulation of theKalman filter will result in a better
performance or will prevent filter divergence.

b) Measurement update (or correction) equations: In this section, an on-line fuzzy logic-based adaptive
Kalman filter (FL-AKF) is presented [6]. The adaptation is
in the sense of using a Fuzzy Inference System (FIS) to
dynamically adjust the measurement noise covariance
% =X +K [z, —H, X ] (6) matrix R, from data as they are obtained. This relaxes the a
priori measurement noise statistical assumptions and
significantly benefits thé&alman filter states estimates if
the measurement noise under it operates change or evolves
with time. The main advantages derived from the use of a
where X, represents the estimate of the system state-fuzzy technique, with respect to traditional adaptation

vectorx,, Py is the state-estimate error covariance matrix, schemes, are the simplicity of the approach and the

and K, is commonly referred to as the filter gain or the POssibility of including heuristic knowledge about the
Kalman gain matrix. phenomenon under consideration.

K.=P HJ/[HP H +R]" (5)

P.=[l —KHIR (1),

Equations (3) and (4) project, from time stefo The measurement rss® covariance matrixRg
stepk+1, the current state and error covariance estimates'epresents the accuracy of the measurement instrument,
to obtain thea priori (indicated by the super minus) meaning a largeR, for measured data implies that we trust
estimates for the next time step. While equations (5) to (7) this data less and take more account of the prediction.

incorporate a new measurement into #hgriori estimate ~ Assuming that the noise covariance mafgixis known,
to obtain an improved posteriori estimate. here a FIS based on the technique known as covariance-

matching [13] has been derived to dynamically adjust the
The term H %, in (6) is the one-stage predicted COvarance matrRi.

measurementz, , and the difference(z, - H, X,) is The basic idea behind the covariance-matching
referred to as the innovation sequence or residual, technique is to make the residuals consistent with their
generally denoted asand defined by theoretical covariance [10], [14]. In the FL-AKF this is
done in three steps; first, having available the innovation
re = (2, = H %) ). sequence or residual, its theoretical covariance is

calculated as,

The Kalman filter algorithm starts with initial

— - T
conditions atk = 0, being X, and P, . With the Sc=HPRH R, ®).

progression of time, as new measuremepjs become ;1o Kalman filter algorithm. Second, the actual

available, the cycle estimation-correction of states and the covarianceCr, of r, is approximated through averaging

corresponding errocovariances can follow recursively ad . . . . . . .
P g y inside a moving estimation window [14] of silzk

infinitum.
R k
2.2 Thefuzzy logic-based adaptive Kalman Cr, = Miz rr’ (10),
filter

As described previously, the tradition&lalman filter whereip = k = M + 1 is the first sample inside the

formulation assumes completepriori knowledge of the estimation window. This means that only the |ddt
process and measurement noise covariance mat@es, samples ofr, are used to estimate its covariance. The
and R However, in most practical applications these window size is chosen empirically to give some statistical
matrices are initially estimated or, in fact, are unknown. smoothing. Third, if it is found that the actual value of the
The problem here is that the optimality of the estimation covariance ofr, has a discrepancy with its theoretical
algorithm in the Kalman filter setting is closely connected value, then a FIS derives adjustmentsRpibased on the

to the quality of thea priori noise statistics [10]. It has  knowledge of the size of this discrepancy. The objective of
been shown how poor estimates of the input noise statisticsthese adjustments is to correct this mismatch as well as
may seriously degrade tfi@lman filter performance, and  possible. In order to detect the size of the discrepancy

even provoke the divergence of the filter [11], [12]. From betweenS, and Gr. a new variable called the Degree of
this point of view it can be expected that an adaptive ) Tk
Matching OoM) is defined as,
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DoM, =S, -Cr, (11).
The main idea of adaptation used by a FIS to
dynamically tuningRy is as follows. It can be noted from
(9) that an increment iR, will incrementS,, and vice
versa. This means thd can be used to varg in
accordance with the value BfoM, in order to reduce the
discrepancies betwee§, and Cr,. From here three

general rules of adaptation are defined as:

