
Multisensor Data Fusion Architecture Based on Adaptive
Kalman Filters and Fuzzy Logic Performance Assessment

P. J. Escamilla-Ambrosio
Department of Automatic Control

and Systems Engineering,
University of Sheffield, Sheffield, UK.

COP99PJE@Sheffield.ac.uk

N. Mort
Department of Automatic Control

and Systems Engineering,
University of Sheffield, Sheffield, UK.

N.Mort@sheffield.ac.uk

Abstract - In this work a novel Multi-Sensor Data Fusion
(MSDF) architecture is presented. First, each
measurement-vector coming from each sensor is fed to a
Fuzzy Logic-based Adaptive Kalman Filter (FL-AKF);
thus there are N sensors and N FL-AKFs working in
parallel. The adaptation in each FL-AKF is in the sense of
dynamically tuning the measurement noise covariance
matrix R employing a fuzzy inference system (FIS) based
on a covariance matching technique. Second, another
FIS, here called a fuzzy logic assessor (FLA), is
monitoring and assessing the performance of each FL-
AKF. The FLA assigns a degree of confidence, a number
on the interval [0, 1], to each one of the FL-AKF outputs.
Finally, a defuzzification scheme obtains the fused state-
vector estimate based on the confidence values. The
effectiveness and accuracy of this approach is
demonstrated in a simulated example. Two defuzzification
methods are explored and compared; results show good
performance of the proposed approach.

Keywords: Multisensor data fusion, adaptive Kalman
filtering, fuzzy logic, performance assessment.

1 Introduction
The Multi-Sensor Data Fusion (MSDF) approach is
described as the acquisition, processing, and synergistic
combination of information gathered by various
knowledge sources and sensors to provide a better
understanding of a phenomenon under consideration [1].
Different MSDF techniques have been explored recently.
These techniques vary from those based on well-
established Kalman filtering methods [2], [3], to those
based on recent ideas from soft computing technology [4],
[5]. However, little work has been done in exploring
architectures that consider the combination of both these
approaches. In this work a novel MSDF architecture that
combines these approaches is explored. This architecture
is built integrating the fuzzy logic-based adaptive Kalman
filter developed recently by Escamilla and Mort [6] and a
fuzzy logic performance assessment scheme.

The general idea explored in this approach is the
combination of the advantages that both Kalman filtering

and fuzzy logic techniques have. On the one hand, Kalman
filtering is recognized as one of the most powerful
traditional techniques of estimation: the Kalman filter
provides an unbiased and optimal estimate of a state-
vector in the sense of minimum error variance [7]. On the
other hand, the main advantages derived from the use of
fuzzy logic techniques, with respect to traditional schemes,
are the simplicity of the approach, the capability of fuzzy
systems to deal with imprecise information, and the
possibility of including heuristic knowledge about the
phenomenon under consideration.

The remainder of this paper is organized as follows.
In section 2, after describing the traditional Kalman
filtering approach, the fuzzy logic-based adaptive Kalman
filter (FL-AKF) is summarized. Section 3 describes the
proposed MSDF architecture. The effectiveness of this
approach is demonstrated in a simulated example outlined
in section 4. Finally, in section 5 the conclusions and
perspectives of this work are given.

2 Formulation of the fuzzy logic-
based adaptive Kalman filter

2.1 The traditional Kalman filter

Given a discrete-time controlled process described by the
linear stochastic difference equations:

kkkkkk wuBxAx ++=+1
(1)

kkkk vxHz += (2)

where k represents the discrete-time index, xk is the system
state-vector, uk is the input vector, zk is the measurement-
vector, wk and vk are uncorrelated zero-mean Gaussian
white noise sequences with covariance matrices Qk and Rk

respectively; the Kalman filter algorithm can be described
by next group of equations [9],

a) Time update (or prediction) equations:

kkkkk uBxAx +=−
+ ˆˆ 1 (3)

1542



   k
T
kkkk QAPAP +=−

+1 (4).

b) Measurement update (or correction) equations:

1][ −−− += k
T
kkk

T
kkk RHPHHPK (5)

 ]ˆ[ˆˆ −− −+= kkkkkk xHzKxx (6)

−−= kKkk PHKIP ][ (7),

where 
kx̂  represents the estimate of the system state-

vector xk, Pk is the state-estimate error covariance matrix,
and Kk is commonly referred to as the filter gain or the
Kalman gain matrix.

