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Abstrad: In this work the auto-tuning procedure proposed by Astrom and Hagglund is
extended and developed for tuning the scding fadors of a modified hybrid PID type
fuzzy logic controller (MHPID-FLC). This new procedure is based on two steps. First,
mathematicd expressions to link the scding fadors of the MHPID-FLC with the
proportional, integral and derivative adions of its traditional counterpart are derived.
Seond, based on this relationship and using the Ziegler-Nichals tuning formulag the
scding fadors of the MHPID-FLC are obtained by means of a relay experiment. The
eff ectivenessof this approac is shown in benchmark processes taken from the literature.
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1. INTRODUCTION

In recant yeas fuzzy logic controllers (FLC) have
been widely used for industrial processes exploiting
their heuristic nature ss<ciated with simplicity and
effectivenessfor both linea and non linea systems.
In particular, severa structures of PID type FLC
have been used (including Pl and PD). As a
consequence, reseach into this type of FLC has
increased considerably. Lately, the reseach effort
has been focused on the nstruction of an explicit
link between the scding fadors of PID type FLC
(PID-FLC) and the three ations of traditional PID
control (TPID). The dired result of this link would
bring the paosshility of applying the systematic
design and tuning methods of TPID control to design
and tune PID-FLC.

Several approaches have been reported in the fuzzy
control literature establishing a link between TPID
and PID-FLC (Mann, et al., 2002, Li and Tso, 2000;
Xu, et al., 2000). However, these have often resulted
in complicated mathematicd expressions and,
moreover, some of the parameters involved are

heuristicdly established and this heuristic is not
spedfied. Indeed, the task of constructing the link is
not an essy one. First of al, severa structures of
PID-FLC have been propcsed, and it is necessary to
seled the one most suitable for the @nstruction of
the link. Seamnd, based on the dosen structure, a
clew and explicit relationship between the
parameters that define this gructure with the three
control adions of TPID control have to be derived.
And finaly, the systematic design and tuning
methods of TPID control have to be trandated for
designing and tuning the seleded PID-FLC structure.

Based on the investigation of the relationship
between the gains of TPID control and the scding
fadors of a modified hybrid PID-FLC (MHPID-
FLC), in this paper a new methoddogy for designing
and tuning PID-FLC is presented. First, in sedion 2,
a review of the different structures of PID-FLC is
caried out. Next, in sedion 3, the relationship
between the propational, integral and derivative
adions from TPID control and the scding fadors of
the MHPID-FLC is found through mathematicd
analysis and comparison. Then, in sedion 4, the auto-



tuning methoddogy propcsed by Astrom and
Hagglund (1995 1984) is extended and developed
for automaticdly tuning the scding fadors of the
MHPID-FLC. It is shown how the scding fadors can
be diredly derived from the Ziegler-Nichols
frequency resporse method. As a result the
performance of the MHPID-FLC will be better than,
or at least as good as, that of its traditional
counterpart. Next, in sedion 5, the viability of this
approach is demonstrated by simulating several
benchmark proceses taken from the literature.
Finally, in sedion 6, conclusions and perspedives of
thiswork are given.

2. PID-FLC STRUCTURES

As in traditional control, in fuzzy control there ae
the analogous gructures of the Pl type fuzzy logic
controller (PI-FLC), PD type fuzzy logic controller
(PD-FLC) and the PID type fuzzy logic controller
(PID-FLC). The PI-FLC and PD-FLC have been
extensively studied (Lee 199Q Lee 1993; Jantzen,
1997 Tang and Mulholland, 1987, and have
adhieved wide accetance in both acalemic reseach
and industria applications. However, the PID-FLC is
considered to be sdtill a its ealy stage of
development (Driankov, et al., 1993; Li and Tso,
2000). This is shown by the numerous recent
reseach papers reporting the exploration of different
PID-FLC structures (Jantzen, 1999 Li and Tso 2000;
Mann, et al., 1999 Woo, et al., 2000, Xu, et al.,
2000).