1. If DoMy O 0 (this meansS, and érk match almost
perfectly) then maintai®, unchanged.

2. If DoMy > 0 (this meanss, is greater than its actual
value Cr, ) then decreasi..

3. If DoM, < 0 (this meanss is smaller than its actual
value Cr, ) then increas®.

Note that the matriceérk, S, Rc andDoMy are all

of the same size, thus the adaptation of ith@ élement of

R¢ can be made in accordance with thei) element of
DoMy; i=1,2...,m; mesize of z. Thus, a single-input-
single-output (SISO) FIS is used to sequentially generate
the tuning or correction factors for the elements in the
main diagonal ofR,, and this correction is made in this
way,

R, (i,i) = R, (i,i) + AR, (12),
whereARy is the tuning factor that is added or subtracted
from the elementif) of R, at each instant of tim&ARy is
the FIS output an®oM,(i,i) is the FIS input. A graphical

representation of this adjusting process is shown in Figure
1.

X
z ko
[Sensor}=s Eiier ™ g
Rk yes Sk
no Ik
0o [R, (1,1) e 0 0 ComA pute
" H 6-—=R,(m,mH
i=i+ 1
Fuzzy v
Inferencele——D oM, = DoM(ii) |
System
FL-AKF

Figure 1. Graphical
process oR.

Representation of the adjusting
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Following the general rules of adaptation, the FIS can
be implemented considering three fuzzy setsDfol,: N
= Negative,ZE = Zero, and® = Positive; and three fuzzy
sets for AR | Increase,M Maintain, andD
Decrease. These membership functions are shown in
Figure 2. There, the parameters that define the fuzzy sets
can be changed in accordance with the system under
consideration. Hence, only three fuzzy rules are included
in the FIS rule base:

1. If DoMg =N, thenAR, =1
2. If DoM, = ZE, thenAR, =M
3. If DoM =P, thenAR, =D.

Thus, using the compositional rule of inference sum-
prod and the center of area (COdefuzzification method,
R¢ is adjusted in each FL-AKF as given in (12). From
experimentation it was found that a good size the
moving window in (10) i = 15.

gres of memisership

Degree of memeership

€
a

1ot
403

5 I3

Dobl 0 5 A0 0 AR
Figure 2. Membership functions fBroMy andAR,.

2.3 Fault detection and recovery algorithm.

Additionally to the adaptation procedure, the FL-AKF has
been provided with a fault detection and recovery
algorithm. First a variable called Residual Compatibility
rC. is defined as,

re]

A/ S (iyi)

The value ofrC, gives a measure of the actual

k

(13).

amplitude of thei-th element of the residual compared
with its theoretical valu&(i,i) (the corresponding element
in the main diagonal d§) at each instant of timke This
value is around 1 if both quantities are similar, but it
increases abruptly if a transient fault, i. e., a blunder, is

present in the measured data. Thus, if the valueQgf is

greater or equal than a threshodg then a transient fault
is declared. If the value afC, remains greater thanfor

more that an instant of time, then a persistent fault, i. e. a
cycle slip, is declared. The algorithm shown in Figure 3 is
implemented in order to detect and compensate the
occurrence of faults. This algorithm assigns the value of
zero to thd-th element ofy if a transient fault is detected



(through the value of its correspondim@; ). This is the
best guess that can be made due to the zero averag

JSensor 125 [FL-AKF 1

characteristic of the residual. However if a persistent fault OboMO | R
is detected, this does not works any more, in thatrgaise v
assigned with a random number selected from a zero mean FLA1

Gaussian white noise sequence with covaria8ggi);
L. . . . Z2
which in presence of a persistent faulty data is a consistent | Sensor 2|—>| FL-AKF 2

D
E
F
U
z
guess. The variables-Fault, and P_Fault, are used to . moomal R |z .
register the occurrence of transient and persistent faults (1 v = | Xy
= fault present, 0 = not fault present), respectively. In this . FLA 2} I
approacho is selected as 4. The above fault detection and C
recovery algorithm is evaluated after equation (5) and . $
before equations (6) and (10) in the FL-AKF algorithm. |SensmN |ﬂ>| FLAKE N o
R
if rc/ 2a then tDoMO| R
v
T-Fault =1 FLAN} Ny
e [FLan]
if T-Fault,.; = 1 then Figure 4. Proposed MSDF architecture.
P _Fault=1
Me = +/Si(i,i) * randn 3.1 TheFuzzy Logic Assessor (FLA)
en(cajnd The FLA assigns a degree of confidence-vectaio the