Equations (3) and (4) project, from time step k to
step k+1, the current state and error covariance estimates
to obtain the a priori (indicated by the super minus)
estimates for the next time step. While equations (5) to (7)
incorporate a new measurement into the a priori estimate
to obtain an improved a posteriori estimate.

The term −
kk xH ˆ  in (6) is the one-stage predicted

measurement kẑ , and the difference )ˆ( −− kkk xHz  is

referred to as the innovation sequence or residual,
generally denoted as r and defined by

)ˆ( −−= kkkk xHzr (8).

The Kalman filter algorithm starts with initial
conditions at k = 0, being −

0x̂  and −
0P . With the

progression of time, as new measurements kz  become

available, the cycle estimation-correction of states and the
corresponding error covariances can follow recursively ad
infinitum.

2.2 The fuzzy logic-based adaptive Kalman
filter

As described previously, the traditional Kalman filter
formulation assumes complete a priori knowledge of the
process and measurement noise covariance matrices, Qk

and Rk. However, in most practical applications these
matrices are initially estimated or, in fact, are unknown.
The problem here is that the optimality of the estimation
algorithm in the Kalman filter setting is closely connected
to the quality of the a priori noise statistics [10]. It has
been shown how poor estimates of the input noise statistics
may seriously degrade the Kalman filter performance, and
even provoke the divergence of the filter [11], [12]. From
this point of view it can be expected that an adaptive

formulation of the Kalman filter will result in a better
performance or will prevent filter divergence.

In this section, an on-line fuzzy logic-based adaptive
Kalman filter (FL-AKF) is presented [6]. The adaptation is
in the sense of using a Fuzzy Inference System (FIS) to
dynamically adjust the measurement noise covariance
matrix Rk from data as they are obtained. This relaxes the a
priori measurement noise statistical assumptions and
significantly benefits the Kalman filter states estimates if
the measurement noise under it operates change or evolves
with time. The main advantages derived from the use of a
fuzzy technique, with respect to traditional adaptation
schemes, are the simplicity of the approach and the
possibility of including heuristic knowledge about the
phenomenon under consideration.

The measurement noise covariance matrix Rk

represents the accuracy of the measurement instrument,
meaning a larger Rk for measured data implies that we trust
this data less and take more account of the prediction.
Assuming that the noise covariance matrix Qk is known,
here a FIS based on the technique known as covariance-
matching [13] has been derived to dynamically adjust the
covariance matrix Rk.

The basic idea behind the covariance-matching
technique is to make the residuals consistent with their
theoretical covariance [10], [14]. In the FL-AKF this is
done in three steps; first, having available the innovation
sequence or residual rk its theoretical covariance is
calculated as,

k
T
kkkk RHPHS += − (9),

in the Kalman filter algorithm. Second, the actual

covariance krĈ  of rk is approximated through averaging

inside a moving estimation window [14] of size M,

∑
=

=
k

ii

T
iik rr

M
rC

0

1ˆ (10),

where i0 = k − M + 1 is the first sample inside the
estimation window. This means that only the last M
samples of rk are used to estimate its covariance. The
window size is chosen empirically to give some statistical
smoothing. Third, if it is found that the actual value of the
covariance of rk has a discrepancy with its theoretical
value, then a FIS derives adjustments for Rk based on the
knowledge of the size of this discrepancy. The objective of
these adjustments is to correct this mismatch as well as
possible. In order to detect the size of the discrepancy

between Sk and krĈ  a new variable called the Degree of

Matching (DoM) is defined as,
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kkk rCSDoM ˆ−= (11).

The main idea of adaptation used by a FIS to
dynamically tuning Rk is as follows. It can be noted from
(9) that an increment in Rk will increment Sk, and vice
versa. This means that Rk can be used to vary Sk in
accordance with the value of DoMk in order to reduce the

discrepancies between Sk and krĈ . From here three

general rules of adaptation are defined as:

1. If DoMk ≅ 0 (this means Sk and krĈ  match almost

perfectly) then maintain Rk unchanged.

2. If DoMk > 0 (this means Sk is greater than its actual

value krĈ ) then decrease Rk.

3. If DoMk < 0 (this means Sk is smaller than its actual

value krĈ ) then increase Rk.

