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ABSTRACT

This research work concerns the development of novel adaptive multi-sensor data fusion
(MSDF) architectures which combine fuzzy logic, neuro-fuzzy and Kaman filtering techniques.

A novel adaptive scheme of the Kalman filter employing the principles of fuzzy logic is
presented (referred to as fuzzy logic-based adaptive Kalman filter - FL-AKF). The adaptation is
in the sense of dynamically adjusting the measurement noise covariance matrix R and/or the
process noise covariance matrix Q from data as they are obtained.

An original hybrid MSDF architecture integrating the FL-AKF and a fuzzy logic performance
assessment scheme is proposed (referred to as FL-AKF-FLA). This architecture merges the
measurement vectors coming from multiple sensors and obtains a fused state-vector estimate
which better reflects the actual value of the parameters being measured.

The MSDF architectures based on the standard Kalman filter (SKF) are extended and devel oped
by including the FL-AKF. As a result, three novel adaptive MSDF architectures referred to as:
fuzzy logic-based adaptive centralised Kalman filter (FL-ACKF), fuzzy logic-based adaptive
decentralised Kaman filter (FL-ADKF), and fuzzy |ogic-based adaptive federated Kalman filter
(FL-AFKF), are proposed.

A neuro-fuzzy-SKF system identifier and state estimator scheme is simplified and combined
with the FL-AKF to develop a novel neuro-fuzzy-adaptive Kalman filter approach, referred to
as neuro-fuzzy-AKF. The implementation of the FL-AKF-FLA MSDF architecture to fuse the
estimates performed by multiple neuro-fuzzy-AKFsis also proposed.

The FL-ADKF is employed in anovel structure to design and auto-tune a modified hybrid PID-
type fuzzy logic controller (MHPID-FLC) embedded in a multiple sensory environment. First, a
new methodology for designing and tuning the scaling factors of the MHPID-FL C is presented.
Second, the well-known relay auto-tuning algorithm is extended and developed for applications
to the auto-tuning of the scaling factors of the MHPID-FLC. Finally, an approach which
combines alow-order modelling method with the FL-ADKF M SDF architecture is proposed.

Examples developed under the MATLAB/SIMULINK simulation environment are presented to
validate the proposed approaches. Good results are obtained in all cases.



ACKNOWLEDGEMENTS

| specially would like to thank my supervisor, Dr. Neil Mort, whas hcarefully read this
manuscript and provided me with valuable comments and discussigasling this research
work. Thanks also for his supervision throughout the period of this researchmpreg.

| am very grateful to the “Consejo Nacional de Ciencia gnbéogia” (CONACYT - México)
for the financial support during this research project.

| also want to express my gratitude to my wife, Lupita, forihekhaustible source of love,
support and patience throughout this endeavour. | dedicate thistthégisand to my parents,
Ines and Primitivo.



CONTENTS

AB S T R A T ottt e s [
ACKNOWLEDGEMENTS ..ot e e e e e e e e e e e aeens ii
L INTRODUCGTION ..ttt e e e et e e e et e e e et e e re e n e ene e 1
1.1 THE MULTI-SENSOR DATA FUSION APPROACH AND
OBJECTIVES OF THIS RESEARCH PROGRAMME ..o, 1
1.2 MULTI-SENSOR INTEGRATION VERSUS FUSION ..........cooiiiinnl2
1.3 MOTIVATION FOR MSDF ... e e e e e e e e e e 5
1.4 OVERVIEW OF THE THESIS ... e e e e e 5
L5 CONTRIBUTIONS ..o e e e e e e e 7
2 MULTI-SENSOR DATA FUSION TECHNIQUES ..., 8
2.1 GENERAL MULTI-SENSOR DATA FUSION METHODS .........ccoiiiiiiiiie s 8
2.2 ESTIMATION METHODS ... .o e e e 8
2.2 1 WEIGHTED AVERAGE ... e e 8
2.2.2 KALMAN FILTERING ... e e e e e e e e 9
2.3 CLASSIFICATION METHODS ... e e e e e e 10
2.3.1 K-MEANS CLUSTERING ..ot e e 10
2.3.2 KOHONEN FEATURE MAPS ..o e 11
2.4 INFERENCE METHODS ... e e e e e e e e e e ee e e 13
2.4.1 BAYESIAN INFERENCE ...t e e e e e 13
2.4.2 DEMPSTER-SHAFER EVIDENTIAL REASONING .........ccoiiiiiiiiieenn, 15
2.5 ARTIFICIAL INTELLIGENCE METHODS ..o 17
2.5 1 FUZZY LOGIC .o e e 17
2.5.2 NEURAL NETWORKS ... e e e e e 18
2.6 SUMM A RY .o e 20
3 NEURO-FUZZY SYSTEMS ... e e e e e 21
3. L INTRODUCTION oo e e e e e e et e e e e reere e e 21
3.2 FUZZY INFERENCE SYSTEMS ... e e 22
3.2.1 FUZZIFICATION PROCESS ...t e e 23
3.2.2 PROCESS OF RULE EVALUATION ... 23
3.2.3 DEFUZZIFICATION PROCESS ...t e 28
3.2.4 TYPES OF FUZZY INFERENCE SYSTEMS ...t 29
3.3 ARTIFICIAL NEURAL NETWORKS ... e e 31
3.4 NEURO-FUZZY SYSTEMS ... o e e e e 33
3.4.1 FUZZY NEURAL NETWORKS SYSTEMS ... e 34
3.4.2 CONCURRENT NEURAL/FUZZY SYSTEMS .......ccooiiiiiiii e, 35
3.4.3 COOPERATIVE NEURO-FUZZY MODELS ..ot 35
3.4.3.a COOPERATIVE NEURO-FUZZY SYSTEMS THAT LEARN
FUZZY SETS OFFLINE ... 36



3.4.3.b COOPERATIVE NEURO-FUZZY SYSTEMS THAT LEARN

FUZZY RULES OFFLINE ... e e, 36
3.4.3.c COOPERATIVE NEURO-FUZZY SYSTEMS THAT LEARN
FUZZY SETS ONLINE ... e 36
3.4.3.d COOPERATIVE NEURO-FUZZY SYSTEMS THAT LEARN
RULE WEIGHTS ... e e e 37
3.4.4 HYBRID NEURO-FUZZY MODELS ... e 37
3.5 B-SPLINE BASED HYBRID NEURO-FUZZY SYSTEMS .........ccoiiiiiiiiii e, 38
3.6 SUMM A RY o e 43

4 KALMAN FILTERING AND MULTI-SENSOR DATA FUSION

ARCHITECTURES ..o eee oo, 45
A1 INTRODUCTION ..o e e 45
4.2 THE KALMAN FILTER ALGORITHM ..ot oo oo, 45

4.2.1 ALTERNATIVE FORM OF THE KALMAN FILTER ALGORITHM ........... 48
4.2.2 CONSISTENCY OF THE KALMAN FILTER ALGORITHM ........cccvvenn.... 49
4.3 MULTI-SENSOR DATA FUSION ARCHITECTURES BASED ON THE
KALMAN FILTER ..o e oee oo, 50
4.3.1 CENTRALISED KALMAN FILTER ... veeie oo oo, 51
4.3.2 DECENTRALISED KALMAN FILTER ... ooveo ot 52
4.3.2.a DECENTRALISED KALMAN FILTERING WITH FEEDBACK ......53
4.3.3 FEDERATED KALMAN FILTER ... .oveit oottt oo, 54
B.4 SUMMARY ..o e 56
5 ADAPTIVE KALMAN FILTERING THROUGH FUZZY LOGIC ....ooeoveoveeeeeeen] 57
5.1 STATEMENT OF THE PROBLEM AND MOTIVATION .....ovoveeeeieeeeeeeeee, 57
5.2 TRADITIONAL ADAPTIVE KALMAN FILTER APPROACHES ......oovioveeeene.) 58
5.2.1 MULTIPLE MODEL ADAPTIVE ESTIMATION ALGORITHM ................ 58
5.2.2 INNOVATION BASED ADAPTIVE ESTIMATION ALGORITHM ............ 60
5.3 DEVELOPMENT OF A FUZZY LOGIC-BASED ADAPTIVE KALMAN FILTER..61
5.3.1 PREVIOUS WORKS ...ttt oo, 61

5.3.2 THE PROPOSED FUZZY LOGIC-BASED ADAPTIVE KALMAN FILTER ..62
5.3.2.a ADAPTIVE ESTIMATION OF THE MEASUREMENT

NOISE COVARIANCE MATRIXR(ONLY ....covviiiiiiiiiiiiiie e, 62
5.3.2.b ADAPTIVE ESTIMATION OF THE PROCESS NOISE
COVARIANCE MATRIX Q ONLY . 66

5.3.2.c ADAPTIVE ESTIMATION OF THE MEASUREMENT AND
PROCESS NOISE COVARIANCE MATRICE® AND Q,

SIMULTANEOQUSLY ..o e 69

5.3.3 STABILITY OF THE ADJUSTING PROCEDURE ...............ccooiiis 69
5.3.4 ILLUSTRATIVE EXAMPLE ... oo e e 69
5.4 SUMM A RY .ot e 80



6 HYBRID KALMAN FILTER-FUZZY LOGIC ADAPTIVE MULTI-SENSOR

DATA FUSION ARCHITECTURES ...t e e e e 81
6.1 INTRODUCTION ...ttt e et e e e e et e e e e e e 81
6.2 PROBLEM FORMULATION ...ttt e e et et e e e 81
6.3 HYBRID ADAPTIVE MSDF ARCHITECTURES ..., 82

6.3.1 HYBRID ARCHITECTURE FL-AKF-FLA ... o 82

6.3.2 FUZZY LOGIC-BASED ADAPTIVE CENTRALISED KALMAN FILTER ...85
6.3.3 FUZZY LOGIC-BASED ADAPTIVE DECENTRALISED KALMAN

FILTER o e 88
6.3.4 FUZZY LOGIC-BASED ADAPTIVE FEDERATED KALMAN FILTER ...... 89
6.4 ILLUSTRATIVE EXAMPLE ... e et e e 92
6.4.1 ANALYSIS AND COMPARISON OF FAULT-TOLERANT
CHARACTERISTICS ... e e 103
6.5 DISCUSSION ..ot e e e e e e e e e e 113
6.6 SUMM A RY .. e 114

7 HYBRID NEURO-FUZZY-KALMAN FILTER ADAPTIVE MULTI-SENSOR

DATA FUSION ARCHITECTURE ..ot e e e e 116
7.1 INTRODUCTION ..ttt e e e e e e e e e e e e e 116
7.2 THE NEURO-FUZZY-SKF STATE ESTIMATOR ..o 116

7.2.1 TRAINING OF THE NEURO-FUZZY-SKF STATE ESTIMATOR ............ 124
7.3 THE SIMPLIFIED NEURO-FUZZY-SKF STATE ESTIMATOR .........cccvvvivnenn. 126
7.4 THE NEURO-FUZZY-AKF STATE ESTIMATOR ..o e 129
7.5 MSDF USING THE NEURO-FUZZY-AKF STATE ESTIMATOR .................. 131
7.6 SIMULATION RESULTS ...t e e e e e e e e 132
7.7 SUMM AR RY i e e e 146

8 APPLICATION OF THE HYBRID MULTI-SENSOR DATA FUSION

ARCHITECTURES IN CONTROL SYSTEMS ... e 147
8.1 INTRODUCTION ..t e e e e e e e e e e e eanes 147
8.2 ANOVEL DESIGN AND TUNING PROCEDURE FOR PID TYPE FUZZY

LOGIC CONTROLLERS ... e e e e e e 147
8.2.1 TRADITIONAL PID AND PID TYPE FUZZY LOGIC CONTROL
STRUCTURES ... e e e 148
8.2.2 MATHEMATICAL ANALYSIS AND COMPARISON .......ccoviiiiiininnn. 150
8.2.3 DESIGNING AND TUNING OF THE MODIFIED HYBRID PID-FLC ........ 153
8.2.3.a FINE-TUNING THE MHPID-FLC BY MODIFYING THE
SCALING FACTORS ... e 155
8.2.3.b FINE-TUNING THE MHPID-FLC BY MODIFYING THE
CONTROL SURFACE OF THE FCS INSIDE THE STRUCTURE ..... 155
8.2.4 AUTO-TUNING OF THE SCALING FACTORS OF THE MHPID-FLC ...... 156
8.2.5 SIMULATION AND COMPARISONS ..., 157
8.3 AUTO-TUNING AND MHPID-FLC USING MULTIPLE NOISY SENSORS ........ 159



8.3.1 MODEL IDENTIFIER AND TRANSLATOR TO STATE-SPACE

REPRESENTATION ..ot e e e e e 161
8.3.2 NOISE AMPLITUDE ANALYSER AND SIGNAL SELECTOR ............... 164
8.3.3 IDENTIFICATION AND AUTO-TUNING PROCEDURE USING
MULTIPLE NOISY SENSORS ... e 164
8.3.4 ILLUSTRATIVE EXAMPLES ... e e 165
8.4 SUMM A RY .ottt e e 170
O CONCLUSIONS ..o e e e e e et e e et e e e e 171
9.1 MAIN RESULTS AND CONCLUSIONS OF THIS RESEARCH WORK ............. 171
9.2 PROSPECTIVE FUTURE WORKS ... e 177

APPENDIX A THEORY OF FUZZY SETS: NOTATION, TERMINOLOGY AND

BASIC OPERATIONS ... e 179
A.1 FUZZY SETS AND TERMINOLOGY ....oiiiiiiiii e e e e 179
A.2 OPERATIONS ON FUZZY SETS ...ttt e e e e e e e e 180
A.3 T-NORM AND S-NORM ...ttt e e e e e e e e e e 182
APPENDIX B SIMULINK MODELS ... e e e e e 183
B.1 MAIN SIMULINK MODELS USED IN CHAPTER S ... 183
B.2 MAIN SIMULINK MODELS USED IN CHAPTER 6 .......ccooviiiiiiiice e, 186
B.3 MAIN SIMULINK MODELS USED IN CHAPTER 7 ....coiiiiii e, 193
B.4 MAIN SIMULINK MODELS USED IN CHAPTER 8 ... 197
REFERENCES ... e e e e e e e et et e e e e e 199

Vi



CHAPTER 1
INTRODUCTION

1.1 The multi-sensor data fusion approach and objectives of thissearch programme

When analysing a physical system, e. g. a chemical processt &xchanger, an aircraft etc.,
an engineer first attempts to develop a mathematical modehteafuately represents some
aspects of the behaviour of the system [Maybeck, 1979]. Next, he/she camatedbt system
structure and modes of response by using the derived model and tate@rby system and
control theories. If needed, compensators to alter these thistics and provide appropriate
inputs to generate desired system responses may be designeevelr| the actual system
behaviour only can be observed through measurement devices or sendousteohn® produce
output data signals proportional to certain variables of isitefithese sensor signals and the
known inputs to the system constitute the only information thditéstly discernible about the
system behaviour. In most cases a single sensor cannot prédvide mformation required
about the system under consideration. In addition, the observatideshya sensor are always
subject to certain level of uncertainty and occasionally #yeyspurious or incorrect. In short,
there is no such thing as a perfect sensor. Single sensamsylsive no means of reducing this
intrinsic uncertainty or in testing for erroneous measuremé&hesefore, the possible failure of
the sensor will result in complete system failure; sirsglesor systems are not robust and may
fail with drastic consequences in critical systems [DurVdhite, 1991]. Hence, there are
several reasons to support the use of a number of different snsoes in order to have a
clearer and more robust picture of the system behaviour. Tleesers yield functionally
related signals, but now the problem is how to merge or fuse #ignals to generate the best
estimate of the variables of interest based on partiatlyn@ant and/or complementary data.
This is the kernel of the Multi-Sensor Data Fusion approach.

Within the above context,tlie Multi-Sensor Data Fusion (MSDF) approach can be
defined as the acquisition, processing, and synergistic comhbtion of information
gathered by various sensor devices and knowledge sources toovide a better
understanding of a phenomenon under consideratidiVVarshney, 1997]. Therefore, the idea
of any MSDF approach is to create a synergistic processhinh the consolidation of
individual data creates a combined information resource with @ asaurate and reliable value
than that offered by any individual sensor.

MSDF technology has undergone rapid growth since the late 1980tse ptésent time, the
MSDF approach is in fast development and with a broad sphere ofadigpigc In the past, the
main applications of MSDF were made in military surveillanoemmand and control [Waltz
and Buede, 1986] [Luo and Kay, 1989] [Luo and Kay, 1992]. Nowadays, the applichtion o
MSDF techniques has spread to a wide variety of fields susbatics, aerospace engineering,
image processing, medical diagnostics, and pattern recognition flLalp 2002] [Grossmann,
1998] [Varshney, 1997].

Most of the proposed methods for MSDF make explicit assumpdiomist the nature of the
sensed information. The most common assumptions include the use of a measmaaeéfir
each sensor, the incorporation of a statistically independenivad@iaussian noise term as a
way of modelling the uncertainty (error) in the sensory datd,the assumption of statistical
independence between the error terms for each sensor. gdl dlssumptions are made with the
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objectives of enabling the application of a broader variet®DF techniques and making the
mathematics involved tractable.

One of the most traditional techniques to develop MSDF isnKalfiltering. The Kalman
filter [Kalman, 1960] is an optimal linear estimator which impmates all the information that
can be provided to it. It processes all available measuremegtedless of their precision, to
estimate the current value of the variables of intereish use of (1) knowledge of the system
and measurement device dynamics, (2) the statistical déscripf the system noises,
measurement errors, and uncertainty in the dynamics models, aady(&8Yailable information
about initial conditions of the variables of interest [Maybeck, 1979].

Recently, non-traditional techniques also have been used to develop B§Rithms. In
particular, fuzzy and neuro-fuzzy systems have demonstrated ciyg@bility to deal with
uncertain and inexact information in control and system modeMagris et al, 2002] [Brown
and Harris, 1994]. This has inspired their application in other aresding MSDF [Kuo and
Cohen, 1999] [Kobayashit al, 1998]. Both of these techniques belong to the so-called
“artificial intelligence” technology, usually referred towasll as the “soft computing” approach
[Zadeh, 1994].

The great interest in creating machines and systemsahanienic the behaviour of humans
has given origin to artificial intelligence technology. The maaradigms for generating
intelligence in machines and systems include artificial newtavorks, evolutionary computing
techniques, fuzzy systems, intelligent agents as welhasdifferent combinations of these
approaches [Harrist al, 2002]. All these techniques are aimed at dealing with daterdri
processes subject to imprecision, uncertainty, non-lineartiesvahdittle prior knowledge.
From the different possible combinations of these techniquesnaisé successful of them is
referred to as the neuro-fuzzy systems approach.

Different techniques are being considered and investigated idefieatment of Automatic
Control and System Engineering at the University of Shefftelddevelop novel MSDF
algorithms. These algorithms range from those based on tratigchaiques, such as the well-
established Kalman filtering methods [Mirabadi, 1999], to thosedbaseideas from non-
traditional techniques derived from artificial intelligenechnology [Prajitno, 2002]. However,
little work has been made in exploring architectures considénmgombination or fusion of
both these approachéihe overall aim of the research project “Intelligent Adaptive Multi-
Sensor Data Fusion Using Hybrid Architectures” carried out h ACSE was especially
focused to investigate the utilisation of synergistic combations of fuzzy logic, neuro-fuzzy
and Kalman filtering techniques to design novel adaptive ISDF architectures capable of
dealing with uncertain and inexact information provided by imperfect sensors.The word
“hybrid” in the title of this research project refers twe tactual combination of traditional
techniques with non-traditional techniques to reach the intended wbjecti

1.2 Multi-sensor integration versus fusion

Commonly, in the literature the multi-sensor integration and metttsar fusion terms are used
interchangeably without any distinction. However, a distinctionveéen the two concepts is
needed in order to separate the more general issues involved imetpation of multiple
sensory devices at the system architecture and control fewel,the more specific issues
involving the actual fusion of sensory information [Luo and Kay, 1989is drstinction is
given in this section, as well as a description of the maiti+sersor integration models found
in the literature, while a complete description of the most lpopdSDF algorithms is reserved
for chapter 2.
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Multi-sensor integration is the synergistic use of the mhdiron provided by multiple
sensory devices to assist in the accomplishment of a taskdygtem [Luo and Kay, 1989;
1992][Luoet al, 2002]. Multi-sensor fusion refers to any stage in the integrptiotess where
there is an actual combination or fusion of different sourcesen$ory information into one
representational format [Lut al, 2002].

Sensor integration is carried out using a hierarchical steiejpproach. These structures are
useful in allowing an efficient representation of the différiorms, levels, and resolutions of
the information used for sensory processing and control ftwb, 2002]. Examples are the
USA National Bureau of Standards (NBS) sensory and controlr¢ligrf_uo and Kay, 1989,
1992], and the Joint Directors of Laboratories (JDL) modeldl [&fad Llinas, 1997][Hall,
2002].

The NBS model was developed during the implementation of an exgeehiactory called
the Automated Manufacturing Research Facility (AMRF). Onéhefabjectives of the AMRF
was the implementation of a multi-sensor interactive hieraathdobot control system. As can
be seen in figure 1.1, the NBS model is a layered architecturerewcomplex tasks are
partitioned into many progressively simpler tasks at lowezl$e The main idea in this control
structure is an ascending sensory processing hierarchy coupled descending task-
decomposition control hierarchy via the world models at each. [&hel division in levels of
processing and control is based on the observation that the complexritgaoitrol program
grows exponentially as the number of sensors and their assopratessing increases. The
idea is to reduce the complexity by isolating related portiorikeofequired processing at one
level.

SENSORY WORLD TASK

PROCESSING MODEL DESCOMPOTITION
A
COMPLEX
TASK
PART-IDENTITY | siMPLE.-TASK
RELATIONSHIPS GENERATOR
HIGH-LEVEL
SENSoRY e WoRLD | sieLe
PROCESSINC y
PART-POSITION ELEMENTAL
> MOVE
ORIENTATION GENERATOR
'NTSE;NMSEODR'?TE < WgRLD < ELOEMENTAL
PROCESSING MODEL v °VE
PROXIMITY ACTION
> PRIMITIVE
EDGES GENERATOR
LOW-LEVEL ACTION
WORLD
SENSORY < MODEL [® PRIMITIVE
PROCESSING (X Y Z)
XY ZPOSITION | coorDINATE
FORCE | TRANSFORMER
COORDINATE . WORLD | 4, de
TRANSFORMER [V MoDEL [%
A
A
JOINT POSITION
> SERVOS
VELOCITY
JOINT-POSITION | WORLD | DRIVE
SCALING < MoDEL [% SIGNALS

SENSOR
DATA

ENVIRONMENT

Figure 1.1 NBS sensory and control hierarchy used to controlltisensory robot (adapted
from [Luo and Kay, 1989]).
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The JDL data fusion process model is a conceptual model whiclifieketie processes,
functions, categories of techniques, and specific techniques applioahle data fusion process
[Hall and Llinas, 1997] [Hall, 2002] [Varshney, 1997]. The basic comporérités model are
shown in figure 1.2. A short description of each block is given as follows:

Information sources. Here is included information coming from sensors angtiori
information from databases or human inputs.

Source pre-processing. The objective of this block is to provide timely ane tmost
pertinent data to the current situation in order to reduce miogekad. This can be
accomplished by data pre-screening and allocating data to appropriate rocesse
Level one processing (object refinement). Here, positional, parametric, and identity
information of an entity are fused. This processing involees basic functions: data
alignment (transformation of data to a common set of co-ordiret@sunits), tracking
(refinement of position, velocity and other object attributes), data assodjebrrelation

of data with objects), and identification (refinement of the objectistiyeestimate).

Level two processing (situation refinement). Processing at this level attempts to make a
contextual description of the relationship between objects andrvaos events. A
contextual meaning to a collection of entities is assignede Iteis incorporated
environmental informatiorg priori knowledge, and observations.

Level three processing (threat refinement). At this level, based on the current situation,
projections are made in order to evaluate future threats dromdversary. This task is
fairly difficult because inferencing is based not only onultssthat can be obtained by
computation but also on the strategies, tactics, doctrine, and gdaditicironment of the
opposition.

Process refinement. This is a meta-process, a process concerned about other psottesse
monitors the fusion process performance, identifies informati@dete to improve
system performance, and allocates sensors and resources éweatiée mission
objectives.

Database management. This is an important function required to support a sucgkessf
fusion system. Functions needed are data retrieval, storegdyirg, compression,
relational queries and data protection.

Human computer interaction. This interface provides a mechanism for human input and
communication of data fusion results to operators and users. éxddiyi, there are
provided methods of directing human attention as well as augmerdantion, e.g.,
overcoming the human difficulty in processing negative information.

/ | DATA FUSION DOMAIN | \

Level Two Level Three
Situation ‘ Threat

Level One
Source Object
Pre-processin Refinement
r 3 S F' N

Refinement Refinement

Human
y N N y
Sources|+ ' T . . 7Y ‘ » Computer
Interaction

\4

| Database Management Syste

D
Support Fusion
I Databasg¢ Databasg /

Level Four
Process
Refinement

Figure 1.2 Basic components of the JDL data fusion process model (adaptgddtio@002]).
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Although the JDL model was originally developed for military aggians, it has been used
widely as a conceptual framework for the data fusion procdsstinmilitary and non-military
applications. However, it has its limitations, i.e., it doeshamdle adequately the multi-image
fusion problem. But still it serves the purpose of unifying the dasion concepts and
providing a common terminology.

1.3 Motivation for MSDF

A MSDF algorithm can play a very important role in a syst&his role can be evaluated with
reference to the possible advantages that can be gainedhnthtmigynergistic use of multi-
sensory information. These advantages can be decomposed into a tiomlwhfour primary
aspects [Luo and Kay, 198@rossmann, 1998] [Varshney, 1997]:

a) Redundancy: Redundant information is provided from a group sbisefor a single
sensor over time) when each sensor perceives, possibly wdiffieeent accuracy, the same
feature in the environment. The fusion of redundant information ednce the overall
uncertainty and thus increase the accuracy with which the ésatve sensed by the system. At
the same time, multiple sensors providing redundant data indteasehole reliability in the
case of a sensor error or failure. If one or more sensdrsrfare unable to operate, then the
system can continue to operate at a reduced performance level.

b) Complementarity: Multiple sensors are able to perceivieifesin the environment that
are impossible to perceive using just a single sensor. Mulignhsors can observe a region
larger than the one observable by a single sensor. In addititeredif sensors can provide
different types of information appropriate under different circumstaand for different tasks.

¢) Timeliness: The speed of information provided by multiple sensay be greater than
that provided by a single sensor due to either the actual speedrafiop of each sensor, or the
processing parallelism that may be possible to achieve asopatthe fusion process.
Furthermore, since multiple sensors collect more dataestipbed level of performance can be
attained in a shorter time.

d) Cost of the information: Less costly information canob¢ained with multiple cheap
sensors compared to the cost of the equivalent information abtéiom a single highly
reliable but costly sensor.

More data and more sensors do not necessarily mean best tidormihe advantages
gained through having multiple sensory data must be balanced with the possiilaaks such
as increased complexity or cost of the total system.

1.4 Overview of the thesis

The first task carried out in this investigation was toiewvthe main existing MSDF
algorithms. These algorithms can be broadly classified by itie & techniques used in the
fusion process as estimation methods, classification methodenoéemethods, and artificial
intelligence methods [Luo et al 2002]. In chapter 2 a review ofntbet popular MSDF
algorithms in each class is given. The algorithms includedfram estimation methods: the
weighted average and the Kalman filter approaches; fromifidaisn methods: the K-means
algorithm and the Kohonen feature map; from inference method8atyesian inference and
the Dempster-Shafer methods; and from artificial intelligentethods: the adaptive neural
networks and fuzzy logic approaches.
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From all the methods presented in chapter 2, Kalman filterimgyflogic and neural
networks are core to this thesis. Therefore, in chapter 3 adsreaplanation of fuzzy inference
systems (FIS), neural networks (NN) and neuro-fuzzy systdrass{inergistic combination of
FIS and NN) is given. A neuro-fuzzy system of particulaergst in this research work is that
which makes use of B-spline basis functions to implement metmpefunctions. Thus, the
reviewing of this class of neuro-fuzzy systems also is includedapter 3.

Before proposing MSDF architectures which consider the combinatiglafan filtering
with fuzzy logic techniques, in chapter 4 a more detailed exptamafi the standard Kalman
filter algorithm and the Kalman filter-based MSDF approachestralised Kalman filter,
decentralised Kalman filter, and federated Kalman filteg, reviewed. A popular alternative
form of the standard Kalman filter also is reviewed. An impdrissue in Kalman filtering is
the consistency of the estimates performed by the filter. Tdrerdwo statistical tests to verify
this aspect of the standard Kalman filter algorithm are examined iochidyter.

The problem of improving the performance of the standard Kalmtar {iEKF), and in
consequence the MSDF algorithms based on it, can be divided in tvg) @amodelling
problem and an estimation problem. The estimation problem is conceithealchieving better
estimates through the proper use of the available processeasim@ment information. In that
sense, the parameters to be adjusted to improve the performanme noaintain filter
consistency are the statistical process noise and measumrisninformation, the covariance
matricesR andQ in the SKF. The SKF formulation assumes compéegeiori knowledge of
these process and measurement noise statistics. Whilst offearthassumed to be constant
matrices, they may vary with time and, if this is sonttiee nature of this variation is assumed
to be known as well. However, in most practical applications thesgices are initially
estimated or, in fact, are unknown. Therefore, using a SKF desigitie fixed noise statistics
in a changing dynamic environment is a major drawback. Thug ihenotivation for making
the SKF adaptive with respect to the changing environment. Ineshapn on-line adaptive
scheme of the Kalman filter employing the principles of fuzzy logic is praesdnte referred to
as fuzzy logic-based adaptive Kalman filter (FL-AKF). Thiaatation carried out is in the
sense of adaptively adjusting the noise covariance matRcasd/or Q from data as it is
obtained.

The SKF based MSDF architectures reviewed in chapter 4reegxact knowledge about
the sensed environment and about the sensors. However, in reahtagpmiconly certain
information is known about these elements. Therefore, in Chapterréaétaptive MSDF
architectures based on the proposed FL-AKF are developed. Thh#ectures are referred to
as: fuzzy logic-based adaptive Kalman filter with fuzzy lgaggeformance assessment scheme
(FL-AKF-FLA), fuzzy logic-based adaptive centralised Kalnfitter (FL-ACKF), fuzzy logic-
based adaptive decentralised Kalman filter (FL-ADKF), andzyfulbgic-based adaptive
federated Kalman filter (FL-AFKF).

Whilst chapters 5 and 6 deal with the problem of estimatiompoove the performance of
the SKF and the MSDF algorithms based on it, chapter 7 deals wittothedling problem. The
modelling problem is concerned with the development of better mdukisnore accurately
describe the system under consideration. Because for lireansy/generally a model exists or
can readily be obtained, in this chapter only non-linear systeesonsidered. In that sense,
first the neuro-fuzzy-SKF developed by Haretsal [1999, 2000, 2002] is reviewed. Then, a
simplified version of the neuro-fuzzy-SKF estimator is digwed. After that, a novel neuro-
fuzzy adaptive Kalman filter (neuro-fuzzy-AKF) is designeddzhon the inclusion of the FL-
AKEF in the neuro-fuzzy-SKF structure. Finally, the hybrid MSDéhéecture FL-AKF-FLA is
used to merge the estimates obtained from several neuro-fuzzy-AKFs.
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Although the developed MSDF architectures can be applied toaal bange of problems,
one application which is of great interest for the author is in fuzzyaa@ystems. In that sense,
in chapter 8 first, a novel designing and tuning procedure fortyfi® fuzzy logic controllers
(PID-FLC) is developed. Next, the auto-tuning procedure proposed thgrisnd Hagglund
[1984] is extended and developed for tuning the scaling factoRIFLC. Then a novel
procedure for auto-tuning PID-FLC by using multiple noisy sensormgdsented. Here the
developed MSDF architectures of chapter 6 can be applied. However, onpplication of the
FL-ADKF is exemplified.

Finally, in chapter 9 the conclusions and prospective future snvofkthe research are
presented.

1.5 Contributions

The following list provides a summary of the main contributiorsslenby the author in this
research programme:

» The development of a novel Fuzzy Logic-based Adaptive Kalmiger fFL-AKF) which
synergistically combines Kalman filtering and fuzzy logic techniques.

» The development of a novel MSDF architecture based on FL-AKBsaafuzzy logic
performance assessment scheme (referred to as FL-AKF-FLA atgré)ec

» The development of three hybrid adaptive MSDF architectuesd on the proposed FL-
AKF. These architectures are referred to as: fuzzy logiedbadaptive centralised Kalman
filter (FL-ACKF), fuzzy logic-based adaptive decentralisgGaman filter (FL-ADKF), and
fuzzy logic-based adaptive federated Kalman filter (FL-AFKF).

» The simplification of the neuro-fuzzy modelling network stuoetproposed by Harrit al
[1999, 2000, 2002].

» The simplification of the neuro-fuzzy-standard Kalman filteeuro-fuzzy-SKF) state
estimator proposed by Haresal [1999, 2000, 2002].

* The development of a novel neuro-fuzzy-adaptive Kalman fffieuro-fuzzy-AKF) state
estimator which synergistically combines Kalman filterifiugzy logic, and neuro-fuzzy
techniques.

» The application of the FL-AKF-FLA MSDF architecture neerge the estimates obtained
from multiple neuro-fuzzy-AKFs

» The development of a novel design and tuning procedure for PID tymy fogic
controllers.

» The development of an auto-tuning procedure for PID type fuzzy logic derdrol

» The application of the developed FL-ADKF architecture in dbéo-tuning of PID type
fuzzy logic controllers using multiple noisy sensors.



CHAPTER 2
MULTI-SENSOR DATA FUSION TECHNIQUES

2.1 General multi-sensor data fusion methods

Over the years several MSDF algorithms have been developegpplied, individually and in
combination, providing users with different degrees of informatitatail. The MSDF
algorithms can be classified by levels in accordance withatheunt of information they
provide or by the kind of techniques used in the actual fusion process.

As shown in Table 2.1, by the kind of techniques used in the fusion pribeed4SDF
algorithms can be broadly classified as follows: estimati@thods, classification methods,
inference methods, and artificial intelligence methods [Luol €082]. In this chapter an
overview of MSDF algorithms selected as being typical, fesoh class in Table 2.1, are
presented as follows. From estimation methods: the weightedgavand the Kalman filter
approaches; from classification methods: the K-means algoritdnth@ Kohonen feature map;
from inference methods: the Bayesian inference and the Dem$isafer methods; and from
artificial intelligence methods: the adaptive neural networks arry fogic approaches.

Table 2.1 Multi-sensor fusion algorithms classification

Estimation methods Non recursive:

Weighted average

Least squares
Recursive:

Kalman filtering

Extended Kalman filtering
Classification methods Parametric templates
Cluster analysis
Learning vector quantization (LVQ)
K-means clustering
Kohonen feature map
ART, ARTMAP, Fuzzy-ART network
Inference methods Bayesian inference
Dempster-Shafer method
Generalized evidence processing
Artificial Intelligence methods Expert systems
Adaptive neural networks
Fuzzy logic

2.2 Estimation methods

2.2.1 Weighted average

One of the simplest and most intuitive general methods ofosatsa fusion is to take a
weighted average of redundant information provided by a group ofrsemsd use this as the
fused value [Luo and Kay, 1992].
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Formally, the weighted averageNfsensor measurementsvith weights G w; < 1 is,
X =2 WX (2.1)

whereziwi =1 andw; = 0 if x; is not within some specified thresholds. The weights can be used

to account for the differences in accuracy between sensors, and a movaggazer be used to
fuse together a sequence of measurements from a single sengbat the more recent
measurements are given a greater weight.

If the x, i=1,2,...N measurements are assumed to be independent normally distributed
random variables, with distributioN (X ,aiz), then a linear weighted mean aggregation model
combining these random variables into one random varbqlite given by [Basir and Shen,

1999]:
Xi = BX + By Xy (2.2)
with variance,
2

ot = Blo; +--- Bioy (2.3)

wheref is a positive weighting factor calculated by,

A=t @4
o, JZ:;O_JZ
with,
2.5 =1 (2.5).

This method allows real-time processing of dynamic low-ldegh. However, in most cases
the Kalman filter method is preferred because it provides thaudethat is nearly equal in
processing requirements and, in contrast to a weighted ayeesglts in estimates for the fused
data that are optimal in a statistical sense.

2.2.2 Kalman filtering

The Kalman filter [Kalman, 1960] is a recursive, linear, opkimeal time data processing
algorithm used to estimate the states of a dynamic systeamnioisy environment. Kalman
filtering is used in several multisensor systems. Maiilig used in those systems where it is
necessary to fuse dynamic low-level redundant data in real lfiradinear model exist which
describes the system under consideration, and both the systemrmod sgors can be
modelled as Gaussian noise, then the Kalman filter will prouitigue statistically optimal
estimates for the fused data. The recursive characteristic dt¢henakes it appropriate for use
in systems without large data storage capabilities.
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The Kalman filtering can be applied in three different waysM8DF purposes: Centralised
(or standard Kalman filtering), decentralised, and federatth#h filtering [Mirabadiet al,
1996]. In centralised Kalman filtering, the data from all the @mnis fed into one filter where
all measurements are processed centrally to yield an opgtohaion. High computational load
on the processor and also lack of robustness are the disadvantagemefthbis.