FL-AKF state-vector estimate in the following way. The

Figure 3.Faultdetection and recovery algorithm. degree of confidencg' for thei-th elementi(= 1,..., n) in

the state-vector estimate is calculated in a recursively way

3 Description of the propo%d MSDF based on thé,i) corresponding elements ifDoM,J and

Ar chitecture R( A graphical representanon' of this process is shown in

Figure 5. The degree of confidencg a number on the

Under the assumption that the system in consideration isinterval [0, 1], is an indicator of the level in which each
completely observable, in this section a novel Multi- FL-AKF state estimate reflects the true value of the
Sensor Data Fusion (MSDF) architecture is presented. Theparameter being measured. At the same time, the degree of
objective of the proposed architecture is to combine the confidence acts as a weighting factor that tells a
measurement-vectors coming from disparate sensors, defuzzificator at what confidence level it should take each
each one with different measurement dynamics and noiseFL-AKF state estimate.
characteristics, to obtain a fused state-vector estimate that
better reflects the actual value of the parameters being
measured. To reach this objective, first each measurement- IDoMy | | R
vector coming from each sensor is fed to a FL-AKF; thus
there areN sensors andll FL-AKFs working in parallel as i=1 i=1
shown in Figure 4. Second, another FIS, here called a <
fuzzy logic assessor (FLA), is monitoring and assessing v
the performance of each FL-AKF. The FLA assigns a |IZDoMkEI= EDoMk(i,i)D| |R4<:Rk(i|i)|
degree of confidence-vector, denotedaso the FL-AKF
state-vector estimate. This is made based on the current
value of the absolute value of the size of discrepancy

betweenS, and érk, ODoM,[TJ; and the current value of

the noise covariance matriR,. Finally, adefuzzificator
obtains the fused state-vector estimate through a L . . )
defuzzification scheme based on the assigned confidence Each FLA is implemented using two inputs: the

values. Here differentlefuzzification procedures can be current values .ODDOMkD andl Rq and one output, thg
explored and compared. Figure 4 shows a graphical degree of confidence (see Figure 5). The membership

representation of the proposed MSDF architecture. Thefunctions forlDoMJ andR are shown in Figure 6. There

FL-AKF was described in section 2. The FLA and the the fuzzy labels mean: ZE = Zero,. S = Small, anq L=
defuzzificator are described in next sections. Large. For the outpu, three fuzzy singletons are defined
with the labels: G=1=Good, AV=0.5=Average, and

P=0=Poor. Here as well, the parameters that define the

A 4

FLA

Figure 5. Process of calculating the degrees of confidence.
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fuzzy sets can be changed in accordance with theN = number of sensorsp'(l) is the i-th degree of
application under consideration. Thus, nine rules complete
the fuzzy rule base of each FLA, as given in Table 1
known as a decision table. The fuzzy rules are based o
two simple heuristic considerations. First, if the value of
ODoM, O is near to zero and the valueRyfis near to zero,
then it means the filter is working almost perfectly; thus
the degree of confidence assigned by the FLA is near thevector).

maximum, 1. Second, if one or both of these values

increases far from zero, it means that the filter In the WTA method the fused state-vectotireate
performance is degrading; thus the degree of confidence X, is obtained as,

assigned by the FLA is decreased in accordance, up to the

minimum 0. Thus, using the compositional rule of

confidence assigned to tih element in the state-vector
estlmate obtained by theth FL-AKF (see Figure 5)k
Mdenotes the instant of time. Thus the first part of Equation
(14) is processed recursivettimes in order to obtain the
final fused state-vector estimate (X, is ann x 1

1
inference sum-prod and the center of adeéuzzification g(kE
method, the FLA assigns a degree of confidence to the Xl =argmax(c'V); X =r (15)
. k C K ’ Xk D- |: ’
state-estimates made by the FL-AKF. I %?E
n{ § L n{ § L
;.é 3 E i where the functlorargrrj]ax@ returns as output thieth
5 V4 T V4 i ) .
i / : / FL-AKF state estimatex,'” (j = 1,...,N) which has the
[r' T - [r' ; maximum degree of confidence,!!’ at each instant of
0 15 . U 1

time k. Thus the first part of Equation (15) is processed

Figure 6. Membership functions foDoM andR. recursivelyn times in order to obtain the final fused state-