Note that the matrices krĈ , Sk, Rk and DoMk are all

of the same size, thus the adaptation of the (i, i) element of
Rk can be made in accordance with the (i, i) element of
DoMk; i=1,2,…,m; m=size of zk. Thus, a single-input-
single-output (SISO) FIS is used to sequentially generate
the tuning or correction factors for the elements in the
main diagonal of Rk, and this correction is made in this
way,

kkk RiiRiiR ∆+= − ),(),( 1 (12),

where ∆Rk is the tuning factor that is added or subtracted
from the element (i,i) of Rk at each instant of time. ∆Rk is
the FIS output and DoMk(i,i) is the FIS input. A graphical
representation of this adjusting process is shown in Figure
1.
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Figure 1. Graphical Representation of the adjusting
process of Rk.

Following the general rules of adaptation, the FIS can
be implemented considering three fuzzy sets for DoMk: N
= Negative, ZE = Zero, and P = Positive; and three fuzzy
sets for ∆Rk: I = Increase, M = Maintain, and D =
Decrease. These membership functions are shown in
Figure 2. There, the parameters that define the fuzzy sets
can be changed in accordance with the system under
consideration. Hence, only three fuzzy rules are included
in the FIS rule base:

1. If DoMk = N, then ∆Rk = I

2. If DoMk = ZE, then ∆Rk = M

3. If DoMk = P, then ∆Rk = D.

Thus, using the compositional rule of inference sum-
prod and the center of area (COA) defuzzification method,
Rk is adjusted in each FL-AKF as given in (12). From
experimentation it was found that a good size for the
moving window in (10) is M = 15.

Figure 2. Membership functions for DoMk and ∆Rk.

2.3 Fault detection and recovery algorithm.

Additionally to the adaptation procedure, the FL-AKF has
been provided with a fault detection and recovery
algorithm. First a variable called Residual Compatibility
rCk is defined as,

),( iiS

r
rC

k

i
ki

k = (13).

The value of i
krC  gives a measure of the actual

amplitude of the i-th element of the residual compared
with its theoretical value Sk(i,i) (the corresponding element
in the main diagonal of Sk) at each instant of time k. This
value is around 1 if both quantities are similar, but it
increases abruptly if a transient fault, i. e., a blunder, is
present in the measured data. Thus, if the value of i

krC  is

greater or equal than a threshold (α) then a transient fault
is declared. If the value of i

krC  remains greater than α for

more that an instant of time, then a persistent fault, i. e. a
cycle slip, is declared. The algorithm shown in Figure 3 is
implemented in order to detect and compensate the
occurrence of faults. This algorithm assigns the value of
zero to the i-th element of rk if a transient fault is detected

1544



(through the value of its corresponding i
krC ). This is the

best guess that can be made due to the zero average
characteristic of the residual. However if a persistent fault
is detected, this does not works any more, in that case rk

i is
assigned with a random number selected from a zero mean
Gaussian white noise sequence with covariance Sk(i,i);
which in presence of a persistent faulty data is a consistent
guess. The variables T-Faultk and P_Faultk are used to
register the occurrence of transient and persistent faults (1
= fault present, 0 = not fault present), respectively. In this
approach α is selected as 4. The above fault detection and
recovery algorithm is evaluated after equation (5) and
before equations (6) and (10) in the FL-AKF algorithm.

if  α≥i
krC  then

    T -Fau ltk =  1
    0=i

kr

    if  T -Fau ltk-1 =  1  then
        P_F au ltk =  1
       randniiSr k

i
k *),(=

    end
end

Figure 3. Fault detection and recovery algorithm.

3 Description of the proposed MSDF
Architecture

Under the assumption that the system in consideration is
completely observable, in this section a novel Multi-
Sensor Data Fusion (MSDF) architecture is presented. The
objective of the proposed architecture is to combine the
measurement-vectors coming from N disparate sensors,
each one with different measurement dynamics and noise
characteristics, to obtain a fused state-vector estimate that
better reflects the actual value of the parameters being
measured. To reach this objective, first each measurement-
vector coming from each sensor is fed to a FL-AKF; thus
there are N sensors and N FL-AKFs working in parallel as
shown in Figure 4. Second, another FIS, here called a
fuzzy logic assessor (FLA), is monitoring and assessing
the performance of each FL-AKF. The FLA assigns a
degree of confidence-vector, denoted as ck, to the FL-AKF
state-vector estimate. This is made based on the current
value of the absolute value of the size of discrepancy

between Sk and krĈ , DoMk; and the current value of

the noise covariance matrix, Rk. Finally, a defuzzificator
obtains the fused state-vector estimate through a
defuzzification scheme based on the assigned confidence
values. Here different defuzzification procedures can be
explored and compared. Figure 4 shows a graphical
representation of the proposed MSDF architecture. The
FL-AKF was described in section 2. The FLA and the
defuzzificator are described in next sections.