Initially, the PID-FLC structures were designed
considering three terms as inputs (Driankov, et al.,
1993 Abdelnour, et al., 1991). Obvioudy, the rule
base of these fuzzy controllers is threedimensiona
(3-D), which makes it difficult to oktain since 3-D
information is usually beyond the sensing cgpabili ty
of a human expert. To overcome this problem, the
intuitive solution is the combination of a PI-FLC and
a PD-FLC to form a PID-FLC. This idea has been
developed basicdly in two ways, a pardle
combination (PAD-FLC) and a hybrid combination
(HPID-FLC).

The PPID-FLC structure was first proposed by Li
and Gatland (1996, and lately has been studied by
Xu, et al., (2000). In this gructure the three-term
PID-FLC is divided into two separate Pl and PD
parts. Thus two rule bases are used, one for aPI-FLC
and one for a PD-FLC; the output is obtained adding
the respedive aisp control output, as shown in figure
1. This gructure has the alvantage that both rule
bases are two-dimensiona avoiding the difficulty of
designing a 3-D rule base. Consequently the design
of a PID rule base beaomes the design of both a Pl
and a PD rule bases. These two rule bases sare the
same inputs, which reduces the tuning complexity.

The HPID-FLC structure was first proposed by Li
(1997), and lately has been studied by Mann, et al.
(1999), Li and Tso (2000). In the HPID-FLC
structure a common two-dimensional rule base is
employed. This rule base is shared for both the PI-

FLC and the PD-FLC parts, as siown in figure 2. It
means that, once @propriate scding factors are
seleded, a PID control strategy is implemented by
combining a Pl incremental algorithm and a PD
paositional algorithm using a two-term fuzzy control
rule base without any increase in the number of rules.
This smplifiesthe PID-FLC structure asit is smpler,
easier to implement and faster in computation. The Pl
rule base is sleded as the one used, becaise P
control is normally more important for steady state
behaviour.

In both PAD-FLC and HPID-FLC structures (see
figures 1 and 2) GE and GCE are cdled the input
scding fadors, while GU and GCU are cdled the
output scding factors; Ts is the sampling period o
time. Inside these structures a fuzzy control system
(FCS) develops the three well known processes of
fuzzification, rule evaluation and defuzzfication
(Lee 199Q Driankov, et al., 1993). The variables e
and ce are the eror and the change in error defined

by:

€ =Y ~ Y« (0
ce,=e —e._, 2.

where v, is the desired response ad y is the adual
processresponse; k is the sampling instance

In this paper the HPID-FLC structure is ®lected as
the one used for the purpases of this work. However,
it is modified and several considerations are made,
given in next section, in order to make comparisons
with TPID control.
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Fig. 1. PI-FLC + PD-FLC structure for a PPID-FLC.

Fig. 2. Structure for an HPID-FLC.

3. MATHEMATICAL ANALYSIS
AND COMPARISON

First, a TPID controller in digital form can be
expresed as (to avoid confusion, in this work the
symbol * means multi pli cation):

K ce
Upp, = Kp* g +K, *Zei* Ts+ K, *—%
« Ts

k
=Kp* k+i*Zei*Ts+Td*ﬁ 3.
T £ Ts



However, in order to avoid derivative kick in the
implementation of (3) a modified derivative term is
used. Additionally, when the Ziegler-Nichols tuning
formula is applied a set-point weighting factor is
employed to reduce overshoot (Astrom and
Hagglund, 1999, thus (3) is transformed as foll ows,

* D * 1 * . * * Cy [

Upp, = Kp l%ﬁk (yrk _yk)"'?i 2 e* Ts—-Td ?;E
- * * * : * * Cyk
_KP Bk yrk_KPyk+KI I;q TS_KD ?S
...(4)

Observe in (4) that the variable ce in (3) has been

replaced by —cy, , where cyy is defined as,

Y = Y = Y (©).

The incorporation of this last modification in the
HPID-FLC structure modifiesit as gown in figure 3.
This modified HPID-FLC (MHPID-FLC) structure is
the one used here.

Fig. 3. Modified HPID-FLC structure.