Table 1 Decision Table for the FLA rule base vector eStimaték-
R ZE S L
[DoM| In order to prevent possible mfiicts, one
ZE G G AV modification in each method was incorporated. For the
S G AV P COA method, if the sum of all the degrees of confidence
L AV P P for thei-th element in the state-vector estimate is equal to

zero, then the fused output is simply the average oNthe
elements. For the WTA, if there is more than one
. maximum degree of confidence for thth element in the
3.2 Thedefuzzificator state-vector estimate, then the element with the first
The defuzzificator obtains the fused state-vector estimate Maximum encountered is given as the fused estimate.
through adefuzzification scheme based on the assigned

confidence values. Differerdefuzzification methods can 4 |llustrative example

be explored to select the best one for a particular

application. The methods proposed here are the center of"? this section an example with three noisy and faulty
area (COA) and a variation of the maximum, the winner sensors is outlined to demonstrate the effectiveness and

. ~i accuracy of the proposed MSDF architecture.
takes all (WTA). In the COA method tlieh elementX, y prop

of the fused state-vector estimaig, at instant of timex, Consider the following linear system, which is a
is obtained as modified version of a tracking model [15], [16],
1 1
ﬁ (e ith B‘i[ B(MD [0.77 0.20 OOOD 0Kk, B S/\FE
A =B 3Cu0= 025 075 0255 3¢ i (16)
X! = ‘—, - |:|: C 3
K Z T Rof Be..H B©.05 000 0755 BgH Pk
. - . Etm_)g | Dlg %Q)E
where X, is thei-th .(e.l)ement in the fused state-vector Dsz(J)Dz Hi B‘ETG'E(”[; j=1,2,3 (17)
. o i) : . : :
estimatej = 1,...,n; X,/ is thei-th element in the state- %E(J)E E(SE E(J)E

vector estimate obtained by th¢h FL-AKF, j = 1,...,N;
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where H' is thej-th measurement matrixx; , X7, and

le are the position, velocity, and acceleration,

respectively, of a flying objectz", z2?, and z2("

are observations of the object position, velocity and
acceleration, made by tlwh sensor, respectively;v{lL h

i =1, 2, 3 is aruncorrelated zero-mea@Gaussian white
noise sequence with matrix covariai@e 0.025; { v,'” }

is a noise sequence defined for each sensor as is given i
Figures 7 and 8. Initial conditions are( =0,

P, = 0.011,. The actual value of the measurement noise

covariance matrices for each sensor
unknown, but an initial value is given as shown in Figure
7. The measurement matrices and noise profiles for eac
sensor are given in Figures 7 and 8.

1 0 o 02 0 o0Qo 06 0 0(
_ 0 2_0 0 430 O
_%) 1 08 H2=50 08 O H'=g0 12 0f

M 0 17 B o 148 HO 0 07\
MO0 Choise1ld 2P0 Dhmse 20 H/“3)IZI I]hmse 30
E{Z(D —%wlse 2% E{Z(Z) 0" d\Olse SE, E{Z(S’ 0 [pmse 1%
Hi%H Poise3d Hi®H Hoise1d R{PH Fhoise 2H
@25 0 00O 05 0 0O @2 0 0O
R=50 5 0ogR=50 8 05 R=0 3 03
B0 0108 Ho o 18 M 0 58

Figure 7. Measurement matrices, noise profiles, and initial
measurement noise covariance matrices for each sensor.

N0|se 1- Constant Gau93|an noise N(0,0.5)

e

:'J

100 200 Time (Sec) 300 400 500

Noise 2 - Uniform noise increasing with time

|
_o: S ——— W

4!
0

’[: LA e I
100 200 Time (Sec) 300

Noise 3- Uniform noise decreasing with time

. : H "} |w |EL,WW1 #‘W#‘nwmmm-:

200 Time (Sec) 300

400 500

Figure 8. Noise profiles in the measurements.
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is assumed as

MATLAB code was developed to simulate the
process described by Equation (16) and sensors described
by Equation (17) together with the proposed MSDF
architecture considering the fusion of the data coming
from the three sensors. Two experiments were carried out.
In the first experiment no faults were introduced in the
measured data (referred to as non-faulty sensors
experiment, NFSE). In the second experiment blunders
and cycle slips were introduced in the measured data to
simulate the occurrence of faults (referred to as faulty
Bensors experiment, FSE). Figure 9 shows the time
instants, indicated by the subscripts, and the value of the
faulty data introduced in each sensor measurement for the
FSE. The purpose of the experiments is to observe the
performance of the proposed MSDF architecture under

hboth faulty and non-faulty sensors. In each experiment the

simulation was carried out for 500s with a sample time of
0.5s. The simulation results are presented in next section.