Sensor 1
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Z
Z
I
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I
C
A
T
O
R

Sensor 2

Sensor N

•
•
•

•

•

•

•
•
•

x̂

 z1

 z2

 zN

FL-AKF 1

FLA 1

11ˆ cx1x̂

DoM    R
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22ˆ cx2x̂

DoM    R

c2

c2

FL-AKF N

FLA N

NN cx̂

DoM    R

cN
Nx̂

cN

Figure 4. Proposed MSDF architecture.

3.1 The Fuzzy Logic Assessor (FLA)

The FLA assigns a degree of confidence-vector ck to the
FL-AKF state-vector estimate in the following way. The
degree of confidence ck

i for the i-th element (i = 1,…, n) in
the state-vector estimate is calculated in a recursively way
based on the (i,i) corresponding elements in DoMk and
Rk. A graphical representation of this process is shown in
Figure 5. The degree of confidence ck

i, a number on the
interval [0, 1], is an indicator of the level in which each
FL-AKF state estimate reflects the true value of the
parameter being measured. At the same time, the degree of
confidence acts as a weighting factor that tells a
defuzzificator at what confidence level it should take each
FL-AKF state estimate.

FL-AKF

FLA

 i = 1

DoMk = DoMk(i,i)  i = n

 i = i + 1

|DoMk| Rk

 i = 1

Rk = Rk(i,i)

i
kk cc =

no

yes
ck

Figure 5. Process of calculating the degrees of confidence.

Each FLA is implemented using two inputs: the
current values of DoMk and Rk; and one output, the
degree of confidence ck (see Figure 5). The membership
functions for DoMk and Rk are shown in Figure 6. There
the fuzzy labels mean: ZE = Zero, S = Small, and L =
Large. For the output ck, three fuzzy singletons are defined
with the labels: G=1=Good, AV=0.5=Average, and
P=0=Poor. Here as well, the parameters that define the
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fuzzy sets can be changed in accordance with the
application under consideration. Thus, nine rules complete
the fuzzy rule base of each FLA, as given in Table 1
known as a decision table. The fuzzy rules are based on
two simple heuristic considerations. First, if the value of
DoMk is near to zero and the value of Rk is near to zero,
then it means the filter is working almost perfectly; thus
the degree of confidence assigned by the FLA is near the
maximum, 1. Second, if one or both of these values
increases far from zero, it means that the filter
performance is degrading; thus the degree of confidence
assigned by the FLA is decreased in accordance, up to the
minimum 0. Thus, using the compositional rule of
inference sum-prod and the center of area defuzzification
method, the FLA assigns a degree of confidence to the
state-estimates made by the FL-AKF.

Figure 6. Membership functions for DoMk and Rk.

Table 1 Decision Table for the FLA rule base

                            R
|DoM |

ZE S L

ZE G G AV

S G AV P

L AV P P

3.2 The defuzzificator

The defuzzificator obtains the fused state-vector estimate
through a defuzzification scheme based on the assigned
confidence values. Different defuzzification methods can
be explored to select the best one for a particular
application. The methods proposed here are the center of
area (COA) and a variation of the maximum, the winner

takes all (WTA). In the COA method the i-th element i
kx̂

of the fused state-vector estimate kx̂ , at instant of time k,

is obtained as,

∑

∑

=

==
N

j

ji
k

N

j

ji
k

ji
k

i
k

c

cx

x

1

)(

1

)()(ˆ

ˆ ;
















=

n
k

k

k

x

x

x

ˆ

ˆ

ˆ

1

�
(14)

where i
kx̂  is the i-th element in the fused state-vector

estimate, i = 1,…, n; )(ˆ ji
kx  is the i-th element in the state-

vector estimate obtained by the j-th FL-AKF, j = 1,…, N;

N = number of sensors; )( ji
kc  is the i-th degree of

confidence assigned to the i-th element in the state-vector
estimate obtained by the j-th FL-AKF (see Figure 5); k
denotes the instant of time. Thus the first part of Equation
(14) is processed recursively n times in order to obtain the
final fused state-vector estimatekx̂  ( kx̂  is an n × 1

vector).