Next, if the foll owing assumptions are made:

1. The FCS inside the MHPID-FLC structure is a
first-order Sugeno fuzzy model (Takagi and Sugeno,
1985), with fuzzy rules of the form:

If EisAand CEisBthenu=p*E+g*CE +r

where A and B are fuzzy setsin the antecadent, while
p, g, and r are dl constants.
2. TheFCSrule base mnsists of four rules,

R;: If EisN and CEisN then u=p*E+ ,*CE + 1,
R,: If EisN and CE isPthen u=p,*E + ,*CE +r,
Rs: If EisPand CEisN then u=ps*E + gs*CE + 5
Ry If EisPand CEisPthenu=psfE+ qs*CE + 14

where the mefficient constantsp, =g =1, andr; =0;
fori=1,2,3, 4

3. The universe of discourse for both FCS inputs is
normalised on therange[-1, 1].

4. The membership functions of the input variables,
E and CE, to the FCS are triangular complementary
adjacent fuzzy sets (Escamilla, 1999 Gravel and
Madkenberg, 1995, and they are defined as siown in
figure 4(a). The fuzzy labels means, P = Positive, and
N = Negative.

5. The product-sum compositiona rule of inference
(Kosko, 199?) is used in the stage of rule evaluation.
6. The weighted average is wused in the
defuzzification process

then the FCS inside the MHPID-FLC structure is the
simplest that can be mnsidered, and its output is
given by the sum of itsinputs. This FCS is known as

the normalised and linea FCS (Jantzen, 1999; its
control surfaceis shown in figure 4(b).
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Fig. 4. (8) Membership functions for E and CE; (b)
Control surfaceof the normalised and linea FCS.

Thus, under the asumptions 1 to 6, the PI-FLC and
the PD-FLC output parts (see figure 3) of the
MHPID-FLC are given as,

3 bu oovToca T 3
Ug, = ) (cy *GCU* Ts)=GCU* Ts* » cu,

k Cy [
:GCU*TS*ZJ%E*Q—GCE*—' ©)

Ts b

_ _ ey, C
Upp, =U, *GU =GU * %}E*ek —GCE*T—SKE (@)

Then the MHPID-FL C output Upp is given by adding
(6) and (7),

Upp, =Up, T Upy,
k k
=GCU*GE*Ze,*Ts—GCU*GCE*chi
+GU *GE *e, - GU * GCE * Y«
Ts
k
= GCU *GE*Zei*Ts—GCU *GCE * y,

+GU *GE* (y, - y,)-GU *GCE*%
S

=GU*GE*y, —(GCU * GCE +GU * GE)* y,
k

+GCU * GE * Ze‘ *Ts - GU * GCE * Y«
Ts
)

Comparing (4) and (8) it is noted that the MHPID-
FLC works like a TPID controller with set-point
weighting fador and modified derivative term. The
equivalent set-point weight, propartional, integral,
and derivative mmponents are:

Ks* B =GU *GE €©)

K, =GCU * GCE + GU * GE (10)
K, :%:GCU *GE (11
K, =Ky *T, =GU * GCE 12.

This means that the scding fadors of the MHPID-
FLC can be derived from the propational, integral
and derivative gains obtained for the traditional PID
controller using well known methods, i. e the
Ziegler-Nichols tuning method (Astrom and
Hagglund, 1995. A procedure for this task is
presented in next sedion.



4. AUTO-TUNING OF THE SCALING FACTORS
OF THE MHPID-FLC

If the values of Kp, K|, and Ky are avail able, then the
values of GE, GCE, GU and GCU in the MHPID-
FLC structure can be cdculated in the foll owing way.
The propartional gain gven by (10) can be separated
intwo parts:

K, =GCU * GCE +GU * GE
=a*K, +(1-a)*K, (13

from here it foll ows,

GCU *GCE =a*K, (14
GU*GE =(1-a)*K, (15).

From (9) and (15) it can be diredly deduced that,
B=1-a (16).

From assumption 3 it is clea that the possible values
of E are in the range [-1, 1], thus in order to avoid
saturation, GE is ®leded as:

GE =1 7).
In consequence, from (17), (15) becomes,

GU =(1-a)K, (18).
Inasimilar way, from (17), (11) becomes,

GCU =K, (19).

Caculating GCE from (12) gives,

GCE = Ko (20a),
GU

and from (18) in (20a) gives,

—_ I<D —_ I<D
GU  (1-a)*K,

GCE (200).