In decentralised Kalman filtering, the standard Kalman fikedivided into one or more
sensor-dedicated local filters and a master filter. Operaity, to obtain a global solution, the
master filter periodically fuses outputs of local fitevorking in parallel. The computation load
in this method is significantly reduced and the results maydely suboptimal but globally
optimal.

The federated method of Kalman filtering is sometimes recagjrisea special case of the
decentralised method. It employs the principle of informatiomirgipamong the local Kalman
filters to improve the fault tolerance performance of theesydGaoet al, 1993]. The possible
information to be shared includes the kinematics process ,ntige initial conditions
information, and common measurement information.

Due to the importance of the Kalman filter algorithm for theettgpment of the proposed
hybrid MSDF architectures, a broader description of it anddifierent MSDF architectures
based on it are given in chapter 4.

2.3 Classification methods

2.3.1 K-means clustering

The K-means clustering algorithm partitions a collection wéctorsx;, j=1,...n, into m groups
(or clusters)G;, i=1,... mand finds a cluster centerin each group such that a cost function (or
an objective function) of dissimilarity (or distance) measgrminimised [Jangt al, 1997]. If
the Euclidean distance is chosen as the dissimilarity mebstween a vectot, in groupj and
the corresponding cluster centgrthen the cost function is defined as:

1=33,= z( 3 x, —cf] (2.6),

i=1 i=1\ k,x, 0G;

whereJ, =Y |, —¢|” is the cost function within group Thus, the value af, depends

on the geometrical properties @f and the location af;.
Therefore the K-means clustering algorithm follows four basic steps:

(1) Initialise the cluster centexs,...,c, by randomly selectingh points from among all
of the data points.

(2) Define the partitioned groups by building a matrix known as memigensairix U,
which is anmxn binary matrix, where the elemeanf is 1 if thej-th data point;
belongs to group and 0 otherwise, this is:
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2

, for each k#i

. 2
y =t I x;=a <l =g (2.7),
0 otherwise
which means that poing; is assigned to groupif ¢ is the closest center among all
centers.

(3) Compute the cost function in accordance with (2.6). The procedure is stopped if either
the cost function is below a certain tolerance value or ipsdw@ment over previous
iteration is below a certain threshold.

(4) Update the cluster centers accordance with:

G =2 DX (2.8),

where/G| is the size of Gor |G| = Z?zlu” ; and go to step 2.

Although the K-means algorithm is one of the most widely usedecingttechniques it has
several drawbacks. The K-means algorithm performance depentie @hdice of the initial
cluster centers [Jargy al, 1997]. Additionally, there is no guarantee that it will coneeim an
optimum solution. Also, for solving large problems, a great amouctroputational effort will
be required.

2.3.2 Kohonen feature maps

In this section a special type of neural network named the KoHeagme map, also known as
the self-organising map (SOM) network [Kohonen, 1990], is reviewkdough, the general
artificial neural networks approach is discussed in se@idr?2. The SOM is a two layered
neural network that can learn from complex, multi-dimensional datdransform them into
visually decipherable clusters [Kiang, 2001]. The SOM network pagainsupervised training
based on the competitive learning paradigm [Jangl, 1997]. Unsupervised learning is
characterised in that it does not require the knowledge ofttaedees. The nodes in the
network converge to form clusters to represent groups ofemntitith similar properties. The
number and composition of clusters can be visually determined badbd output distribution
generated by the training process.

The SOM network has two layers of nhodes, as shown in figura) 2thé input layer and the
Kohonen (or output) layer. The input layer is fully connectedh¢otivo-dimensional Kohonen
layer. The activation of each unit in the Kohonen layer is detexnby multiplying the input
from each input unit by its corresponding synaptic weight and then summing for albtie tio
a particular Kohonen unit. Mathematically, this is the dot producthef input vector
X=[Xs,....x,]" and the weight vectar=[wix,... W] .

a =Zn:xjvvij =x'w, (2.9)

where g is the activation value of Kohonen unjtand the ternwj; is the weight connecting
inputj with Kohonen unii. Since in most SOM networks each input unit is connected to each
Kohonen unit, a single processing cycle is the computation of the dot product of theeictput
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and the weighimatrix, which is composed of all the weight vectors of all the units & th
Kohonen layer. Typically, the weight vectors and the input veadoe normalized before this
operation.

After calculating the activation values, the Kohonen unit with ldrgest activation is
declared “the winner”. Then, the weights of the winning unit ardat¢d to more closely
resemble the input vector that just stimulated it. An impotantept in SOM networks is that
not only the winning unit's weights are updated, but also all ef uhits’ weights in a
neighbourhood (see figure 2.1(b)) around the winner unit. As a result of thigsple steps the
network undergoes self-organization.

O EO OABE(/Winner uni
Kohonen_y, i c :
layer O i © @ i‘_ Neighbouring
O O O :

O

®) units

@W - 0.9 L2
«— O O OO

X1 X2 layer

Figure 2.1 (a) A Kohonen SOM network with 2 inputs and 16 output; (bikseighbourhood
around a winner unit.

The learning procedure used in the SOM network uses a diynitaeasure to select a
winning unit, which is the one with the largest activation. Théing of the SOM network
follows next procedure:

(1) A winning output unit is selected as the one with the largeslasity measure between
all weight vectorsy; and the input vectax. When the Euclidean distance is chosen as
the dissimilarity measure the winning uaatisfies the following equation:

[x-w||= miin||x—wi|| (2.10),

where the index refers to the winning unit.

(2) Let Nc denote a set of index corresponding to a neighbourhood around winflee
weights of the winner and its neighbouring units are then updated by:

W (t+1) = W (t) +a[x(t) —w; ()] i TDN() (2.11)
‘ w, (t) if i ON_(t) o

wheret = 0,1,2,... is an integer representing the discrete time co-tediaads is a small
positive learning rate. The neighbourhood of a winning unit can firedeby using a
neighbourhood function Q(i) around a winning unit. One example of neighbourhood
function is the Gaussian function defined as:

_” pi - pc”2
2

Q. =exp oy

(2.12),
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wherep; andp, are the positions of the output uni@ndc, respectivelyoreflects the scope
of the neighbourhood. By using (2.12), (2.11) transforms to:

w; (t+1) = w, (t) +7Q. ()[x(t) — w; (t)] (2.13),
wherei is the index for all output units.

It is suggested that in order to achieve better conveegéhe learning ratg and size of
neighbourhooa should be gradually decreased with time [Kohonen, 1990].

2.4 Inference methods

2.4.1 Bayesian inference

Different sensor fusion algorithms have been devised accordittigetoules of probability
theory [Luo and Kay, 1992, 1989] [Larsen, 1998] [Walts and Bude, 198&iicWParly,

Bayesian inference uses Bayes’ rule for calculating the conditora posteriori probability of
a hypothesis being true given supporting evidence.

In general terms, Bayes’ rule evaluates the probabiligcofirrence of an arbitrary evefut
assuming that another evdéhhas occurred:

P(BA)P(A)

P(AB) = P(B)

(2.14),

where:

P(A|B) = a posteriori probability of occurrence of eveAtgiven that evenB has occurred.
P(BJA) = probability of B conditioned on the occurrence Af as well referred to as the
likelihood function ofA.
P(A) =apriori probability ofA.

Commonly, Bayes’ rule is thought of in terms of updating the babeiit a hypothesi& in
the light of new evidencB. Thus, theposterior belief P(A|B) is calculated by multiplying the
prior beliefP(A) by thelikelihood P(B|A) thatB will occur if A is true. The denominat&(B) in
(2.14) is just a normalising constant that ensures the postalis @ to 1.P(B) can be
calculated by summing the numerator over all possible valuks of

P(B) =Y P(BJA)P(A) (2.15).

For multi-sensor data fusion purposes [Larsen, 1998] [Klein, 1999¢Bayle is generally
used to support the fusion of identity information concerning somgepty of an object. This
information is usually expressed in form of hypotheses about thétydefthe object. Because
of this, the field is referred to adentity fusion. For example, consider a g®8tcontainingN
mutually exclusive and exhaustive hypotheses concerning the identity of s@ue obj

©={H,,H,,...,H} (2.16).
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A sensor, database, or human can express belief in these hypothassst by probabilities
(apriori probabilities) P(©):

P(©) ={P(H,),P(H,),...,P(H )} (2.17)
where:
zN: P(H,)=1 (2.18).

Now, consider that there anesensors reporting parametric datée.g. IR signatures, radar
cross section, pulse repetition interval, etc) about an objeasevidentity is unknown. This
represents new evidence about the object’s identity hypotHebiased on the sensor-specific
observations. Next, given a probability distributie(i;), and an observatian (the sub-scrip
means that the data is coming from jttle sensor), an updated probability distributiB(tl;[z),
contemplating the observation can be calculated using Baylkes’provided the conditional
probability distributionP(z|H;), of the measurement is known [Larsen, 1998]:

P(H, 12,) = o ) (2.19),

> P(z, [H)P(H,)

where a likelihood function or conditional probability(z|H;), is the probability of sensor
output beingg givenH; is true. Here, the probability of a hypothesifl;), before fusion is the
a priori probability and the updated probabili®(H;|z), is thea posteriori probability. The a

priori and likelihood probability distributions are usually found usindame amount of

statistical data obtained by offline experiments or by anagygie information available in the
problem at hand [Klein, 1999].

Thus, the probability of having observed objetbm the set oN objects given evidenca
from sensor 1, evidena from sensor 2, etc., is:

ID(H||Z:]_m Zzn'”m Zm)! I:lvam (220)

Finally, a joint declaration of identity can be selected by applgidgcision rule. If the most
probable hypothesi®(H,|z n z, n---n z,) is selected as true, then the decision rule is referred

to as themaximum a posteriori (MAP). Other decision rules exist, as timeximum likelihood,
Neyman—Pearson, etc., an explanation of these rules can be found in [Klein, 199§japhical
representation of an identity fusion process using Bayesian inferemmis s figure 2.2.

Thus, the Bayesian inference method provides a mathemadtigatlise to combine identity
declarations from multiple sensors to obtain a new improved jdentity declaration. As
inputs, the method requires the likelihood functi®(@|H;) for each sensor and entity and the a
priori probabilities that the hypothesesHB(are true. Ifa priori information does not exist
about the relative likelihood d;, then the principle of indifference can be used in whidth)P(
for alli are set equal.

Bayesian theorem implementation in data fusion is limitedhis/technique’s inability to
depict the level of uncertainty in a particular sensor stateyel as its inability to ensure
consistency in a collection of interrelated propositions. Ottegjuently cited drawbacks of a
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Bayesian inference-based data fusion algorithm are its loeemguter processing and memory
requirements.

apriori probability of hypothesis vector
P(zi|H1) A/(N-Hypoteses)
71 | P(z1|H2)
Sensor —¥»
P(z1|Hn) a posteriori probability vector
Fused
P(z|H (
2 PEZEIHS P(Hizinzon ... 0 Zm) Identity
Sensor —¥» —PBAYES'_>P(H2|zmzzn...nzm) DECISION | Declaration
P( 'lH ) RULE : > RULE >
z . :
. il P(Hnlzin 220 ... 0 Zm)
) P(zm|H1)
Zm_ | P(zm|H2)
Sensom —»
P(zm|Hn)

Figure 2.2 Graphical representation of an identity fusion process usingi@ay&erence.

2.4.2 DempsterShafer evidential reasoning

Dempster—Shafer Evidential Reasoning (DSER) is an alteenettiBayesian inference. DSER
is a generalisation of the Bayesian inference approach tleas @ffway to combine uncertain
information from disparate sensor sources [Bogler, 1987].

For example, consider the same set of hypotheses as before:
©={H,,H,,....,H} (2.21).

In DSER the set of hypotheses is calledftiame of discernment, and each hypothesis @
is called asingleton. A disjunction of singletons is referred to agraposition. The set of all 2
possible propositions, denoted b¥, 2s the power set of ©. Thus, 2 contains all possible
subsets 00, including® itself, the empty set &, and each of the singletons, this is:

2° ={@{H,},... . {H L{H,OH,},....{H,OH,0...0H}} (2.22).

Conversely to the Bayesian inference where evigldias to be represented as a vectdy of
probabilities relating only to the singletons (twethypotheses i®), in DSER evidence is
represented as probabilityasses relating to one or more propositions.

The actual distribution of probability masses amtregpropositions is defined usingmass
function:

m:2° - [0, 1] (2.23),

and termed as lgasic probability assignment (BPA). Thus, (2.23) maps a unit probability mass
or belief across the elements §fubject to next conditions:

m(@) = 0 (2.24)
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D> m(A) =1 (2.25).

A02°

wherem(A) is calledA’s basic probability number (BPN) or simply thanass of A. Any subseiA
of ® with m(A) > 0 for a particular belief function is calledagal element of that function.

If a given source or sensor expresses some evidenere the masses sum up to less than
one, the remaining mass is assigned to the dispumaif all singletons H;H,...[Hy)
sometimes referred to as tieneral level of uncertainty.

The total suppor® committed to a particular propositiénis the sum of all masses assigned
to all proper subse® of A:

S(A) = Zm(B) (2.26),

BOA

whereSA) is called thesupport (or belief) function of A, and defines the lower probability or
minimum likelihood of each propositioh In a similar manner, another function is defigd

PI(A) =1-S(A) (2.27),

where PI(A) is known as theplausibility function of A, Ais the complement of\, i.e.
A=0-A;andS(A) is called thedoubt function of A:

Dbt(A) = S(A) (2.28).

The plausibility function determines the upperhadoility or maximum likelihood oA and
represents the mass that is free to move to thgosupf A as additional information becomes
available. Plausibility can be though of as theeekto which the evidence does not support the
negation of a proposition [Henkind and Harrisorga8l9

The difference between the plausibility and thepsupfunction is known as thancertainty
function of A, u(A). This is:

u(A) =PI(A) -SA) (2.29).
whereu(A) represents the mass that has not been assigneddgainst belief ir\.

The DSER approach allows the representation of igrarance concerning the proposition
A sinceS(A) = 0 does not implpbt(A) > 0, even thougidbt(A) = 1 does implyS(A) = 0. This
cannot be possible in the Bayesian approach wi@je= 0 for all ADJ2°. The interval formed
by combining the support with the plausibility 8f is known as theuncertainty interval:
[S(A),PI(A)]. The uncertainty interval represents, by its mfagle, how conclusive the
information is for propositiorA. For example, the interval [0,1] represents togalorance
concerningA. Whereas the intervals [0,0] and [1,1] represAnas being false and true,
respectively. A graphical representation of thevabmoncepts is shown in figure 2.3.

Thus, DSER provides the formalism to combine tlobability masses provided by multiple
sensors for compatible propositions. Propositiomscampatible when their intersection exists.
The intersection of the propositions having thgéat probability mass is selected as the output
of the fusion process. Thereforegzifs a piece of evidence (a measurement from a eetis
induces BPAmM, andz is a piece of evidence which induces B then the BPA induced by
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the conjunction of evidence andz is denoted byn O m. The DSER theory defines the
following combination rule (which is known as Dertgyss rule) for determiningn [ m when
AzD:

>, m(X)m,(Y)
m O m,(A) = 1- Z'ﬂ(x)mj ) (2.30),

XnY=@g

where X,Y O 2°. Thus, (2.25) specifies the combined probabilitgse assigned to A. The
combination of the two propositions is also knowrtaking theorthogonal sum.

<“-Uncertainty intervat®

— —

0 Support Plausibility 1
Based on Based on
<q—supporting—p <«— refuting —p»
evidence evidence

«

Plausible — either supported by
evidence orunknown

Figure 2.3 Support, plausibility, and uncertaintierval for a proposition (adapted from [Klein,
1999)).

The denominator in (2.30) is a normalisation fa¢tat forces the new masses to sum to
unity. It can be viewed as a measure of the degfreenflict or inconsistency in the information
provided by the sensors. Note that if the factdy the sensors are completely inconsistent and
then the orthogonal sum operation is undefinedeNas well, that by definition @ must be
assigned a mass probability of zero.

The main criticism of DSER is that it is not agdhetically rigorous as Bayesian approach.
In addition, a major disadvantage of DSER is thatdlgorithm’s computational complexity is
significantly higher compared to Bayesian fusiorprapch (as®© increases, 2 increases
exponentially).

2.5 Artificial intelligence methods

2.5.1 Fuzzy logic

If traditional logic (referred to here as crisp ilggis defined as the science that studies the
formal principles of reasoning, then fuzzy logiandae defined as the science that studies the
formal principles of approximated reasoning [Zaddl988], of which crisp reasoning
(traditional reasoning) is a particular case. Fupgyc has its origin in the theory fifizzy sets,

first proposed by Zadeh in 1965 as a way of dealuity the inexact nature of the human
reasoning [Zadeh, 1965]. With his proposal, Zad#&bred a more appropriate conceptual
scheme to represent the knowledge expressed imah#&nguage than that provided by crisp
logic.

Fuzzy logic was motivated by the necessity to fandconceptual structure adequate to
manipulate the inherent vagueness and imprecisiesept in the representation that humans
have of the world. Fuzzy logic rests in the affitima that a concept generally has not defined
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borders. In crisp logic concepts are forced to hatweipt limits. However, people do not use
abrupt limits when expressing ideas about concepts.

In fuzzy logic an object is not restricted to beally a member or totally not a member of a
given set. Here an object is allowed to be paytialmember of different sets at the same time,
but at different degrees. This is possible becaufigzzy sets theory membership is a matter of
degree [Zadeh, 1977], and thus, an object may lsageade of membership intermediate
between zero (non-membership) and unity (full mewsitig), this is in the whole range [0,1].
The grade in which an object is member of a sééfsed by anembership function.

In addition to membership functions, in fuzzy logidferent operators exist which are
analogous to those found in crisp logic. Operatimm$uzzy sets such as union, intersection, and
complement are defined in order to manipulate fumemberships. A description of the main
operations on fuzzy sets is given in appendix A.

Thus, fuzzy logic offers a framework that can bedut represent processes of multi-sensor
fusion [Hirotaet al, 1992]. Each sensor reading can be viewed as abership function of a
fuzzy set. Fuzzy rules can be defined for quamgya fused reading using the values of the
membership functions. Then the information comigr different sensors can be combined by
means of a fuzzy inference system (FIS), whereyfsets are used as adjectives in a qualitative
rule base. The effect of each rule in the infergmoeess is proportional to the degree of truth
of the fuzzy sets associated with it. Therefore,ubing fuzzy sets the uncertainty in multi-
sensor fusion can be directly represented in tfeance (i. e., fusion) process. This is possible
because each proposition, as well as the actudicetipn operator, are allowed to be assigned
a real number from 0 to 1 to indicate its degreérwth [Luo et al, 2002]. Consistent logical
inference can take place if the uncertainty offtison process is modelled in some systematic
fashion. A broader description of the inferencecpes carried out in a FIS is presented in
Chapter 3.

A disadvantage in fuzzy-logic based approachdhds as the number of inputs (sensors)
grows, the number of rules grows as well. As a equence, the inference process will require
significant computational resources.

2.5.2 Neural networks

In section 2.3.2 the self-organising map, whichaispecial type of neural network, was
discussed. In this section the general artificiaumal networks approach is reviewed. An
artificial neural network or simply a neural netkwofNN) is defined as a collection of
processing elements (called neurons) and connewt@ghts. The neurons and weights are
structured in a network which is able to perforrmapping from an input space to an output
spaceR'- R" [Gupta and Rao, 1994]. A NN can have several &yand each layer can have
more than one neuron. The arrangement of neurdagens or stages of processing is supposed
to mimic the layered structure of a certain portdithe human brain.

The main function of each neuron in a NN is to perf a mapping fronR" to R, This
mapping involves two distinct processing stage® fifst one is a summation of the weighted
inputs. While the second one involves the applicatf an activation function to the sum
obtained in the first stage. The activation funtttan be one of many types, which can generate
continuous or discrete outputs.

The main characteristic of a NN is its capabilifystoring knowledge in the connection
weights A procedure calledearning algorithm is used to successively adjust the connection
weights in order to find those values for whichedtér approximation is obtained to the desired
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output. The learning algorithms can be either stiped or unsupervised. A supervised learning
algorithm is that which involves the presentatidrraining input-output data and a subsequent
modification of the network weights to achieve tlesired mapping between inputs and outputs.
An unsupervised learning algorithm involves thespreation of the input data only, followed
by a self-organisation of the network through a ification of the network weights.

The network structure, which includes many neurt connection weights, is what gives a
NN its computational capabilities. NNs have beemcsssfully applied in several areas
including pattern recognition, system identificati@nd control systems. A broader description
of how a NN works is given in Chapter 3.

One of the applications of NNs in MSDF is in whakhown as feature-level fusion [Klein,
1999], as is graphically represented in figure 2slis shown there, target features are extracted
from several sensors, e.g. millimetre-wave radassive infrared sensor, and laser radar. These
features are combined to form a composite vectidrithused as input to a NN. The NN, which
has been trained off-line to recognise the targétsiterest and differentiate them from false
targets, assigns observed objects to particulasetawith some degree of confidence. It is
necessary to remark that the training should b&opred using information coming
simultaneously from all the sensors. If one or newasors are replaced for one of a different
type, then the training procedure must be repeated.

Avtificial
MMW radar Neural Networ
features
\A Form Target
Passive IR Extract |:> composite classification or
features features feature |dent|f|_<:a'F|on
vector and priority
Laser rada,r/v
features

Figure 2.4 Feature-level fusion using an artificiatral network.

In general, NNs can be applied to solve threeclpMSDF problems [Corcoran and
Lowery, 1995]:classification, quantification and description. Classification problems are those
where a system is required to relate the multidsi@ral input data to a predefined class that
represents the state of the input space. An examiplihis kind of problem is condition
monitoring, where multi-sensor information is ugedindicate the condition of a process or
system, and any faults that may exist in that gec&uantification problems are those
involving the processing of multi-sensor informatito describe the input space in order to
extract the values of primary variables within thpace. An example of this type of problem is
that of measuring vehicle exhaust emissions ugiogsesensitive sensors, where concentrations
of component gases such as carbon monoxide amsusitxide need to be extracted and
assigned a value, e. g. 25 parts per million [Caenec@nd Lowery, 1995]. Description problems
involve the extraction and presentation of meanihgfeatures or concepts that are
representative of the input space. An example isfkimd of problem might be the calculation
of the overall risk of a road-vehicle accident datieg on multi-sensor data describing the
vehicle speed, proximity to other vehicles, visipiand road conditions.

Due to their computational capabilities, NNs aeedming more widely used as processing
tools to solve problems where multi-sensor infoiamats involved. The reason is that NNs are
able to provide a mechanism for the enhancemetiteofjuality of information derived from
multiple sensors.
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2.6 Summary

MSDF algorithms can be classified by the kind eht@ques used in the fusion process namely
estimation methods, classification methods, infeeemethods, and artificial intelligence
methods. In this chapter a review of the most papMSDF algorithms in each class has been
presented.

From the estimation methods, the weighted avenagihod is a very intuitive and simple
method. However, Kalman filtering is preferred hemthe solution it provides is optimal in a
statistical sense and its computational requiresndoés not increase a lot compared with those
of the weighted average method.

In classification methods the main task is toipart a multidimensional feature space into
distinct regions, each representing an identificatr identity class. Two popular methods for
this kind of task are K-means clustering and thdndfen feature map. K-means clustering
algorithm is one of the commonly used unsupervisathing algorithms. While an adaptive K-
means update rule forms the basis of the Kohoretarie map approach.

From inference methods, Bayesian inference allmwiisensor information to be combined
in accordance with the rules of probability theoBarticularly, Bayes’ rule provides a
relationship between the priori probability of a hypothesis, the conditional prioltity of an
observation given a hypothesis, angosteriori probability of the hypothesis. Dempster-Shafer
reasoning is an extension of the Bayesin inferaamaroach that make explicit any lack of
information concerning a proposition’s probabilityy separating firm support for the
proposition from just its plausibility.

Finally, from artificial intelligence methods, ditial neural networks can be trained to
represent sensor information and, through assoodat#!, complex combinations of neurons
can be activated in response to different sengimub [Luo et al, 2002]. Fuzzy logic allows
the uncertainty in multisensor fusion to be dingattpresented, by using fuzzy sets, in the
inference process.

The selection of any algorithm in an actual appiicahas to be made in accordance with the
problem under consideration and having in mind @abgective of the sensor fusion process.
From all the methods presented in this chaptermial filtering, fuzzy logic and neural
networks are core to this thesis. Therefore, irptéva3 a broader explanation of fuzzy systems,
neural networks and neuro-fuzzy systems (the systergcombination of fuzzy systems and
neural networks) is given. While in chapter 4, arendetailed explanation of the Kalman
filtering-based MSDF approaches is presented.



CHAPTER 3
NEURO-FUZZY SYSTEMS

3.1 Introduction

There are two concepts that are inherent to the human reasongrgcision and uncertainty.
Because of that, our way of interpreting the world is genedalhe using vague propositions,
uncertain data or appreciative judgements. However, thisokidkinking is not captured in
traditional logic and traditional computing. This fact hasnbgerceived by several thinkers that
in the past have tried to develop a mathematical structureleagfatapturing this characteristic
of the human way of thinking. As a result, several approdudes been devised and nowadays
they are grouped in the so-called Soft Computing (SC) technology.

Soft computing (SC) is a term coined by Lotfi A. Zadeh [Zadeh, 19Bd]father of fuzzy
logic [Zadeh, 1965], to refer to systems that try to mimic thiétya of the human mind to
effectively employ modes of reasoning that are approximakerrdhan exact. In traditional
(hard) computing any imprecision and uncertainty is considered asitaile. By contrast in
SC the aim is to design systems capable of exploiting theatalerfor imprecision and
uncertainty, learning from examples, and adapting to changes in the operatitigeendi

SC is not a technique alone, but a group of them. The princigalbers of SC are fuzzy
logic (FL), neural networks (NN), genetic computing (GC), and pribstb reasoning (PR)
[Tsoukalas and Uhrig, 1997]. The main contributions of FL in SC are a methodologylfogdea
with imprecision, approximate reasoning, rule-based systems,camguting with words. NN
contributes with system identification, learning, and adaptation. €@tributes with
systematised random search and optimisation. PR contributes wiikiodemaking and
management of uncertainty. Thus, these methodologies are isticeegnd complementary
rather than competitive. For this reason, it is advantageousséo them in different
combinations, leading to the so-called “hybrid intelligent systefdsing et al 1997].
Nowadays, the most visible and successful hybrid intelligestesys of this type are neuro-
fuzzy systems.

Neuro-fuzzy systems integrate two complementary approachesy fagic and neural
networks. On the one hand, neural networks are capable of reioggpatterns and adapting
themselves to cope with changing environments; if theretéssalailable, or if it can be learned
from a simulation or real task, then a neural network can ée. &econdly, fuzzy inference
systems incorporate human knowledge and perform inferencing antbdeueking; if there is
knowledge that can be expressed in rules, then a fuzzy syatetredouilt. What neuro-fuzzy
systems do is put together in a single methodology all the al@aracteristics. Therefore these
characteristics are desirable in any MSDF architecture.

In the last chapter different techniques of MSDF were destriligere were included those
architectures which make use, separately, of fuzzy logic and|neemaorks technologies.
However, as one of the objectives of this work is the ldpwmeent of intelligent MSDF using
hybrid architectures, which include both these techniques, inhbjster fuzzy systems, neural
networks, and neuro-fuzzy systems are broadly described. The copoeptnted here will be
used in later chapters.

21
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3.2 Fuzzy inference systems

Imprecision and uncertainty are inherent concepts which pdddhe inexact nature of human
reasoning. As a result, our way of interpreting the world is gipeseen as a function of vague
propositions, uncertain data and appreciative judgements. Howleigeway of thinking is not
taken into account in traditional logic (here referred to asp clogic), where only two
fundamental premises exist: true and false, 0 and 1. Lotfi A. Zadefeaahis and created a
new logic, called fuzzy logic [Zadeh, 1973], in order to attemptdpture the uncertainty
present in our reasoning when interpreting the world. Thig liegbased on the theory falzzy
sets[Zadeh, 1965] proposed in his seminal paper of 1965.

The main purpose of fuzzy logic is to allow the use of vague ptmde characterize the
variables of a system and its interrelations using words @opitions expressed in a natural or
artificial language. This is possible because, in fuzzy gwery, an object is no longer
restricted to be totally a member or not a member of a set. dnste@lement may have a grade
of membership intermediate between full membership and non-mdrihensthe whole range
[0,1]. For example, if an object has a degree of membersiiy db a particular set, the same
element has a degree of membership of 0.3 to the complemiait skt. Evidently, the theory
of fuzzy sets is an extension of the traditional theory t=, sehere this last case is included at
the extremes. In other words, whereas in traditional logic hasehard borders, in fuzzy logic
the borders of a set are not sharply defined. Instead, the bardessft allowing an object a
smooth transition between being member or not a member of aufmrtet. Therefore, using
fuzzy logic, systems can be designed to be able to capture, fartheof heuristic rules, the
ability that all human beings possess to model a system or process using aaduralé.

In its origins, due to its name, fuzzy logic was consideredmething obscure and without
mathematical or logical foundation. Consequently, after Zadehspghlihis article, this new
logic remained in the background. However, in 1973 Professor E. Mawaididuei University of
London used, for the first time, fuzzy logic to design the autenwatntrol of a small steam
machine, giving the origin to fuzzy control systems (FCS) oryfumference systems (FIS).
Since the publication in 1975 of the results obtained by Mamdani [Manzshal Assilian,
1975], FISs have had a great variety of applications rangingifrdustrial processes to home
appliances. Nowadays, FISs are applied in a wide range of iaphading automatic control,
signal processing, time-series prediction, informationienst, data classification, decision
making, and so on.

Fuzzy Inference System

Knowledge Base

Fuzzy sets
Fuzzy operators

Fuzzy rule base
Inference engine

Real input l Real output
values value

P Rule P
—P» Fuzzification . —»| Defuzzification
evaluation

Figure 3.1 Basic structure of a FIS.

In general terms, &uzzy inference syste(RIS) is a computing framework based on the
concepts of fuzzy logic [Jang et al, 1997]. The basic structure of a FIS ia ghéigure 3.1. As
can be seen, a FIS consists of 3 fundamental procdszesication, rule evaluationand
defuzzification All these processes are assisted iyawledge baswhich comprises a fuzzy
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rule base, an inference engine, fuzzy sets and fuzzy operatdise following sections, a
description of these processes is given.

3.2.1 Fuzzification process

The knowledge is represented inside a FIS through a fuzzypbaske and fuzzy sets. Thus, in
order to perform inferences inside the FIS, using an inferamgieeeand fuzzy operators, it is
necessary to transform the real-valued input informatianfimtzy sets. This transformation is
carried out through a process knowrfiazification

For simplicity, consider a multiple-input single-output (MISO) ARSI R" - R, whereU is
a compact universe of discourse; the procedazfificationmaps the real input vectar= (x,,
Xor--.% ) O R to fuzzy sets defined i. Where a fuzzy set in a universe of discourds is
characterised by a membership functief):U - [0,1], which associates with each element
of U a real numbers(u) that lies in the unit interval [0,1], with-(u) representing the grade of
membership ofi in F. F may be a linguistic label such ssall, very small, big, very higtc.
Thesupportof F is the crisp set of points 1o at whichg:(u)>0. A fuzzy set whose support is a
single point inUJ with t(-) = 1.0 is referred to dazzy singletofiZzadeh, 1965, 1973, 1977].

Specifically, ifx is an input variable to the FIS, arnd= x, O U is an input value, then the
output of the process of fuzzification is a fuzat m U, F = fuzzifie(x,); where the operator
fuzzifiertransforms the real input valugto a linguistic value or fuzzy sd,

There are several different methods to developptbbeess of fuzzification, but two are the
most popular:

a) Singleton fuzzification. This method maps the inputo a fuzzy singletonfF, with
membership function:

1 if x=
e { o (3.1)

0 in any other case

b) Approximated fuzzification:
()20 only andonlyif  |[x—x,|<d (3.2)

whered is a parameter that is determined in accordanitetivé context of each application.

In most applications reported in the literature thnctionF = fuzzifie(x,) takes the special
form of F = x, for each measured value of the variable of intghstphy, 1991]. In other words,
a crisp value at the input of a FIS is mapped togleton defined by the poing (1 U. Usually, if
the input to the FIS is a measurement, then thefiitetzon procedure used is the singleton one.

3.2.2 Process of rule evaluation

In general terms, the processrole evaluationinvolves a fuzzy rule base and a fuzzy inference
engine. A fuzzy rule base is integrated by a set of linguistic rules exgpiagbe form:” if a set

of conditions is satisfiedhen a set of actions is takenThe partif of the rule is known as the
antecedent, and the pénen of the rule is known as the consequent.
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The inference engine is an interpreter of the rule bsséask is the calculation of a fuzzy
conclusion from a set of fuzzy if-then rules and one or more condifitmes fuzzy conclusion
is obtained employing an inference mechanism caligoroximate reasoningderived from
fuzzy logic theory. The basic inference rule of this reasoisinegeneralised modus ponens
(GMP) [Lee, 1990] [Jang and Sun, 1995]. For example, consider a reniltjplt-single-output
(MISO) FIS with two input variables and fuzzy rule base of the form:

R:If xisA andyisB; thenzisC (3.3)

where j=1,2,...m; m = number of rulesy, y andz are linguistic variablesA and Bj are

linguistic values of the linguistic variablesy andz in the universes of discour&eV andW,
and characterised by the membership funct';ugjs(x), He (y) and He, (2), respectively.

Now, suppose that the rule base (3.3) includes a single rulerwaitt “ifx is A andy is B
thenzis C”. Thus, the corresponding problem for GMP is expressed as:

Premise 1 (fact): X is A" andy isB'
Premise 2 (rule): IxisAandyisB thenzisC (3.4).

Consequence (conclusiony isC'.

whereA' is close toA, B' is close tdB, andC' is close toC. Note that whe®\' = A, B' =B, and
C' = C the GMP reduces to the traditiomabdus ponens

The rule in premise 2 above can be implemented as a fuztipmelar implication). This
relation is written as:

R=AXB_C O UxVxW (3.5),

which membership function is specified by [Jang and Sun, 1995]:

Hr(X,Y,2) = Hiaxpy-c (X,Y,2)
=U X C s (V) C e (2) (3.6)

where the symboll is used to denote the fuzzy operator of intersection, or fAN® (a
general description of the main operations on fuzzy sets is given in Appgend

Applying the compositional rule of inference [Zadeh, 1973], the fepnclusionC” of the
inference procedure is expressed as:
C'=(AxB')oR
= (AxB')o (AxB - C) (3.7),

whereo denotes the composition operator. Thus, using (3.6), the membersttipriusf C ' is
evaluated as:

He(2) = Ly y[Ha (X)) T g (NI CLua(X) T g (y) T e (2)]
=,y [Ha () O g (y) O pa(X) O g (V)] 0 4 (2)
={ 0 [ () O (1} O{0, [ (y) B ts (NI} O 11 (2) (3.8)
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where the symbdllis used to denote the fuzzy operator of union, or fuzzy OR.

At this point, let define:

W, =0, [ (X) O g (X)] (3.9a)
Wy = O, [5.(y) O g (Y)] (3.9b)

wherew, represents the degree of compatibility betwAesnd A’; similarly, wg represents the
degree of compatibility betwedhandB’. Substituting (3.9) in (3.8) results in:

He(2) =W, Cwg T e (2) (3.10)
but, if it is definedv =wa Lwg , then (3.10) transforms to:
HUe(2) =wWL lc(2) (3.11).
In (3.11)w is called thdiring strengthor degree of fulfilmenof this rule, and it represents the

degree to which the antecedent part of the ruaisfied [Jang and Sun, 1995]. A graphical
interpretation of this result is shown in figure€ 3when the fuzzy operators for union and

intersection are selected to be the maximonay and minimum ifiin), respectively. In this case

is called themax-mincomposition operator [Jargg al, 1997], and the whole inference procedure
is called thamax-min compaositional rule of inferen@&rown and Harris, 1994]. Observe in figure
3.2 that the resulting membership function 6t is equal to the membership function ©f
clipped by the firing strengtiv.

Antecedent min  Consequent

7 c

Figure 3.2 Approximate reasoning for a rule witlo mntecedents.

w

The previous development can be extended for éise of a rule base witl rules as is
detailed next. For a MISO system with two inputsl ame output, the problem for GMP is
expressed as:

fact: X is A" andy isB'
rule 1: If xisA;andyisB; thenzisC;
rule 2: If xisA, andyisB, thenzisC,
rulem: If xisAnandyisBy, thenzisC, (3.12).
conclusion: z isC.

Therefore, each rule in (3.12) can be implemented as a fuzzy relation:
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Rj = A‘ XB]. - Cj forj=1,2,...m (3.13)

Applying the max-mincompositional rule of inference, and using its characternigtbeing
distributive over theél operator [Lee, 1990], the fuzzy conclusiGhof the inference procedure
(3.12) is expressed as:

C'=(AxB)o(RLR,L--LR,)

=[(AxB)eRJO[(AxB)oR]U---O(AxB)oR]
=C/CC,C---CC, (3.14).

where C] is the inferred fuzzy set for rulp Then, using the result given by (3.11) the
membership function of each fuzzy ié;t is obtained as:

He (2) =[w, D,ucj (21 forj=1,2,...m (3.15)

Finally, the membership function of the resulting fuzzy Gétinferred from the complete
set of fuzzy rules is given by the union of the resulting conclusion denwedifidividual rules,

He(2) =[w O e, (2] 0w, O e, (21 T--- Ofw,, O, (2)] (3.16)

wherew; indicates the degree of fulfilment of théh rule; 4. (2) is the membership function of

the fuzzy seC; (j=1,2,...m; m = number of rules). Figure 3.3 shows a graphical representation
of the operation of fuzzy reasoning for the case described. tatein this case the singleton
fuzzification procedure has been used to transform the irpatsly, into fuzzy sets.