1(1
|:‘t100:120,3002400,500:520,700:720 O O 5|:|

0 =0
[ 2150, 250,350,450 0= o 5
szoo 400,600,800 H En 5@

Dy 8a 00,550,750 0 g_ 5%
[}2120(02)300 400,500 (]~ [ 5|:|

250450 650,50 ] 5 58
I:kisg 450 650,850 g_ 5%
[}2150 250,350,550 (1= [] 5|:|

stoo 400,600,800 E B 58

Figure 9. Faults introduced in each sensor for the FSE (the
symbol " is used to specify a range of values, for example
100:120, means from time instaat100 tok=120).

41 Results

For comparison purposes,
measures were adopted:

the following performance

1o
= |= ! 18
\/n;(xka (18)
Ji. = ln(xia—xe2 (19)
xe nzl k

where x,a is the actual valueXx,V is the measured

value, andx, e is the estimated value af= 1 = positionj

= 2 = velocity, and = 3 = acceleration of the flying object
at instant of timex, respectivelyn = No. of samples.

Table 2 shows the performance measures obtained in
the NFSE for each individual FL-AKF and those obtained
from the fusion of the three sensors using the proposed



MSDF architecture with both COA and WTA 1
defuzzification methods. Table 3 shows the same g,
performance measures but now for the FSE. Analyzing the §

data given in Table 2, it is noted that the best state-vector §°°

estimate is obtained with the MSDF architecture §0.4;’
employing the WTAdefuzzification method. Additionally,  gq5|

this state-vector estimate is more exact than the obtainec
by any of the individual FLAKFs. The state-vector 0
estimate obtained with the MSDF architecture employing

Selected output

the COAdefuzzification method is slightly less accurate 3
than the obtained with the MSDF architecture employing
the WTAdefuzzification method. The improvement on the

position and velocity estimates obtained using both MSDF

No. of FL-AKF

cases is of around the 5% to 10% with respect to the
estimates done by individual FAKFs. However, the
accderation estimates are improved only in around the

|

2%. Figure 10 shows the actual and fused estimated ©

in the NFSE. Figure 11(a) shows the degrees of confidence
15

I
100

200 Time (sec) 300

position and its corresponding error obtained with the Figure 11. (a)Degrees of confidence assigned to each FL-
MSDF architecture using the WTdefuzzification method  AKF position estimate. (b) Naf selected FL-AKF.

400

500

assigned to each FL-AKF position estimate and Figure 11

(b) shows the number of the selected FL-AKF which 10

—— actual position
---- measured position
—— estimated position

position estimate is given as the fused output by using thes s .

WTA defuzzification method in the NFSE. 8 ol T ! i i
15 5 W Wit ‘N»’y} i (a)’
10  Fee Botmored positon | - "% 100 200 300 400 500

s Time (sec)
% 5[ il :
< o 15 —— actual velocity “H‘
( a) 0L measured velocity y
-5 i L i Fn —— estimated velocity
o] 100 200 300 400 500 ©
Time (sec) % 5 N T
1 T & Lo w
j i - 0 i Lk
I} i 1 i
s | (b)
ugJ 0 J\ 0 100 200 300 400 500
-0.5 Vy | I B 5 Time (sec)
§ | | | (b)
(o] 100 200 Time (80 300 400 500 (C)
- o posn 1

Flgu_re 10._ (@) Actual and fused es_tlmated ppsmon % oh ‘ WWWMWM WWMW i ’