Thus, once the parameter o is defined, the scding
fadors can be cdculated using Equations (18) to
(20). But now the question is how should the
parameter a be properly defined? First of all a hasto
satisfy (14) and (18), thusfrom (19) and (20b) in (14)
gives,

Ko Ko —gei, (),

and solving (21) for a gives,
K, *Kp

-—a’+a = - (22).
P
But, from TPID control,
“Ke ok, =k.*T, (@3
K| —T— ! D — ™Np d :

Thus, from (23) in (22) gives,

—a’+a--2=0 (24),

and applying the relation between T, and T4 given by
the Ziegler-Nichols frequency resporse tuning
method (seeTable 1), finally leads to,

—at+g-L=0 (25).
4
Solving equation (25) resultsin,
1
a.=q, == (26).
1 2 2

Finaly, by subgtituting the value of a in (18) and
(20b), the solutions for GU and GCE bemome
straightforward.

The previous development means that the MHPID-
FLC is equivaent to its traditional counterpart given
by (4) when B is sleded as 0.5, cdculated from (16),
and the Ziegler-Nichols frequency response method
is used to ture the ntroller. Additiondly, this
means that based on this development, the relay auto-
tuning algorithm for TPID control (Astrom and
Hagglund, 1984 1995) can be etended and
developed to tune the scaling fadors of the MHPID-
FLC as is explained next. First of al the scaling
fadors have to be afunction of K, and T,, thus from
(18), (19), and (20) gives,

*
GU _ﬁ:O'G—KU_o.:a*Ku (27)
2 2
*
GCU _&_ﬁ_l_z*ﬁ (29),
T 05*T, T,

A
*
N

GCEzz*F’dezz*Td =S :}*Tu (29).
K, 8 4

Table 1 PID parameters acaording to the Ziegler-
Nichols frequency resporse method

Kp T,

i Ty
0.6"K, (1/2)* T,

1/8)* T,

A summary of the relationships between the scding
fadors of the MHPID-FLC, the gains of its
traditional counterpart and the Ziegler-Nichols tuning
frequency response method are given in Table 2. The
value of the parameters K, and T, cdled the
“ultimate gain” and “ultimate period’ respedively,
can be obtained from a relay feedbadk experiment as
shown in figure 5. Therefore, the ultimate gain and
the ultimate frequency can be cdculated from this
experiment as,

K = ;T = * (30),

where h isthe relay amplitude, a is the processoutput
amplitude, and «, is the oscill ation frequency of the
process output. It has been shown by Astrom and
Hagglund (1984 that the ssimple estimation of K, and



T, based on zero-crossng and pedk detedion works
very well. Thus this method is used in this work and
the values found are used to cdculate the scaling
faaors of the MHPID-FLC.

Fig. 5 Relay fealbadk experiment.

Table 2 Relationship between the scaling factors of
the MHPID-FL C, the TPID control gains, and the
Ziegler Nichols frequency response tuning formulae

Based on GE GCE GU GCU
1 K,
Ku, Tu 1 2 T osrk, 127 T
Kp, K, Ko, 1
2 Lek
Ko 1 Ke 2 °F K,
KPan l*K Kp
Ty 1 2*T, o P T,

5. SMULATION AND COMPARISONS

In this sdion the viability of this approach is
demonstrated by simulating several benchmark
processes taken from the literature. Three aito-tuning
experiments for ead processhave been developed in
Matlab environment, together with Simulink and the
Fuzzy Logic Toolbox. The first experiment is
developed to simulate arelay auto-tuning procedure
for the MHPID-FLC. Here the scding fadors are
obtained applying the formulaegiven in Table 2. The
second and the third experiments use the same
procedure but now to tune the gains of the TPID
given by eguation (3), and the TPID given by
equation (4) (referred to as TPID2) with a set-point
weighting fador of 0.5. In these caes the tuning
formulaegivenin Table 1 isapplied.

After a relay experiment a unit step and a unit load
perturbation are introduced on the processes in order
to observe their responses. The process responses
under auto-tuned MHPID-FLC, TPID and TPID2
control are plotted and compared for ead case & is
described next:

1) First-order plus deal time process (Hang, et al.,
1991):

-0.2s
e

(s+1)

G,(s) = (32).