Antecedent
H A, H

Consequent
H C.

u
X0 Yo

Figure 3.3 Graphical representation of the fuzzgsoming procedure for multiple rules with
multiple antecedents amdax-mincompositional rule of inferendeeing used.

\Y

In the previous development tingax and min operators were adopted for fuzzy union and
fuzzy intersection, respectively. But, in fact, @norm and T-norm (see Appendix A) can be
adopted for these fuzzy operations [Lee, 1990]. gdiection of a specific S-norm and T-norm
defines a specific type of fuzzy reasoning and giite hame to the compositional rule of
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inference. From the possible types of fuzzy reasprihree are the most usedax-min max-
product[Jang and Sun, 1990], asdm-producfKosko, 1991], a resume is given in Table 3.1.

Table 3.1 Types of fuzzy reasoning most used.

Composition | Union Intersection| Name

operator operator | operator

max-min max min Max-min compositional rule of iafere
max-product max product Max-product compositiond iof inference
sum-product sum product Sum-product compositiarel of inference

If the operatorsmax and product (arithmetic product) are chosen for fuzzy uniord an
intersection, respectively, then the compositiocalled themax-product compositional rule of
inference The calculation of the fuzzy conclusion for tbése is obtained as:

,UC'(Z) = [Wl |jvlcl(z)] D[Wz glcz (Z)] .- D[Wm glcm (Z)] (3.17).

Figure 3.4 shows a graphical representation of the fuzzy reasgmengtion when thenax-
productcompositional rule of inference is used. Note, thatdingleton fuzzification procedure
has been used to transform the inputs to fuzzy sets.

Antecedent product Consequent
o H H

U \%

Xo Yo

Figure 3.4 Graphical representation of the fuzzgsoming for multiple rules with multiple
antecedents amdax-productompositional rule of inferendseing used.

If the operatorssum (arithmetic summation) androduct are chosen for fuzzy union and
intersection, respectively, then the compositiocded thesum-product compositional rule of
inference In this case the fuzzy conclusion is obtained as:

1D =W O (2 (3.18).
=1

Figure 3.5 shows graphically the fuzzy reasoning operation whensum-product
compositional rule of inference is used. Note, thatdingleton fuzzification procedure has been
used to transform the inputs to fuzzy sets.
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Antecedent product Consequent
M

EN U

\Y

Figure 3.5 Fuzzy reasoning for multiple rules withultiple antecedents and sum-product
compositional rule of inference being used.

3.2.3 Defuzzification process

Basically, the defuzzification process is a mapping from a sphfiezzy sets defined over an
output universe of discourse into a space of crisp (non-fuzzylesalln other words, the
defuzzification process transforms the fuzzy conclusidnnto a crisp and concrete valag
which is given as the FIS output. In general there are sewethbds to perform the process of
defuzzification [Lee, 1990] [Jangt al 1997] [Driankovet al, 1993]; the most commonly used
are described next.

» Centre of Area (COA)The most often used of the defuzzification methods is theeceht
area method. This method obtains the crisp output value applying the foll@simgjdi:

L [, tc(2) zdz

. (3.19)
[, #e(2) dz
where l..(Z) is the aggregated output membership function.
« Bisector of area (BOA)The BOA defuzzification method satisfies:
Zo _ B
["He(2)dz = [ pc(2)dz (3.20)

wherea = min {z|zO W} and 8= max {z| zO W}. That is, the vertical ling = z, partitions the
region betweez=a,z=L£y=0andy = U..(Z) into two regions with the same area.

* Mean of Maximum (MOM)The MOM method calculates a crisp output value by averaging
the support values of the inferred fuzzy @&tat which membership value reach a maximum
Mathematically, this is expressed as:
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, - dez

i L dz

whereZ” = {z| f..(z) = 4"} In particular, if £..(Z) has a single maximum at Z, thenz, =
z.

(3.21)

e Smallest of Maximum (SOMThe SOM defuzzification method gives as crisp output the
minimum (in terms of magnitude) of the maximising

* Largest of Maximum (LOM)The LOM defuzzification method gives as crisp output the
maximum (in terms of magnitude) of the maximisimdpecause their obvious bias the SOM and
LOM defuzzification methods are not used as oftetha other three methods.

Figure 3.6 shows a graphic comparison of the diffeFIS crisp outputs obtained with each
defuzzification method for a given fuzzy $gt.

U

> W

Figure 3.6 Comparison of the crisp FIS output oletdiwith the different defuzzification methods.

3.2.4 Types of fuzzy inference systems
In what follows, the three types of most commonly used FISs are introduced:

1) Mamdani FIS ModelThe first FIS proposed was developed by Mamdani and Assilian in
1975 [Mamdani and Assilian, 1975]. This type of FIS was designed astlter for a steam
engine and boiler combination using a set of linguistic “if-then” @bnules obtained from
experienced human operators. The distinctive characteristicsofyghe of FIS is that in both
antecedent and consequent parts of the rules, the values of itd#egaused are defined by
membership functions, where the most commonly used are the trigngaf@ezoidal, and
Gaussian membership function. The type of reasoning used in thisftffd® is themax-min
compositional rule of inference, and the type of defuzzification metismdl is the COA
method, as it is graphically represented in figure 3.3.

The original Mamdani FIS model has been modified in differenswawo of the most used
variations are those where tir&ax-mincomposition operator is substituted by thax-product
andsum-productomposition operators. These cases were previously discussadian 8.2.2
and are graphically illustrated in figures 3.4 and 3.5, respectively.
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2) Sugeno FIS ModelThe Sugeno FIS model (also known BSK fuzzy modglwas
proposed by Takagi, Sugeno and Kang [Sugeno and Kang, 1988] [Takagi and 3$08§éhas
an effort to develop a systematic approach to generate fuzy froim a given input-output
data set. The main characteristic of this type of FIS is that tkg fules used have the form:

if xis A andy is B thenz =f(x,y) (3.22)

wherex, y andz are linguistic variabledh andB are fuzzy sets in the antecedent, andf(x,y)
is a crisp function in the consequent.

Generally,f() is defined as a polynomial in the input variabteandy, but it can be any
function appropriately defined in order to describe the output ofysem within the fuzzy
region specified by the antecedent of the ruld(lifis a first-order polynomial then the FIS is
called afirst-order Sugeno FIS modélVhereas if([)] is defined as a constant, then the FIS is
calleda zero-order Sugeno FIS mod€&he zero-order Sugeno FIS model can be interpreted as a
special case of the Mandani FIS model, in which each rule carseiguspecified by a fuzzy
singleton. The zero-order Sugeno FIS model as well can be etetprs a special case of the
Tsukamoto fuzzy model (described later); in which each rolesequent is specified by a
membership function given as a step function crossing at the conkecespecial
characteristic of the zero-order Sugeno FIS model is thiaast been proven, under certain
constraints, to be functionally equivalent to a radial basistiamaetwork [Jang and Sun,
1993]. Another characteristic of the zero-order Sugeno FIS n®deht the smoothness of the
resulting input-output behaviour decisively depends on the existememofh overlap between
membership functions in the antecedent of the rules.

The overall output of a Sugeno FIS model is obtained via ghtexl average of the crisp
outputs given by the fired rules, as is graphically repredeintdigure 3.7 for a first-order
Sugeno model. Note that, using a weighted average, the time-consuafung of the
defuzzification procedure is enormously reduced.

Antecedent min or Consequent
M A u product
1

Sttt hnihihaltind sheeibedion Vedbeetbosbostbostortiort B 1) Y

2= pX+gyts

weighted
average
g — Wiz + W,Z,
W, + W,

Z, = P,X+Q,y+s,

....................................... W;

fq [P iy U

|
|
|
[ S
Yo Y
Figure 3.7 Reasoning in a first-order Sugeno fuzzy model.

3) Tsukamoto FIS modeln the Tsukamoto FIS model the consequent of each fuzzy rule is
represented by a fuzzy set with a monotonical membership furj@sokamoto, 1979], as is
shown in figure 3.7. As a result, the inferred output of each rutkefised as a crisp value
induced by the rule’s firing strength. The overall output is talethe weighted average of the
outputs given by the fired rules. Figure 3.7 illustrates the wigalsoning procedure for a two-
input system with two rules being firing.
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Figure 3.8 Reasoning in a Tsukamoto FIS model.

Up to this point, the processes involved in a FIS have been destapether with the three
different types of FIS found in the literature. In subsequentosscthe concepts of artificial
neural networks, or simply neural networks, and the so-called fgzap-systems, the
synergistic combination of neural networks and fuzzy systems, will Haieg.

3.3 Avrtificial neural networks

An artificial neural network or simply a neural network (NN defined as a collection of
processing elements (called neurons) and connection weightsalfjedenoted asv). These
neurons and weights are structured to perform a mapping fronpatrsipace to an output space
R'-> R" [Gupta and Rao, 1994]. This mapping can be very simple and linesamobe very
complex and non-linear; it only depends on the structure of the NN anghittehality of each
neuron. Nowadays there are a lot of morphologies of NNs and manys aihe being
investigated. As an example, from a structural point of viewthbir architecture NNs can be
classified as static or dynamic, with only one level or sévBgatheir connections, NNs can be
classified as feedforward NNs, feedback NNs, laterally ectea, topologically ordered and
hybrids. For a more detailed description of NNs morphologies saptgdGand Rao, 1994].
Figure 3.9 shows a typical feedforward NN, which in practice is one of theusexs.

hidden
layer

Figure 3.9 A typical feedforward NN.
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As is shown in figure 3.9, a NN can have several layers, andaashcan have more than
one neuron. The main function of each neuron in a NN is the collectioh it @eighted
inputs, an evaluation of a predefined mathematical operatiaallyig dot product followed by
a non-linear function, and the production of a single output. In other waordsjron performs a
mapping fromR" to R'. Mathematically, the transformation carried out by a neuronbea
described by the equation:

Y, = q{z W, X, _bk:| (3.23)
=1

where:x,... X, are the inputs to the neurow,,...,w, are the connection weights for the inputs

(the first subscript refers to the neuron in question and the segbscript refers to the input to
which the weight is connected)y, is the neuron output¥[[] is some activation function

[Haykin, 1999]. Generally, the activation function is non-linear arsdahtireshold or bids. If
we definex,= +1 andw,, =h, , then (3.23) can be rewritten as:

Y, = ‘P{Z ijxj} (3.24),
=0

and a graphical representation of the transformation cardelyoa neuron is shown in figure
3.10.

Figure 3.10 Graphical representation of the transformation carried out byoa neur

The main characteristic of a NN is the storage of knowléuiglee connection weights.
This knowledge is acquired using a procedure callede#wning algorithm This algorithm
successively adjusts the connection weights to find those vdhresvhich a better
approximation is obtained to the desired output.

Broadly, learning algorithms can be classified as error-b@dsd known as supervised) or
output-based (also known as unsupervised) [Gupta and Rao, 1994]. &eor-kearning
algorithms use an external reference signal (teacherenergte an error signal from the
comparison between the reference signal and the obtained respasese.oB this error signal a
NN adjusts its connection weights to improve the system mpeaioce. In this case it is
assumed, griori, that a desired answer is available. This desired answeei®atgining data
(a pattern of input-output pairs) which is usedr&in the NN. A graphical representation of the
error based learning scheme is shown in figure 3.11.

The general equation for the error-based learning algorithm is ofrthe fo
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W (t+1) = w, () +Aw, (1) (3.25)

with:
Aw, (t+2) =77 X, (V& (1) (3.26)
& () = ¥y (1) —yi (D) (3.27)

wherew(t) is the connection weight corresponding to the ing{tlk The parametefw(t) is
the change in the connection weighg(t) (the adjustment) over an instant in timg, is a
parameter called learning ratg(t) is the desired neural outpyi(t) is the actual neural output,
ande(t) is called theerror signal The back propagation algorithm [Rumelheirtal, 1986] is
the most popular of this kind of learning algorithm.

Desired output

Ya(t)

Neural output
X(t) —— Yet) — ¥+
X, Error signa

Aw,i(t)  (Error-based
Learning algorithm

Figure 3.11 Error based (supervised) learning scheme.

On the other hand, output-based learning algorithms do not incorporefierence signal.
They generally involve a self-organising principle that selimly upon local information and
internal control mechanisms in order to discover emergergatioik properties. The two most
important forms of this kind of learning algorithm are Hebbiaarrdag and competitive
learning [Gupta and Rao, 1994] [Haykin, 1999]. For space reasons, thedth@ilg are not
described here, but the interested reader is referred teitéek references for a broader
explanation of them.

The network structure, which includes many neurons and connection weights, gwebat
NN its computational capabilities. The arrangement of neurolayéns or stages of processing
is supposed to mimic the layered structure of a certain portitredfuman brain. This scheme
of multilayer NN (MNN) has tested better computational bdjies than the one with a single
layer. In particular, MNNs, which use the error back propag&isming algorithm, have been
successfully applied in several areas including pattern néamy system identification, and
control systems.

Up to this point, NN have been described in general. In what follexs, the different
combinations of neural networks and fuzzy inference systems are discusse
3.4 Neuro-fuzzy systems
In general terms, a neuro-fuzzy system is a system in whidy inference systems (FIS) and

neural networks (NN) are used in combination. The main idehi®fcombination is to take
advantage of the different characteristics that each approaclt ias been shown in distinct
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ways that a feedforward NN and a special kind of FIS are tgaivapproximatorgBlum and
Li, 199]][Castro, 199HHornik, 1989[Kosko, 1994[Wang, 1992 Thus, both FISs and NNs
solve problems by performing function approximation. On one side, e tige available
knowledge expressed in rules, then a FIS can be built. On lilee sitle, if data exists, or
learning can be acquired from a simulation or real task, thearalmestwork can be used. Both
techniques try to model expert behaviour.

A NN can be applied to a problem if there are valid trainirtg ¢examples of input/output
pairs). In this case supervised learning, such as back propagmatinuitilayer NN, is used to
train the network to solve the problem. If nothing is known aboud waitputs, but there is an
evolution or error measure on the effects that are causétklgutputs of the neural network,
then unsupervised learning can be used in order to adjust the pasaafdhe net and solve, in
this way, the problem. A mathematical model of the problem of interest meaded, and nor is
any form of prior knowledge. However, an interpretation of the isolubbtained from the
learning process cannot be extracted. Thus, the neural netwakblack box. Another
disadvantage is the impossibility of adding or initialisingneural network with prior
knowledge, if there is any. The learning process itself canaalezy long time, and there is no
guarantee of success.

An advantageous property attributed to neural networks is thdlir tblerance regarding
their inputs and changes in their structure. However, if tbblg@m under investigation changes
too much compared to the former training data, then the neural ketvagrnot be able to cope
and retraining will be necessary.

On the other hand, a FIS can be used to solve a problem ifishknewledge about the
solution in the form of linguistic if-then rules. In this caseitable fuzzy sets are defined to
represent linguistic terms; such as big, very big, slow,d&stThese terms are used within the
rules and the FIS is created from these rules. A formal hofdbe problem of interest is not
needed and also training data is not needed. However, without ifetlesn(maybe formulated
by an expert) or data from which they can be derived, the fuitgm cannot be created.
Additionally, to make the FIS work properly, a long tuning process bmeayecessary. By way
of contrast, fuzzy systems are also considered fault-toleegarding small changes in their
inputs or system parameters.

FIS and NN have had, individually, an enormous success in the salfitieeny and varied
tasks. This, taken with the characteristics mentioned abovegauiasd a proliferation in the
engineering literature of many papers that describe or usectisbmbinations of FIS and NN.
Thus, in order to clarify the approach, a classification of tremeeded. Nauckt al [1997]
suggest that these combinations can be classified into foucHas 1) Fuzzy neural networks
systems, 2) Concurrent neural/fuzzy systems, 3) Cooperative -fugaso models, and 4)
Hybrid neuro-fuzzy models. A short description of each one of these syistgimen below.

3.4.1 Fuzzy neural networks systems

In this combination fuzzy methods are used in NNs to leararfastperform better. The main
objective of this kind of system is to enhance the learningbdéjgs or the performance of a
NN. This can be done, by using fuzzy rules to change the leamimgHaykin, 1994] or by
creating a network that works with fuzzy inputs and fuzzyclagperators [Ishibuchét al.,
1995]. A fuzzy NN has the same structure as a NN, but some or @i cbmponents and
parameters may be described through the mathematics of lhgizytheory. Thus, there are
many possibilities for fuzzification of a NN and hence defgrof them have been proposed
[Tsoukalas and Uhrig, 1997] [Gupta, 1994]. The obtained system cannotitpeated in terms
of fuzzy if-then rules, because the system is based on NNs with black box efistiast
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3.4.2 Concurrent neural/fuzzy systems

Generally, in this type of system a NN is used to pre-prooceg®st-process the information
coming in to, or coming out from a FIS. Both systems work togeihethe same task, but
without influencing each other. This means that a system isused to determine the
parameters of the other and each one can be identified sdpahatfigure 3.12 is shown a
concurrent neural/fuzzy system where a NN is used as agregsor for a FIS; while in figure
3.13 is shown a concurrent neural/fuzzy system where a NN is ssega@st-processor for a

FIS.
NN A FIS
wgriSed
] =lA

ek

Figure 3.12 Concurrent neural/fuzzy system where a NN is used as presprdoes FIS.

FIS NN

Figure 3.13 Concurrent neural/fuzzy system where a NN is used as a pessprdor a FIS.

Concurrent neural/fuzzy systems, where a NN is used gwgeessor for a FIS are suited
for applications where the input variables of a FIS cannot beurezh directly, so they have to
be created by a combination of several values. A NN can beagsed adaptive information
compressor [Nauckt al, 1997]. On the other hand, concurrent neural/fuzzy systems where a
NN is used as a post-processor for a FIS can be used fomdaesesthe output of a FIS cannot
be applied directly to a process. In this case it may bessageto combine the FIS output with
other parameters. Then, a NN can be used to perform this combination.

3.4.3 Cooperative neuro-fuzzy models

In cooperative neuro-fuzzy systems, a NN or a NN learning ittigorhas as objective the
determination of certain parameters of a FIS (rules, rulght®iand/or fuzzy sets). When the
learning phase finishes the FIS can work without the NN. Subsegueatperative neuro-
fuzzy models can be divided into four approaches [Naick., 1997]: a) cooperative neuro-
fuzzy systems that learn fuzzy sets offline, b) cooperagteo-fuzzy systems that learn fuzzy
rules offline, ¢) cooperative neuro-fuzzy systems that learry fsets online, and d) cooperative
neuro-fuzzy systems that learn rule weights. A short desmmipfieach one of these approaches
is given below.
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3.4.3.a Cooperative neuro-fuzzy systems that learn fuzzy sets offline

In this class of cooperative systems training data is usedMy to determine the membership
functions of a FIS (see figure 3.14). The function of the NN ifind suitable parameters to
define the membership functions or to perform an approximation ofitlag $ets. The obtained

fuzzy sets are used together with fuzzy rules, given separto build the FIS. In this case the
set of training data is a set of degrees of membership correspondingific sgaa values.

fuzzyﬁ
rules

NN

i}

Figure 3.14 Cooperative neuro-fuzzy system that learns fuzzy sets offline.

3.4.3.b Cooperative neuro-fuzzy systems that learn fuzzy rules offline

In this case a NN is used to determine the fuzzy ruled=t$ aTraining data is used by a NN to
accomplish a clustering approach. A self-organising feature mapsimilar architecture is
generally used to learn the rules offline. Once the rules haen learnt, they are used together
with fuzzy sets, provided separately, to implement a FISur€i@.15 shows a system of this

type.
fuzzy
sets ﬁ
NN
training fuzzy A 'M FIS
data rules —4,'—;' 1
ettt

Figure 3.15 Cooperative neuro-fuzzy system that learns fuzzy rules offline.

3.4.3.c Cooperative neuro-fuzzy systems that learn fuzzy sets online

In this type of cooperative system, the parameters that défanduzzy sets for a FIS are
determined online. This can be carried out during the use of the Fl@apt the membership
functions. Initial membership functions have to be specified, aretran measure that guides
the learning process of the NN is also needed. Usually, the Wiblis not present, only the
neural learning algorithm is employed. Figure 3.16 shows a gragiresentation of this type
of cooperative neuro-fuzzy system.
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Learning
algorithm
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Figure 3.16 Cooperative neuro-fuzzy system that learns fuzzy sets online.

3.4.3.d Cooperative neuro-fuzzy systems that learn rule weights

In this case a NN or a learning algorithm is used in adaldetermine rule weights for the fuzzy
rules of a FIS. This task can be performed online or offline. & mesghts can have several
interpretations. For example Kosko [1992] defines them asimtileences, while Brown and

Harris [1994] as rule confidences. Whatever the name, theidgins to give a weight to each
rule in the rule base and adjust them to obtain a better perfoentd the FIS. In figure 3.17 a
system of this type is represented.

. Ay rule ﬁL> _A)&"' A; oo
| \ /

J
B
v

T Determination |
of error

Figure 3.17 Cooperative neuro-fuzzy system that learns rule weights.

3.4.4 Hybrid neuro-fuzzy models

In these systems, a NN and a FIS are combined in a homogenapu$his means that the
obtained system cannot be divided and it can be interpreted eithespasial NN with fuzzy

parameters, or as a FIS arranged in a parallel distribugagther. The main idea of a hybrid
neuro-fuzzy system is to represent a FIS as a special maivwad+k-like architecture and then
apply a learning algorithm, such as back propagation or normadigstdrhean squares (NLMS)
directly to train the system. Examples of this kind of dedltiire are the ANFIS system [Jang,
1993] [Jang and Sun, 1995] and the neuro-fuzzy network with B-splses to implement

fuzzy sets [Brown and Harris, 1994] [Harés$ al, 1996]. A special characteristic of these
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systems is that, once the system has been trained, the sétwiiwhcan be interpreted in the
form of linguistic if-then rules.

Nowadays the most successful of the four types of neuro-fuzmgnsyslescribed is the
hybrid neuro-fuzzy model. However, because of the existence of kiatly of NN and the
increased interest in researching in this area, it is homddntbre neuro-fuzzy models will
appear in the near future. The main objective of these sysgeto increase the intelligence
capability of automatic systems. There, the concept of ligeeice” is defined as the capability
of a system for learning and adaptation [Harris et al 2002].

A hybrid neuro-fuzzy system which is of great interesttifier purposes of this work is the
one which uses B-splines to implement fuzzy sets. In the netorsethis hybrid neuro-fuzzy
system is described and its advantages over other approaches are giverbrichiselyo-fuzzy
system will be used in Chapter 7 to design an adaptive MSDF archatectur

3.5 B-spline based hybrid neuro-fuzzy systems

The B-spline based hybrid neuro-fuzzy approach was originally propowtdieveloped by
Brown and Harris [Brown and Harris, 1994]. In their early work, th&tpblished the first links
between NNs and FISs, producing the first hybrid neuro-fuzzy adagystem, which has the
linguistic transparency of FISs coupled with the analyticaltatzility of NNs [Harriset al,
2002].

B-spline functions are local, compact, piecewise polynomialsgdfean ordelrk, for which a
simple recurrence relationship exists [Brown and Harris, 1994]njZtend Knoll, 1998]. B-
spline functions have been widely used in surface fitting applicatimrt they also are suited to
define fuzzy membership functions as is described next.

Assumex is a general input variable that is defined on the univefsdiscourse X;,X.].
Given a sequence of ordered parameters, known lsot vector [X;,X,....X.]", the i-th
normalised B-spline basis functidiy of orderk is defined as:

1 f < X< X
{0 o(::]erjvisex " T k=t
N;(X) = = . (3.28)
X NG00+ TN L0 i k>l
)§+k—l A vk N+

withi =1,...m—k. Figure 3.18 shows B-spline basis functions of okderl, 2, 3, 4, with knot
vector = [0,1,2,3,4,5,6]

Each one of the univariate B-spline basis functipncan be used to define a membership
function for a corresponding fuzzy set. The selection of the dedefr the B-spline basis
function determines these characteristidsgree shape width, andoverlap of the resulting
fuzzy sets. For example, Table 3.2 shows these charactefisticsip to four. The width of a
fuzzy set is measured by the number of knot intervals and thiapwiegree by how many
fuzzy sets are defined on each knot interval (see figure 3.18). @yhapecifying only the order
k and a knot vector, a set of membership functions can be impteth using the recursive
relation (3.28), whose shape is determined by the érderd where each membership function
has compact suppokt units wide. Additionally, the membership functions can be defined
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form a partition of unityZLNi’k(x) =1 in the universe of discourse of the corresponding
linguistic variable.

piecewise constant piecewise linear

1 1
0.8 0.8
~— 0.6 ™~ 0.6
Fr) 5
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Figure 3.18 B-spline basis functions of orler 1, 2, 3, 4, with knot vector = [0,1,2,3,4,5,6]

Table 3.2 Fuzzy sets characteristics defined by the order of the B4sa$irsefunction

Orderk 1 2 3 4
Degree 0 1 2 3
Shape Rectangular Triangular Quadrati¢ Cubic
Width 1 2 3 4
Overlap 1 2 3 4

In this context, by using B-splines to implement fuzzy seténtaresting class of neuro-
fuzzy systems can be implemented. This class of neuro-fuzrgnsysconsidering a MISO
system, is implemented by satisfying these conditions:

a) The real-valued inputs to the neuro-fuzzy system are reprdséatéuzzy singletons (a
singleton fuzzification method is used),

b) B-splines are used to implement fuzzy sets in the antecedent part offlexzy r

¢) Fuzzy singletons are used to define the consequent part of fuzzy rules,

d) Algebraic operators are used to implement fuzzy logic functignegl(ctfor intersection
sumfor union, andum-prodcompositional rule of inference),

e) The COA defuzzification method is used.

If all the above conditions are satisfied, then the output sfdlaiss of neuro-fuzzy systems
is given by:

v =3 [ NE()a = D 0,002, (3.29)

=1 i=

where Niki (x;) are univariate B-spline basis functions (the order of tisplBies are omitted

for brevity), which define the linguistic values (fuzzysyetf input variables,...x;,... X, & is
the singleton consequent of rylewhich in this case is considered as a network wejght;

1,...p, p = number of rules in the fuzzy rule base; andx) is thej-th multivariate B-spline

basis functionx = [Xy,... X .
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A graphical representation of a neuro-fuzzy system of thssas shown in figure 3.19. This
class of neuro-fuzzy system has several important charédctedislarris et al 1999]: it (i)
produces smoother interpolation, (ii) provides an equivalence betwdsraihtl FISs, and (iii)
enables FISs to be readily analysed. Additionally, this daseuro-fuzzy system satisfies the
Stone-Weirstrass theorem [Hardés al, 2002] and so they can approximate any continuous
nonlinear functior (x) defined on a compact domain with arbitrary accuracy.

Ny (%)
XL —P
N;? (%)
X2 —P yx)
3 NG
Xn —P

Figure 3.19 Structure of a neuro-fuzzy system using B-splines.

Equation (3.29) means that the output of the described neurogygimsm is simply a
weighted sum of multivariate B-spline basis functiogs(x), for which the weightsy can be

trained by a linear optimisation algorithm. Tjhth multivariate B-spline basis functiap; (),

is generated by multiplying univariate basis functiondl’ (x ) :

W00 = NEONE () NI (x,) = rl N (x,) (3:30).

An example of a two dimensional multivariate B-spline basis fomctormed by two
quadratic univariate basis functions is shown in figure 3.20.

The equivalence between the class of neuro-fuzzy systerosbeesby (3.29) and FISs is
demonstrated next. Consider a FIS with B-spline basis functions used to impferay sets in
the antecedent of the fuzzy rules, it means that the fuzzy rule basbesfofm:

R : If xis N (x) andx, is N}2(x,) and[TThandx,is N (x ) thenyisa  (3.31)

where the above fuzzy rules have been numbered=byt,2,...p. Eachj corresponds to an
ordered sequende, ... k... k,; wherek; = 1,2,...m; andm is the number of fuzzy sets, in this

case univariate B-spline basis functio?*al,%"i (%), defined as linguistic values of varialXgi =
1,..n, nis the number of input variables to the FIS.
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If fuzzy singletons are used to represent the real-valymgasirand theproduct operator is
used for fuzzy intersection, then the firing strehgththej-th rule, £(x), is given by [Brown
and Harris, 1994]:

,UJ(X) = lel(xl)Ngz(Xz)'” N:n(xn) = ﬁl Niki(xi) (3.32).

basis function
o
)
y

=2
ey
S,
E=2v0%,
3 ‘0:0

Figure 3.20 A two-dimensional quadratic multivariable B-spline basisiumct

Next, using the COA defuzzification method the real output ttoerrule set (3.31) is given
by:

p P n p n
Z Hi(X)a, z Nik'(xi)aj Z Nik'(xi)aj
y(x) = 1= =12 = === (3.33).

S RTINS ] XN

Finally, since B-splines have a partition of unitET:lNi‘* (%) =1, (3.33) reduces to
(3.29):

y(x) = Zp: |_n| Nik'(xi)aj = iwi(x)aj'

i=1 i=1

Thus, the neuro-fuzzy system shown in figure 3.19 can be seen aithdB-apline neural
network or as a FIS with membership functions implemented usispliBe basis functions
[Wu and Harris, 1997]. The training of the neuro-fuzzy systemyevtiee free parameters are
the weightsay,...,a,, can be carried out using many of the traditional learrggyighms used in
feed-forward neural networks. However, in the rest of this@®ctinly the least mean squares
(LMS) and normalised least mean squares (NLMS) training algoritrerdeacribed.

! Note that instead of using the symbolo denote the firing strength, as in section 3.Be2e the symbol
H1(X), is used. This new notation reflects its dependeam the input vectorand will be used onwards.
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First, note that if a vector of weights= [al,...,ap]T and a vector of multivariate B-spline
basis functiongi(x(t))= [¢a(X(1)),....¢(x(1)]" are defined, then (3.29) can be rewritten as:

YX(0) =34, (e, =47 (xD)a (3:3)

where the argumenithas been included to denote the time step of an iterativesproomlved
in adjusting the network weights. Now, if there exist so$étaining pairs (t) ya(x(t))}, where
ya(x(t)) is the desired output for a given input) = [x(t),....x,(t)]" at time step, then the
neuro-fuzzy system described by (3.34) can be trained in thétwaedigtora using the LMS or
NLMS algorithms. Both LMS and NLMS are instantaneous trainiggrahms, this means that
the weights are adapted on-line. These algorithms adjastvélights by using information
provided by only a small subset of training pairs and by making an estimhteroéan squared
error (MSE) at time step

Theerror signal £t) measured at timeis defined as the difference between the desired and
the actual neuro-fuzzy system output values:

£(t) =y, (x(1)) — y(x(1)) (3.35).

The objective of the LMS learning algorithm is to apply a seceeof corrective
adjustments to the network weights in order to make the output signal amseetol the desired
signal in a step-by-step manner [Haykin, 1999]. This objectiaehgeved by minimising eost
function J(a), defined in terms of the error signal as:

(@)= 250 = 5 vy (D) = Y1)’ (3.36).

The LMS algorithm is based on the use of instantaneous vabwethd cost function.
Therefore, differentiating (3.36) with respect to the weight vextoelds:

03(2) _ ;1) 2£()

3.37).
Jda Jda ( )

Let a(t) denote the value of the weight vecta()),...,a,t)] of the neuro-fuzzy system
excited by the signal input vecteft) at time step. Thus, (3.35) can be rewritten as:

£(t) = yy (x(t)) —¢" (x(t))a(t) (3.38).
Hence,
oe(t) _ _
da) = ) (3.39),

and from (3.39) in (3.37) gives,

dJ(a) _ _
dat) e(t)y (x(1)) (3.40),

this result is used as an estimate of the gradient vector of theicosbh at time:
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0J(a) = —(t)@(x(t)) (3.41).

Finally, employing the method of steepest descent [Widrow andnS{eE985] successive
adjustments are applied to the weight veator the direction opposite to the estimated gradient

ﬁJ(a) , which results in the LMS learning algorithm formulated as:

a(t +1) = a(t) + ne(t)y (x(1)) (3.42),

wheren is the learning-rate parameter. The adjustment of thehtve@gtor continues until the
system reaches a steady state. At this point the learning procassiisated.

A possible drawback of using the LMS learning algorithniné& the reduction in the output
error depends on the size of the transformed input vector. lfatfience in magnitude is large,
then small values of are required for stable learning. This can greatly incrémséme taken
for training [Brownet al, 1996].

An alternative algorithm, where the dependency on the size ofraheformed input is
removed, is the NLMS learning algorithm. In this algorithm the weight véectqrdated by

t+ 1) = a(t) + M = a(t + ﬂf(t)(/l(X(t)) (343),
lwx)|; W (XO)X(L)

a(

where, if the learning-rate parametgris in the range (0,2), then stable learning is assured
[Brown et al, 1996].

A proof of convergence of both learning algorithms can be obtamédthese are not
described here. The reader interested is referred to [Haykin, [B2@9]n et al 1996] [Widrow
and Stearns, 1985].

In conclusion, as a result of using B-spline basis functions tmaldfizzy membership
functions in the described neuro-fuzzy system, several propertiesraed:ga

» A simple and stable recursive relationship is used tluatethe grade of membership for
any inputx.

» The basis functions have a compact support, which means that dgevidestored locally
across only a small number of basis functions.

» The basis functions form a partition of unity, which also ieplihat the corresponding
fuzzy variables are complete.

Additionally, once the training has been completed, the resultingnsys readily
interpretable in form of if-then rules. This means that the black box aspecteural network is
avoided, and it is also possible to obtain new knowledge from the system.

3.6 Summary

In this chapter FISs and NN have been described. Firstly,fBi8sa consistent methodology
to capture the way in which humans interpret the surrounding wdrlgs, By using common-
sense fuzzy rules a FIS is capable of characteriseatigbles of a system and its interrelations.
Secondly, NNs are capable of learning from examples and thisré&knowledge in network
weights distributed throughout the net.
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From the aforementioned characteristics, both approaches sgndrgistically combined in
different ways: fuzzy neural networks, concurrent neural/fuzsiems, cooperative neuro-
fuzzy models and hybrid neuro-fuzzy systems. The most succe$thdse combinations are
hybrid neuro-fuzzy systems.

A particular type of hybrid neuro-fuzzy system is that Wwhigcakes use of B-spline basis
functions to implement membership functions. These systems taliatage of the three basic
properties that B-spline functions have: positivity, compact supgod partition of unity. As a
result, once the training has finished, the neuro-fuzzy systémerpretable in form of if-then
rules.

The concepts presented here will be used in proceeding chapeselop novel hybrid
MSDF architectures.



CHAPTER 4
KALMAN FILTERING AND MULTI-SENSOR DATA
FUSION ARCHITECTURES

4.1 Introduction

The previous two chapters reviewed general MSDF techniqueshameuro-fuzzy approaches
respectively. Before proposing MSDF architectures considehiggrid traditional-non-
traditional techniques, specifically combining the Kalman rfis@d neuro-fuzzy techniques,
now it is necessary to describe the Kalman filtering approach andSbé-Mrchitectures based
on it.

The Kalman Filter algorithm was first published in 1960 by RK&man. In his famous
paper Kalman described a recursive solution to the discrete lidaar filtering problem
[Kalman, 1960]. Since then, the Kalman filter has been the sutfjeextensive research and
applications. With the advances in digital computing, Kalmanrifiige applications have
diversified into many areas, but the majority of the appbeatiare found in the areas of
autonomous or assisted navigation, where, specifically, the Kalttemnhas two main tasks:
tracking and multisensor data fusion.

In this chapter, a broad description of the Kalman filter #@lyor and the MSDF
architectures based on it are given. A deeper description ¢fainean filter algorithm can be
found in [Maybeck, 1979] [Billings, 1980] [Welch and Bishop, 1995] and [Bromah ldwang,
1997].

4.2 The Kalman filter algorithm

The Kalman filter is an optimal recursive data procesdiggrishm [Kalman, 1960] [Maybeck,
1979] [Brown and Hwang, 1997] that provides a linear, unbiased, and mingmamnmvariance
estimate of the unknown state vectgy 00" at each instank = 1,2,..., (indexed by the

subscripts) of a discrete-time process that is governed hyirtbar stochastic difference
equation:

X = P X, + B, +w, (4.1)
with the discrete measurement veciQri 0 ™ given by:
z, =H, X +V, (4.2)
where:
X = (nx1) state vector at time
@y = (nxn) state transition matrix.
B« = (nxl) matrix that relates the control input O' to the state vectos.

u = (IX1) vector of the input forcing function.
Wi = (Nx1) process noise vector.

45
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Z. = (mx1) measurement vector at tirke
H, = (mxn) measurement sensitivity matrix.
Vi = (nx1) vector of additive measurement noise.

Both w, andv, are assumed to be uncorrelatedro-mean Gaussian white noise sequences
with covariances:

E{w,}=0 forall k, (4.3)

E{v,}=0 forall Kk, (4.4)

E{WkW } {Qk' i;kk (4.5)
vt = R )

}_{ i Kk (4.6)

{ vi}=0  forall kandi (4.7)

whereE{ [}l is the statistical expectation operatQy, is the process noise covariance matrix, and
R¢ is the measurement noise covariance matriw, ih (4.1) is replaced byw,, whereT is a

process noise distribution matrix, th@abecomes , Q, I, .