In the WTA method the fused state-vector estimate

kx̂  is obtained as,

)(maxargˆ )( ji
k

j

i
k cx = ;
















=

n
k

k

k

x

x

x

ˆ

ˆ

ˆ

1

�
(15),

where the function 
j

)max(arg ⋅  returns as output the j-th

FL-AKF state estimate )(ˆ ji
kx  (j = 1,…, N) which has the

maximum degree of confidence )( ji
kc  at each instant of

time k. Thus the first part of Equation (15) is processed
recursively n times in order to obtain the final fused state-
vector estimate kx̂ .

In order to prevent possible conflicts, one
modification in each method was incorporated. For the
COA method, if the sum of all the degrees of confidence
for the i-th element in the state-vector estimate is equal to
zero, then the fused output is simply the average of the N
elements. For the WTA, if there is more than one
maximum degree of confidence for the i-th element in the
state-vector estimate, then the element with the first
maximum encountered is given as the fused estimate.

4 Illustrative example
In this section an example with three noisy and faulty
sensors is outlined to demonstrate the effectiveness and
accuracy of the proposed MSDF architecture.

Consider the following linear system, which is a
modified version of a tracking model [15], [16],
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where jH  is the j-th measurement matrix, 1kx , 2
kx , and

3
kx  are the position, velocity, and acceleration,

respectively, of a flying object; )(1 j
kz , )(2 j

kz , and )(3 j
kz

are observations of the object position, velocity and

acceleration, made by the j-th sensor, respectively; { i
kw },

i = 1, 2, 3 is an uncorrelated zero-mean Gaussian white

noise sequence with matrix covariance Q = 0.02I3; {
)( ji

kv }

is a noise sequence defined for each sensor as is given in
Figures 7 and 8. Initial conditions are 0ˆ =i

ox ,

30 01.0 IP = . The actual value of the measurement noise

covariance matrices for each sensor is assumed as
unknown, but an initial value is given as shown in Figure
7. The measurement matrices and noise profiles for each
sensor are given in Figures 7 and 8.
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Figure 7. Measurement matrices, noise profiles, and initial
measurement noise covariance matrices for each sensor.

Figure 8. Noise profiles in the measurements.

MATLAB code was developed to simulate the
process described by Equation (16) and sensors described
by Equation (17) together with the proposed MSDF
architecture considering the fusion of the data coming
from the three sensors. Two experiments were carried out.
In the first experiment no faults were introduced in the
measured data (referred to as non-faulty sensors
experiment, NFSE). In the second experiment blunders
and cycle slips were introduced in the measured data to
simulate the occurrence of faults (referred to as faulty
sensors experiment, FSE). Figure 9 shows the time
instants, indicated by the subscripts, and the value of the
faulty data introduced in each sensor measurement for the
FSE. The purpose of the experiments is to observe the
performance of the proposed MSDF architecture under
both faulty and non-faulty sensors. In each experiment the
simulation was carried out for 500s with a sample time of
0.5s. The simulation results are presented in next section.
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Figure 9. Faults introduced in each sensor for the FSE (the
symbol ‘:’ is used to specify a range of values, for example
100:120, means from time instant k=100 to k=120).

4.1 Results

For comparison purposes, the following performance
measures were adopted:
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where ax i
k  is the actual value, vx i

k  is the measured

value, and ex i
k  is the estimated value of: i = 1 = position, i

= 2 = velocity, and i = 3 = acceleration of the flying object
at instant of time k, respectively; n = No. of samples.

Table 2 shows the performance measures obtained in
the NFSE for each individual FL-AKF and those obtained
from the fusion of the three sensors using the proposed
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MSDF architecture with both COA and WTA
defuzzification methods. Table 3 shows the same
performance measures but now for the FSE. Analyzing the
data given in Table 2, it is noted that the best state-vector
estimate is obtained with the MSDF architecture
employing the WTA defuzzification method. Additionally,
this state-vector estimate is more exact than the obtained
by any of the individual FL-AKFs. The state-vector
estimate obtained with the MSDF architecture employing
the COA defuzzification method is slightly less accurate
than the obtained with the MSDF architecture employing
the WTA defuzzification method. The improvement on the
position and velocity estimates obtained using both MSDF
cases is of around the 5% to 10% with respect to the
estimates done by individual FL-AKFs. However, the
acceleration estimates are improved only in around the
2%. Figure 10 shows the actual and fused estimated
position and its corresponding error obtained with the
MSDF architecture using the WTA defuzzification method
in the NFSE. Figure 11(a) shows the degrees of confidence
assigned to each FL-AKF position estimate and Figure 11
(b) shows the number of the selected FL-AKF which
position estimate is given as the fused output by using the
WTA defuzzification method in the NFSE.