1.6

1.4+

1.2 —— TPID

—— MHPID-FLC
1 and TPID2

- rel a
oal relay and y,

0.6

o Ts=0.04s 1
o Ku=8.006, Tu=0.72 1
O a=0.0159, h=0.1

92 > 4 & 8 10

responses for Gy(9).

2) Seoond-order plus dead time process (Hang, et
al., 1991; Zhuang and Atherton, 1993:

-0.4s

L (32).

G,(s) = (s+1)2

1.4

— MHPID-FLC
and TPRPID2
---- relay and y,

- />\
1L —— TPID . A .

0.8
0.6

0.4

Ts=0.01s

Ku=5.409, Tu=2.94

a=0.02354, h=0.1 1

é 1 b 1 ‘5 Zb 2‘5 3‘0 3‘5 40
Time (sec)

Fig. 7. Comparison of set-point and load dsturbance
responses for Gx(9).

o.2+

O b

-0.2
[e]

3) High-order process(Zhao, et al., 1990):

27 (33.

Gs(8) = i Ds v 3

1.4

1.2
—— TPID P
- —— MHPID-FLC ; \ "
and TPID2 ]
o.s- ---- relay and y, ; B

0.6

0.4

o Ts=0.01s

e o Ku=5.301, Tu=2.7
Of= a=0.02402, h=0.1 1
-o 20 5 10 15 20 25 30 35 40

Time (sec)

Fig. 8. Comparison of set-point and load dsturbance
responses for Gs(9).

4) Non-minimum phase process(Hang, et al., 1991):

1-1.4s
G4(S) = W (34)

--- relay and y,
o6l

0.4r

0.2

Ts=0.01s
Ku=1.419, Tu=7.2
a=0.08974, h=0.1

20 40 60 80 100 120 140

Time (sec)

O‘:‘:HH

-0.2F

-0.4
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Fig. 9. Comparison of set-point and load dsturbance
responses for G4(9).

From the results observed in figures 6 to 9 it is noted
that the overshoot in the step-response (undershoot
for process G4) is excessive when TPID control is
used. But, the overshoat is reduced by approximately
60% when MHPID-FLC and PID2 control are
employed. However, this reduction in overshoot is
acompanied by a smal reduction in the speed of
response (the rise time increases). Note that exadly
the same response is obtained when MHPID-FLC
and TPID2 control are used. Thusit is proved that the
MHPID-FLC is eguivdent to its traditiona
counterpart given by (4) when ( is €leded as 0.5.
This means that the set-point weighting fador is



embedded in the MHPID-FLC structure. Note that in
all cases the load disturbance rejedion is the same.
Thus the MHPID-FLC and the TPID2 controllers
saaifice spead of response to a far smaller degreein
order to oktain a substantial reduction in overshoot
with resped to TPID control. However, this does not
affect the load disturbance response.

6. CONCLUSIONS

A new methoddogy for designing and auto-tuning
the scding fadors of a modified hybrid PID type
fuzzy logic controller (MHPID-FLC) has been
presented. This procedure has been derived from the
establishment of a relationship between the three
adions of traditional PID control and the scding
fadors of the MHPID-FLC. A set of formulae were
derived to cdculate the scaling fadors of the
MHPID-FLC  employing the Ziegler-Nichols
frequency response method. It was proved that the
MHPID-FLC works like aTPID controller with set-
point weighting fador of 0.5 and modified derivative
term. A remarkable point is that, based on the
established relationship, the systematic design and
tuning methods of TPID control can be extended and
developed for applications for designing and tuning
of the MHPID-FLC.

The proposed methoddogy was tested in several
simulated benchmark processes. In all cases the
MHPID-FLC performance is equivalent to its
traditional counterpart with a set-point weighting
fador of 0.5 and modified derivative term. Thus, the
set-point weighting factor is embedded in the
MHPID-FLC structure; it is not necessary to spedfy
it as another variable. However, in this case it is a
fixed value (0.5).

In this gudy the improvement of the MHPID-FLC by
changing the values of the scding fadors or
introducing ronlineaities in the FCS was not
explored. This opens an avenue of investigation that
is being explored by the authors.