The objective of the Kalman filter is to estimate the value of the\gaterx,., given all the
information available up to the current instant of time, g.e..,zy anduy,...,Up. In accordance
with Welch and Bishop [1995], this objective is reached énkhlman filter algorithm by using
a form of feedback control: the filter estimates the prostste at some time and then obtains
feedback in the form of (noisy) measurements. In this sémsequations for the Kalman filter
can be arranged into two groups: time update equations and measuwrpdaatequations. The
time update equations project forward, ahead in time, the cwstatet and error covariance
estimates to obtain treepriori estimates for the next step. The measurement update eguation
incorporate a new measurement into the a priori estimatdjtstahe projected estimate and
obtain an improvea posteriori estimate (the feedback part of the filter). From another pdint
view, the time update equations can also be considered as preztictations, while the
measurement equations can be considered as corrector equations.

Therefore, the specific Kalman filter equations are organized imt@taups,

i) Time update (or prediction) equations:

)’Zkﬂ(—) = CDk)’Zk(Jr) + B, u, (4.8)
P = (DkPk(+)CDI +Q, (4.9).

These equations project, from time skefo stepk+1, the current state and error covariance
estimates to obtain theepriori estimates, denoted by (-), for the next time step.

i) Measurement update (or correction) equations:

Ky = k(')H:[HkPk(')HI;r +Rk]_1 (4.10)
>‘<k<+> =%+ K[z, - H, X ] (4.11)
P =[I —KH, IR~ (4.12).

! The Kalman filter algorithm can be extended to awemdate the cases when correlation exists betweetwb noise sequences
or when correlated measurement noise is preserthbytare not considered here, the reader intekéstdhose cases is referred to
[Grewal and Andrews, 1993].
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These equations incorporate a new measurement inta pheri estimates to obtain the
improveda posteriori estimates, denoted by (+). A graphical representation déahwan filter
algorithm is shown in figure 4.1.

Kalman Filter Algorithm

Initial estimates for:
)20(—) and PO(_)
Z,,Z,...

Time Update (Prediction) Measurement Update (Correction)

1. Compute the Kalman gain
K¢ = RoHHREH +R]™
2. Update estimate with measurement

2. Project the error o= o
; X+ =X +K][z —HX (-
covariance ahead €0 = X0+ K[z Xl

1. Project the state ahead

X () = P X0 + By,

3. Update the error covariance

P.)=® P sd! +
k+1(7) k k(D Qk Pk(*):[l _Kka]Pk(—)

Ko (+)y Xy (+)y - - -

Figure 4.1 Graphical representation of the Kalman filter algorithm.

In the above equations, (+) is an estimate of the system state vegtpandPy+) is the
covariance matrix corresponding to the state estimation error défine

P ) = E{(Xk - X )X, — )'Zk(+))T} (4.13).

In equation (4.11) the terrAl, X, (-) is referred to as the one-stage predicted measurement,

which is the best prediction of what the measurement atktinik be before it is actually taken.
The difference between the actual measuremgeahd its one-stage prediction is called the
measurement residual[Maybeck, 1979] defined as:

.=z, —H.X. (4.14).

Here it is necessary to mention that in the literatureté¢h®a (z, - H, X, () is frequently

referred to as the innovation sequence and the name “residua8eassed for the quantity
(z, - H, X (+), which does not appear explicitly in the algorithm. Thereforehis work the

name residual will be retained.

The weighted residuak [z, - HX, (-], acts as a correction to the predicted estinfate
to form the estimationk, (+); the weighting matrix<, is referred to as the filter gain or the
Kalman gain matrix.

In the algorithm the matrice®,, B, and H, are assumed to be know®, and R, are
nonnegative definite matrices whose values are also assonfedkinown. The Kalman filter
algorithm starts with initial conditions & =0 being: X,(-), and P,(-). With the progression

of time, as new measurementdecome available, the cycle prediction-correction of Staiel
the corresponding error covariances can follow recursively ad infinitum.
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4.2.1 Alternative form of the Kalman filter algorithm

The equations of the Kalman filter algorithm, as describedsinskection, can be algebraically
manipulated into a variety of forms [Brown and Hwang, 1997]. One efntost useful
alternative forms is that which expresses the algorithrreimg of the inverse of the error
covariance matrix, instead of the covariance itself. This is:

Pl =R+ HRH, (4.15),

which is known as the information matrix [Maybeck, 1979]. Similarly, lsrraative expression
for the Kalman filter gain is:

K,=RxH R" (4.16).

The demonstration of the equivalence between the above equatidribeir counterparts
can be found in [Brown and Hwang, 1997] and [Maybeck, 1979]. Note that thessrpréor
the Kalman gain now involveg+), therefore Ky must be computed aft€x+). This means that
the order in whichPy+) andKy are computed in the recursive algorithm is reversed from that
given in the last section.

Finally, by using (4.16) and (4.12) the estimate update equation @t tithe k can be
written in a different form as:

X =[1 -KH X +K,z
=P.»P %+ K,z (4.17),

hence, the complete alternative Kalman filter algorithm is sumethggaphically in figure 4.2.

Alternative Kalman Filter Algorithm

Initial estimates for:
%) and Pyt
Z,,2,...

Time Update (Prediction) Measurement Update (Correction)

1. Update the error covariance
Pk_l(+> = Pk_l(—) + H;Rk_lHk
and invert to gePy(+)

1. Project the state ahead
Xen() = P X (0 + By,

2. Project the error
covariance ahead
Pou) = @, R®y +Q

and invertPy, 1(-)

2. Compute the Kalman gain
K, =RmHR?

3. Update estimate with measuremept

X ) = RnP 7 % ) + K,z

Ko (+)y Xy (#)s - - -

Figure 4.2 Graphical representation of the alternative Kalman figferitom.

In terms of information, equation (4.15) means that the updatedniation is equal to the
prior information plus the additional information obtained from tleasarement at timie In
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addition, if R, is block diagonal, the total added information can be divideu $Separated
components, each one representing the contribution from the respectiveemesmsuriock.

The presented alternative Kalman filter algorithm possessene special characteristics,
such as allowing a start-up procedure for the cage b, being singular. In other words, this

means that the algorithm can be started with infinite unceytditite physical situation under
consideration so dictates.

Note from figure 4.2 that twaxn matrix inversions are required for each recursive loop.
This can lead to computational problems if the order of the gtatior is large. Nevertheless,
the alternative Kalman filter algorithm has several wisapplications; one of these is in the
decentralised Kalman filter as will be seen later in this chapter

4.2.2 Consistency of the Kalman filter algorithm

When a constant parameter is estimated, the consistency otimates is defined as the
convergence of the estimate to the actual value [Baw8hahd Li, 1993]. Convergence means
that there is an asymptotic reduction to zero of the differbeteeen the estimated and the
actual value. In other words, this implies that the uncertaibtyut the true value reduces to
zero asymptotically with time.

In the case of the Kalman filter, which estimates the siha system, there are two results,
the current estimate of the statg,..), and its associated error covariance ma®ix). Thus,

the definition of consistency has to be formulated in a different way.
Consider first the definition of the phenomenon known as divergence:

“If after an extended period of operation of the filter, gneors in the estimates eventually
diverge to values entirely out of proportion to the rms valuedigied by the equations of the
filtering procedure, then the filter has diverged” [Fitzgerald, 1971].

Thus, in accordance with the above definition, the evaluation otdhsistency of the
Kalman filter estimates can be carried out based on itst&tal characteristics. If all the
requirements for optimality (given in section 4.2) are 8atls then the first and second order
moments of the state are:

E{x, - X} =0 (4.18)
E{% = %l X = %"} = P (4.19),

which are the conditions that the filter should satisfy in otddre consistent. Condition (4.18)
is known as theinbiasedness requirement for the estimates (i.e. zero mean estimation),er

and condition (4.19) is known as tleevariance-matching requirement (i.e. the actual mean
squared error matches the filter-calculated covariance).

It is noteworthy to say that consistency and optimality are closelydetatbe Kalman filter
setting. Since the filter gain is based on the filter-caledlarror covariances, it follows that
consistency is necessary for optimality. This is why aidEsonsistency is essential in order to
verify the optimal operation of the filter.

Therefore, in order to test the consistency of the Kalmanm,filieee criteria need to be
satisfied:
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a) The state errors should have zero mean and have magnitude camatemsth the state
covariance as yielded by the filter.

b) The filter residuals should also have the above property.

c) The filter residuals should approximate a white noise process.

The last two criteria are the only ones that can be t@steshl data applications. The first
criterion can be tested only in simulation. For this reason, drdgethe real time tests for the
last two criteria are described. The reader interested in the téise fiarst criterion is referred to
[Bar-Shalom and Xiao-Rong, 1993].

The criterion b) can be tested using tleemalised residual squared, &, (as well known as
thenormalised innovation squared) defined by:

£, =1, S, (4.20),

wherer, is the measurement residual, defined by equation (4.14)Satelpredicted residual
covariance calculated by the Kalman filter algorithm, see equation 4:10, as

S, =H,P.H; +R, (4.21).

Then, the time-averaged normalised residual squared (TANRS)nedefs:

£ = EZ re S, (4.22).

Ni=

Thus, if the residuals are white, zero mean, and consistenitsvithlculated covariancg,
then ng, has a chi-square distribution witim degrees of freedom. For a large enongthe

previous statements mean tt&thas to be equal to the dimension of the corresponding vector

since it is chi-squared distributed [Bar-Shalom and Xiao-Rong, 1898]is £ =m, wherem

is the dimension of the measurement vegtof his test is well known as the universally most
powerful invariant test statistic (UMPITS), and is commonded for testing the validity of
process models [Stansfield, 2001].

Criterion c) can be tested using thee-average autocorreation defined by:

1
n n n )
20)=3, {z SN } (4.23)
k=1 k=1 k=1

which tests the whiteness of the residliadieps apart in a single sequence. The statistic (4.23)
is, for a large enough, in view of the central limit theorem, normally distributedus, if the
residuals are zero mean and white, then the mean of (4.23) is near zeroandnte is 1.

The described tests are based on replacing the ensemtzges/by time averages based on
the ergodicity of the residual sequence.
4.3 Multi-sensor data fusion ar chitectures based on the Kalman filter

Kalman filtering has been used in the processing of data cdnainmgmultiple sensors. These
sensors are assumed to be different hardware devices, and eadthatssown data stream. If
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all the measurements are processed by a single filter, thisrrdéferred to as aentralised
Kalman filter. If the measurements coming from each sensor are procassday fa local filter
and then afterwards a master filter does the fusion protessiwo alternatives of processing
exist, adecentralised Kalman filter or afederated Kalman filter. In the next sections, each one
of these MSDF architectures based on the Kalman filtering technigukescribed.

4.3.1 Centralised Kalman filter

In the centralised Kalman filter (from here referred t€C&$) the measurements coming from
all sensors are processed by a single filter [Gao et al, 1893 represented graphically in
figure 4.3. The CKF yields optimal estimates in the senseinifam mean-squared error
(MMSE), subject to the usual assumptions of linear dynamics and noistcstat

- ~

Z
Sensor . —=—® Global Filter

, Z2k
Sensor . »| | Prediction [€— | _
X (9

Z L >

Sensor : —=X—p
. , Correction
Sensorn kg
" y,

Figure 4.3 Centralised Kalman filtering architecture.

Assuming that the measurements coming in to the CKF are friferedit independent
sensors, the global measurement veztoan be written as,

2 =12,...2,] (4.24),
and the global measurement sensitivity matrix can be written as,
H, =[Hg,...H.,] (4.25).

Thus, the corresponding measurement equations for the measwrggbénearly related to
the components of the state vectgrare,

z, = Hy X v, (4.26)
where the subscriptdenotes thé-th sensor andy is the measurement vector coming from the
i-th sensor at timé; andvi is the corresponding measurement noise vector with covariance

matrix Ry.

If it is assumed that the, vectors are uncorrelated across all sensors, then the global
measurement noise covariance maRikas a block diagonal structure,

R, =block diag[R, ...R,] (4.27).
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Therefore, by using the global measurement vector, the globasunenent sensitivity
matrix, and the global measurement noise covariance matrix, givequations (4.24), (4.25)
and (4.27), respectively, the standard Kalman filter can be directlgdppl

To achieve optimality, the CKF will result in a high compiotaal load when implemented.
Also there is the issue of the lack of robustness when thespuisous data in any of the
sensors. For this reason several decentralised Kalmanintijtapproaches have been devised as
is described in next sections.

4.3.2 Decentralised Kalman filter

The decentralised Kalman filter (from here referred t®DKE) is a two-stage data processing
technique [Brown and Hwang, 1997] [Wei and Schwarz, 1990] [Hashemgpalir 1988]. In
the DKF the standard Kalman filter is divided into one or meressar-dedicated local filters (1
to n) and a master filter, as is graphically representedyimd 4.4. In the first stage, the local
filters process their own data in parallel to yield the pessible local estimates. In the second
stage, the master filter fuses the local estimates,ipiehthe best global estimate. As a result,
the computational load can be significantly reduced by this tgabniThe results of each local
Kalman filter may be locally suboptimal, but when combined theglkegally optimal [Brown
and Hwang, 1997].

NG dx
~ : N
l M aster Filter
Referencd xR icti
. » Prediction
Sensor I X (=), P (=) A
kK7 Tk
: I P— v
X+, Py )
zic P Local filter 1 2221y
Sensor 1 —=—> Ry, Py ) X, (+)
|
: ~ X -3 P
I | Koy (9, Poyt
) Py )
Zoc T Local filter 2 221
Sensor 2 ‘—|—>I Kot 0 Py )
| . .
I X (), P (=) Correction
| | \<,\ 1
Ly : X Poc )
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nk'™/v ' nk
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Figure 4.4 Decentralised Kalman filtering architecture.

The set of equations of the DKF are described next. Hiesi;th updated local system can
be depicted by a state space model of the form:

Xi(ksn) = D, X + Byl + Wy (4.28)
with corresponding measurement equation:

Zy = Hy Xy (4.29)
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wherex; is thestate vector of theth local system is the local system noise with covariance
Qi Zk is the corresponding local measurement vector,vand the measurement noise with

covarianceRy.

With the above definitions, eaétih local filter can compute its estimates based strantly
its own observations and using the standard Kalman filter algorithm.\dower convenience,
the alternative form of the Kalman filter algorithm is used instead. ighi

Prediction equations:

)A(i(k+1)(‘) =@, X (1) + By Uy (4.30)
P(k+1) =0, Rk“)q) +Q, (4.31)
Correction equations:
P = P+ HyRIH,, (4.32)
Ki = ik(+)Hi-:—<R;1 (4.33)
X9 = Py 0P 0%y () + Ky (4.34).

Now, in order to express the global estiméte.) in terms of the local estimates, the same

assumptions made in the CKF case, expressed by equations (4.24)a(d.28)27), are made
here. Therefore, the global optimal estimate and associat@dcewariance are then calculated

by:

n
X (+) = Pk(+>[Pk (% (- )+Z Pl 0% () = Z e O (- >} (4.35)

Ptw =R - >+ZFTK (+) — Z 1) (4.36).

The convenience of using the alternative Kalman filter algoritan be seen now. The local
filters can pass directly their respecti%e ), P, '+, X, (-, and P, *(-) on to the master filter,
which, in turn, can then compute its global estimate. Equa(®B5) and (4.36) formulate the
correction equations for the best global estimate of the g&aitorx, and its covariance matrix
in terms of the local estimates and their covariances [\Wei%chwarz, 1990]. The global
prediction of the state vectak, -y with its respective covariance matrig -y is computed

from the prediction equations (4.8) and (4.9) given by the standard Kalmaalfjibeithm.

4.3.2.a Decentralised Kalman filtering with feedback

In figure 4.4 it is suggested that a feedback from the makés to the local filters can be
considered (when the switches are closed). In fact, a DKF vetlbéek can be formulated as is
explained next. In order to allow indirect measurement sharing, thefeedtate vectog, (-

and its respective covariang® - can be fed back to the local filters. This feedback enables

the local filters to reset their respective prior estimatere accurately with each step than they
would be able to do otherwise [Brown and Hwang, 1997]. This feedback is edigVetting:
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)A(ik(—) = )A(k =) (4.37)
Rk (-) = Pk(_) (438)

With these modifications, now the local correction equations@rguted using the global
predicted state vector and its respective covariance, this is:

Aik(+) = Pk(ﬂpk_l(‘);(k )+ Ky Zy (4.39)

Rk (+) = Pk_l(—) + Hljl:\’k_lHk (4.40),

and the global state estimation and respective covariance are tealdya

X (+) = Z R PR 0%y 0= PenB (% ) (4.41)

n

R Z 0 =R (4.42).

Note that there is no direct communication between the filtdosvever, there is indirect
information sharing by feeding back (-) with each step. This is due to the fact tRat) is a

linear combination of past measurements in all filters.

Observe too that the master filter maintains full oplitjavith the feedback architecture.
Moreover, the local filters improve their optimality with pest to the DKF without feedback,
but they still do not have full optimality with respect torakkasurements [Brown and Hwang,
1997].

4.3.3 Federated Kalman filter

A special case of DKF is the federated Kalman filterr[$2e, 1990] [Gacet al, 1993] (from
here referred to as FKF) which employs the principle knownrderfnation sharing” among
the local Kalman filters to improve the fault-tolerant perfance of the system. A
representation of this scheme is shown in figure 4.5. The possfblenation to be shared
includes the kinematic process noise, the initial condition irdGon, and common
measurement information. Usually the kinematic process noike isformation selected to be
shared [Gaet al, 1993].

In design, the FKF is similar to the DKF. Here too a stage data processing algorithm is
used. The difference between the two approaches is the infmnnstaring process of the
former. In consequence, the same conditions for the DKF are catsie the FKF. Then in
the description of the FKF the samelocal subsystems defined by equation (4.28) with
respective measurement systems given by equation (4.29) are considered her

Now, let the fused (full centralized) solution be representethdyovariance matri®, )
and the state vecta, +, thei-th local filter solution byP,  and %, and the master filter
solution by P, and X.». Thus, if the local and master filter solutions are diehly
independent, they can be optimally combined by [Carlson, 1990]:

Pilt =Rl + -+ Rlm+ Py (4.43)
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Pf;l(+))’sz(+) = Pl;l(+))'21k(+) +- Pk (+)Xnk(+) +P} ) K (+)ka(+) (4.44).
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Figure 4.5 Federated Kalman filtering architecture.

The main idea of the FKF is to construct individieaal and master solutions in such a way
that they can be combined at any time by the abquations.

Therefore, the FKF algorithm follows the proceduosv given:

1) Divide the fused (global filer) error covarianeg and the common process noise covariance
Q in so way that theé= 1,...n,mlocal filters and the master filter each recemaetfionss,
G of the total information, and set local statereaties to the fused (global) state estimate
value %, (+:

Q. =8Q:" (4.45)
P. toy= ﬁPfk +) (4.46)
Xik (+) = ka (+) (447)

where S, (i = 1,...n,m) are information-sharing factors. The conservatibrinformation
principle dictates that the information-sharingtéas 3 sum to unity:

S5 =1 (4.48).

i=1

2) Local filters and the master filter process thegdiction equations independently:

A

X (k+1) () cD|kX|k(+ + By Uy (4.49)
Pi(k+1)(‘) =0, Pik(+)q)ik +Qy (4.50)
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withi =1,...n,m.

3) Each local filter processes its own sensor measmemnusing, for convenience, the
alternative Kalman filter algorithm:

P’ = B+ HiRH,, (4.51)
K = Py (")HiIR;l (4.52)
)A(ik(” =P® Pik_l(‘))A(ik(‘) + Ky Z (4.53).

wherei =1,2,...n.

4) The fusion algorithm combines master filter andaldidter estimates after each correction
cycle by:

Pl =Y Pl + Pl (4.54)
i=1
Xg (9 = Py, (+>[ P 0+ D RE%, (+>} (4.55),
i=1

and projects ahead the current master state and @variance estimates. Note that in
equations (4.54) and (4.55) instead of using, and %, they useP, - andX - . This
is because there is no measurement informatiotebl@ito update the master filter.

It is necessary to mention here that, by usingrif@mation sharing principle, local filters
use partial information, subsequently the outpubodl filters lack optimality. However, if all
conditions are met, the global solution is optimal.

An issue to be confronted in the FKF design is b total information is to be divided
among individual filters to achieve the highest ioyement in performance, efficiency and
fault tolerance.

4.4 Summary

In this chapter the standard Kalman filter algarittogether with a popular alternative form,
have been described. An important issue is theistensy of the estimates given by the filter.
Thus two statistical tests have been describecetidyvthis aspect of the algorithm. For the
purposes of this work, these tests will be of grelvance in the next chapter where a fuzzy
logic-based adaptive Kalamn filter will be formdet

Basically there are three architectures for medfis®r data fusion based on the standard
Kalman filter: centralised, decentralised and fatkdt Kalman filtering. These approaches have
been described in this chapter. The idea of deglesdd processing will be used in chapter 6
where an hybrid multisensor data fusion architectwitl be developed.



CHAPTER 5
ADAPTIVE KALMAN FILTERING
THROUGH FUZZY LOGIC

5.1 Statement of the problem and motivation

The problem of improving the performance of a standard Kalm@n Ghn be divided in two
parts, a modelling problem and an estimation problem [Mohamed ana&¢hi®99]. First, the
modelling problem basically is connected with the development oérbetbdels that more
accurately describe the system in question. In this casenttextain parameters needed to be
adjusted can be part of the system model (i. e. state ioansiatrix) and/or the measurement
model (i. e. measurement design matrix). On the other hand, theatgmtinproblem is
concerned with achieving better estimates through the propeofugeailable process and
measurement information. In this case the parameters &oljbsted are the statistical process
noise and measurement noise information though the covariance matricekorQ,.

As described in the previous chapter, the standard Kalntan[flalman, 1960] formulation
(from here referred to as SKF) assumes compdefwiori knowledge of the process and
measurement noise statistics, matriQg@andR.. Whilst often they are assumed to be constant
matrices, they may vary with time (indx[Welch and Bishop, 1995] and, if this is so, then the
nature of this variation is assumed to be known as well. Haowigvmost practical applications
these matrices are initially estimated or, in fact, arknown. Additionally, both the
measurement noise and process noise are assumed to be undaregtateean Gaussian white
noise sequences, which is reasonable in most cases. The probteis that the optimality of
the estimation algorithm in the SKF setting is closely condetighe quality of the a priori
process noise and measurement noise statistics [Brown and HW88@y [Mehra, 1970]. It has
been shown that inadequate initial statistics reduce thésioreof the filter estimated states or
introduce biases to the filter estimates [Sangsuk-lam an@dull990]. In fact, incorrect a
priori information can cause practical divergence of the filter §jeitald, 1971].

From the above comments it can be argued that using a SKF dksighefixed noise
statistics in a changing dynamic environment is a major drekviI hus, there is motivation for
making the SKF adaptive with respect to the exact environmentplip®se of an adaptive
Kalman filter formulation (from here referred to as AKFjasreduce or bound the errors in the
estimation by modifying or adapting the Kalman filter to the real data.

In this chapter an on-line adaptive scheme of the Kalmaan &lnploying the principles of
fuzzy logic is presented. The adaptation is in the sense ofiagpadjusting the noise
covariance matriceR, and/orQ, from data as they are obtained. The main advantages derived
from the use of a fuzzy logic technique, compared to traditiongitatitan schemes, are the
simplicity of the approach, the possibility of including heuwisknowledge about the
phenomenon under consideration, and the ability to deal with uncertain information.

The chapter is organized as follows. First a review otrdwitional approaches to AKF is
presented. After that, the fuzzy logic-based AKF approach isnedtliNext, in order to
demonstrate the effectiveness of this approach, an illustrateenple is presented and
comparisons with respect to the SKF and traditional AKF appssa@re given. Finally,
conclusions are given which summarise the outcome of this chapter.

57
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5.2 Traditional adaptive Kalman filter approaches

Since the development of the SKF algorithm [Kalman, 1960] diffeteaditional AKF
formulations have been devised [Mehra, 1972] [Moghaddamjoo and Kirlin, I®®®jamed
and Schwarz, 1999] [Jazwinski, 1969]. A common factor in all these ap@oécthe use of
the measured data and the filter residual sequence in ordmstiteate the unknown noise
statistics. Recently, Mohamed and Schwarz [1999] have clak¢ifesse procedures into two
main approaches: multiple-model-based adaptive estimation (MM#hE) innovation-based
adaptive estimation (IAE). In both techniques the concept okiatilithe new information
available in the residual is used but they differ in their impietation.

In the SKF algorithm the residual sequence, generally denateg & the difference
between the actual measuremgreceived by the filter and its predicted valde x, (-)

r. =(z, —ka(k(—)) (5.2).

If all the assumptions for an optimal KF are met, thenrésidual sequence is a linear
combination of independent Gaussian random variables [Jazwinski, Maylydck, 1979]. As
a result, the residual sequence is a white Gaussian seqofeneean zero and covariance

S, =H,P.(HH, + R, . This means that the value of the residyaannot be predicted from its

previous values. For this reason the residual sequence représeiiformation content in the
new observation and is considered the most relevant source of atfamnfor the filter
adaptation. In addition, from the SKF algorithm it is known that the Kalman gpingertional

to the inverse ofS. Thus, the residual sequence becomes a useful tool for judging the
performance of the filter in actual practice. The residuglesece is available to us, as is its
statistics. By checking whether residuals indeed possesdttienretical) statistical properties,

the performance of the Kalman filter can be assessed.

In the MMAE approach, a bank of Kalman filters runs in paralli¢h different models of
the statistical filter information matrices, i.e. the pssaoise covariance mati@ and/or the
measurement noise covariance maRixIn the IAE technique, the adaptation is made directly
to the statistical information matric€k and/orR, based on the changes observed in the filter
residual. A brief review of these approaches is given next.

5.2.1 Multiple model adaptive estimation algorithm

In the multiple model adaptive estimation (MMAE) approach, caigynproposed by Magill
[1965], a bank of SKFs runs in parallel [Brown and Hwang, 1997] [Cap8b]iMaybeck,
1989], as shown in figure 5.1. Each SKF runs under a differentatatisof the uncertain
parameter vectorr (the process noise covariance matfx and/or the measurement noise
covariance matriRy).

At each time stefk, the MMAE filter does three things, as follows:

 First, each SKF in the bank of filters computes its ownmes¢ X, (a;), which is
hypothesised assuming that a; (fori = 1,2,...,L; L is the total number of SKFs used).

» Second, the system computes ahgosteriori probabilities for each of the hypotheses using
Bayes'’ rule as,
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o(a, |z,) = Pala)p@) i=1,2,..L (5.2)
2. Pz la))p(a))

wherep(a; | z) is the probability that the parameter vectgrequals thé-th vectora; at time

k given all the past measurements up to and including the currastireenent, i.ez, ..., Z.
The distributionp(&;) is assumed known, although in genepédr) is unknown, and hence a
uniform distribution is assumed. The unknown parameter vectasisraed to have a finite
number of possible realisations [Magill, 1965] [Chear et al, 199Y]the conditional
densitie(z|a) in equation (5.2) are computed recursively as:

1 ~Lishn,

(e 2 p(z._, |, (5.3)
(Zn)mlz‘sk‘llz p( kll )

p(z la;) =

where m is the dimension of the measurement vectgrjs the residual, and its
corresponding covariance matrix, both calculated iri-theSKF. Note that the denominator
in (5.2) is simply the sum of all the computed numerator termstargdi$ the scale factor
required to ensure that @la; | z) sum to one.

» Finally, the scheme forms the adaptive optimal estimate a§ a weighted sum of the
estimates produced by each of the individual SKFs as,

% =Y ,(a)p(@, 12,) 5.4

wherep(a; | z) is the weighting factor of thieth SKF.
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Figure 5.1 Structure of the MMAE filter.

As measurements evolve with time, the adaptive schemesledrich of the filters is the
“correct” one and its weighting factor will tend to one, whitee weighting factors of the
remaining “mismatched” SKFs will tend toward zero. The banfitefs accomplishes this by
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looking at the sums of the weighted squared residuals. The 8KFw smallest sum prevails.
This is because the filter that has been modelled corngdtlproduce residuals with near zero
mean. Of course, unless the bank contains all the possibkeatieals of the parameter vector,
the correct filter will not necessarily be the optimal, louly the “best” one from those
available.

The described MMAE approach has some drawbacks. Since the unknammefsas are
assumed to be constant over time, this kind of adaptive Ghenot be readjusted if the
parameter actually varies slowly with time. Some ad hoc proesdguch as periodic re-
initialisation, have to be used if the scheme is to adapistovdy varying parameter situation.
Another problem in the MMAE approach is the fact that having a lbfr&KFs running in
parallel increases the computational requirements when mdfe &€ considered to be in the
bank.

Moreover, the main problem of the MMAE approach is that itsopsdnce is dependent
upon a significant difference between the residual charaatsriatthe correct and mismatched
filters. To avoid errors in selecting the correct filtérjs important not to add too much
dynamics pseudonoise during filter tuning, since this tends to méiskedces between good
and bad models [Maybeck, 1989] [Caputi, 1995].

5.2.2 Innovation based adaptive estimation algorithm

The innovation based adaptive estimation (IAE) approach [Mehra, 197Q] [Mohamed and

Schwardz, 1999] is based on the improvement of the filter performhrmagh the adaptive

estimation of the filter statistical information, the nedg R, and/or Q.. The adaptation

mechanism is based on the whiteness of the filter resiégpmlesce, equation (5.1). In this
technique the measurement and process noise covariance snatréce@dapted directly as
follows:

R, =Cr,—H P, H/ (5.5)
ék = KkérkKI;r (5.6)

where P, () is the state covariance matrix before upd#tg,is the Kalman gain matrix, both

obtained in the SKF algorithm; ar(firk is an estimate of the actual covariance matrix of the
residual sequence.

Having available the residual sequengdts actual covariance matr'&rk in (5.5) and (5.6)

is approximated by its sample covariance through averaging iasliding estimation window
of sizeWs,

~ 1 &
Cr,=——>yrr' (5.7)
k VVSZ; it
where i, =k-Ws+1 is the first sample inside the estimation winddle window sizeWs is
chosen empirically to give some statistical smawghi

The described adaptive KF algorithm implies thed idditional blocks for computing the
actual residual covariance matrix and bd&h and/or Q¢ have to be added to the SKF
formulation, as is shown in figure 5.2.
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& + l'k | Compute Compute SKF
> Cr, R, Q Algorithm
z.()=HX0)

Figure 5.2 Additional blocks in the IAE filter.

The derivation of (5.5) and (5.6) were initiallyrfiaulated by Mehra [1972] and lately re-
derived by Mohamed [1999] using a maximum likelitiaviterion (the reader interested in the
whole procedure is referred to the cited references

There is no method that is completely free of stmigations. In the described IAE care has
to be taken in the choice of the sliding windowesithis is particularly important if bofR and
Q« are adapted simultaneously, which may end in aogirbal solution or even filter
divergence [Mohamed, 1999]. Also, off-line covadarpropagation is not possible within the
adaptive Kalman filter algorithm because of its efggency on the residual sequence that is in
turn dependent on the external measurements.

5.3 Development of a fuzzy logic-based adaptive Kahn filter

In this section a novel fuzzy logic-based adapkedman filter is developed. First a review of
the existenting approaches is given. After tha,gtoposed fuzzy logic-based adaptive Kalman
filter is described. Three cases are considereapta estimation of the measurement noise
covariance matriR, only, adaptive estimation of the process noiseagamce matrixQy only,
and adaptive estimation of the measurement ancegsagoise covariance matric&,andQy,
simultaneously. Finally, some remarks about theilgtiaof the adjusting procedure are given.

5.3.1 Previous works

In the past, some domain specific fuzzy logic-baapproaches to AKF have been proposed
[Lalk, 1994] [Wang and Goh, 1999] [Kobayas#ial, 1995, 1998]. In these works, some
domain specific performance measures have beerideoed as input features to a fuzzy
inference system (FIS) which works in supervisoiydm adjusting some of the KF uncertain
parameters. For example, in Kobayashal [1998], three different FISs were used to adjost t
matricesPy, Q« andR in order to reduce the effects of errors due ttsseinaccuracies in a
global positioning system (GP3 is adjusted through a FIS which inputs are basethe
distance travelled by a vehicle between GPS updatdghe geometrical dilution of precision
(GDOP value) of the receiver as contributors teseenoise. The covariance matri¢g&sandQy

are influenced by the estimation performance amg¢dare adjusted online through another two
FISs involving such performance metrics as inplitals, approaches such as these can only be
applied when plant and sensor noise sources anéfidd and, consequently, their degradation
or improvement can be monitored to tune the noi»eariances online. In most real life
applications such information is either not avdéadt all or hard to obtain. Therefore, in most
real situations, measurement residuals are the am8ilable information for adaptation
purposes.

Some authors have tried to derive general apitadKF approaches. For example, in
[Abdelnour et al, 1993] and later in [Sasiadek and Wang, 1999] uke of a fuzzy logic
controlled exponential-weighting scheme for prewenfilter divergence is proposed. The idea
explored there is that of monitoring the whitenpssperty of the filter residual in order to
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evaluate the performance of the filter. If theefildeviates from certain bounds, then corrective
actions are taken through adjusting the exponewiiddihting factor. This factor increases or
decreases the noise covariance matrikesnd Q.. But, as was demonstrated initially by
Alspach [1972] and reaffirmed by Sangsuk-lam anddBl [1990], the whiteness test on the
residual sequence is insufficient to adequatelyuata the KF performance. Another example is
the work of Jettat al [1999] where a covariance matching technique ésl s develop a fuzzy
logic based approach to AKF. Here the FIS is usettljust a factor, through which, the process
noise covariance matriQy is tuned. However, the adjustment is carried olélg based on the
size of the filter residual. The idea was to maimtae magnitude of the filter residual neither
too near nor too far from zero by increasing orupgdg the value of)y. In this case, the
monitoring scheme used to evaluate the KF perfooaas rather involved and not easy to
implement.

Unlike the above approaches, it is argued thatiswork, the proposed fuzzy logic-based
AKF scheme is applicable across all domains. Intiaig due to the use of fuzzy logic, it is
easy to understand and implement. The proposed fagic-based AKF algorithm is described
next.

5.3.2 The proposed fuzzy logic-based adaptive Kalmdilter

In this section a fuzzy logic-based adaptive Kalrfier (from here referred to as FL-AKF) is
presented [Escamilla and Mort, 2000; 2001c]. Thaptation is in the sense of dynamically
adjusting on-line the measurement noise covariamedrix R, and/or the process noise
covariance matrixQq using a Fuzzy Inference System (FIS). This relattes a priori
measurement noise statistical assumptions and fismmly benefits the Kalman filter
performance if the noise statistics change or evelith time. The main advantages derived
from the use of fuzzy techniques, with respect raitional adaptation schemes, are the
simplicity of the approach, the possibility of inding heuristic knowledge about the
phenomenon under consideration, and the abilidetd with uncertain information.

The fuzzy logic adaptation scheme is based onetttenique known as covariance-matching
[Mehra, 1972]. The basic idea behind this technigue make the residual sequence consistent
with its theoretical covariance value. If a statst analysis of the residual sequence shows
discrepancies between its theoretical and its hatowmariance, this latter measure being
approximated through averaging inside a moving windthen adjustments for matric&k
and/orQy are derived. The adjustments are generated orliree FIS based on the knowledge
of the size of the discrepancy. In this way the sizthe discrepancy is reduced and maintained
at a minimum while at the same time the consistémtyween the residuals and their statistics is
preserved.

5.3.2.a Adaptive estimation of the measurement n@sovariance matrixR, only

In the context of the SKF algorithm the measuremerge covariance matri represents the
accuracy of the measurement instrument. Thus,rileegement of the covariance matRxfor
measured data means that we trust this measuradedatand have more faith in the prediction.
Assuming that the process noise covariance m&ris completely known, here an algorithm
employing the principles of fuzzy logic is derivea adaptively adjust the matriR. This is
achieved in two steps; first, having available ithgidual sequenag, defined by Eqg. (5.1), its
theoretical covariance is,

S =HRH; +R (5.8)
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obtained in the SKF algorithm. Second, if it isetthat the theoretical covariancerptas
discrepancies with its actual value, then a FISivder adjustments foR; based on the
knowledge of the size of this discrepancy. The ahbje of these adjustments is to correct this
mismatch as much as possible and, in this way,taiaithe consistency between the theoretical
and actual residual statistics.

In order to detect and monitor the size of theréigancy betwee, and its actual value, a
new variable is defined. This variable is calleel Degree of Mismatch (referred tolsM,),

DoM, =S, -Cr, (5.9).

where the actual residual covariarfdg is estimated by equation (5.7), rewritten here,

wherei,=k-Ws+1 is the first sample inside the sliding estimatwindow. The window size,
WS is chosen empirically to give statistical smoothi

The basic idea of adaptation used by a FIS to dextjustments foR, is as follows. It can
be deduced from (5.8) that an incremerRitwill incrementS,, and vice versa. ThuB, can be
used to varyS, in accordance with the value &M in order to reduce the discrepancies

betweenS, and dk. Note that all matriceS,, f}k, R« andDoM, have the same dimensiamxm

(recall thatm is the dimension of the measurement vegfprThus, under the assumption that
the measurement noise is an uncorrelated and @aussise sequenci, is a diagonal matrix
whose elements are the variances of the individomponents of the measurement noise vector
Vi. This means that the diagonal elementBatan be adapted in accordance with the diagonal
elements oDoM,. From here, three general rules of adaptationlefiaed:

1. If DoM(i,i) O O (this meansS(i,i) and érk (i,i) match almost perfectly) then
maintainR(i,i) unchanged.

2. If DoM(i,i) > 0 (this means(i,i) is greater than its actual valuiferk (i,i)) then
decreas&(i,i).

3. If DoM(i,i) < O (this mean&(i,i) is smaller than its actual vaILIérk (i,1)) then
increaser(i,i).

whereS(i,i), érk (i,i), R(i,i) andDoM(i i), i=1, 2,...,m; are the diagonal elements Kf o ,
R andDoMy, respectively.