Figure 10. (a) Actual and fused estimated position
obtained with the proposed MSDF architecture using the
WTA defuzzification method. (b) Corresponding error.

T a b le  2  P e r fo rm a n c e  m e a su re s fo r se n so rs  w ith o u t fa u l ts
N o . o f
S e n so r

1
xvJ 2

xvJ 3
xvJ 1

xeJ 2
xeJ 3

xeJ
1 0.7 2 8 5 1 .2 8 1 6 1 .2 9 6 4 0 .2 5 2 0 0 .2 7 0 0 0 .1 9 4 3

2 1.4 7 6 8 1 .6 3 5 9 0 .7 8 8 6 0 .2 4 2 6 0 .2 6 8 6 0 .1 8 1 9
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Figure 11. (a) Degrees of confidence assigned to each FL-
AKF position estimate. (b) No. of selected FL-AKF.

Figure 12. (a) Actual, measured and estimated position -
FL-AKF 1 - FSE. (b) Actual, measured an estimated
velocity - FL-AKF 1 - FSE. (c) rk

2 and its corresponding ±
theoretical 2σ limits - FL-AKF 1 - FSE. (d) Elements in
the main diagonal of Rk

1 - FL-AKF 1 - FSE.

(a)

(b)
(c)

(b)

(a)

(d)

(a)

(b)

1548



Analyzing the data given in Table 3 it can be noted
that the effects caused by the faults introduced on the
measured data are eliminated by the fault detection and
recovery algorithm incorporated to each FL-AKF. This
fault tolerant characteristic can be appreciated in figures
12(a) and 12(b) where the estimated position and velocity,
obtained by the FL-AKF 1, in the FSE, are shown. It is
remarkable to note that the performance is only slightly
degraded with respect to that observed in the NFSE. It
means that each FL-AKF is fault tolerant and due to this
characteristic a negligible degradation on the fused state
estimates obtained by the MSDF architecture is observed,
using whatever of the two defuzzification methods.
However, note in Table 3 that the performance of the
MSDF architecture using the WTA defuzzification method
is more affected when faulty data is present. Finally, in
order to show the dynamic tuning characteristic of the
covariance matrix R in the FL-AKF approach, Figure
12(c) shows the residual corresponding to the estimated
velocity obtained with the FL-AKF 1 during the FSE.
Additionally, Figure 12(d) shows the main elements in the
measurement noise covariance matrix Rk

1 obtained with
the FL-AKF 1 during the FSE. Note how both are adjusted
in accordance with the noise profile in the measured data.

5 Conclusions
A novel MSDF architecture integrating Kalman filtering
and fuzzy logic techniques has been presented. This
approach exploits the advantages that both techniques
have: the optimality of the Kalman filter and the capability
of fuzzy systems to deal with imprecise information using
‘common sense’ rules. In this approach the linear
estimations obtained by individual Kalman filters are
improved through dynamically tuning the measurement
noise covariance matrix Rk by means of a FIS. This
prevents filter divergence and relaxes the a priori
assumption about the initial value of R. It is particularly
relevant that only three rules are needed to carry out the
adaptation. Additionally, in accordance with the results
obtained in the illustrated example, the incorporation of
the fault detection and recovery algorithm in the FL-AKF
practically eliminates the effects of faults, doing the
complete system fault tolerant.

The role of the FLA in the proposed MSDF
architecture is of great importance because the fusion of
the information is carried out based on the degrees of
confidence generated on this component no matter what
defuzzification method is used. Another important point is
that only two variables are needed to monitor the
performance of each FL-AKF and only nine ‘common
sense’ rules are used in the FLA rule base.

The results obtained in the illustrative example are
promising. They show that the proposed MSDF
architecture is effective in situations where there are

several sensors measuring the same parameters, but each
one has different measurement dynamic and a dynamic
noise characteristic is present. Thus the general idea of
exploring the combination of traditional together with non-
traditional techniques for designing MSDF architectures
appears to be a good avenue of investigation.

The choice of the fuzzy sets used in the fuzzy
systems was carried out using a trial and error scheme.
Obviously this process is time consuming and depends on
the problem under consideration. In order to tackle this
problem the authors are exploring the idea of using a
neuro-fuzzy system to adjust automatically these fuzzy
sets. For the case of the fuzzy rules, the general guidelines
given for both FL-AKF and FLA showed its effectiveness
in the chosen example.
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