REFERENCES

Abdelnour, G.M., C.H. Chang, F.H. Huang and J.Y.
Cheung (199)). Design of a fuzzy controller
using input and output mapping fadors. |EEE
Trans. Syst., Man, Cybern., 21, 952-960,

Astrom, K.J. and T. Hagglund (1984). Automatic
tuning of simple regulators with spedficaions on
phase and amplitude margins. Automatica, 20,
645651

Astrom, K.J. and T. Haggund (199%). PID
Controllers. Theory, Design, and Tuning, 2™
edition. Instrument Society of America, USA.

Driankov, D., H. Helendoan, and M. Reinfrank
(1996). An Introduction to Fuzzy Control.
Springer-Verlag, New York.

Escamilla, P.J. (1999). Expasition and Test of a New
Method d Defuzzficaion for Fuzzy Control
Systems. Proc. |ASTED International Conference

on Control and Applications, July 24-26, Banff,
Alberta, Canada, 503-508

Gravel, A. and H. Madenberg (1995. Mathematicd
analysis of the Sugeno controller lealing to
general design rules. Fuzzy Sets and Systems, 85,
165175

Hang, C.C., K.J. Astrom and W. K. Ho (1991).
Refinements of the Ziegler-Nichols tuning
formula. |EE Proceedings-D, 138, 111-118.

Jantzen, J. (1997). A robustness s$udy of fuzzy
control rules. In: EUFIT (ed.), Proc. Fifth
European Congress on Fuzzy and Intelligent
Technologies, ELITE Foundation, Promenade 9,
D-52076Aachen, 12221227.

Jantzen, J. (1999). Tuning of fuzzy PID controllers.
Online 98-H-871 (fpid), Technicd University of
Denmark: Dept. of Automation,
http://www.iau.dtu.dk/#]j/pubs.

Kosko, B. (1992). Neural Networks and Fuzzy
Systems: A dinamical Approach to Machine
Intelligence. Prentice Hall, USA.

Lee C.C. (1990). Fuzzy Logic in Control Systems:
Fuzzy Logic Controllers, Parts | and Il. IEEE
Trans. Syst., Man, Cybern., 20, 404-435

Lee J. (1993). On methods for improving
performance of Pl-type fuzzy logic controllers.
|IEEE Trans. Fuzzy Syst., 1, 298-301

Li, H.-X. and H.B. Gatland (1996. Conventional
fuzzy control and its enhancement. |IEEE Trans.
Syst., Man, Cybern., Part B, 26, 791-797.

Li, H.-X. (1997. A comparative design and tuning
for conventional fuzzy control. IEEE Trans. Syst.,
Man, Cybern., Part B, 27, 884-889.

Li, H.-X. and SK. Tso (2000). Quantitative design
and analysis of fuzzy propartional-integral-
derivative @ntrold a step towards autotuning.
Int. J. Syst. Sci., 31, 545-553

Mann, G.K.I, B.G. Hu and R.G. Gosine (1999.
Analysis of dired adion fuzzy PID controller
structures. |EEE Trans. Syst., Man, Cybern., Part
B, 29, 371-388.

Mann, G.K.I, B.G. Hu and R.G. Gosine (2001). Two-
level tuning of fuzzy PID controllers. IEEE
Trans. Syst., Man, Cybern., Part B, 31, 263-269.

Takagi, T. and M. Sugeno (1985. Fuzzy
identification of systems and its applicaions to
modeling and control. |IEEE Trans. Syst., Man,
Cybern., SMC-15, 116-132.

Tang, K.L. and R.J. Mulholland (1987. Comparing
fuzzy logic with classicd controller designs.
|EEE Trans. Syst., Man, Cybern., SM C-17, 1085-
1087

Woo, Z.-W., H.-Y. Chung and J.-J. Lin (2000. A
PID type fuzzy controller with self-tuning scaling
fadors. Fuzzy Sets and Systems, 115, 321-326.

Xu, JX., C.C. Hang and C. Liu (2000. Paralel
structure and tuning of a fuzzy PID controller.
Automatica, 36, 673-684.

Zhao, Z.-Y., M. Tomizuka ad S. Isaka (1993.
Fuzzy gain scheduling of PID Controllers. IEEE
Trans. Syst., Man, Cybern., 23, 1392-1398.

Zhuang, M. and D.P. Atherton (1993. Autotuning of
optimum PID controllers. |IEE Proceedings-D,
140, 216-224.