Thus, a single-input-single-output (SISO) FIS barused to sequentially generate the tuning

or correction factors for the elements in the ndialgonal ofR,, and this correction is made in
this way,

R (,1) =R (i,i) +AR, (5.10)

whereARy is the adjusting factor fdR(i,i). AR is the FIS output anBoM, = DoM,(i,i) is the
FIS input. A graphical representation of this atijgsprocess is shown in figure 5.3.
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Following the general rules of adaptation, the E#® be implemented considering three
fuzzy sets forDoM,: N = Negative,ZE = Zero, andP = Positive, describing the degree of
mismatch; and three fuzzy sets #R: | = IncreaseM = Maintain, andD = Decrease,
describing the action of correction to be takeresSEnmembership functions are shown in figure
5.4. There, the fuzzy sets are defined by the petensa andb, which can be selected in
accordance with the system under considerationekample, if there is knowledge about the
range in which the values Rican vary, then the maximum possible value careleet®d as the
initial value fora. The parametds, which defines the maximum size of adjustmenhé&walues
in R, can be selected as a percentagea,ofor example the 10% will produce smooth
adjustments. Obviously, these initial values carupther tuned from simulation. Hence, only
three fuzzy rules are included in the FIS rule base

1. If DoMy =N, thenAR =1
2. If DoM = ZE, thenAR, =M
3. If DoM, =P, thenAR, =D.

Finally, using the compositional rule of inferermgm-prod and the center of area (COA)
defuzzification methodR, is adjusted in the FL-AKF as given by (5.10).
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Figure 5.3 Graphical representation of the segakalgorithm to adjus®, using a FIS.
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From experimentation and simulation of many systetrwas found that the fuzzy sets
defined in the way shown in figure 5.4 give goosults in most cases. However, if necessary,
the shapes and number of fuzzy sets in the menipeisictions can be modified to fit the
requirements of the problem under consideratioiis Bhpossible thanks to the use of the fuzzy
logic technique which allows capturing the knowledyat the designer has over the system
under consideration.
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It is necessary to remark here that, as altemstte the sequential implementation, the
adaptation algorithm can be implemented in two timlthl ways. In the first alternativen
parallel SISO FISs can be considered in order aptadt once all the elements in the main
diagonal ofR,, as it is shown graphically in figure 5.5(a). hetsecond alternative, a multiple-
input-multiple-output (MIMO) FIS with 8m rules (a group of three rules for each element in
the main diagonal is needed) in the rule base earsed to adjust at once all the elements in the
main diagonal oR,. This last alternative is represented graphidallfigure 5.5(b). The use of
any of the three ways of implementation: sequentiarallel or MIMO, depends on the
computational resources and the problem under deragion.
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Figure 5.5 Graphical representations of the alteresifor implementing the algorithm to adjust
R¢. (@)mparallel SISO FISs implementation. (b) MIMO FISplementation.

Similarly, from experimentation it was found theatgood size fothe moving window in
(5.7) isWS= 15.
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5.3.2.b Adaptive estimation of the process noisevariance matrix Q, only

The process noise covariance matxrepresents the uncertainty in the process model. A
increase in the covariance matfx means that we have less faith in the process nanul
have more confidence in the measurement. Assurhiaigthe measurement noise covariance
matrix R, is completely known, here an algorithm employihg principles of fuzzy logic is
derived to adaptively adjust the mat@)x First, note that Eq. (5.8) can be rewritten as:

S = H (PP v®, +Q)H{ +R, (5.11).

from the SKF algorithm. It can be deduced from Egl1) that the same basic idea of
adaptation used by a FIS to derive adjustment®Rfaran be used by another FIS to derive
adjustments forQ,. However, if the state and measurement vectorshef system under

consideration have not the same dimension, thevilliresult that the matrice§, érk, and

DoM will have dimensionrmxm, while the matrixQ, has dimensiomxn. This means that the
previous adjusting procedure cannot be used ircHss.

In this case what is needed is to project the Iprobfrom the measurement space with
dimensionm, to the state space with dimensinThis projection can be done by including the
Kalman gain in the calculation 8foM,, this is:

DoMK, =K,SK; -K.Cr. K/ (5.12a)
= Kk[Hk(q)k—lpk—l(*)q)I—l + Qk—l)Hl;r + Rk]Kl;r - KkérkKII (5.12b)

where the new variablBoMK,, of dimensionnxn, is referred to as the Degree of Mismatch
through the Kalman gail, S is the theoretical covariance of the residual saga, andCr, is

its estimated value given by Eq. (5.7). The redsoimcludingKy in (5.12) is basically because
it is a suitable matrix, it has dimensionm, and because it is available from the SKF algorith

Furthermore, if (5.12) is compared with (5.6), tlieis realised that the factd(kérkK,f is the

estimation of the actual value of the process nomeriance matrixg [Mohamed, 1999].

Thus, (5.12) can be interpreted as the differeretevden the ‘theoretical’ value ) and its
actual approximated value. Hence, it can be infeftem Eq. (5.12b) that a variation @y will
affect the value 08.,. If Q¢ is increased the8., will be increased, and vice versa. This means
that by augmenting or diminishing the valuefthe mismatch betwee® and Cr, , detected

throughDoMKy, can be reduced. Therefore, under the assumgtainiie process noise is an
uncorrelated and Gaussian noise seque@gds a diagonal matrix whose elements are the
variances of the individual components of the psecmoise vectow,. This means that the
diagonal elements d@, can be adapted in accordance with the diagonalezits ofDoMK,.
From here, three general rules of adaptation areete

1. If DoMK(i,i) O 0 (this meansS(i,i) and érk (i,i) match almost perfectly) then
maintainQ(i,i) unchanged.

2. If DoMK(i,i) > 0 (this mean&§(i,i) is greater than its actual valuferk (i,i)) then
decreas€(i,i).

3. If DoMK(i,i) < 0 (this mean&(i,i) is smaller than its actual vaILérk (i,i)) then
increasey(i,i).

where Q(i,i) and DoMKy(i,i), i=1, 2,...n; are the diagonal elements Qi and DoMKj,
respectively.
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Thus, a SISO FIS can be used to sequentially gen#hre tuning or correction factors for the
elements in the main diagonal @f, and this correction is made in this way,

Qc(i,1) =Q,(1,1) +AQ, (5.13)

whereAQ is the correction factor fa(i,i). AQ is the FIS output anBoMKy = DoMK(i,i) is
the FIS input. A graphical representation of tidpiating process is shown in figure 5.6. Here it
is necessary to remark that in this case the atitaptavill be reflected in the next time step
(k+1). This is because in fak; is the matrix that is affecting and notQy.

)(k -
Sensor % » SKF r
K k
S,< k
Q« ] yes Compute
no -
Cr,
Compute Compute
KkS<K: KkérkKl-(r
+ P—
A
i+1 DoMKj
i=1
Fuzzy A
Inference<—| DoMKy = DoMK((i i) |
System
FL-AKF

Figure 5.6 Graphical representation of the seqakaltfjorithm to adjus@, using a FIS based
on DoMKj.

Following the general rules of adaptation, the E#f be implemented considering three
fuzzy sets foDoMK,: N = Negative,ZE = Zero, andP = Positive, describing the degree of
mismatch thoughK,; and three fuzzy sets fa&kQ.: | = IncreaseM = Maintain, andD =
Decrease, describing the action of correction totdden. These membership functions are
shown in figure 5.7. There, the fuzzy sets arendefiby the parametecsandd, which can be
selected in accordance with the system under ceradidn. For example, similar to the case for
R, if the range in which the elements @f can vary is known, then the maximum possible
value can be selected as the initial value of patarn. d can be selected as a percentage of
e.g. 10%. Further tuning of these parameters capebrmed based on simulation results.
Hence, only three fuzzy rules are included in ti&rele base:

1. If DOMKy =N, thenAQ, =1
2. If DoMK, = ZE, thenAQ,=M
3. If DoMK =P, thenAQ, =D.

—
=

N ‘ ‘ 7 D ‘ ‘ ‘ T

—
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Degree of membership
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o

om0 @ ¢ gy 0 a4 4
Figure 5.7 Membership functions fBoMK, andAQx.
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Finally, using the compositional rule of inferene@m-prod and the COA defuzzification
method,Qy is adjusted in the FL-AKF as given by Eq. (5.13).

Here also from experimentation was found thatsthegpes and distribution of the fuzzy sets
shown in figure 5.7 give good results in most cadesvertheless, if required the shapes and
number of fuzzy sets can be modified to fit thedseef the problem under consideration.

In a similar way as foR,, as alternatives to the sequential implementatioa,adaptation
algorithm forQy can be implemented in two additional ways. Infilet alternativen parallel
SISO FISs can be considered in order to adapt @neously all the elements in the main
diagonal ofQy, as it is shown graphically in figure 5.8(a). hetsecond alternative, a MIMO
FIS with 3xn rules (a group of three rules for each elementénmain diagonal is required) in
the rule base can be used to adjust simultanealldlge elements in the main diagonal(f
This alternative is represented graphically in fegg.8(b).

Xy
Zy >
Sensor—» SKF Ie
Kk y
QkT S Compute
5 {QH(MHAQK(LD,, c.0 } Cr,
* 0+« Qu(nm*AQ(nn ]
A y ¢
Compute Compute
K, SK/ K Cr.K/
AR(NN), | = + + JAR(1,1)
_|_ —_—
L FIs 1]« DoMK(1,1)
. . DoMKy
@ L [FISn [«+{ DoMK,(n.n)
FL-AKF
X,
Zy >
Sensor—» SKF Mk
Kk A
QkT S Compute
o -[QuaD+aR@, - 0 Cr,
k 6 ... Qu.(nn+aQnn)
y A y ¢ ¢
Compute Compute
K, SK{ K, Cr, K[
AR(n,n)k ¢ v AR(l,l)k
_|_ —_—
— DoMK (1,1)
Eis . DoOMK
DoMK(n,n)
(b) FL-AKF

Figure 5.8 Graphical representations of the alteresi for implementing the algorithm to adjust
Q. (@)n parallel SISO FISs implementation. (b) MIMO FlSpilementation.
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5.3.2.c Adaptive estimation of the measurement arjgrocess noise covariance matrice®y
and Qy, simultaneously

It is worth nothing here that, because the samerselfor adapting R-only and Q-only is used,
in the case of simultaneously adaptiRgand Qx numerical difficulties can be encountered in
real data. Due to the approximations made, caredbs taken in the choice of the adaptive
filter parameters such as the moving average wirgloae:

In general, the simultaneous adaptatioiRpoandQ, may lead to an unstable and divergent
filter estimate and should, therefore, be avoided.

5.3.3 Stability of the adjusting procedure

In the FL-AKF algorithm the measurement noise ciaware matrixR, (or the noise covariance

matrix Q) is changed in such a way that the statisticheffilter's residuals approach that of
the optimum Kalman filter. This procedure origirgagekind of stabilising negative feedback in
the statistics of the residual sequence of therfilalthough the stability formulation of this

method is not readily accessible, due to the ustuzdy logic techniques, it can be easily
understood by the arguments given next.

The role of matriceR, andQy in the SKF setting is to adjust the Kalman gaisuch a way
that it controls the filter bandwidth as the stad@d the measurement errors vary
[Moghaddamjoo and Kirlin, 1989]. At steady state fliter gain remains constant, as matrices
R and Q. are kept constant, regardless of changes in teeersydynamics or the update
measurement quality. This problem is solved inkheAKF by adjusting the values &, and
Q« in an adaptive manner.

If only R, is adapted (or onl®), is adapted), then it can be argued that in thithaaR, (or
Q) is the only unknown parameter which controlsKladman gainQx (or R,) is assumed to be
known. Let us assume that, due to some disturbgneesinknown sudden changesvirand/or
wy), the optimal (theoretical) covariance of the daal sequence becomes less than its actual
(estimated) value. The resultant residual sequevilethen become inconsistent with its
covariance. Detection of this inconsistency througbMy (or DoMKy) will demand an
increment inR¢ (or Q), which will, in turn, increase the theoreticallua of the residual
covariance % changes in the direction which approaches itsaaetalue). On the other hand, if
the optimal (theoretical) covariance of the resicgequence is larger than its actual value,
detection of this inconsistency througloM, (or DoMK,) will demand a decrement iR, (or
Qu). Decreasindr, (or Q) will then decrease the theoretical value of t&dual covariances(
changes again in the direction which approacheadtsal value). This correction continues
until S reaches a quasi steady-state in the vicinitysohdtual value. Therefore, deviationsSpf
from its actual value, due to any changes in theah@oise sequences, not only are controlled
by Ry (or Qy), but also will be reduced in time. This behavioan be referred to as a negative
feedback which has a stabilising role in the ovepairformance of the fuzzy logic-based
adaptation algorithm.

5.3.4 lllustrative example
To demonstrate the effectiveness and accuracyeofleiveloped FL-AKF, several experiments

have been carried out and results are presentdtiignsection. These experiments were
developed under the MATLAB/SIMULINK modelling eneimment.
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Consider the following dynamic system which modats object moving in a circular
trajectory at constant speed with process noiseraabsurement noise [Zhu, 1999]:

1
o[ 010
yk+1 yk Wlf_
{ztﬂ} [XK} {vt
= H + (5.15)
Zlf+l Y Vlf_

where® is a constant rotational matrix, aHds a constant measurement matrix, given by,

_ { cos(277/300) sin(2ﬂ/300)} (5.16)

-sin(2/7/300) cos(277/300)

Y = 0.7071 0.7071 (5.17).
-0.7071 0.7071

As the speed of the object is constant, its statgor is simply its position in the plane, a
two-element vectorx =[x, yiJ . With initial statex,=[100 O] and absence of noise the object
will move in a circle of radius 100 about the onigif the coordinate space.

The initial conditions for Kalman filtering are fieed as: %, =[100 Q,

PO(-)=[HTH +O.1I3]‘1. The process and measurement noise vectgrsand v are

uncorrelated zero-mean Gaussian white noise segsiemith covariance matric&d, and Ry
specified in each particular simulation.

The FISs used to adju& and Q in the FL-AKF are specified in sections 5.3.2.a an
5.3.2.b. The parameters used to define the fuzaplreeship functions are presented in table
5.1. The size of the sliding window in Eq. (5.7)sv&elected as 15.

Table 5.1 Parameters for the FISs used to aBjumndQ,

Parameter| FIS used tp FIS used to
adjustRy adjustQy
a 5
b 0.3
C 5
d 0.3

Smulation 1: The purpose of this simulation is to investigate performance of the
developed FL-AKF under correct initial noise stitis The performance of the FL-AKF is
compared with those of a SKF, a traditional AKFngsithe IAE algorithm (referred to as
TAKF-IAE and described in section 5.2.1), and aitranal AKF using the MMAE algorithm
(referred to as TAKF-MMAE and described in sectio.2).

The system under consideration was simulated @0r s2c with a sample timE=0.5 sec.
This means that the object completes two circlé® dctual process and measurement noise
covariance matrices are constant matrices given as:

1 0
Q_{O J (5.18)
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R:[z 0} 5.19).

To compare performances, the following mean sguene®r (MSE) measures were used:

MSEX :%Zn: (X = %) T (X = %) (5.20)
MSEy :%i(yk_yk)-r(yk_yk) (5.21)
MSE =%zn(xk_)2k)1—(xk_)zk) (5.22)

k=1

wherex is the actual value of the position in the X aaigl % _its estimated valuey is the
actual value of the position in the Y axis aydits estimated value is the actual value of the
state vector and, is its estimated valu@;is the number of samples.

The consistency of the filter in each case isetksising the time-averaged normalised
innovation squared (TANIS) measure [Bar-Shalom dia®-Rong, 1993], defined as:

£ = %Z rTSr, (5.23).

If the residuals are white, zero mean, and consistent witballcalated covariancg, then
£ =m, wheremis the dimension of the measurement vegtor

Results: Table 5.2 shows the Kalman gain mati),(residual covariance matri)( MSE
measures, and TANIS values obtained for each case togethahwinitial values given tB
andQ (referred to a&; andQ,, which in this case are the actual correct values). Note¢hba
results for the SKF case are optimal due to the use afdiiect noise statistics. For the FL-
AKF and the TAKF-IAE three results are presented, wRegn adjusted only (R-only), whe®y
is adjusted only (Q-only) and when bd&handQy are adjusted (R&Q). In the TAKF-MMAE
four SKFs are considered in the bank of filters where one of liasnthe correct noise statistics
values and the others are incorrectly specified, as indigatbe last two columns of the table.
Obviously, in both the FL-AKF and TAKF-IAE approaches, the vatfieQ, and/or Ry is
dynamically tuned. For this reason, the valuek ahdS change as time progresses, and thus in
Table 5.2 the values shown fidrandS are those obtained averaging over all the samples. In the
SKF case the values shown fdrand S are those obtained once the system has reached the
steady-state. In the TAKF-MMAE case the values presenteld omd S are those of the SKF
which the algorithm has selected as the best one.

To have a clearer picture of the differences, in Tallethe percentage of degradation in
performance of the FL-AKF, the TAKF-IAE, and the TAKF-MMAarithms with respect to
the optimal SKF (considering the optimal MSE measure andI$AMlue), which has the
correct values of noise statistics, are presented. From Table 5.3 it catetehat under correct
noise statistics the FL-AKF performance degrades on avénagaly 4%, with respect to the
optimal SKF. While the TAKF-IAE degrades on average by 19.4% jaensg the R-only and
the Q-only cases, because for the R&Q case, a divergenbe fiftér is observed. Since the
TAKF-MMAE algorithm quickly converges to the optimal SKF, wihiis part of the bank of
filters, the degradation in this last case is impercantidbwever, if the SKF with the correct
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noise statistics is not in the bank of filters, then theattagion could be very severe, as will be
shown in simulation 2.

Table 5.2 Performance under correct noise statistics: summary @$resullation 1

Filter | Adaptation K S MSEx | MSEy | MSE | TANIS | Ry, | Q
SKF Optimal 0.3542 -0.4384 40  -0.0099 0.7551 | 0.8532| 1.608| 2.002 | R Q
0.3529 0.4357| -0.0099 2.618
FL-AKE | R-only 0.3717 -0.4329 3.74 -0.0068 0.7973 | 0.8747| 1.672| 2144 |R 0
0.371  0.4307| -0.0068 2.78
Q-only 0.3428 -0.4232 3.964 0.0501 0.7576 | 0.878 | 1.636 | 2061 |R Q
0.3506 0.4388] 0.0501 2.593
R&Q 0.3308 -0.3826 3.725 0.0538 0.799 | 09122| 1.711 | 2175 |R Q
0.3419 0.4007| 0.0538 2.795
TAKF- | R-only 0.39 -0.448 | 3.904 00739 0.9273 | 1.028 | 1.956 | 2018 |R Q
IAE 0.377 0.4311| 0.0739 2.969
Q-only 0.2975 -0.4207 3.82 -0.0065 0.8567 | 1.028 | 1.884 | 2.331 |R 0
0.3011 0.4278| -0.0065 2.854
R&Q 0.6023 -0.6058 70.03  45.43| 8.086 | 1032 | 1113 | 2063 |R 0
0.3008 -0.0738 45.43  40.49
TAKF- | SKF 1 5R | 50
MMAE | SKF 2 2R | 2.50
SKF 3 0.3542 -0.4384 40  -0.0099 0.7549 | 0.8531 | 1.608 [ 2.002 R Q
0.3529 0.4357| -0.0099 2.618
SKF 4 0.R | 0.5Q

Table 5.3 Percentage in degradation with respect to the optimal SKEHagon 1

Filter Adaptation % of degradation| 9% of deviation
in performance TANIS test
FL-AKF R-only 3.98 +7.09
Q-only 1.74 +2.95
R&Q 6.4 +8.64
TAKF-1AE R-only 21.64 +0.8
Q-only 17.16 +16.43
R&Q 6821.64 +3.05
TAKF-MMAE | Correct noise
statistics in the 0 0
bank

In addition, the last column of table 5.3 shows the percentage dadtidavipositive or
negative) of the TANIS values with respect to their optinadue, 2; the greater the deviation,
the greater the inconsistency of the filter. Note that @eioto have a good judgement of the
performances, not only it is necessary to look at the MSkesabut it is also important to look
at the TANIS values too. Both must be near to their optimal vdtuessess that the filter is
working correctly.

For a graphical view of results, in figure 5.9(a) the acaimal estimated trajectories of the
moving object obtained by the FL-AKF, R-only adaptation, are preseNtd. that only a
slightly difference in trajectories can be seen. In figure $.8@® MSE for the estimated state
vector is shown as a function of time. In figure 5.10(a) the atiaptaf the diagonal elements
of matrix R, can be observed, this is a typical realisation. Note how tladges reach a quasi
steady-state very near to their actual values. In figure I5.10¢€ diagonal elements of matrix
DoMy are shown. Note how these values are well maintained, veiilgta oscillation, near the
value of zero. Additionally, figure 5.11(a) presents the variailmserved in the elements of the
Kalman gain matrix, while figure 5.11(b) shows the variationthef elements in the residual
covariance matrix, both obtained by the FL-AKF, R-only case.



INTELLIGENT ADAPTIVE MULTISENSOR DATA FUSION USINGHYBRID ARCHITECTURES 73

Actual and estimated trayectories: Simulation 1, FL-AKF, R-only
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Figure 5.9(a) Actual and estimated trajectories. (b) MSEthen estimated state vector;
simulation 1, FL-AKF, R-only case.

Ri: Simulation 1, FL-AKF, R-only
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Figure 5.10(a) Estimated diagonal elements of the measuremsatcovariance matrik. (b)
Diagonal elements of matrR@oM,; simulation 1, FL-AKF, R-only case.
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Kk: Simulation 1, FL-AKF, R-only Sk: Simulation 1, FL-AKF, R-only
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Figure 5.11(a) Elements of the Kalman gain matrix. (b) Etesnef the residual covariance
matrix; simulation 2, FL-AKF, R-only case.

Smulation 2: The purpose of this simulation is to investigate théopmance of the FL-
AKF under incorrect initial noise statistics. The performan€ehe proposed FL-AKF is
compared with that of a SKF, a TAKF-IAE algorithm, and a TAKF-MMAEoailipm.

The system described by Egs. (5.14) to (5.17) was simulated foe8@G@th a sample time
T=0.5 sec. As in simulation 1, the actual process and measuremsatcogariance matrices
are constant matrices defined by Eq. (5.18) and Eq. (5.19). Howevdis inase the initial
values forR and Q (R, and Q) are incorrectly specified, as is pointed out in the last tw
columns of Table 5.4. For exampR=5R means that the initial value Bfis five times bigger
than its correct value.

Results: Table 5.4 shows the Kalman gain matrix, residual covariana&ix, MSE
measures, and TANIS values obtained for each case together with the wane®Bi andQ,.
For the SKF case three results are presented, whenRgnly incorrect, when onhyQy is
incorrect, and when botR, and Q, are incorrect. For the FL-AKF and the TAKF-IAE three
results are presented, when oRlyis adjusted (R-only), when onlyy is adjusted (Q-only) and
when bothR, andQy are adjusted (R&Q), with corresponding initial noise statigiven in the
last two columns of the table. In the TAKF-MMAE case, foulFSkare considered in the bank
of filters where none of them has the correct noise statistics, anishsthe last two columns of
the table. In the FL-AKF and TAKF-IAE cases the value& @ndS change as time progress,
thus in Table 5.4 the values shown forand S are those obtained by averaging over all the
samples. In the SKF case the values showiKfandS are those obtained once the system has
reached the steady-state. In the TAKF-MMAE case the sgiuesented foK andS are those
of the SKF which the algorithm has selected as the best.

In Table 5.5 the percentage of degradation in performance diKke the FL-AKF, the
TAKF-IAE, and the TAKF-MMAE algorithms with respect to the optirB&KF (considering the
optimal MSE measure and TANIS value), is presented. It casebe from Table 5.5 that the
performance of the SKF with incorrect initial noise statssiscseverely affected. This is evident
whenR, or Qq is incorrect. However, note that when both matrices are irtpthe value oK
and the MSE measures are identical to those of the oftiteglbut the values o6 andTANIS
are very far from the optimal ones. This reveals a big instamy of the filter. This is the
reason why it is argued here that the evaluation of the fit6formance should be made based
on both MSE and TANIS measures. This affirmation agrees wihrésults obtained by
Alspach in his early work [1972], where it is shown that theesai@ady-state Kalman gain can
be obtained with different values BfandQ. However, a given value & andK is obtained
with only a specific value oR andQ. This is supported by the results obtained with the FL-
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AKF. Note in Table 5.4 that the valueskbandS are very near to the optimal ones in the three
cases considered. Thus, thanks to the fuzzy logic-based amfapgatod levels of performance
and filter consistency are maintained, as is shown in Table 5.5.tRi®table it is obvious that
the only algorithm capable of maintaining good performance as well asteangjsvhen initial
incorrect noise statistics are given, is the proposed FL-AKF. Note, a$rawelthe performance
of the TAKF-MMAE algorithm is severely affected when ®BKF with correct noise statistics
is not in the bank of filters. Moreover, this last algorithm camlwoany better than to converge
to the filter with the best performance from the filtarghe bank, which could be one that is
very far from the optimal.

Table 5.4 Performance under incorrect noise statistics: summaguitfs; simulation 2

Filter Adaptation K S MSEx | MSEy | MSE TANIS Ro Qo
SKF None 0.1921 -0.2558 13.7  -0.0357 0.9995 | 1.313 | 2.312| 0.7001 | R5 | Q
0.1897 0.2511| -0.0357 7.793
None 05415 -0.6043 8531 -0.0147 1.041 | 1.046 | 2087 | 09215 | R 5Q
0.5412 0.6036| -0.0147 6.854
None 0.3542 -0.4384 200  -0.0494 0.7549 | 0.8533| 1.608 | 0.4005 | R5
0.3529 0.4357| -0.0494 13.09
FL-AKF | R-only 0.3635 -0.422] 409 -0.0078 0.7814 | 0.8898| 1.671| 2043 | R5 | Q
0.3627 0.4197| -0.0078 2.923
Q-only 0.3581 -0.4387 4.192 0.0206| 0.7872 | 0.8609| 1.648 | 1.958 | R 5Q
0.3644 0.4513] 0.0206 2.8
R&Q 0.3851 -0.4445 4.22  0.0835 0.7958 | 0.8908| 1.687 | 2073 | R5 | 5Q
0.3972 0.4682] 0.0835 3.005
TAKF- R-only 0.0356 -0.0229 8.82E4 -1878 | 9.22E4 | 8.97E4| 1.82E§ 3648 | R5 | Q
IAE -0.0035 0.0265 -1878 9.23E4
Q-only 0.3036 -0.426| 3.963 -0.0159 0.8777 | 1.023 | 1.901 | 2295 |R 5Q
0.3069 0.4326| -0.0159 2.969
RE&Q 0.9821 -1.041| 8.755 -0.7715 6277 | 4.785 | 11.06 | 2.069 R5 | 5Q
0.9809 -1.067 | -0.7715 7.541
TAKF- SKF 1 5R | Q
MMAE [ SKF2 05415 -0.6043 8531 -0.0147 1.03 1.043 | 2073 [09215 |R 5Q
0.5412 0.6036| -0.0147 6.854
SKF 3 0.R | 0.0
SKF 4 5R__| 50

Table 5.5 Percentage in degradation with respect to the optimal SKEHagon 2

Filter Adaptation % of degradation % of deviation
in performance TANIS test

SKF None, incorrecR, 43.78 -65.03
None, incorrecQ) 29.79 -53.97
None, incorrecR, andQ, 0 -79.99

FL-AKF R-only 3.92 +2.05
Q-only 2.49 -2.2
R&Q 4.91 +3.55

TAKF-IAE R-only Diverge +82.22
Q-only 18.22 +14.63
R&Q 587.8 +3.35

TAKF-MMAE | Incorrect noise 28.92 -53.97
statistics in the bank

In order to appreciate the adaptation carried out in thédKIE- R-only case, in figure
5.12(a) the estimated diagonal elements of the measurementcooa@ance matriXi, are
shown. Note how these values quickly converge to their acalaksy where they then are
maintained with a slight oscillation. In figure 5.12(b) the diagehainents of matriooM are
shown and we see how these values are maintained near to zégarda 5.13(a) and 5.13(b)
the elements of the Kalman gain matrix and the residualrieoe® matrix are shown,
respectively. Here it can be appreciated how these values cotwengasi steady-states near to
their optimal values.
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Rk: Simulation 2, FL-AKF, R-only DoMg: Simulation 2, FL-AKF, R-only
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Figure 5.12(a) Estimated diagonal elements of the measuremsatcovariance matrik,. (b)
Diagonal elements of matrRoM,; simulation 2, FL-AKF, R-only case.
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Figure 5.13(a) Elements of the Kalman gain matrix. (b) Etesnef the residual covariance
matrix; simulation 2, FL-AKF, R-only case.

In order to examine the adaptation performed in the FL-AKF, Q-camy, in figure 5.14(a)
the estimated diagonal elements of the process noise covamiatiGe Q, are shown and they
quickly converge to their actual values. In figure 5.14(b) ttegatial elements of matrix
DoMKy are shown. It can be seen that these values are maintainateaenyp zero. In figures
5.15(a) and 5.15(b) the elements of the Kalman gain matrix ardditieial covariance matrix,
respectively, are shown. It can be appreciated how thesesvalngerge to values very near to
their optimal.

Smulation 3: The purpose of this simulation is to investigate the pewoce of the
developed FL-AKF under non-stationary noise profiles. The perfiwenaf the FL-AKF is
compared with those of a SKF, a TAKF-IAE algorithm, and a TAKRAE algorithm. The
measurement noise profiles used are shown in figure 5.16; whipedbess noise profiles used
are shown in figure 5.17.

The system under consideration was simulated for 300 sec wample timeT=0.5 sec.
The actual process and measurement noise covariance matecessamed as unknown.
However,R, and Q, are specified as shown in Table 5.7; recall fpandR are defined by
(5.18) and (5.19), respectively. Three experiments for eachwitee carried out as is detailed
in Table 5.6.



INTELLIGENT ADAPTIVE MULTISENSOR DATA FUSION USINGHYBRID ARCHITECTURES 77
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Figure 5.14(a) Estimated diagonal elements of the measurememtovariance matriQy. (b)
Diagonal elements of matrRoMK; simulation 2, FL-AKF, Q-only case.
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Figure 5.15(a) Elements of the Kalman gain matrix. (b) Etesef the residual covariance
matrix; simulation 2, FL-AKF, Q-only case.

Table 5.6 Experiments carried out in simulation 3

Measurement Process Covariance matrices
Experiment | noise Profile noise profile R« Qx
Exp. 1 non-stationary  Stationary
v Adapted | Constant
Vie = V2 Q=0Q
Exp. 2 Stationary | non-stationary,
Wt Constant| Adapted
R«=R W, = Wlf
Exp. 3 non-stationary non-stationary
v Wt Adapted Adapted
Vi = 2 Wy = 2
Vk Wk

Results: Table 5.7 shows the MSE measures and TANIS values obtasnesath case
together with the values given Ry andQo, and the experiment performed. Note that the best
results are those obtained with the proposed FL-AKF. This ikshin the adaptation carried
out, where matriceR and/orQ are adapted in such a way as to reflect, as closely ablppss
the actual statistics of the noise profiles.
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Figure 5.16 Measurement noise profiles used in simulation 3.
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Figure 5.17 Process noise profiles used in simulation 3.

Table 5.7 Performance under non-stationary noise profiles: summasuti§ysimulation 3

Filter Adaptation MSEXx MSEy MSE TANIS Ry Qo Experiment
SKF _ 1.085 1.386 2.47 3.257 R Q Exp. 1
_ 0.6544 0.6424 1.297 1.645 R Q Exp. 2
_ 0.7536 1.174 1.927 2514 R Q Exp. 3
FL-AKF R-only 0.8807 1.165 2.045 2.173 R Q Exp. 1
Q-only 0.5934 0.5478 1.141 1.997 R Q Exp. 2
R&Q 0.6265 1.185 1.812 2.117 R Q Exp. 3
TAKF-IAE R-only 1.12E7 1.29€E7 2.4E7 3.954 R Q Exp. 1
Q-only 0.7818 0.7013 1.483 2.228 R Q Exp. 2
R&Q 21.97 23.62 45.59 2.148 R Q Exp. 3
TAKF-MMAE SKF 1 1.048 R Q
SKF 2 1.26 1.816 3.076 1516 R 5Q Exp. 1
SKF 3 0.R 0.0
SKF 4 5R 5Q
TAKF-MMAE SKF 1 5R Q
SKF 2 1.01 0.9934 2.004 0.8032 R 5Q Exp. 2
SKF 3 0.R 0.2Q
SKF 4 5R 5Q
TAKF-MMAE SKF 1 0.7462 R Q
SKF 2 1.015 1.896 2911 1.212 R 5Q Exp. 3
SKF 3 0.R 0.0
SKF 4 5R 5Q

In order to have a clearer picture of the adaptation beingedaout, plots are presented

corresponding to the R-only case under non-stationary measuremiset profiles. Figure
5.18(a) shows the diagonal estimated elements of mRjriand figure 5.18(b) shows the
diagonal elements of matrRoM,. The diagonal elements Bf are dynamically adjusted to fit
as well as possible the observed measurement noise profikeglynamic in the noise profiles

is reflected in the residual sequences as can be seen ingig@reshere the residual sequences
are shown with their respective Bounds. Finally, in figure 5.20(a) the elements of the Kalman

gain matrix are shown; while in figure 5.20(b) the elements of the residualacmeamatrix are
shown, it can be seen how the elements of these matrices are dynamioatiydcadi
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Figure 5.18(a) Diagonal estimated elements of mdgix(b) Diagonal elements of matrix
DoM,; Simulation 3, R-only case, non stationary measurement noise profiles used.

r(1,1) and its 20 bounds: Simulation 3, FL-AKF, R-only

rk(2,1) and its 20 bounds: Simulation 3, FL-AKF, R-only

T

Vi v . I
6 N et L
oL & I B
o) 50 100 150 200 250 300 O 50 100 150 200 250 300
Time (sec) Time (sec)

Figure 5.19 Residual sequences and their respedaiilm@nds; Simulation 3, R-only case, non

stationary measurement noise profiles used.
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Figure 5.20(a) Elements of the Kalman gain matrix. (b) Etesef the residual covariance
matrix; Simulation 3, R-only case, non stationary measurement noise pusties
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5.4 Summary

In this chapter a fuzzy logic-based adaptive Kalman filterAKF) has been developed. The
adaptation is in the sense of dynamically adjusting the measntemise covariance matrx
and/or the process noise covariance mddixom data as they are obtained. This method uses
the covariance-matching technique to determine if adjustmerRsahd/orQ are needed. An
example showing the efficiency of this method has been preseite note that superior
performances were obtained with the FL-AKF than those obtaiitbchvKF and two different
traditional adaptive Kalman filter approaches.

The role of the matriceR andQ in the SKF setting is to adjust the Kalman gain in such a
way that it controls the filter bandwidth as the state aedsurement errors vary. A major
drawback of the SKF formulation is that at steady state itdviaith and Kalman gain remain
constant regardless of the changes in the system dynamics pdated measurement quality.
This is due to its fixed constant matride&endQ. Conversely, the bandwidth and Kalman gain
in a FL-AKF keeps changing as long as the system dynamicstaitistics of the noise under
which it operates change, as was particularly shown in simulation 3 in theysregction. This
dynamic adaptive property of the FL-AKF is a direct result of adaptiagd/orQ.

Another main characteristic of the developed FL-AKF approachasthe filter a priori
statistical information is of secondary importance becauseestimated within the algorithm
itself, as was shown in simulation 2. It must be rememberedhbajuality of these a priori
noise statistics is of great importance in the SKF formulation.

The size of the sliding window over which the actual covagaof the residual is estimated
has an impact on the adaptive filter performance. The snh#ewindow size, the faster the
changes that can be captured by the FL-AKF. From numerous simulatibppsesented here, it
was found that a good empirical value for the size of thenglidindow is between 10 to 20
samples.

The numerical complexity added to the SKF in order to build a KE-A marginal. From
the simulations carried out it was observed that using thmge simple fuzzy sets (triangular
membership functions) and only three fuzzy rules for each eleméné main diagonal of Q
and/or R are sufficient to ensure good adaptation.

In next chapters the developed FL-AKF will be the base owichanovel hybrid adaptive
MSDF architectures are built. The main objective to achibeee will be that these MSDF
architectures inherit the adaptive features of the proposed FL-AKF approac



CHAPTER 6
HYBRID KALMAN FILTER-FUZZY LOGIC ADAPTIVE
MULTI-SENSOR DATA FUSION ARCHITECTURES

6.1 Introduction

The Kalman filter-based MSDF architectures presented in ehdptequire exact knowledge
about the sensed environment and about the sensors. However agipptestions, only certain
information is known about the sensed environment and there is no snghathia perfect
sensor. Therefore, there is scope for the development of more rolbmsindter-based MSDF
architectures. These architectures should be capable pfatida to changes in the sensed
environment and also deal with imperfect sensors.