obtained with the proposed MSDF architecture using the ¢ LAl l I

WTA defuzzification method. (b) Corresponding error. -

Table 2 Performance measures for sensors without faults ‘50 160 260 300 460 500
No. of 3t Jz J3 3t Jz J3 Time (sec)
Sensor XV XV XV xe xe xe .
1 0.7285| 1.2816| 1.2964| 0.2520| 0.2700| 0.1943 10\ d i
2 1.4768| 1.6359| 0.7886| 0.2426| 0.2686| 0.1819 gl ( ) Tsﬁgg
3 1.5496| 1.1916| 1.3198| 0.2468| 0.2426| 0.2006 \\\ ——— R1(3:3)
Fused 0.2257| 0.2380| 0.1820 6 v
COA LI S ——
Fused 0.2235| 0.2386| 0.1788 v 4 e =TT -
WTA 2 \\ ~ T
Table 3 Performance measures for sensors with faults 0 = === —— —— S
g,e?ﬁ Soofr i 3z 32 3t 3z 33 0 100 200 e e 300 400 500
1 2.6456) 1.3587| 1.3345| 0.2651] 0.2805| 0.1950 Figure 12. (a) Actual, measured and estimated position -
2 1.5466) 1.6875) 0.8667| 0.2423) 0.2681) 0.1824 FL-AKF 1 - FSE. (b) Actual, measured an estimated
3 1.6355| 1.2692| 1.3886| 0.2471| 0.2436| 0.2008 . . .
e 0.2208| 0.2307| 0 1824 velocity - FL-AKF 1 - FSE. (c),? and its corresponding
COA ' ' ' theoretical & limits - FL-AKF 1 - FSE. (d)Elements in
sv“Tszd 0.2301) 0.2410) 0.1794 the main diagonal d®! - FL-AKF 1 -FSE
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Analyzing the data given in Table 3 it can be noted several sensors measuring the same parameters, but each
that the effects caused by the faults introduced on theone has different measurement dynamic and a dynamic
measured data are eliminated by the fault detection andnoise characteristic is present. Thus the general idea of
recovery algorithm incorporated to each FL-AKF. This exploring the combination of traditional together with non-
fault tolerant characteristic can be appreciated in figures traditional techniques for designing MSDF architectures
12(a) and 12(b) where the estimated position and velocity, appears to be a good avenue of investigation.
obtained by the FL-AKF 1, in the FSE, are shown. It is
remarkable to note that the performance is only slightly The choice of the fuzzy sets used in the fuzzy
degraded with respect to that observed in the NFSE. Itsystems was carried out using a trial and error scheme.
means that each FL-AKF is fault tolerant and due to this Obviously this process is time consuming and depends on
characteristic a negligible degradation on the fused statethe problem under consideration. In order to tackle this
estimates obtained by the MSDF architecture is observed,problem the authors are exploring the idea of using a
using whatever of the twadefuzzification methods. neuro-fuzzy system to adjust automatically these fuzzy
However, note in Table 3 that the performance of the sets. For the case of the fuzzy rules, the general guidelines
MSDF architecture using the WTdefuzzification method given for both FL-AKF and FLA showed its effectiveness

is more affected when faulty data is present. Finally, in in the chosen example.

order to show the dynamic tuning characteristic of the
covariance matrixR in the FL-AKF approach, Figure
12(c) shows the residual corresponding to the estimated
velocity obtained with the FL-AKF 1 during the FSE.
Additionally, Figure 12(d) shows the main elements in the
measurement noise covariance mafix obtained with

the FL-AKF 1 during theFSE Note how both are adjusted

in accordance with the noise profile in the measured data. [3l]

(1]
(2]

5 Conclusions

A novel MSDF architecture integratirigalman filtering

and fuzzy logic techniques has been presented. This
approach exploits the advantages that both technique%]
have: the optimality of th&alman filter and the capability

of fuzzy systems to deal with imprecise information using
‘common sense’ rules. In this approach the linear [6]
estimations obtained by individuakalman filters are
improved through dynamically tuning the measurement
noise covariance matriR, by means of a FIS. This
prevents filter divergence and relaxes the a priori
assumption about the initial value Bf It is particularly
relevant that only three rules are needed to carry out theyg,
adaptation. Additionally, in accordance with the results
obtained in the illustrated example, the incorporation of
the fault detection and recovery algorithm in the FL-AKF
practically eliminates the effects of faults, doing the
complete system fault tolerant.

(4

(7]

[10]

[11]
The role of the FLA in the proposed MSDF [12]
architecture is of great importance because the fusion of
the information is carried out based on the degrees of[13]
confidence generated on this component no matter what
defuzzification method is used. Another important point is [14]
that only two variables are needed to monitor the ;g
performance of each FL-AKF and only nine ‘common
sense’ rules are used in the FLA rule base. 6]
The results obtained in the illustrative example are
promising. They show that the proposed MSDF
architecture is effective in situations where there are
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