In the MSDF literature only some approaches to adaptivBM&e reported. From these,
there are those based on the well-established Kalmannfijterethods [Hong, 1991] [Zhar
al, 2002], and those based on recent ideas coming from soft computing egghfialio and
Cohen, 1999] [Kobayashét al, 1998]. However, little work has been done in exploring
architectures that consider the combination of both these appamn this chapter, novel
adaptive MSDF architectures, referred to as hybrid Kalriar-fuzzy logic adaptive MSDF
architectures, that combine these approaches are formulatesniEsa@and Mort, 2002, 20014,
2001b]. The proposed architectures are designed based on the fuzzipakeyic adaptive
Kalman filter developed in Chapter 5 [Escamilla and Mort, 2000, 2001c].

The general idea explored here is the combination of the adeantagt both Kalman
filtering and fuzzy logic technigues have. On the one hand, Kalitlarinf is recognized as
one of the most powerful traditional techniques of estimationKKddenan filter provides an
unbiased and optimal estimate of a state-vector in the s@nsginimum error variance
[Maybeck, 1979]. On the other hand, the main advantages derivedheouse of fuzzy logic
techniques, with respect to traditional schemes, are the siypliche approach, the capability
of fuzzy systems to deal with imprecise information, andpib&sibility of including heuristic
knowledge about the phenomenon under consideration [Zadeh, 1973].

In the remainder of this chapter, first a clear definitidd the problem under consideration is
formulated. Then the proposed hybrid adaptive MSDF architectueedeacribed. After that,
the effectiveness of the proposed MSDF approaches is demonstiebeght exhaustive
simulation of an illustrative example. In this study, the falikrant performance of the
proposed MSDF approaches is also investigated. A final discuemsiba summary are given to
conclude the chapter.

6.2 Problem formulation

Assume that a discrete-time process can be modelled by,

X = PX + By + W, (6.1)
z, = Hy X tV,i=1,...N (6.2)

81
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where x, 00" is a state vector at instant of time denoted by the spbgcid, 00™" is a

state transition matrix@, ™' relates the control input, O O0' to the state vectox,, W

00" represents the modelling errors characterised by theaavariance matriQ,. There are
N measurement models described by (6.2), each of which correspamdisced measurement.

Thus, the local vectag, [1[0™ describes the measurement made by seraadnstant of timex.

Hi OO™" is thei-th measurement sensitivity matrix. The noise (or error) in each neeaesoir

is represented by the vectagg and specified by matriRy. In other words, the measurement
noise covariance matri®y reflects the precision of tHeth sensorwy andv, are modelled as
uncorrelated zero-mean Gaussian noise sequences with covaneidees Qq and Ry
satisfying:

E{w,} =0 forall k (6.3)

E{v,}=0 forall k, (6.4)

o Qo 1=K 6.5

E{Wkwj}_{o | %k (6.5)

E{VikViJT} = {Rik C I =k (6.6)
0 j 2Kk

where E{Jlis the statistical expectation operator.

It is assumed that the known information about the sensed eneinbrand sensors is
captured in the known matrical,, Hy, and Q, while the unknown matriRy, models the
uncertain and inaccurate information about the sensed environment resmaissédence, the
objective of this chapter is to develop adaptive MSDF ardhites capable of obtaining a fused
estimated state vectog, that determines the parameters being measured as [yeasse

possible by combining the information coming fréhimperfect sensors. By adaptive we mean
that the MSDF process is capable of adjusting on-line the unknowites®, to fit, as closely
as possible, the actual statistics of the noise profiles mirésethe measured data. By an
imperfect sensor we mean that the noise profile presdhthas uncertain statistics and these
statistics are not necessarily stationary. In addition, sensam be subject to transient and
persistent failures.

6.3 Hybrid adaptive MSDF architectures

In the following sections, four hybrid adaptive MSDF architectuage proposed. These
architectures are referred to as: fuzzy logic-based adaltman filter with fuzzy logic
performance assessment scheme (FL-AKF-FLA), fuzzy logicebamtaptive centralised
Kalman filter (FL-ACKF), fuzzy logic-based adaptive decaled Kalman filter (FL-ADKF),
and fuzzy logic-based adaptive federated Kalman filter (FLHAFK hese architectures are
designed based on the fuzzy logic-based adaptive Kalman filtexloged in Chapter 5
[Escamilla and Mort, 2000, 2001c].

6.3.1 Hybrid architecture FL-AKF-FLA

In this section a novel hybrid MSDF architecture combiningRbéAKF developed in Chapter
5 and a fuzzy logic performance assessment scheme is pdegégtee 6.1 shows a schematic
representation of the proposed MSDF architecture. The olgeatithe proposed architecture,
referred to as FL-AKF-FLA, is to combine the measuremeniyecoming fromN disparate
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sensors, each one with different measurement dynamics andchaiseteristics, to obtain a
fused state-vector estimate that better reflects the actua ohthe parameters being measured.
To reach this objective, first each measurement-vectorngpfmdm each sensor is fed to a FL-
AKF. Second, a subsystem called a fuzzy logic assessor (BLA®nitoring and assessing the
performance of each FL-AKF. Thus, there BreensorsN FL-AKFs, andN FLAs working in
parallel as is represented in Figure 6.1 (the time-step rgptbscnot indicated for simplicity).
The task of each FL-AKF is to obtain a state-vector estirbased on the measurement-vector
coming from its own sensor. While the task of each FLA isskess the performance of its
corresponding FL-AKF through assigning to it a degree of confidiamter. Finally, the fused
state-vector estimate is obtained using a weighting aveseljeme based on the assigned
degree of confidence factors (see figure 6.1). Each FL-AK¢onstructed as was specified in
chapter 4. The FLA subsystem and the weighted average fusion escrendescribed as
follows, in this description the subscript indicating the time-step hexs dmmitted for simplicity.

y4
Sensor 12»[ FL-AKF 1
DDOM]_Dl Ry
FLA 1
32
Sensor 2—»| FL-AKF 2
. [Dol\/lztl R,
. FLA 2
ZN
SensoN —» FL-AKF N
EDoMN[l Ry
FLA N 4

Figure 6.1 Proposed hybrid FL-AKF-FLA MSDF architecture (theetstep subscript is not
indicated for simplicity).

Each FLA subsystem assigns a degree of confidence factampuly £onfidence factor,
denoted ag;, to its corresponding FL-AKF state-vector estimaige j=1,...N. The degree of

confidence is calculated based on the current values of théutbsalue of the degree of
mismatchCDoM;[], which is a measure of the size of discrepancy between theetical value
of the residual covariance matr§ and its estimated actual valu@r;, and the adjusted

measurement noise covariance maRjxFirst, the elements of a vector of confidence values
[c'...c™" is calculated in a recursive way by a two-inputs-one-outpBt & is graphically
represented in figure 6.2. Theh degree of confidencg, a number on the interval [0, 1], is an
indicator of the level of performance of the FL-AKF. Thisrformance is evaluated through
two measures, the level of consistency between the theoratidahctual residual covariance
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(indicated by matrix0tDoM;[])), and the actual level of measurement noise present in the
corresponding sensor (indicated by maRjx Note that both matricéSDoM;U] andR, have the
same dimensiomxm, wherem is the dimension of the measurement vector.

The FIS used in each FLA has as inputs thpdlements irdDoM;0 andR,;, i=1,...m; and
as output the-th degree of confidence (see figure 6.2). The membership functions for
ODoM;0andR, are shown in figure 6.3. There the fuzzy labels mean: ZE = Zer&rSa#, and
L = Large. For the output, three fuzzy singletons are defined with the labels: G=1=Good,
AV=0.5=Average, and P=0=Poor. The paramegeasdh that define the fuzzy sets in the input
linguistic variables can be specified in accordance with the application cortgderation.

Nine rules complete the fuzzy rule base of the FIS gén in Table 1, which is known as
a decision table. Each cell in the decision table indicatesutbeconsequent corresponding to
the rule antecedent; this last term is defined by the extdos of the linguistic values (fuzzy
sets) of the FIS inputs. For example, rule 1 is defined a9DiM,0is ZE andR, is ZE thenc/
is G”. The fuzzy rules are based on two simple heuristic deraions. First, if the current
value of(l]DoM is near to zero and the current valudka§ near to zero, then it means there is
consistency between the theoretical and actual residual aogariand a low level of noise is
present in the sensor. Therefore, the FL-AKF filter is worldingost perfectly, in consequence
a degree of confidence near the maximum 1 should be assigne&ecadnd, if one or both of
these values increases far from zero, it means that tegdérformance is degrading; thus the
degree of confidence assigned by the FIS is decreased iagtprdown to the minimum O.
Thus, using the compositional rule of inference sum-prod andetiteecof area defuzzification
method, the FIS obtains eaghdegree of confidence value.

FL-AKF

[DoM;j| R

i=1

\ 4
| ODoM; = ODoM;(i,i)O |

CJ?+...+CJT“ C

A 4
L
n
v

FLA

Figure 6.2 Process of calculating the degree of confidence values.
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Figure 6.3 Membership functions faboM;J andR,.
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Once all the elementqi have been obtained an averaged degree of confidence, which
represents the averaged performance of the corresponding FL-AKEURtzd by,

c, =1 — 6.7).

The degree of confiden@gcan be interpreted as a measure of the reliability of-thd-L-
AKF. A higher degree of confidence means we have a higher cooéide that the estimated
state-vector represents the actual value of the pagesriging measured. At the same time, the
degree of confidence acts as a weighting factor used for fusion purposes.

Finally, the fused state-vector estimate is obtained wsimwgighted average scheme based
on the assigned confidence factor values. This is,

o _ XC teHXCy s -
Xe = & o =CX e+ G X (6.8)
C, +---+Cy

with

C,=—w— . iL..N (6.9).

Table 1 Decision table of the FIS used in each FLA

Ri
ZE S L
ODoM|O
ZE G G AV
S G AV P
L AV P P

In order to prevent possible conflicts, one modification is jpa@ted. If the sum of all the
N
degrees of confidence is equal to zeEc:j =0, then the fused output is simply the average of
j=1
theN state-vector estimates:

(6.10).

6.3.2 Fuzzy logic-based adaptive centralised Kalman filter

The standard CKF algorithm was described in secti@1 and a summary of it is given in
Table 6.2. In this section the idea used in theARIE, developed in the previous chapter, is
extended to the CKF structure to develop a fuzgictbased adaptive CKF (from here referred
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to as FL-ACKF) for MSDF purposes. Here the adaptais in the sense of dynamically tuning
the global measurement noise covariance meixThe structure of the proposed FL-ACKF is
shown in figure 6.4.

By analysing the algorithm of the CKF (see TabB & is evident that the same idea used in
the FL-AKF of having a fuzzy logic-based adaptatiecheme (see figure 6.5) is directly
applicable to developing a FL-ACKF. First, the glbkesidual sequencg is defined as,

o = Zg —H g X (6.11),
which has dimensiomN)x1; wherem is the dimension of the measurement vedtbis the

number of sensors (equal to the number of measutewsetors), subscript indicates the
instant of time, and subscrigts used to mark the global condition of the partanse

Z1k @ )
Sensor . ¥ Global FL-ACKF
, Z2k
Sensor : P | Prediction [€— )
X ()
z ——p
Sensor ! ——=—p i
, Correction
SensorN e
Sgk*rgk ngk
Fuzzy logic-based
adaptation algorithm

o /
Figure 6.4 Fuzzy logic-based Adaptive Centralisatht@n Filter (FL-ACKF).

Thus, by using the global measurement sensitmityrix Hg, and the global measurement
noise covariance matrRRy, the global theoretical residual covariance mas;ix

Sy =HyuR-H ng + Ry (6.12).

The actual global residual covariance can be astdnhthrough averaging inside a sliding
window,

~ 1 K
Cr,=——>r.r; 6.13
gk VVS;;‘ gi g ( )
wherei, =k -WS+1 is the first sample inside the estimation windd\§ is the window size,
which is chosen empirically to give statistical grifong, andk is the sample-time step.

Therefore, a global Degree of Mismatdbolly), indicative of the size of the discrepancy
between the global theoretical residual covaridcand its estimated actual val@e, , can be

defined as,
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DoM,, =S, —Cry (6.14).

ok

Note that all matricesy, érgk, DoMy and Ry have the same dimensiomN)x(mN).

Because of this, the elements in the main diagohBbMy, can be used to adjust the elements
in the main diagonal dRy. Remember that under the assumption of havingregleted and
Gaussian measurement noise sequeriggsis a diagonal matrix whose elements are the
variances of the individual components of the mesmant noise vectonrgy,... . Therefore,
from (6.6) it is deduced that by increasing themglets in the main diagonal Bf the elements

in the main diagonal ogy are increased, and vice versa. With this, the sizbe mismatch
(DoMy) between the theoretical and actual value of twbad residual covariance can be
regulated through changing the value of the diagetements ofRy. As a result, the filter
consistency is maintained. FurthermadRy, is adjusted to fit the actual statistics of thésao
profiles present in the sensors.

Table 6.2 Summary of the standard
Centralised Kalman Filter (CKF) algorithm

Process model Global KF
State space model: Global model:

- —_ T T 1T
Xig) = PiX T Buy + W, Zy =z .. 2yl

Hy =[Hg . HET
Ry =block diag[R, ... Ry]

M easurement equation:
Zy = Hy X + vy

i=1,...N Prediction equations:
N is the number of sensors

)A((kﬂ)(—) = ¢k§(k(+) + B, u,

Py = ® PPy +Q,

Correction equations:

Ky = k(‘)H;k[Hngk(‘)H;k + ng]_l
X (1) = X )+ K [Zg = H o X )]
P+ =[I = K,H gk]Pk(—)

Therefore, MmN SISO FISs, each one using three general rulesdaptation, can be
implemented to adjust the diagonal element;pfThe three general rules of adaptation are:

1. If DoMg(i,i) O O (this meansS(i,i) and érgk(i,i) match almost perfectly) then
maintainRy(i,i) unchanged.

2. If DoMg(i,i) > O (this meansy(i,i) is greater than its actual vall!fargk(i,i)) then
decreas®(i,i).

3. If DoMg(i,i) < O (this mean§,(i,i) is smaller than its actual valt@gk(i,i)) then
increaseRy(i,i).

whereS;(i,i), cA:rgk (i,i), R(i,i) andDoMg(i i), i=1,... mN, are the elements in the main diagonal
of Sy, érgk, Rg andDoMg, respectively. FinallyRy is adjusted in this way:
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Ry (i,1) =Ry (1) + AR, (,1);  i=1,...,mN (6.15)

whereARy(i,i) is the tuning or correction factor f&(i,i). Each correction factor is the output
of a different FIS, while each of the elementshie main diagonal dDoM is the input to the
corresponding FIS. A graphical representation isfdljusting process is shown in figure 6.5.

Each one of the FISs used in the fuzzy logic-basdaptation algorithm is constructed as
was explained in section 5.3.2.a; thus its devetoyinis not repeated here and the reader is
referred to that section. It is necessary to rentlak inside the fuzzy logic-based adaptation
algorithm, shown in figure 6.91N parallel SISO FISs, with three fuzzy rules eachk,are
considered. However, a sequential or a MIMO FISlémentation can replace the parallel
implementation. In the sequential implementaticingle SISO FIS is execut@aN times until
all the adjusting factors fd®y are calculated. While in the MIMO FIS implementatia single
FIS with 3nN rules is implemented to obtain at once all theustiig factors. A broader
explanation of the sequential and MIMO implemeptadican be found in section 5.3.2.a.

| Mok l i
| R !
! S Compute * !
1 k -~ !
; Cro [Ruw@FAR @D, ... 0 !
! R = 0 ..+ Ryey(mMN,mN)+AR, (mN,mN) || !
1 A :
! 1
: e o o .
| ARx(1,1) :
! DoMg(1,1) | FIS 1 !
: . ;
| . - AR (MN,mN) :
| DoMg(mN,mN) —»{FISmN I
| |
1 I

e o e e e e = e e e e e e e = e e = e e e e e e e e e e e em e e e e e e e e e e e e e e e e e

6.5 Fuzzy logic-based adaptation scheme.

6.3.3 Fuzzy logic-based adaptive decentralised Kahn filter

A summary of the standard DKF algorithm is presgiimeTable 6.3. A broader description of it
is given in section 4.3.2. In this section a fuklzgic-based adaptive DKF is proposed (from
here referred to as FL-ADKF). The FL-ADKF is basedthe FL-AKF developed in chapter 5.

The structure of the proposed FL-ADKF is shown igufe 6.6. As can be seen, this
architecture is similar to the standard DKF ardatitee, but, in this case, instead of havivg
local SKFs, there and local FL-AKFs working in parallel. Each one of the-AKFs is built as
was described in Chapter 5. However, here sol@yctdse where only the measurement noise
covariance matriR is adjusted is implemented. From Table 6.3 itlmamoted that the standard
DKF algorithm can work without any alteration whEh-AKFs are used as local filters. The
difference is that instead of having constant roasiR,, they are dynamically adjusted to fit the
actual statistics of the noise profiles preserthensensors. The master filter or fusion algorithm
is applied directly using the information comingrfr the local FL-AKFs. This makes the whole
structure adaptive.
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Table 6.3 Summary of the standard DecentralisechKalFilter (DKF) algorithm

Process model

Local KFs

Master filter

Sate space mode!:

Ky = Pucic T Byl + W,

Measurement equation:
Zy = Hy X + Ve

i=1,..N

Prediction equations:

Xiany ) = Py Xy () + By Uy

_ T
Fi)(k+1)(_) =0, PP, +Qy

and invert to geP .y
i=1,...N

Correction equations.

Ky =RoH[H R oHg +R]™
X1 = X () + Ky [ 24 = Hiy Xy )]

Pew =[1 = KyHy P
and invert to geb,
i=1,...N

Prediction equations:

)A<(k+1)(‘) =D, X () + B,
P(|<+1)(‘) =0, Pk(+)CDI +Q
and invert to geb,} (-

Correction equations.

N N
R =R+ Rim-

i=1 i=1
and invert to geb, (1

i=1

P

N N
K= Pm{ RI0% O+ Y Ple% =D RloX o)

i=l

< dx
) ~
l Master Filter
Reference XR .
Sensor : » Prediction
X (=35 Pe(o) A
! | ~ v
Zie [ Local FL-AKF 1 X Pic 0 >
Sensor 1 ——1 R, PO Xy ()
| |
: \Xk(—). P, -
| l Ko (+), Pt (s
Zok T®|Local FL-AKF 2 |22 7@ o
Sensor 2 —:—» %0 P
| ~
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Figure 6.6 Fuzzy logic-based Adaptive Decentralisatinan Filter (FL-ADKF).

6.3.4 Fuzzy logic-based adaptive federated Kalmaiitér

The standard FKF algorithm was described in seci8rB8. A summary of it is given in Table
6.4. From an analysis of the FKF algorithm it candeduced that the FL-AKF can be used to
build a fuzzy logic-based adaptive FKF (from hexterred to as FL-AFKF) algorithm.

The structure of the FL-AFKF is shown in figurd 6Like the FL-ADKF, the FL-AFKF is
designed by substituting the local standard KF# Wit-AKFs, as can be seen in figure 6.7.
However, in this case due to the use of the inftiomasharing principle this substitution can
not be directly applied. Observe in Table 6.4 thatcommon process noise covariance matrix
Q« and the fused error covariance matRy (+) are affected by the information sharing factor
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(1/8) before being used in the local and master filfgrsdiction equations. In consequence, the
local theoretical residual covarian& does not represent the information corresponding t
local filers, but reflects the global shared infatian. Therefore, these values cannot be used to
determine the local degree of mismatch vallzsMV,) for purposes of adaptation of lod_k
matrices. Note that the local residual sequenagesat, = z, - H, X, (- ) are not affected by

the information sharing factor and, consequenthyjther theérik values. Thus, what is needed

is to obtain local theoretical residual covariancetrices representing the information
corresponding to local filters only.

A solution to the above problem can be formulatedollows. First, from the standard FKF
algorithm, the covariance residual matrix of it filter is obtained by,

Sk = HiPaoHg + R, (6.16)

with
Py ) = Py P n®; +Q, (6.17a)
P = PPy 0Py + Qi (6.17b),

but by using the information sharing factor it i:okn that P ) =(1/8)P,» and
Q. =/ B)Q, ., thus (6.16) transforms to,

Table 6.4 Summary of the standard Federated Kakitmn (FKF) algorithm

Process model Local KFs Master filter
Sate space model: Divide global information: Prediction equations:
Xy = Lo T BU W, | Qi = (1/ B)Q 5\(M(k+1)(_) = @ X (9 + ByyUyg
P,y =@/ B)P, + = T
M rement equation: Alk( ) i (A ! B)Py ) PM(k+l)(_) = CDM_klPMku)q)Mk + Qi
Xik (1) = X (+) and invert to gePy (k1) ()
Zy = Hy Xy Vi i=1,...NM

i=1,...N Fusion equations:

N,M
Qubject to: ZlBi =1 N
i=1
P = Rl + B
Prediction equations: =1

. . and invert to gePy (1)
X sy ) = Py X () + By . ) N

= X )+ X
P = Py P ®j +Q, X = Pacol BaXn ;Rk P

i=1,...N

Correction equations:

Ky = ROHIHR.oH, +R]™
% =%, + K [Z, —Hy %, 0]
P =[1 =Ky H IR0

I
. -1
and invert to gePik (+)

i=1,...N
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Figure 6.7 Fuzzy logic-based Adaptive Federatednsal Filter (FL-AFKF).

Sk = Hik[cbi(k—l) (1/ﬁi)Pf(k—l)(+)CD;r(k—1) + (1/18i)Qk—1]HiT< + R,
=H, (1/:8i)[cbi(k—1) Pf(k—l)(")q)iT(k—l) + Qk—l]Hi-ll; + R,
=1/ BN Hik[q)i(k—l) Pf(k—l)(")q)iT(k—l) + Qk—l]Hi-:;} + Ry
=1/ B)[H ProH 1+ R, (6.18).

Equation (6.18) means that each local filter wsémction (1) of the factorH, P, -H,]

to calculateS,. Thus, by compensating this with the faci8) {ts effect inSy is removed, this
is:

Sl*k =B/ ﬂi)[Hikak(_)Hi-:;] + R,
= HikRk(‘)HiT( + Ry (6.19),

where S, is the value used to calculate the local degresisiatch values:
DoM, =S, -Cr, (6.20),

andCr, is calculated using the local residual values:

R K
Cric :%zrikril (6.21),

i=lo

where j, =k-N+1 is the first sample inside the estimation winddWwerefore, by using a fuzzy

logic-based adaptation algorithm th¢h local measurement noise covariance magixis
dynamically adjusted to fit the statistics of trotual measured data. Each adaptation algorithm
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is implemented as is specified in section 5.3 &.graphical representation of the calculation of
a local matrixS, is shown in figure 6.8.

. 1
Local FL-AKFi I
1
Fuzzy logic-based | |
adaptation algorithm| 1
1
1 R a1 ‘ r=—-—-- -
: X BiPy ) :
1 v 1
: < Rik : Master
! S p- L | filter
_ Zi SKF X Pt I
Sensoli 4:—> = g
|

Figure 6.8 Graphical representation of the calcutadf a local matrixS{k.

6.4 lllustrative example

In this section an illustrative example with fourisy sensors is outlined to demonstrate the
effectiveness and accuracy of the proposed hybabinkn filter-fuzzy logic adaptive MSDF
architectures. Exhaustive simulations have beeriedaput and results are presented in this
section. The experiments where developed under MAGLAB/SIMULINK simulation
environment (a resume of the different implemersietulation models is given in Appendix B).

Consider the following linear system, which cop@sds to a vehicle moving in one-
dimensional co-ordinate space [Gai@l, 1993] [Chaegt al, 1997]:

Xya1 :|:pk+l} = |:1 At} |:pk} +|:Wi:| (6.22)
S| 10 1] [s| W
02 0
QA { 0 0.02} (6.23),

wherep, ands; are the position and velocity of the vehicle, respectively.Kifematics of the
vehicle is described by two Guassian white random sequences avittnces of 0.2Mmin
position and 0.02fs? in velocity, as indicated by matri®. The system is assumed to have
four independent navigation sensors whose measurement models are defintiedva:

1 1
Al | Pele| Vel iz1,2,3,4 (6.24),
Z; Scl Vi
Hy =H, =H, =H, =| = ° (6.25)
ik — 2k — 3k — 4k_0 1 : ’

where z. and z; are observations of the vehicle position and velocity, respégtias
measured by thieth sensor;H,, is thei-th measurement sensitivity matrix, =[vi, v2]",i=
1, 2, 3, 4, are uncorrelated zero-mean Gaussian white noise egquenses with covariance
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matricesR, defined in each particular simulation. The process irtalditions are defined as
%=[p I'=[0 J".

The parameters that define the fuzzy sets in the FISs nsedth FL-AKF to adjusR, are
a = 5 andb = 0.3. While the parameters which define the fuzzy setha FISs used in each
FLA algorithm in the FL-AKF-FLA architecture age= 1.5 anch = 3. The size of the sliding
window in all FL-AKFs is selected as 15. In all simulatidime value of the sharing factg,
required in the standard FKF and the FL-AFKF, is defined tedual for all local and master
filters, this isf = 1/5 = 0.2 (there are considered four local filters plus one mdgey. fi

Smulation 1: The objective of this simulation is to investigate and comgrergerformance
of the proposed adaptive MSDF architectures when initial measint noise covariance
matrices R, are correctly specified and no adaptation is performed. frgans that the
adaptation procedure in the local FL-AKFs is switched offllirarchitectures (in strict sense,
standard Kalman filters (SKFs) are used as local filttrg)onsequence, it is expected to obtain
optimal results in the FL-ACKF, FL-ADKF and FL-AFKF, whichilwbe the base for
comparison purposes.

The correct measurement noise covariance matrices are constécesraefined as:

_[40] o _[20] o [10] . _[30 626
le_o 2’R2k_0 1'R3k_0 4’ 4k_03 ( )

Therefore, the system defined by (6.22)-(6.26) was simulated togeithethe four MSDF
algorithms for 80 sec with a sample time/Aif= 0.2 sec. The initial conditions for Kalman
filtering in all cases were specified a§;- =[0 0] and P,-) =10l,.

Results: For comparison purposes, the following root meauased error RMSE)
performance measures were adopted:

1 -\
RMSE, = \/EZ(pk -p) (6.27)
k=1
RMSE, = %ZL;(SK ~3)° (6.28)
RMSE, = \/%Z(Xk = %) (% = %) (6.29)
k=1

where p, is the actual positionp, is the estimated positior§, is the actual velocity, ang§,

is the estimated velocity of the vehicle at ins@fitimek. x, is the actual state-vector value, and
X, is the estimated state-vector value at instatitr@k; L is the number of samples.

Table 6.5 shows th&MSE values obtained by employing each one of the fd&DF
architectures, as well as tRMSE values obtained by local FL-AKFs. As expected, thuéhe
use of the correct noise statistics, RMSE values for the fused data using the FL-ACKF, FL-
ADKF and FL-AFKF are exactly the same, and thedeegare optimal.
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Table 6.5 Performance measures: Simulation 1

MSD_F RMSEp RM SEs RM SEx Conditions
Architecture
FL-AKF-FLA 0.5376 0.3444 0.6384 Fused data
FL-AKF 1 0.8334 0.4791 0.9613 CorreRip and no adaptation
FL-AKF 2 0.6892 0.3347 0.7661 CorreRbo and no adaptation
FL-AKF 3 0.6038 0.4890 0.7770 CorreRto and no adaptation
FL-AKF 4 0.8771 0.4425 0.9824 CorreRiip and no adaptation
FL-ACKF 0.4720 0.2924 0.5552 Fused data, Corre®io and no
adaptationfoptimal case)
FL-ADKFE 0.4720 0.2924 0.5552 Fused datdoptimal case)
FL-AKF 1 0.8334 0.4791 0.9613 CorreRio and no adaptation
FL-AKF 2 0.6892 0.3347 0.7661 CorreRbo and no adaptation
FL-AKF 3 0.6038 0.4890 0.7770 CorreRto and no adaptation
FL-AKF 4 0.8771 0.4425 0.9824 CorreRhip and no adaptation
FL-AFKF 0.4720 0.2924 0.5552 Fused datdoptimal case)
FL-AKF 1 0.8270 0.4245 0.9296 CorreRio and no adaptation
FL-AKF 2 0.7708 0.3995 0.8682 CorreRbo and no adaptation
FL-AKF 3 0.7133 0.3603 0.7991 CorreBRto and no adaptation
FL-AKF 4 0.8924 0.3675 0.9651 CorreRtip and no adaptation

Analysing the data in Table 6.5, a comparison effggmance measures based on the
obtainedRMSE, values can be carried out as follows. The perfagaaneasure of the FL-AKF-
FLA is 15% away from the optimal value. Howeveistberformance measure is better than the
obtained with any local filter. Specifically, the. AKF-FLA is 20% more accurate than local
FL-AKF 2, which has the best individual performamoeasure. The performance measure of
the FL-ACKF cannot be compared with local filtebg&cause in this case there are no local
filters. But this comparison indeed can be caroadin the case of the FL-ADKF and the FL-
AFKF. The fused data obtained with the FL-ADKF &8 (considering th&MSE, value) more
accurate than the obtained with local FL-AKF 2, ethhas the best individual performance
measure in this case. Meanwhile, the performanasure obtained by using the FL-AFKF is
44% better than that obtained with local FL-AKRAgich has the best performance measure in
this case. Finally, note that on average the restitained with local filters in the FL-AFKF are
slightly less accurate than those obtained withallddters in the FL-ADKF. This is not
surprising because in the FL-AFKF each local filises partial information in performing local
estimations. Also it is noteworthy to mention thataccordance with the theory, the results of
each local filter in both the FL-ADKF and the FL-KF may be locally suboptimal, but when
combined (fused) they are optimal, as those reslitained with the FL-ACKF. In this
simulation this is possible because all conditimmsoptimality are present.

In order to appreciate graphically the resultsfigure 6.9 the actual position and the
estimated position of the vehicle, obtained with #.-AKF-FLA algorithm and each of its
local FL-AKFs, is plotted. While in figure 6.10 tlaetual position and the estimated position of
the vehicle, obtained with the FL-ADKF and eaclit®focal FL-AKFs, is plotted.

Smulation 2: The goal of this simulation is to investigate ghexformance of the proposed
MSDF architectures when initial measurement noiseaiance matrice®, are incorrectly
specified and no adaptation is performed. This mehat the adaptation procedure in the FL-
AKFs is switched off in all architectures, as itilssimulation 1, but now the conditions for
optimality are not present. Thus, it is expecteak tine performance measure values will be
significantly degraded with respect to those oladim simulation 1.
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Figure 6.9 Actual position and estimated positibthe vehicle obtained with the FL-AKF-FLA
and each of its local FL-AKFs, simulation 1.
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Figure 6.10 Actual position and estimated positibnhe vehicle obtained with the FL-ADKF
and each of its local FL-AKFs, simulation 1.

The system under consideration was simulated hegetith the four MSDF algorithms for
80 sec with a sample time Af = 0.2 sec. The initial conditions for Kalman filteg are the
same that those defined in simulation 1. The comsasurement noise covariance matrices are
those given by (6.26). However, in this case iassumed that these values are unknown.
Therefore, an initial guess is made as:

%:%=%=%=10 (6.30).
0 6
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Results: Table 6.6 shows the performance measures obtaiitedhe MSDF architectures as
well as those obtained with local filters. By comipg these results with the optimal
performance measures (considering RMSE, values), it is observed that the FL-AKF-FLA
performance measure is degraded in 33%, while tE, ©OKF, and FKF performances are
degraded in 15.6%. These results prove that byngasivitched off the adaptation procedure in
the FL-AKFs (this is having standard KFs) and usiraprrect measurement noise statistics, the
MSDF performances are substantially degraded. fabtscan be graphically seen in figure 6.11,
where the actual position and the estimated posdfahe vehicle obtained with the FL-ADKF
and each of its local FL-AKFs are plotted. Finallf,the FL-AKF-FLA performance is
compared with the one obtained in simulation 1 thelegradation of 15.8% is observed.

Table 6.6 Performance measures: Simulation 2

MSD_F RMSEp RMSEg RMSEx Conditions
Architecture
FL-AKF-FLA | 0.5681 0.4729 0.7391 Fused data
FL-AKF 1 1.0010 0.5457 1.1400 IncorrelRio and no adaptation
FL-AKF 2 0.7472 0.4265 0.8604 IncorrelRis and no adaptation
FL-AKF 3 0.6065 0.5019 0.7872 IncorrelRtp and no adaptation
FL-AKF 4 0.9773 0.4892 1.0930 IncorrelRip and no adaptation
FL-ACKF 0.5403 0.3464 0.6418 Fused data, incorre&p and no

adaptation
FL-ADKF 0.5403 0.3464 0.6418 Fused data
FL-AKF 1 1.0010 0.5457 1.140 IncorreRio and no adaptation

FL-AKF 2 0.7472 0.4265 0.8604 IncorrelRip and no adaptation
FL-AKF 3 0.6065 0.5019 0.7872 IncorrelRto and no adaptation
FL-AKF 4 0.9773 0.4892 1.0930 IncorreRip and no adaptation
FL-AFKF 0.5403 0.3464 0.6418 Fused data

FL-AKF 1 1.3160 0.4207 1.3820 IncorreRtp and no adaptation
FL-AKF 2 0.9182 0.3535 0.9840 IncorrelRis and no adaptation
FL-AKF 3 0.6899 0.3992 0.7971 IncorrelRtp and no adaptation
FL-AKF 4 1.2190 0.4024 1.2830 IncorreRio and no adaptation
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Figure 6.11 Actual position and estimated positibnhe vehicle obtained with the FL-ADKF
and each of its local FL-AKFs, simulation 2.
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Smulation 3: The purpose of this simulation is to investigéite performance of the
proposed adaptive MSDF algorithms when initial measient noise covariance matrides
are correctly specified and adaptation is performidulis, in this case the adaptation procedure
in the local FL-AKFs is switched on in all architexes. This simulation will show the level of
degradation in performance, compared with the agtiperformance measures, when carrying
out adaptation under the correct noise statistics.

The system under consideration and the MSDF dhgons were simulated for 80 sec with a
sample timeAt = 0.2 sec. The initial conditions for Kalman fiitey are the same than those
defined in simulation 1. The correct measuremerigencovariance matrices are those given by
(6.28).

Results: Table 6.7 shows the obtained performance measorgise local FL-AKFs and the
four MSDF algorithms. Comparing these results wttle optimal performance measures
(considering thd&RMSE, values), it is observed that the FL-AKF-FLA perfance is degraded
by 15%, the FL-ACKF and the FL-AFKF performances degraded only 0.3%, while the FL-
ADKF performance is degraded by 0.25%. It is rerahi& that the degradation in performance
presented in the FL-ACKF, the FL-ADKF, and the FEM¥ fusion algorithms is almost
imperceptible. This means that, if the actual ahithoise statistics are specified and the
adaptation algorithm is switched on, then the parémce of these three MSDF architectures
remain near to the optimal. Note also that, if BheAKF-FLA performance is compared with
the one obtained in simulation 1, then a degradatienly 0.06% is observed.

Figure 6.12 shows the actual position and estidhptsition of the vehicle obtained with the
FL-ADKF and each of its local FL-AKFs. The way ihieh the elements in the main diagonal
of matricesRy, Rx, Ra, andRy are adjusted in each of the local FL-AKFs of theADKF can
be appreciated in figure 6.13. Note that, becahse cobrrect initial values are given, the
performed adjustment maintains these values inasigsteady-state around the original and
correct values.

Table 6.7 Performance measures: Simulation 3

MSDF RMSEp RMSEg RMSEy Conditions
Architecture
FL-AKF-FLA 0.5433 0.336 0.6388 Fused data
FL-AKF 1 0.8429 0.4753 0.9677 CorreRip and adaptation
FL-AKF 2 0.6981 0.3466 0.7795 CorreRto and adaptation
FL-AKF 3 0.6112 0.4817 0.7782 CorreRto and adaptation

FL-AKF 4 0.861 0.4632 0.9777 CorreBtp and adaptation
FL-ACKF 0.4722 0.2953 0.5569 Fused data, orre®o and
adaptation

FL-ADKFE 0.4718 0.2954 0.5566 Fused data

FL-AKF 1 0.8429 0.4753 0.9677 CorreRip and adaptation
FL-AKF 2 0.6981 0.3466 0.7795 CorreRtg and adaptation
FL-AKF 3 0.6112 0.4817 0.7782 CorreRto and adaptation
FL-AKF 4 0.861 0.4632 0.9777 CorreBlip and adaptation
FL-AFKF 0.4722 0.2953 0.5569 Fused data

FL-AKF 1 0.8399 0.4238 0.9408 CorreRio and adaptation
FL-AKF 2 0.7829 0.4036 0.8808 CorreRto and adaptation
FL-AKF 3 0.7164 0.3927 0.8170 CorreRtg and adaptation
FL-AKF 4 0.8748 0.3917 0.9585 CorreRfip and adaptation
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Figure 6.12 Actual position and estimated positibnthe vehicle obtained with the FL-ADKF
and each of its local FL-AKFs, simulation 3.
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Figure 6.13 Adjustment of the elements in the nigagonal of matriceBy, Ro, Ra, andRy in
each of the local FL-AKFs of the FL-ADKF, Simulati@.
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Smulation 4: The objective of this simulation is to investigahe performance of the
proposed adaptive MSDF architectures when thelmitieasurement noise covariance matrices
R are incorrectly specified and adaptation is penfmt. Thus, the adaptation procedure in the
FL-AKFs is switched on in all architectures. Thisiglation will show how the adaptation of
the elements in the main diagonal of matriRgsRx, Ra, andRy is carried out.

The MSDF algorithms and the system under condideravere simulated for 80 sec with a
sample timeAt = 0.2 sec. The initial conditions for Kalman filtey are the same than those
defined in simulation 1. The incorrect measurenmense covariance matrices are those given
by (6.30).

Results: Table 6.8 shows the obtained performance measordise local FL-AKFs and the
four adaptive MSDF algorithms. Comparing these Itesuith the optimal values (considering
the RMSE, values), next observations are made. The degoadati performance of the FL-
AKF-FLA algorithm is 15.7%. In the case of the FIGKF and the FL-AFKF, the degradation
is 1.6%. The minimum degradation in performancebserved in the FL-DKF, which is 1.5%.
Note that, however the performance of the FL-AKFARE far from the optimal, this is better
than the performance observed in any local FL-AR&tticularly, the performance of the FL-
AKF-FLA is better in 20.5% with respect to the merhance observed in the FL-AKF 3, which
has the best individual performance measure. lardigh.14 is shown the actual position and
estimated position of the vehicle obtained withFlheADKF and each of its local FL-AKFs.

It is remarkable to mention that on average theatigion in performance observed in the
FL-ACKF, the FL-ADKF and the FL-AFKF is less tha®2 This means that the adaptation
carried out in each one of these algorithms effetti tune the value of the corresponding
measurement noise covariance matrices to fit theahnoise statistics. This can be appreciated
graphically in figure 6.15 where the values of ghements in the main diagonal of matri€gg
Rox, Rak, andRy in each of the local FL-AKFs of the FL-ADKF areotikd.

Table 6.8 Performance measures: Simulation 4

MSD.F RMSEp RMSEs RMSEy Conditions
Architecture
FL-AKF-FLA 0.5435 0.3428 0.6426 Fused data
FL-AKF 1 0.8537 0.4712 0.9751 IncorreRio and adaptation
FL-AKF 2 0.7019 0.3467 0.7829 IncorreRio and adaptation
FL-AKF 3 0.6118 0.4743 0.7741 IncorreRto and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 IncorreRip and adaptation
FL-ACKF 0.4753 0.3038 0.5642 Fused data, incorre&p and

adaptation
FL-ADKF 0.4745 0.3041 0.5636 Fused data
FL-AKF 1 0.8537 0.4712 0.9751 IncorreRio and adaptation

FL-AKF 2 0.7019 0.3467 0.7829 IncorreRto and adaptation
FL-AKF 3 0.6118 0.4743 0.7741 IncorreRto and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 IncorreRip and adaptation
FL-AFKF 0.4753 0.3038 0.5642 Fused data

FL-AKF 1 0.8672 0.4222 0.9646 IncorreRip and adaptation
FL-AKF 2 0.7907 0.3965 0.8845 IncorreRto and adaptation
FL-AKF 3 0.7156 0.4000 0.8198 IncorreRto and adaptation
FL-AKF 4 0.8917 0.3946 0.9751 IncorreRip and adaptation
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Figure 6.14 Actual position and estimated positibnthe vehicle obtained with the FL-ADKF
and each of its local FL-AKFs, simulation 4.
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Figure 6.15 Adjustment of the elements in the nad@gonal of matriceRy, Ro, Ra, andRy in
each of the local FL-AKFs of the FL-ADKF, simulatid.
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Smulation 5: The goal of this simulation is to investigate grexformance of the proposed
adaptive MSDF architectures under different noissiles in the sensors. Four different noise
profiles, with different statistics, are being ciolesed as is shown in figure 6.16.

Noise 1: Constant variance Gaussian noise N(0,0.5) Noise 2: Uniform distribution noise [-1,1]
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Figure 6.16 Noise profiles used in simulation §;Canstant variance Gaussian noise sequence
N(0,0.5); (b) Uniform distribution random noise seqgoe [-1,1]; (c) Uniform distribution
random noise sequence increasing with time [-4d]; Uniform distribution random noise
sequence decreasing with time [-4,4].

The four MSDF algorithms and the system under idenation were simulated for 80 sec
with a sample timéit = 0.2 sec. The initial conditions for Kalman fiitegy are the same that
those defined in simulation 1. It is assumed that dctual noise statistics in all sensors are
unknown, but an initial guess of the measuremeisenmovariance matrices is made as given by
(6.30). It is expected that the adjusting proceduitietune the values of the diagonal elements
of matricesRy, R, Ra, andRy to fit, as closely as possible, the actual sieistf the noise
profiles. The noise profiles used in each spesiigsor are those indicated in the last column of
Table 6.9.

Results: Table 6.9 shows the obtained performance measorgise local FL-AKFs and the
four adaptive MSDF algorithms. Comparing these Iteggonsidering th&MSE, values), the
following remarks can be made. The worst perforrmameasure is obtained with the FL-AKF-
FLA algorithm, while the best performance measweobtained with the FL-ADKF. The
performance measure obtained with both the FL-AGIKE the FL-AFKF is exactly the same,
and this is 2.8% worse than the obtained with théABKF. The performance measure of the
FL-AKF-FLA is 20.5% worst than that obtained withet FL-ADKF algorithm. However, this
performance measure, compared with local filtegsl8.6% better than that observed in local
FL-AKF 2, which from this group of filters has thest performance measure.

A graphical view of the obtained results can bpregated in figure 6.17, where the actual
and estimated position of the vehicle, made by eawh of the local FL-AKFs and the FL-
ADKF, is plotted. The way in which the adjustingppedure tunes the values of the diagonal
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element of matriceBy, R, Rak, andRy in each of the local FL-AKFs of the FL-ADKF, trgn

to match the actual statistics of the noise prsfittan be appreciated in figure 6.18. Note that
good approximation to the actual noise statisicachieved in all cases. It is interesting to note
that if there is a non-stationary statistics (bertozaverage) noise profile present in any of the
sensors, as in sensors 3 and 4 in this simulatien the adjusting procedure tunes the
covariance values in the corresponding measurenmwfriance matrices to fit and follow, as

closely as possible, the actual dynamic statisti¢he noise profiles.

Table 6.9 Performance measures: Simulation 5

MSD.F RMSEp RM SEg RM SEy Conditions
Architecture
FL-AKF-FLA 0.3701 0.2818 0.4652 Fused data
FL-AKF 1 0.4796 0.2833 0.5570 | v,! = noise 1y = noise 2
FL-AKF 2 0.4393 0.3334 0.5516 | v,! = noise 2 = noise 1
FL-AKF 3 0.6403 0.3534 0.7314 | v! = noise 3V = noise 4
FL-AKF 4 0.5430 0.4009 0.6749 | v,! = noise 4y = noise 3
FL-ACKF 0.3213 0.2291 0.3946 Fused data
Sensor 1 vil = noise 1y = noise 2
Sensor 2 vi© = noise 2v,° = noise 1
Sensor 3 vl = noise 3y’ = noise 4
Sensor 4 vl = noise 4,2 = noise 3
FL-ADKF 0.3113 0.2285 0.3862 Fused data
FL-AKF 1 0.4796 0.2833 0.5570 | v, = noise 1y = noise 2
FL-AKF 2 0.4393 0.3334 0.5516 | v,' = noise 2y = noise 1
FL-AKF 3 0.6403 0.3534 0.7314 | v,! = noise 3v® = noise 4
FL-AKF 4 0.5430 0.4009 0.6749 | v,! = noise 4y = noise 3
FL-AFKF 0.3213 0.2291 0.3946 Fused data
FL-AKF 1 0.5219 0.3137 0.6089 | v,! = noise 1y = noise 2
FL-AKF 2 0.4803 0.3155 0.5736 | vi! = noise 2 = noise 1
FL-AKF 3 0.5872 0.3364 0.6767 | v! = noise 3v° = noise 4
FL-AKF 4 0.5746 0.2879 0.6427 | vl = noise 4y = noise 3
3ol '_ ! : : '- ' '_ ]
—— Actual p /
—— Fused p ' %«
—— P : FL-AKF 1 3
20| P : FL-AKF 2 : -
P : FL-AKF 3
—— P : FL-AKF 4
10} ' . -
28
p- 1
O o 27F B
25F
-10F 24 -
23
20}
21 L i H
5 40 44 . 46 48 50
o) 10 20 30 40 50 60 70

Figure 6.17 Actual position and estimated positibnthe vehicle obtained with the FL-ADKF
and each of its local FL-AKFs, simulation 5.
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Figure 6.18 Adjustment of the elements in the nid@gonal of matriceRy, Ro, Ra, andRy in
each of the local FL-AKFs of the FL-ADKF, simulati®.

6.4.1 Analysis and comparison of fault-tolerant characteristics

In all the simulations carried out in the previ@estions it is assumed that there are no faults
present in the sensors. However, in real situattbese is always the possibility of having
sensor failures. In the literature it has been detrated that the CKF approach lacks
robustness when there is spurious data in any efsémsors [Gao et al, 1993] [Brown and
Hwang 1997]. Conversely, it has been shown thét Bi€F and FKF approaches have better
fault-tolerant performance than can be achievetl @iCKF [Wei and Schwarz, 1990] [Gao et
al, 1993]. In this section simulations are caredlin order to investigate, analyse and compare
the fault-tolerant performance of the four propoaddptive MSDF architectures. In particular,
the fault-tolerant performances against three kisfdsensor failures, transient faults, persistent
faults and permanent faults, are investigated. thisr analysis the same process and sensors
defined by (6.22)-(6.25) are used. The simulatiwarsied out and results obtained are presented
as follows.

Smulation 6: The objective of this simulation is to investigditow each one of the proposed
hybrid adaptive MSDF approaches responds to theepoe of transient faults, and to examine
which design is the most fault-tolerant. Hence, ddaptive MSDF algorithms and the system
under consideration were simulated for 80 sec waittample timeAt = 0.2 sec. The initial
conditions for Kalman filtering are the same thhase defined in simulation 1. It is assumed
that the correct measurement noise covariance ceafrigiven by (6.26), are unknown.
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Therefore, an initial guess is made as given B8006.Transient faults are introduced in sensor 3
(which is the most accurate sensor for positionsuesaments) in each MSDF architecture, at
times t = 20, 30, 40, 50 and 60 sec, with values2l 20, -20, and 20 meters respectively, for
position measurements.

Results: The performance measures defined by (6.27)-(@aB9lused to compare results. In
Table 6.10 the obtaineBMSE performance measures are tabulated. From thatitdede be
observed that the most fault-tolerant performascprovided by the FL-AKF-FLA, while the
worst fault-tolerant performance is that seen ithiibe FL-ACKF and the FL-AFKF. The FL-
ADKF has an intermediate fault-tolerant performance

Table 6.10 Performance measures: Simulation 6

MSDF RMSEp RMSEq RMSE, Conditions
Architecture
FL-AKF-FLA 0.5943 0.33357 | 0.6826 Fused data
FL-AKF 1 0.8537 0.4712 0.9751 IncorreRiy and adaptation
FL-AKF 2 0.7019 0.3467 0.7829 IncorreRf, and adaptation
FL-AKF 3 1.2800 0.5093 1.3780 IncorreRs, and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 IncorreRf, and adaptation
FL-ACKF 0.6572 0.3072 0.7255 Fused data, incorre&;, and
adaptation
FL-ADKF 0.6472 0.3066 0.7161 Fused data
FL-AKF 1 0.8537 0.4712 0.9751 IncorreR{y and adaptation
FL-AKF 2 0.7019 0.3467 0.7829 IncorreRfy and adaptation
FL-AKF 3 1.2800 0.5093 1.3780 IncorreRyy and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 IncorreRf, and adaptation
FL-AFKF 0.6572 0.3072 0.7255 Fused data
FL-AKF 1 0.9128 0.4237 1.0060 IncorreRi, and adaptation
FL-AKF 2 0.8353 0.3966 0.9247 IncorreRfy and adaptation
FL-AKF 3 1.5090 0.4111 1.5640 IncorreRsy and adaptation
FL-AKF 4 0.9420 0.3966 1.0220 IncorreRf, and adaptation

Analysing the performances obtained by localfiltehe following remarks can be given. In
both the FL-AKF-FLA and the FL-ADKF, only the perfoance of the local FL-AKF 3, which
is processing the faulty data, is degraded. Medewthie performances of the other local filters
are unaffected and equal to those results showralohe 6.8, which correspond to the results
obtained under the same conditions but without fdudty data in the local FL-AKF 3.
Conversely, note that the performances of all Iditigrs in the FL-AFKF are affected by the
faulty data in sensor 3. This is due to the shanfymation carried out and the feedback of the
fused estimated state vector to each local filter.

Figure 6.19 shows the actual position and the dfusstimated position of the vehicle
obtained with the FL-AKF-FLA architecture. It cae bppreciated that the transient faults are
practically without effect in the fused estimateaxbition. In figure 6.20 the actual, measured and
estimated position of the vehicle carried out by FL-AKF 3 and sensor 3, in the FL-AKF-
FLA architecture, is shown. Note the effects that transient faults, introduced at times t = 20,
30, 40, 50, and 60 sec, have on the position etgmaade by this local filter. In figure 6.21 the
adjustment of the elements in the main diagonahatfix Ry, FL-AKF 3, FL-AKF-FLA, can be
appreciated. Note that, as a result of the preseittee faults, the value ¢;(1,1) is increased
at those times where a fault is present. With ticeement of the value &(1,1), the value of
the degree of confidence factor assigned to tha lelc-AKF 3, ¢, is reduced as can be seen in
figure 6.22, which shows the degree of confideramdirs assigned to each local FL-AKF state
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vector estimation in the FL-AKF-FLA approach. Duee this increment in the measurement
noise covariance value for the positioning data,ittiluence of the FL-AKF 3, which has the
faulty data, in the fused estimated solution cdrrieit by the FL-AKF-FLA algorithm is
reduced. The performance assessment scheme oE{AK~FLA algorithm does not exist in
the other MSDF architectures. Therefore, the imfteof the faulty data in their fused estimates
is greater. As an example, the effects that thiesféiave in the estimates performed by the FL-
ADKF can be seen in figure 6.23.
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Figure 6.19 Actual position and estimated positiérthe vehicle obtained with the FL-AKF-
FLA architecture, simulation 6.
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Figure 6.20 Actual position, measured positioff*(), and estimated position of the vehicle
obtained with the FL-AKF 3, FL-AKF-FLA, simulatio

Smulation 7: The goal of this simulation is to investigate thalt-tolerant performances of
the adaptive MSDF algorithms when persistent faeltg). cycle slips in GPS applications [Gao
et al, 1993)) are present in one of the sensorstefbre, the adaptive MSDF algorithms and the
system under consideration were simulated undesdhge conditions defined in the previous
simulation. However, in this case three persistanits were simulated in sensor 3 in each
MSDF architecture, at times t = 20, 40, and 60 s@th duration of 1, 1.6, and 2 sec,
respectively, and all with values of 20 metersgosition measurements.
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Figure 6.21 Adjustment of the elements in the ndiagonal of matrixRs, FL-AKF 3, FL-
AKF-FLA, simulation 6.
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Figure 6.22 Degree of confidence factors assigneshth local FL-AKF state-vector estimate
in the FL-AKF-FLA approach, simulation 6.
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Figure 6.23 Actual position and estimated positibithe vehicle obtained with the FL-ADKF,
simulation 6.
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Results: Table 6.11 shows the obtained performance measoir¢he local FL-AKFs and the
hybrid adaptive MSDF algorithms. It can be notedt,thke in the previous simulation, the most
fault-tolerant performance is that of the FL-AKFAL while the least fault-tolerant
performance is that observed in both the FL-ACKH #re FL-AFKF. The FL-ADKF has an
intermediate fault-tolerant performance.

Table 6.11 Performance measures: Simulation 7

MSD.F RMSEp RMSEg RM SEy Conditions
Architecture
FL-AKF-FLA 0.7009 0.3406 0.7793 Fused data
FL-AKF 1 0.8537 0.4712 0.9751 IncorreRiy and adaptation
FL-AKF 2 0.7019 0.3467 0.7829 IncorreRf, and adaptation
FL-AKF 3 2.4420 0.5577 2.5050 IncorreRfy and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 IncorreRfy, and adaptation
FL-ACKF 0.9099 0.3081 0.9607 Fused data, incorre&;, and
adaptation
FL-ADKF 0.8578 0.3071 0.9111 Fused data
FL-AKF 1 0.8537 0.4712 0.9751 IncorreRiy and adaptation
FL-AKF 2 0.7019 0.3467 0.7829 IncorreRf, and adaptation
FL-AKF 3 2.4420 0.5577 2.5050 IncorreRfy and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 IncorreRfy and adaptation
FL-AFKF 0.9099 0.3081 0.9607 Fused data
FL-AKF 1 0.9787 0.4250 1.0670 IncorreRf{, and adaptation
FL-AKF 2 0.8603 0.3985 0.9481 IncorreRfy and adaptation
FL-AKF 3 1.8470 0.4107 1.8920 IncorreRfy and adaptation
FL-AKF 4 1.0140 0.3955 1.0880 IncorreRf, and adaptation

From the analysis of the performances obtaineat# ffilters, the following remarks can be
given. As in the previous simulation, only the penfance of the local FL-AKF 3, which is
processing the faulty data, is degraded in botlFth&KF-FLA and the FL-ADKF approaches.
However, the performances of all local filters degiraded in the FL-AFKF.

The actual position and the fused estimated positf the vehicle obtained with the FL-
AKF-FLA approach are shown in figure 6.24. The mimdluence of the persistent faults can
be noted. In figure 6.25 the actual, measured atichated position of the vehicle carried out by
the local FL-AKF 3 in the FL-AKF-FLA architecturare shown. Note how the persistent faults,
introduced at times t = 20, 40, and 60 sec, styoaffect the estimations made by this local FL-
AKF. The way in which the adaptive estimation of tlements in the main diagonal of matrix
Rs, FL-AKF 3, FL-AKF-FLA architecture, is affected hige introduction of the faulty data can
be seen in figure 6.26. As a result of the preseftiee faults, the value &;,(1,1) is increased
at the times when a fault is present. Due to tiisement in the measurement noise covariance
value for the position data, the degree of configevalue assigned to the state vector estimate
carried out by the FL-AKF 3 is reduced. Consequeritts influence on the fused solution is
decreased accordingly. The influence of the fad#iia on the fused solution obtained with the
other hybrid adaptive MSDF approaches is greaterafpreciate this graphically, the actual
and fused position estimates performed by the FIkBAre shown in figure 6.27.
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Figure 6.24 Actual position and estimated positiérihe vehicle obtained with the FL-AKF-
FLA architecture, simulation 7.
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Figure 6.25 Actual position, measured positioff*{(), and estimated position of the vehicle
obtained with the FL-AKF 3, FL-AKF-FLA, simulation
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Figure 6.26 Adjustment of the elements in the ndiagonal of matrixRs, FL-AKF 3, FL-
AKF-FLA, simulation 7.
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Figure 6.27 Actual position and estimated positibithe vehicle obtained with the FL-ADKF,
simulation 7.

Smulation 8: The goal of this simulation is to examine theltfémierant performances of the
hybrid adaptive MSDF approaches when a permanetit i&a present in one of the sensors.
Therefore, the adaptive MSDF algorithms and theéesysunder consideration were simulated
under the same conditions defined in simulatiorldwever, in this case a permanent fault is
simulated in sensor 3 in each MSDF architecturépa t = 40 sec, from this time the position
value is stuck at a reading of 0 meters.

Results: Table 6.12 shows the obtained performance mea$oir¢he local FL-AKFs and the
hybrid adaptive MSDF algorithms. From tRMSE, values of the fused data it is clear that the
performances of all the adaptive MSDF algorithmes severely affected by the presence of a
permanent fault in sensor 3. In fact, it can be #aat none of the MSDF algorithms tolerates
efficiently the presence of a permanent fault. 8simgly, in this case the least affected
approaches are the FL-ACKF and the FL-AFKF. It haen demonstrated that the traditional
CKF has less fault tolerance capability than thditional FKF [Gacat al, 1993] and, therefore,
it was expected to observe the same charactdndtE adaptive counterpart. However, the fault
tolerance capability of the FL-ACKF is similar taat observed in the FL-AFKF. This is due to
the adaptation carried out in both approaches.llfin@ote that the most affected approach is
the FL-ADKF, while the FL-AKF-FLA has an intermetkdevel of affectation.

The actual and the estimated position of the Vefibtained with the FL-ADKF and each of
its local FL-AKFs are shown in figure 6.28. Note tstrong effect that the permanent fault has
on the fused position estimates. The effect that germanent fault has on the estimates
performed by the local FL-AKF 3 in the FL-ADKF cae seen in figure 6.29, where the actual
position, the measured positioa/¢’), and the estimated position of the vehicle pentxt by

this filter are shown. Note the permanent faultddticed at time t = 40sec.

The strong influence of the fault in the fusedreates performed by the FL-ADKF can be
explained by observing the effect that it has an dljustment oRy(1,1), which is shown in
figure 6.30. After the fault is introduced, an ialitconstant increment is observed. However,
due to the fact that the measured position valte gtack at 0 meters, and with a zero level of
noise, the corresponding noise covariance valuedaced accordingly to match this level of
noise, as can be seen in figure 6.30. Obviously, grevious effect reflects the variations
observed in the residual sequencg(1,1), shown in figure 6.31, which corresponds he t
position measured data, that after a sudden ingregees to zero after the persistent fault is
introduced in sensor 3. As consequence of havimgasurement noise covariance value of zero
for position measurements carried out by the seBisthre FL-ADKF fusion algorithm takes into
account more strongly the estimates performed bythAKF 3 than the estimates performed
by the other filters. Finally, as time progres® FL-ADKF estimates become those of the zero
measurement noise level FL-AKF, this is the hunihers can be seen in figure 6.28.
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Table 6.12 Performance measures: Simulation 7
MSDF RMSEp RMSEs RM SEy Conditions
Architecture
FL-AKF-FLA 7.1360 0.8398 7.1860 Fused data
FL-AKF 1 0.8537 0.4712 0.9751 IncorreRiy and adaptation
FL-AKF 2 0.7019 0.3467 0.7829 IncorreRfy and adaptation
FL-AKF 3 15.1900 1.4980 15.2600 IncorrdRf, and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 IncorreRf, and adaptation
FL-ACKF 4.2390 1.4470 4.4790 Fused data, incorre&;, and
adaptation
FL-ADKF 13.0500 | 1.4470 13.1300 | Fused data
FL-AKF 1 0.8537 0.4712 0.9751 IncorreRi, and adaptation
FL-AKF 2 0.7019 0.3467 0.7829 IncorreRfy and adaptation
FL-AKF 3 15.1900 1.4980 15.2600 IncorrdRf, and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 IncorreRf, and adaptation
FL-AFKF 4.2390 1.4470 4.4790 Fused data
FL-AKF 1 7.3620 1.4630 7.5060 IncorreRi, and adaptation
FL-AKF 2 3.3990 1.4470 3.6940 IncorreRf, and adaptation
FL-AKF 3 3.0760 1.4360 3.3950 IncorreRyy and adaptation
FL-AKF 4 3.2670 1.4440 3.5720 IncorreRf, and adaptation
sof ~ ' n
— Actual p A,
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Figure 6.28 Actual and estimated position of theisle obtained with the FL-ADKF and each
of its local FL-AKFs, simulation 8.

The position estimates performed by the FL-AFKH aach of its local FL-AKFs are shown
in figure 6.32. Note that, due to the feedbackiedrout of the fused state-vector to the local
filters, in this case the effect of the permaneauitfin the fused position estimates is less drasti
than that observed in the FL-ADKF. In the FL-AFKtetfused state estimates try to follow the
tendency of the majority of the filters, and insthivay the effect of the fault is reduced.
However, due to the information sharing carried, the effect of the fault is transmitted to all
the local filters and, as a result, the local eatén are split up from the correct estimates.

In figure 6.33 the actual position, the measuresitipm (z* ), and the estimated position of

the vehicle performed by the local FL-AKF 3 in tRe-AFKF are shown. Note the way in
which the permanent fault, introduced at time 10=séc, affects the estimates performed by this
local filter.
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Figure 6.29 Actual position, measured positioff*(), and estimated position of the vehicle
obtained with the local FL-AKF 3, FL-ADKF, simulati 8.
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Figure 6.30 Adjustment of the elements in the ndiagonal of matrixRs, FL-AKF 3, FL-
ADKF, simulation 8.

10 : : : :

-10 - : : |
150 : - |
20} ., |

25| . - , -

-30 i i 1 i i i i
O 10 20 30 40 50 60 70 80

Time (sec)

Figure 6.31 Residual sequenggl,1) and its & bounds, FL-AKF 3, FL-ADKF, simulation 8.
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Figure 6.32 Actual and estimated position of thkisle obtained with the FL-AFKF and each
of its local FL-AKFs, simulation 8.
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Figure 6.33 Actual position, measured positioff*(), and estimated position of the vehicle
obtained with the FL-AKF 3, FL-AFKF, simulation 8.
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Figure 6.34 Adjustment of the elements in the ndhagonal of matrixRs, local FL-AKF 3,
FL-AFKF, simulation 8.
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Figure 6.35 Residual sequernggl,1) and its @& bounds, FL-AKF 3, FL-AFKF, simulation 8.

The effect that the permanent fault has in the sidjant of the elements in the main
diagonal of matriXRs and the residual sequengg1,1) in the FL-AKF 3 of the FL-AFKF are
shown in figures 6.34 and 6.35, respectively. Iis tbase, due to the sharing information
principle and the feedback carried out, the effactsdifferent than those observed in the FL-
ADKF. In this caseRs(1,1) is constantly increased ang(1,1) is maintained far from itso2
limits.

6.5 Discussion

From a general analysis of the results obtainetienlast two sections several remarks can be
given:

1) For the cases where faults are not presentisehsors, the fused data obtained with the FL-
AKF-FLA architecture is comparatively less accurdtan that obtained with the other three
proposed MSDF architectures. However, this fusad amore accurate than that obtained by
any of its local filters.

2) The role of the FLA in the proposed FL-AKF-FLA@oach is of great importance because
the fusion of the information is carried out basedhe degrees of confidence generated by this
component. In addition, only two variables are meketb monitor the performance of each FL-
AKF and only nine ‘common sense’ rules are useafiénFIS used in the FLA.

3) A simple FLA-weighting average structure is ugedfuse the data in the FL-AKF-FLA
architecture. Compared to the other architectuhes makes this structure less computationally
demanding.

4) If Gaussian zero-average noise sequences asenprén the sensors and the correct
measurement noise covariance matrices are spebiieidg the adaptation procedure switched
on in the FL-AKFs, then the fused data obtainedhwhe FL-ACKF, the FL-ADKF and the FL-
AFKF remain very near to the optimal estimates.

5) If Gaussian zero-average noise sequences asenprin the sensors and the incorrect
measurement noise covariance matrices are speb#iedg the adaptation procedure switched
on in the FL-AKFs, then the measurement noise ¢avee values are tuned to fit, as closely as
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possible, the actual statistics of the noise sfilAs a result of this, the fused data obtained
with the hybrid adaptive MSDF architectures arer h@dhe optimal estimates.

6) If there are non-stationary statistics but z@verage noise profile present in any of the
sensors, then the adjusting procedure carriedrotitei FL-AKFs tunes the measurement noise
covariance values to fit and follow, as closelypassible, the actual dynamic statistics of the
noise profiles. As a result of this, the fused datained with all hybrid adaptive MSDF
architectures is more accurate than the data @utauith any individual FL-AKF.

7) In the cases where faults are not present irs¢éimsors the most accurate fused data is that
obtained with the FL-ADKF, while the least accurlised data is that obtained with the FL-
AKF-FLA architecture. Both the FL-ACKF and the FLFKF have an intermediate level of
accuracy.

8) If transient or persistent faults are presending of the sensors then the most fault-tolerant
architecture is the FL-AKF-FLA, while the least faiolerant architectures are both the FL-
ACKF and the FL-AFKF. These last two architectunese similar performances (remember
that in this work the sharing factors in the FL-AFKvere set to be equal for all local filters).
The FL-ADKF has an intermediate fault-tolerant paerfance.

9) All architectures do not have good fault-tolérperformances against permanent faults.
However, permanent faults are easy to detect blysing the adjusted measurement noise
covariance matrices or the residual sequencesefdner several fault detection techniques, e.g.
voting systems [Willsky, 1976] and residual-basetedtion systems [Maybeck, 1979], could be
used to detect the faults and implement a faultweiy algorithm. This task is out of the scope
of this thesis and is left as a future work.

Therefore, the selection of one of the proposduatilyadaptive MSDF architectures for a
particular application can be made taking into aotothe remarks given above and the
characteristics and objectives followed in the probat hand. For example, if it is necessary to
have fast processing without the requirement aft @i computational resources, the FL-AKF-
FLA approach is adequate for this task. Howeveagcifuracy is the main concern then the FL-
ADKF can be applied. If the sensors are subjeaddansient or persistent faults, then both the
FL-AKF-FLA and the FL-ADKF approaches are adequatee FL-AFKF appears to be more
suitable for fault detection purposes. The FL-AC&duld be applied in cases where there are
only two or three sensors and the state vectorofadimension two or three only. This is
because of the computational resources needeategs all the information at the same time,
which increases as the number of sensors grows.

6.6 Summary

Four hybrid adaptive MSDF architectures integratikgiman filtering and fuzzy logic
techniques have been presented. These architecueeseferred to as: fuzzy logic-based
adaptive Kalman filter with fuzzy logic performanassessment scheme (FL-AKF-FLA), fuzzy
logic-based adaptive centralised Kalman filter @&CKF), fuzzy logic-based adaptive
decentralised Kalman filter (FL-ADKF), and fuzzyglo-based adaptive federated Kalman filter
(FL-AFKF). These approaches exploit the advant#igesboth Kalman filtering and fuzzy logic
techniques have: the optimality of the Kalman fikad the capability of fuzzy systems to deal
with imprecise information using “common sense’taulin this approach the linear estimations
obtained by individual Kalman filters are improvetirough dynamically tuning the
measurement noise covariance magjpby means of a FIS. This prevents filter divergeacd
relaxes the a priori assumption about the initellg ofR.. It is particularly relevant that only
three rules are needed to carry out the adaptation.
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An illustrative example was presented to demotestitze effectiveness and accuracy of the
proposed adaptive MSDF architectures. Exhaustinmilations under different measurement
noise conditions and with or without the presentcéaolts were carried out. The results from
the simulations show that the proposed hybrid adapgtiISDF architectures are effective in
situations where there are several sensors megstinsame parameters, but each one has
different measurement dynamic and noise statislibsis, the general idea of exploring the
combination of traditional (Kalman filtering) withon-traditional (fuzzy logic) techniques for
designing adaptive MSDF architectures appears todmod avenue of investigation.

The FL-AKF developed in Chapter V together witineuro-fuzzy approach for non-linear
process modelling and identification will be usedthe next chapter to design a neuro-fuzzy-
AKF state estimator. Then, the hybrid adaptive MSiDéhitectures developed in this chapter
will be applied to merge the information coming nfroseveral neuro-fuzzy-AKF state
estimators.



CHAPTER 7
HYBRID NEURO-FUZZY-KALMAN FILTER ADAPTIVE
MULTI-SENSOR DATA FUSION ARCHITECTURE

7.1 Introduction

As mentioned in Chapter 5, the problem of improving the performance (iigfialitl accuracy)

of the Kalman filter and, in consequence, the MSDF architecha&ssd on it, can be divided
into two parts, a modelling problem and an estimation problenhelrptevious two chapters,
only the estimation problem has been tackled. Thus, in this chtptenodelling problem is
considered. In that sense, neuro-fuzzy techniques, namely those deisc@lbegbter 3, will be

used for modelling and identification purposes.

In the hybrid adaptive MSDF architectures developed in Chapter 6 ivim@dshat a model
of the system under consideration is available in a stategg@resentation. However, what
happens if this model is not available, or if the system uoolesideration is a non-linear one?
In these cases, the developed architectures cannot be apjdiexttheless, if there is a tool
through which the system under consideration can be modelled aressegbrin the form
needed, then the proposed MSDF architectures can be applied.

Therefore, in order to deal with the above problem, research bacagied out in the area
of identification and modelling of non-linear systems. The objeadf this research was to find
a suitable neuro-fuzzy approach capable of modelling and exprebsireg state-space
representation the system under consideration. In addition, the ichitif process should be
carried out using solely the data coming from the sensors, whichecaha different kind but
should be commensurate. In this way, the FL-AKF algorithm developé&hapter 5 can be
directly applied and, in consequence, the hybrid adaptive MSDF atcinde proposed in
Chapter 6 can be employed to merge the data coming from the identified system.

As a result of the research carried out, it was foundthigaheuro-fuzzy-SKF state estimator
recently developed by Harrég al[1999, 2000, 2002] [Wu and Harris, 1997] is adequate for the
purposes followed in this chapter. Therefore, first in this ehraibte neuro-fuzzy-SKF state
estimator approach is described. After that, a simplified wersfoit is proposed. Then, the
simplified version of the neuro-fuzzy-SKF state estimasoused to develop a novel hybrid
neuro-fuzzy-AKF state estimator. Finally, the FL-AKF-FLA hybriadaptive MSDF
architecture proposed in Chapter 6 is used to merge the data doomngeveral neuro-fuzzy-
AKF state estimators.

7.2 The neuro-fuzzy-SKF state estimator

Consider a general stochastic non-linear single-input-single-o(B80) system represented
by the discrete-time domain model:

y(t) = f(yt-2,...,y(t-n),u(t—d -1),...,u(t —=d —n,)) + w(t) (7.12),

wheref(:) is an unknown non-linear function(t) andy(t) are the system’s input and output,
respectivelyny, n,, andd are positive integers assunmegriori and representing the orders and

116
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time-delay of the modelyv(t) denotes a white noise sequence representing observaiimhal
modelling errors.

In order to perform state estimates by applying Kalmaarifily to the system (7.1) two
alternatives can be devised. In the first, after thetifigation and linearisation of the unknown
plant has been performed, an extended Kalman filter [Brown and H4@8d] can be applied.
However, the resulting extended Kalman filter is non-optimal duée linear approximation;
moreover, convergence cannot be guaranteed, and even divergencecomaj’Vu and Harris,
1996]. The second option is to look for another model of (7.1) that isteasynvert to an
equivalent state-space form and then use a SKF. This second ogtienoise selected in the
neuro-fuzzy-SKF design.

Hence, the non-linear system described by (7.1) can be re-expressed as:

y() =a(0)y(t-D+---+a, (O)y(t-n,)
+a, 4(Q)u(t-d -1 +---+a (O)u(t-d-n,)+w(t) (7.2)

wherea (O,) i = 1,...n, n =n, +n,, are the unknown parameters which are functions of the

measurable multi-dimensional operating poi@®s O; may be some changing environmental
operating condition that causes the system’'s parameters yo Mae system (7.2) is an
operating point dependent auto-regressive moving average (ARWb&el where the AR
parameters are non-linear functions of the operating @ifwu and Harris, 1996]. Also (7.2)
is a special case of (7.1) when the measurable operation @pidépend upon the past values
of the system input and output [Waeigal, 1996a].

The model described by (7.2) is easy to convert to a state sgar@sentation. This can be
achieved by considering the operating p@pas a function of time. In such a case, (7.2) can be
re-expressed in the following time-varying ARMA form:

Y =a,yt-D +--+a, Oyt-n,)
+a, (Ut —d -1 +-+a Out-d -n,) +wt) (7.3)

where a (t) i = 1,...n, n =n, + n,, are the time-varying parameters. The system (7.3) can be

represented in various state-space realisations, but theoltabigr state-space form is
considered in the neuro-fuzzy-SKF as will be explained later.

The time-varying parametersy (t), in (7.3) can be approximated by using a neuro-fuzzy
modelling network as is explained next. From (7.3) a vector of observatioh® ckefined as:

X(1) =[Xg,.on %] =[Y(t =1, y(t=n,),ut—d =1),...,ut=d -n,)]" (7.4),

wheren = n, + n,. Based on (7.4) a Sugeno-type FIS [Takagi and Sugeno, 1985] can be
designed in order to approximate the system given in (7.3) [Wu amisHL997]. Consider as

the FIS input the vector of observatioy 0 0", and as the FIS output the system vafite(]

0. Therefore, universes of discourse for each linguistic variabkn be defined a§ 0 [, and

foryasydO (i = 1,2,...n). Define fuzzy setsAk' , withk = 1,2,...m andi = 1,2,...n, using

B-spline functions, as values of the linguistic variable$hen, fuzzy rules forming a complete
rule base can be defined as:
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j-th rule: ifx, is A andx, is Ak2and Tx,is A" theny(t) is yi(X) (7.5),

wherey(x) O Y andj = 1,2,...p; p is the number of fuzzy rules, which in order to have a
complete rule base must satighr mym, [T, Generally, for a task of system identification,
the functiony;(x) in (7.5) is selected to be a linear combination of the compopéthe input
vector [Takagi and Sugeno, 1985], this is:

y,(x) =alx +ajx, +---+a)x, (7.6),
where a,-j (i=1,2,...n;j = 1,2,...p) are the unknown parameters.

The FIS defined by (7.5) and (7.6) form a local linear modeY @) (Harriset al, 1999]. If
the algebraic product/sum fuzzy operators (see Appendix A) aetesb| B-spline functions are

used to define the membership functions of the fuzzy éé(“ts and the COA defuzzification
method is used, then the real (crisp) output of the FIS is given by:

y© =3 [] A (x), ()
=iﬂj(X)yj(X) (7.7),

where (X) represents the degree of truth value of the antecedendffihgj-th rule, and is
given by:

mm:ﬂMM) (7.8).

Equation (7.8) also can be seen as a multivariate B-splirie fhuation generated by

multiplying the n univariate basis function (x). A graphical representation of the FIS

defined by the rule base (7.5) and equation (7.7) is shown in figurehislsyGtem can be seen
either as a B-spline neural network or as a Sugeno-typewitts membership functions

implemented by B-spline basis functions [Wu and Harris, 199 ftoader explanation of this

special class of FIS, which characteristics makeshigtaid neuro-fuzzy system, was given in
Chapter 3, section 3.5.

The above described FIS can be reorganised to form a fumagomodelling network [Wu
and Harris, 1997] [Harrigt al, 1999]. By substitutingj(x) defined with (7.6) into (7.7), it
results in:

p . . .
y(t) =Y u;(x)(alx, +alx, +---+alx,)
j=1

= Suat o St oo S
=aOyt-D+-+ag, (Hyt-n)+a, ,Out-d-D+---+a,Oyt-d-n,) (7.9
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where:
p .
a(t)=> u,(0a’,i=1,2,..n (7.10)
j=1

is a linear combination of the degree of truth values of thecadent part of the fuzzy rules.
Note that (7.10) is similar to (7.7) where instead of having fancfactorsy;(x) there are

singleton factorsaﬁ. This means that eadhth parametera(t) can be approximated by a
Sugeno-type FIS designed as was explained previously, but wieeoerisequent parts of the
fuzzy rules are defined using singleton fuzzy sefs One of these FIS is represented
graphically in figure 7.2. Therefore, (7.9) is equivalent to (7.3).

A (%)
£a(X)
Xg —p Y1(X)
A (%)
Xo—p Ya(X) Y0
A’ (%)
Xn—p yp(x)

Figure 7.1 Graphical representation of the FIS defined by the rule basar(@.&yuation (7.7).

A (%)
(X n
X1 —p a;
A (%)
2
> 4 a(t)
AS(x,)
X—p a’

Figura 7.2 FIS used to approximate the parametg)s

If each auto-regressive paramedgt) in (7.9) is approximated by a FIS of the kind shown in
figure 7.2, then a neuro-fuzzy modelling network representing the wdtplation can be
formed as is shown in figure 7.3.
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Figura 7.3 Neuro-fuzzy modelling network.

The first layer of the neuro-fuzzy modelling network in fgut.3 is composed aof FISs,
where each FIS output corresponds to an auto-regressive parajftetAll the FISs have as
input the vectox and use the same fuzzy rule base. Consequently, all the FISstl#haame

vector ¢ which is formed by the degree of truth valygé), of the antecedent part of the fuzzy
rules:

@=[14(X), 1o (%), (X' (7.11).

The free parameters of the network in figure 7.3 are tigdetons (scalarsaaij , that define
the consequent part of the rules in each FIS. These singletons caanigedim vectorsé’ai :

6, =laj,a’,--,a"1", i=12,.n (7.12),

where each vecto@aﬂ_ contains the singletons corresponding to the consequent parts déthe ru
of thei-th FIS.
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The neuro-fuzzy modelling network can be trained using the LMBeoNLMS algorithms,
as will be shown later. Therefore, a non-linear systenngivehe form (7.9) can be identified
by the neuro-fuzzy modelling network shown in figure 7.3.

The model (7.9) can be easily translated to a state-space representatitaeftdl, 1997] as
is required by the SKF algorithm. If the term correspondinidpeainput in (7.9) is represented

by,
ut)=a, ,(u(t-d -1 +---+aut-d-n,) (7.13),

then the model (7.9) becomes:

y(t) =a,(x)y(t -1 +---+a, (x)y(t-n,)+u(t)+wt) (7.14),
Now, define:
[z,(t) = y(t—n,),
() = y(t-n, +1)
z(t) = : (7.15).
Zm—l(t) = y(t - 2)
0 =yt-1)
It follows that:
7(t+1) = y(t—n, +1) = 7,(t), N
z,(t+1) = y(t—n, +2) = z,(t),
5 > (7.16),
Zpa (t+1) = y(t=1) = 2, (1),
Z,(t+D = y(t) =a )yt -1+ +a, (t)yt—n,)+a(t) +w(t)
=a, ()z(t) +--- +ay(t)z, (1) + T(t) +w(t) ),
this leads to the following canonical controllable state-space ssped®n:
z(t +1) = A(t)z(t) + Ba(t) + Tw(t), z(0) =z, (7.17)
y(t) = C(t)z(t) + DU(t) + v(t) (7.18)
with:
"0 1 -
0 1
At) = P oo, B=[0 - 3" 00O"
0 1
a, ) &) a)]
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r= - - o00%,cq) =[a, (t) -~ &) a®)]0 0%, andD = 1.
where the mean &0) is the initial condition, given ag,; v(t) represents measurement noise.
It is assumed thait) is modelled as a Gaussian zero mean white noise sequence.
Therefore, by using (7.17) and (7.18) the SKF can be directly applied:
i) Time update (or prediction) equations:

2(t + 1)) = A(t)2(t)+) + BU(t) (7.19)
P(t +1)¢-) = A()P(t)» AT (1) + T Q)T (7.20)

ii) Measurement update (or correction) equations:

K(t) = P(t)-CT (H)[C(t)P(t)»HCT (t) + R(H)]™ (7.21)
2(t)+ = 2(t) + K(H)[y(t) - C(t) 2(t)- — Du(t)] (7.22)
P(t)s =[I =K()C®)]P(t)- (7.23)
y(t) = C(t)Z(t)+ + Du(t) (7.24)

wherej(t) is the filtered system output. Note that there is a slight meatlin in the notation of
the SKF with respect to that used in previous chapters. Thibden made to indicate the time-
varying condition of the different matrixes included in the state space model

Hence, a neuro-fuzzy-SKF structure can be used to produce stiatates. This structure
can be arranged in two ways [Wu and Harris, 1997] [Hetred, 1999]: (i) the indirect neuro-
fuzzy-SKF state estimation scheme, and (ii) the directraafuzzy-SKF state estimation
scheme. Both structures are described as follows.

() The indirect neuro-fuzzy-SKEtate estimation schemdn this scheme the system
identification and the state estimation by the SKF are peedreeparately, as is represented
graphically in figure 7.4. First, the neuro-fuzzy network is used to identify thémear-system
model. Once the system model has been identified, it is fedeparate SKF to perform state
estimates indirectly.

- y
—1 | Non-linear Proce:
v+
error
—» " 0
' ldentification y —
» Neuro-Fuzz2y Network
Learning | |
State-Spac Algorithm
Model
—> O
| Standard Kal Filt X State estimate
|| Standard Kalman Filter—
Y Filtering output

Figure 7.4 Indirect neuro-fuzzy-SKF state estimation scheme.
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Figura 7.5 Direct neuro-fuzzy-SKF state estimation scheme.
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Figure 7.6 Connection between the neuro-fuzzy network of figure 7.3 and a SKF.

(i) The direct neuro-fuzzy-SKdtate estimation schemidere, the identification process and
the state estimation by the SKF algorithm are combined in attawtscheme, as is shown in
figure 7.5, to produce state estimates directly. The connectioeéetive neuro-fuzzy network
of figure 7.3 and a SKF is implemented as is shown in figure 7.6.sTisture can be viewed
as a two-layered adaptive network, where the first layehe neuro-fuzzy network shown in
figure 7.3 and the second layer is a SKF which uses the egitessive parameters produced by
the first layer to perform state estimates. Evidently,SK& cannot be interpreted as a neural



CHAPTER 7 HYBRID NEURO-FUZZY-KALMAN FILTER ADAPTIVEMSDF ARCHITECTURE 124

network, thus it is not explicitly seen how the training procediitei® structure can be carried
out. This matter will be clarified in the following section.

7.2.1 Training of the neuro-fuzzy-SKF state estimator

In this section the training algorithms for the two neuro-fuzK§~State estimation schemes,
presented in the last section, are described.

a) Training of the indirect neuro-fuzzy-SKF state estimatiorersgh The neuro-fuzzy
modelling network shown in figure 7.3 is a two-layered neuralvort The first layer is
composed ofh FISs that also can be viewed as B-spline neuro-fuzzy sub-mstwehose
outputs correspond to the auto-regressive paramefg)s The second layer is simply the
regression calculation of (7.9) [Wu and Harris, 1997]. Thereftwe,friee parameters of the

network are the singletonqj (the weights of the B-spline neuro-fuzzy sub-networks), which

define the consequent part of the fuzzy rules in the first.|ayer weights of the second layer
can be considered as fixed in each iteration of the traininge¢woe. Several training
algorithms for traditional feedforward neural networks can be used tdheaireuro-fuzzy-SKF
network, but the NLMS, which was reviewed in section 3.5, is employed here.

At timet the input
X(t) =[Xg,n %, ] =[Y(t =), y(t=n,),ut—d -1),...,ut-d -n,)]" OO",

is presented to the neuro-fuzzy modelling network of figure 7.3. In the forwartheasstwork
calculates the output by (7.9), which is denoted ksee figure 7.4). Thus an error sigret),
may be defined as:

e(t) = y(t) - y(t) (7.25).

The error signal needs to be propagated back through therkeBut, because there are no
free parameters in the second layer of the network, the isrmopagated back through the
second layer to the output of the first layer. Thus, the erragtinnormalised by(t)'x(t), are
given by,

_x(et)
ga‘(t)_x(t)Tx(t)’ i=12,..n (7.26).

Then, the errors, can be used to update the free paramet@ﬁtﬁ) of the first layer.
Therefore, the NLMS algorithm for the network is:

_ _ gt =Dx (t)e(t)
6, (t) =6, (t-)+n St -1t —DXOXO) (7.27)

with &, (0) given, 0 <7 < 2 is the learning rate, aed> O is an arbitrarily small number which
is added to avoid division by zero.

Proof of the convergence of the described training algoritmmbeafound in [Wanget al,
19964a).
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b) Training of the direct neuro-fuzzy-SKF state estimation schdine neuro-fuzzy-SKF
estimator shown in figure 7.6 can be viewed as a two-layeredl maiweork. The first layer is
composed o FISs, whose outputs correspond to the auto-regressive paramé)e The
second layer corresponds to a SKF, which does not need to be.tidévertheless the SKF is
not a neural network and information cannot pass through it inverhayNLMS training
algorithm can be used to train the network as is described as follows.

Using the definition of states given by (7.15), the state estia{f}es:
2(t)=[y(t-n,)-- -1 (7.28).
Substituting (7.28) and (7.13) in (7.26) results in the following regressigtion:
9(t) =aOt-D+--+a, (OYt-n)+a, ,Ouit-d-D+--+a,O)yt-d-n) (7.29).

Equation (7.29) can be represented as a two-layered neural neasdskshown in figure
(7.7). This means that it is possible to train the neural netusirlg the NLMS algorithm as in
the previous case. However, a slight modification needs to be performed.fonward pass the
network calculates the auto-regressive paramef@yswhich are the outputs of the first layer,
according to (7.10). Then, the state-space equations (7.17) and (7.X8)naed with these
parameters and the state estimation is performed usingKiReal§orithm, equations (7.19)-

(7.24), giving the state estimaft) and output estimat§(t) .

at) —
—» Y(t-1)

a,(t)
—»

t-2) 0

a,(t)
— u(t-ny)

—

Figure 7.7 Neuro-fuzzy network representing equation (7.29).
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Therefore, the NLMS training algorithm is given by:

At-DE V() 7,30
+glt-D)T @t -DEQ" )

6,(0)=06,(t -1+

wheregt) and &t) are defined as,

(t) = y(t) - y(t) (7.31)
$(t)=[& () &) -+ &,(V)]
=[§(t-1) - Yt-n) ut-d-1) -- ut-d-n)O0"  (7.32)

and y(t) is the filter output at time

7.3 The simplified neuro-fuzzy-SKF state estimator

In the last section the neuro-fuzzy-SKF state estimatsrdeacribed as originally proposed by
Harris et al [1997, 1999, 2000]. However, from an analysis of the neuro-fuzzy-S®E s

estimator, it is deduced that a simplified version of it banobtained as is presented in this
section.

The auto-regressive parameta(t) in (7.9) are non-linear functions which are approximated
by FISs in the first layer of the neuro-fuzzy modelling network shown in figi.eNote that all
these FISs share the same vedaprformed with the degree of truth valuggx) of the
antecedent parts of the fuzzy rules (see (7.11)). Therefore,dnstemnsideringh complete
FISs, the neuro-fuzzy network can be built considering a sengflecedent rule evaluator in
which the calculation of the degree of truth valpgg) is performed. Then, these values are

distributed among vector bIocksHai , Which constitute the consequent parts ofrthale sets,

to obtain the correspondirg(t) parameters. This simplifies the neuro-fuzzy network stractur
as is shown in figure 7.8.

From the simplified neuro-fuzzy network structure of figure fe8following equations can
be deduced:

at)=¢'6,, i=12,.n (7.33)
YO=Y F16,% = at)x
=a)yt-D+-+3, (OYt-n)+a, ,Out-d-D++aByt-d-n) (7.34).

(7.34) is equivalent to (7.9) and proves that the final resulliredd with the simplified
neuro-fuzzy modelling network is equal to the result obtained \mighoriginal neuro-fuzzy
modelling network.

Alternatively, instead of arranging the free parametethetimplified neuro-fuzzy network
(or the original neuro-fuzzy network) in vectoﬂ; , these can be arranged in vectors of the
form:

a'=[a al - all, j=12,..p (7.35).
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Figure 7.8 Simplified neuro-fuzzy modelling network.

Therefore, by using the vectors defined in (7.35) the output ofinfyaified neuro-fuzzy
network can be calculated as:

P ) P
y(t) = 2 4 (¥a’x() = 3 4 (x)y; (1) (7.36)
j=1 j=1
where:
alxt)=a/x +alx, ++ax, =y ), j=12..p (7.37).

Note that (7.37) is equivalent to (7.6). Therefore, the solution given.B§)(is equivalent to
the solution given by (7.9) or (7.34).

The free parameters of the simplified neuro-fuzzy maughlietwork (or the original neuro-
fuzzy network) can be organised in a matrix form as is showraibhe 7.1. These parameters

can be seen as column vect(ﬁgq; or as row vectorsd! . Depending on which way the free

parameters are taken, as column or row vectors, equation (7.343®Y, tespectively, is used
to obtain the output of the neuro-fuzzy network.

The simplification of the neuro-fuzzy network does not alteclhtaracteristic of being easy
to translate to a state-space representation as is ikdpyirthe SKF. In fact, exactly the same
procedure used in the original network, and explained in section 7.2pedollowed.
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Therefore, it is straightforward to include the simplifiednoewzzy network in the indirect and
direct neuro-fuzzy-SKF schemes, shown in figures 7.4 and 7.5, tampesfate estimations. In
the indirect neuro-fuzzy-SKF scheme, instead of using the origiearo-fuzzy modelling
network, the simplified neuro-fuzzy modelling network is employte connection between
the simplified neuro-fuzzy network and a SKF in the direct nfurpy-SKF scheme is shown
in figure 7.9.

Table 7.1
Matrix formed with the free parameters of the neuro-fuzzy network
Hal 6a2 gan
A 2,
| a4 al al
a’ a’ a) a’

N (%)
X; —i
N (%)
Xo—p V()
AN
Ny (x,)
Xn —>

Figure 7.9 Connection between the simplified neuro-fuzzy network and a SKF.
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With respect to the training of the simplified neuro-fuzi§fFSthe procedures presented in
section 7.2.1 are directly applied in both indirect and directoainzy-SKF state estimation
schemes. Therefore, they are not repeated here.

7.4 The neuro-fuzzy-AKF state estimator

In this section the FL-AKF presented in Chapter 5 is usatkvelop a neuro-fuzzy-AKF state
estimator (from here referred to as neuro-fuzzy-AKF). This is acdthieyéncorporating the FL-
AKF in the direct neuro-fuzzy-SKF scheme, as is shown in iguf0. Note that instead of
employing a SKF, a FL-AKF is used and the error signal is fed to the FL-AKF

Nonlinear Process

A4

X v }
. State-Space
Idenyjfication Model Filtering
Neurd-Fuzzy —b] FL-AKF = output
Network X
T \ T X State estimate
e
\ Learning |
Algorithm |

Figure 7.10 Direct neuro-fuzzy-AKF state estimation scheme.

In practice, system identification using the neuro-fuzzy-AKf loa implemented using two
different approaches. The first is a series-parallel moddlewhe second is merely a parallel
model, resembling the corresponding neural network identificaigmoaches [Narendra and
Parthasarathy, 1990] [Nelles and Isermann, 1996].

In the series-parallel model the previous process input andtoatpued into the neuro-
fuzzy-AKF and the error signal is used as a measurement figrihe FL-AKF as is shown in
figure 7.11(a). Hence, the past values of the input and output pfathieform the input vector
to the neuro-fuzzy-AKF whose outpii(t) corresponds to the estimate of the plant output at

any instant of timet. This model is similar to the direct neuro-fuzzy-SKF approauth, a
therefore, the same learning procedure used for that case aaplieel here. The way in which
the error signal is managed in the neuro-fuzzy-AKF will be clarlfést.

In the parallel model the previous neuro-fuzzy-AKF output isbiack to the identification
model and the error signal is used as measurement signal felc-#hi€F, as is shown in figure
7.11(b). The parallel model is recurrent and therefore catigpran arbitrary number of steps
into the future. However, due to the feedback, the model inpitsi) depend on the model

parameters. Therefore the identification model becomes nonlinear inrtimegpars. This makes
the gradient calculations a nonlinear optimisation problem, whichresqgaidifferent learning
technique. In the neural network literature, it is arguedubiaty a parallel identification model
is a difficult problem [Nelles and Isermann, 1996]. Furthermore pdrameter optimisation
may become unstable. Due to this, here the series-paralle@-fueay-AKF model is used
during the process of system identification. Once the systenr wmhsideration has been
identified, and assuming that the output error tends to a smiilé asymptotically so that
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y(K)= y(t), the series-parallel model can be replaced by a parallebsfigzry-AKF model
without serious consequences [Narendra and Parthasarathy, 1990].

u(t) y(t)
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Figure 7.11(a) Series-parallel Neuro-Fuzzy-AKF model.
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Figure 7.11(b) Parallel Neuro-Fuzzy-AKF model.

During the training process the error signal in the neuro-fd&dy scheme is used as a
measurement noise signal in the state-space representatiom system (equations 7.17 and
7.18) used in the FL-AKF (see figure 7.11). By using an artifipialcess noise sequence
[Haykin, 1999], w(t), with known and fixed covarianc&(t)=Q O t, of a low value, the
covariance of the measurement noise, which in this case igtinesignal, can be approximated
by the adaptation algorithm in the FL-AKF. This is achieved fmpleying the algorithm of
adaptive estimation of the measurement noise covarianci iR@jrassuming tha® is known,
described in Chapter 5, section 5.3.2.a. This means that at the tgaen in which the
identification of the process is carried out an approximatiothef mismatch between the
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identified model and the actual model is carried out and thésnaich is represented by the
estimated measurement noise covariance niaftjx

Therefore, at the beginning of the training of the neuro-fuzzy-AKiRg the series-parallel
model, a low value fof) is given, which defines an artificial process noise seqyemad an
initial guessed value fdR(t) is defined. WhileQ is maintained constant over the whole training
processR(t) is adaptively adjusted to match the covariance valubeoérror sequence. At the
end of each epoch an averagd(ij is obtained as:

R:;ZN: R(t) (7.38)

where N is the number of training input-output samples using for traininggses. This
averaged valueR, is used as initial measurement noise covariance for tke apoch.
Consequently, as the identification process progresses, and ifotilinear system is being
correctly identified, the value dR decreases with each epoch until it reaches a quasi-steady
state around a small value, indicating that the identificatimtess has converged. This
utilisation of the error signal as measurement signal for tite-space representation of the
system used in the FL-AKF has the effect of stabilizingrdieing process. In addition, it helps

to avoid the possible divergence of the filter because the HE-A#&s the knowledge of the
approximated mismatch between the identified model and the aggiam, represented as the
measurement noise covariance vaRie,

Once the identification process is terminated, the sv@ihn figure 7.11 is opened and an
artificial measurement noise signe(t), with covariancer is used to substitute the error signal.

7.5 MSDF using the neuro-fuzzy-AKF state estimator

In the last chapter four adaptive MSDF architectures based oRL##KF, developed in
Chapter 5, were presented. In order to apply these architeatstate-space representation of
the system under consideration must be available. In sectian rodel neuro-fuzzy-AKF for
non-linear system identification and state estimation e leveloped. As an interesting
characteristic, the neuro-fuzzy-AKF is capable of idgimty and expressing in the form of a
time varying state-space representation the non-lineamsysteler study. As a consequence,
the FL-AKF can be directly applied. Therefore, in this secti@nhybrid architecture FL-AKF-
FLA (see section 6.3.1) is applied for MSDF of the informatiomiag fromN neuro-fuzzy-
AKFs.

The implementation of the FL-AKF-FLA scheme using neuroyfuXFs is shown in
figure 7.12. This scheme is similar to that presented inoge6t3.1, but here the FL-AKFs are
substituted by neuro-fuzzy-AKFs. Note also, that in this dasénformation that is being fused
are the estimated nonlinear plant outptf§, carried out by the different neuro-fuzzy-AKFs,
instead of the state vectors. The fusion process is carriethimutgh a weighted average
scheme based on the confidence values calculated by the FuzZeyAlssgssors (FLAS). The
FLAs are assessing the performance of each neuro-fuzgy-AlKd calculate a degree of
confidence valueg;, using a fuzzy inference system (FIS). Each FIS has assitipe absolute
value of the Degree of MismatchjoMO) and the estimated value Bft), calculated in each
neuro-fuzzy-AKF (specifically, in each FL-AKF). For a compldescription of the algorithm,
the reader is referred to section 6.3.1. Therefore, the appliaaitthe FL-AKF-FLA for MSDF
using neuro-fuzzy-AKFs is straightforward.
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Figure 7.12 Implementation of the FL-AKF-FLA scheme using neuro-fuzzy-AKFs

7.6 Simulation results

In this section simulation results of nonlinear plant identiticgtstate estimation, and MSDF
using the neuro-fuzzy-AKF and the MSDF architecture describdidreare presented. Two
benchmark processes taken from the literature are simulated. MATLAB/SIMULINK
platform for simulation was used and the developed SIMULINK nmdet presented in the
Appendix B.

In both examples, during the identification process, a serrefiglanodel is used, but when
the identification process is terminated the performance ohéheo-fuzzy-AKFs is evaluated
using a parallel model, as is commonly reported in the neurabries literature [Narendra and
Parthasarathy, 1990].

One of the problems of LMS based learning algorithms isttiet have a slow rate of
convergence. In order to accelerate convergence, the learrerrgiraf7.30) is changed as the
number of epochs increases by using the relation [Haykin, 1999]:

_ o
n(n) _71+(n+<‘) (7.40)

wheren(n) is the learning rate at the current epacly, and¢ are constants selected in order to
define the decreasing rate of the learning-rate parametefou3hy /7, must be inside the
permissible range (0, 2) for the learning-rate parametieiey In the simulations carried out in
this study the values selected gge= 2, and¢ = 50.
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The identification process was terminated when satisfactoryelation validity tests
[Billings and Zhu, 1994]®_(7), CD( ,(7), and ¢(ye)u2(r) were obtained.

ye)e

Example 1 Consider a nonlinear system described by [Chen and Khalil, 19858 and
Harris, 2001] [Liuet al, 1999]:

2(t) = 25z(t-Dz(t -2)

=1t 2(t-1)+2(-2) —-0.3cosP.5(z(t -+ z(t-2)]+1.2u(t-1) (7.41)

where z(t) is a state variable that has to be estinfedgdthe measurements from two different
Noisy Sensors:

Yi(t) = 2(t) + &,(t) (7.42)
Y, (1) = z(t) + &5 (1) (7.43)

whereé (t) and&(t) are independent Gaussian zero—mean white noise sequencearigiticas
0.0025 and 0.0125 respectively. It means that sensor 1 is 5 times more ahanratnsor 2.

To train both neuro-fuzzy-AKF state estimators, a sequend@®@d observationg,(t) and
1000 observationg,(t) were generated using as input sigoé) a chirp signal (sine wave
whose frequency varies linearly with time) with initiabduency of 0.004 Hz, frequency at
target time of 0.04 Hz, target time of 1000 sec, and samplingofirhesec. The generated input
signalu(t), state signat(t), and observation signajgt) andy,(t) are shown in figure 7.13.

Two neuro-fuzzy-AKFs were used to approximate the systefnotim cases B-spline basis
functions of order 2 were used as fuzzy sets for the inpuablas. The input vector to the
neuro-fuzzy modelling network was predetermined@s[y(t-1), y(t-2), u(t-1), u(t-2)]". The
knot vectors foru(t-i) were defined as [-2, -1, 0, 1, 2], while the knot vectorsyfbr) were
specified as [-2.75, -1, 0.75, 2.5, 4.25]. These knot vectors were defined baked@ximum
range of possible values for the input and output: [-1, 1] and [-1, 2.5], respectively.

The initial conditions for the FL-AKFs inside the neuro-fu2KF structures were defined
10
as: 2(0)-=2,(0)-=[0 0.3, R(0)) = P,(0)-) :[0 J, Q1 = @, = 2x10°, Ry(t) = Ry(t) =

0.02; while the initial state vectors were defined 2$0)-)=z,(0)-=[0 0.3 (the sub-

indices refer to the number of neuro-fuzzy-AKF). As mentioned ezaf); and Q, were
maintained as constants during the training process. Howeveyehege of the estimat&y(t)
andR(t), obtained applying (7.38), were used as their initial valuethénext epoch, whereas
P,(1000) andP,(1000) were used as initial conditions for the next epoch.

The parameters that define the fuzzy sets in the FISs used in eadtFRio-AdjustR(t), are
a = 5 andb = 0.3. While the parameters which define the fuzzy sethé FISs used in each
FLA algorithm in the FL-AKF-FLA MSDF architecture age= 1.5 andh = 3. For practical
reasons, seen in chapter 5, the size of the sliding window in all FL-AlGéteisted as 15.

In order to evaluate the performance of individual neuro-fédls and the fusion
algorithm, the following mean squared error measures were adopted:

MSERL= =Y (&/())* =Y. (h(H) - (0’ (7.442)
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MSER =3 (e,(0)° = 2 (5,0 -0 (7.440)
MSEZ = %g@(t»z :%tz:(zm ~ 5,12 (7.440)
MSEZ=3 (ea(0)" =10 2. (2(0) - 7.0 (7.440)
l\/ISEf:%IZZ“(ef (1))? :%g“(z(t)—g/f (1))? (7.44e)

whereey(t) andey(t) are the error values between the estimated and meagymats £4(t) and
e,(t) are the errors between the estimated and actual stase (me¢) signals, ang(t) is the
error between the fused estimated signal and the actual state signa
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Figure 7.13 Input signai(t), state signaf(t), observatiory,(t), and observatioy(t).

The training process was carried out cyclically using taming data. At the end of each
epoch (cycle), the validity correlation tests were cdrraut. The training process was
maintained until acceptable correlation validity tests vadrained and the mean squared error
values for both networks, given by (7.42a) and (7.42b), have convergatk Fig4 shows the
model validity correlation tests for the neuro-fuzzy-AKF estastimators at epoch 500, which
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showed satisfactory results, and thereafter the trainimgeps was stopped. The convergence of
the MSEyivalues is shown in figure 7.15. TMSEyivalues obtained at the end of the training
process are shown in Table 7.2. There also is giveM8tefvalue (given by (7.42e)) obtained
by fusing the neuro-fuzzy-AKF estimates.

Figure 7.16 shows the performance of both neuro-fuzzy-AKFs agntleof the training
process. From the inspection of that figure, it is obvious thahdise present in sensor 2 is
greater than the noise present in sensor 1, and thus treirethe neuro-fuzzy-AKF 2 is
greater. However, note that both neuro-fuzzy-AKFs perform a gppdodimation to the
measured signal. The comparison of the estimated signals widictiled signal (the noise free
signal z(t)) and the fused obtained signal at the end of the traininggsds shown in figure
7.17. Note that only a slight error exists between the fused estimateeaactual signals.

Figure 7.18 shows the approximated measurement noise covariaresolaained at epoch
500 for both neuro-fuzzy-AKFs. It can be appreciated that a quasi-stetelfas been reached.
The averaged measurement noise covariance values at this epoehR;=0.0031 and
R,=0.0129. Note that these values are very near to the actualmeent noise covariance
values 0.0025 and 0.0125. These values as well support the assungitibe thaining process
has converged.

Table 7.2 Training and validation MSE measures

Training Validation
MSEy1 MSEy2 MSEf MSEy1 MSEy2 MSEf
3.18x10° 12.74x10° 7.566x10" 4.05x10° 15.13x10° 1.929x10°
MSEz1 MSEz2 MSEf
1.381x10° 3.49x10° 1.929x10°
Final averaged measurement  ndgise
covariance value;=0.0031,R,=0.0129

Model validity correlation test: Neuro-Fuzzy-AKF 1
T T T T T T

—— DPeelT)
— DPyere2(T)
Deyeruz(T)

—-——- 95% Confidence limits

Model validity correlation test: Neuro-Fuzzy-AKF 2
1 1 I 1 1 1 1

ZH — DeelT)
—— Diyere”(T)
Diyeruz(T)
—-——- 95% Confidence limits

0.6
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0.2

o]
-0.2

Figure 7.14 Model validity correlation test for the Neuro-Fuz#§F/state estimators at the end
of the training process.
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Figure 7.15 MSEy1 and MSEy2 in the training process.
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Figure 7.16 Performance of the Neuro-Fuzzy-AKF state estimaittothe end of the training
process.
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Figure 7.17 Performance of the FL-AKF-FLA fusion algorithm ¢ €nd of the training
process.
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Figure 7.18 Measurement noise covariance values obtained at epoch 500.

A validation data set of 1000 samplesz(j, y:(t) andy,(t) were generated using the signal
u(t)=sin(Tt/80) as input with sample time of 1 sec. The generatedatan signals are shown

in figure 7.19.
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Figure 7.19 Validation signals generated wigt)=sin(mt/80).
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Figure 7.20 shows the performance of both neuro-fuzzy-AKFs ubmgralidation data
where the estimated signals are compared with the measugedissi Note that good
approximation is obtained. The M$Bralues obtained are shown in Table 7.2 and figure 7.21
shows the estimated signals compared with the actual noisegineé # is relevant to note that
in both filters a very good estimation of the actual signal iainéd, as is demonstrated by the
MSEzivalues shown in Table 7.2.

In order to appreciate the performance of the fusion algorithnfufesl signal, the actual
signal, and both estimated signals are plotted in figure 7.22otatmedMSEfvalue is shown
in Table 7.2. Note that, for this particular case, the fuksd is slightly less accurate than the
data obtained with sensor 1.

Finally, figure 7.23 shows the approximated measurement noiséarmeawvalue, obtained
over the validation data. Note that effectively the averagéee ofR does not change, and the
guasi-steady state is maintained.
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Figure 7.20 Performance of the neuro-nuzzy-AKFs over the validation data.
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Figure 7.21 Actual and estimated signals over the validation data.
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Figure 7.22 Fused and estimated signals compared with the actselfre® signal over the
validation data.
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Figure 7.23 Measurement noise covariance values obtained during the aalptatiess.

Example 2Consider a nonlinear system described by [Hatrad, 2000]:

_ zZ(t-1z(t-2)

= -1

—0.2cospm(t - 1)]z(t - 2) +1.2u(t 1) (7.45)

where z(t) is a state variable to be estimated from two differesy sensor measurements:

yi(t) = z(t) + 4, (1) (7.46)
Y, (t) = 2(t) + &5(1) (7.47)
where &(t) and &(t) are independent Gaussian zero—average white noise sequetites

variances 0.01 and 0.002 respectively. Note that in this caserse is 5 times more accurate
than sensor 1.
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Two neuro-fuzzy-AKF state estimators were considered fotaisle of system identification
and state estimation. To train both neuro-fuzzy-AKFs, a sequérs®) observations for(t)
and 500 observations fgs(t) were generated using as input sign(l a chirp signal with initial
frequency of 0.004 Hz, frequency at target time of 0.04 Hgetdaime of 500 sec, and sampling
time of 1 sec. The generated training signals are shown in figure 7.24.

1

0 50 100 150 200 250 300 350 400 450 500

Figure 7.24 Input signai(t), output state variablgt), observatiory;(t), and observatiom(t).

The input vector to the neuro-fuzzy modelling networks wasepeeatined as(t)=[y(t-1),
y(t-2), u(t-1), u(t-2)]". B-spline basis functions of order 2 were used as fuzzyfaetke input
variables. The knot vectors faft-i) were defined as [-2, -1, 0, 1, 2], while the knot vectors for
y(t-i) were specified as [-3.6 -1.4 0.8 3.0 5.2]. These knot vectors weredldfased on the
maximum range of possible values for the input and output: [-1, 1] and [-1.4, 3], nedgect

The initial conditions for the FL-AKFs inside the neuro-f2KF structures were defined

as: 2,(0)-=2,(0)~=[0 0], R(0)-) = R,(0)-- 2{; ﬂ, Q. = Q = 2x10°, Ry(t) = Ryt) =

0.02; while the initial state vectors were defined 260).-) = z,(0)-)=[0 0]" (the sub-indices
refer to the number of neuro-fuzzy-AKF€); andQ, were maintained as constants during the
training process. However, the average of the estimBi&)l and Ry(t), obtained applying

(7.38), were used as their initial values for the next epoch,eabBy(500) andP,(500) were
used as initial conditions for the next epoch.
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The parameters that define the fuzzy sets in the FISs used in eachFHio-AHjusR(t), are
a = 5 andb = 0.3, while, the parameters which define the fuzzy sets inl®® #sed in each
FLA algorithm in the FL-AKF-FLA MSDF architecture age= 1.5 andh = 3. The size of the
sliding window in all FL-AKFs is selected as 15.

The training data was used cyclically to train both neuray-AKFs. The validity
correlation tests were carried out at the end of each epochraltiag process was maintained
until acceptable correlation validity tests were obtained andnden squared error values had
approximately converged. The model validity correlation teststfer neuro-fuzzy-AKFs at
epoch 400 are shown in figure 7.25, which showed satisfactory resultsheneafter the
training process was stopped. The convergence dfi§teyivalues is shown in figure 7.26. The
MSEyi values at the end of the training process are shown in Table Me3VISEf value
obtained by fusing the neuro-fuzzy-AKF estimates also is given in Table 7.3.

The performance of both neuro-fuzzy-AKFs at the end of #iritig process is shown in
figure 7.27. Note that the noise present in sensor 1 is gtbatethe noise present in sensor 2,
and due to that the error in the neuro-fuzzy-AKF 1 is greatereMeryboth neuro-fuzzy-AKFs
perform a good approximation to the measured signals. A comparisbe e$timated signals
with the actual signaf(t) and the obtained fused signal at the end of the training priges
shown in figure 7.28. Note that there is a very small error dmtvthe fused estimated signal
and the actual signal.

Table 7.3 Training and validation MSE measures
Training error Validation error

MSEy1l MSEy2 MSEf MSEy1 MSEy2 MSEf

10.94x10° 2.333x10° 4.786x10" 11.67x10° 3.281x10° 6.699x10"
MSEz1 MSEz2 MSEf

1.521x10° 1.223x10° 6.699x10"

Final averaged measurement  nqgise
covariance values: R1=0.011 R2=0.0023

Model validity correlation test: Neuro-Fuzzy-AKF 1
T T T T T T T
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Model validity correlation test: Neuro-Fuzzy-AKF 2
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Figure 7.25 Model validity correlation test for the Neuro-Fu&KF state estimators at the end
of the training process.
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Figure 7.26 MSEy1 and MSEy2 during the training process.
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Figure 7.27 Performance of the Neuro-Fuzzy-AKF state estimaittothe end of the training
process.
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Figure 7.28 Performance of the FL-AKF-FLA fusion algorithm @ €nd of the training
process.
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The approximated measurement noise covariance values obsaitrelend of the training
process for both neuro-fuzzy-AKFs are shown in figure 7.29. Note thadasi-steady state has
been reached. The averaged measurement noise covarianceavapesh 500 wer;=0.011
andR,=0.0023, which are very near to the actual measurement noise covadares0.01 and
0.002, respectively. This data also supports the assertion that the tprimdegs has converged.
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0012 -
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Figure 7.29 Measurement noise covariance values obtained at epoch 400.

A validation data set of 500 samplesz(i}, yi(t) andy,(t) was generated using as input the
signal u(t)=sin(rt/50) with sample time of 1 sec. The generated validatida @ashown in
figure 7.30.

The performance of both neuro-fuzzy-AKFs by using the validat&ta is shown in figure
7.31, where the estimated signals are compared with the measgnads. Note that good
approximation is obtained. The obtained MBEalues for the validation data are shown in
Table 7.3. The estimated signals compared with the actus# freie signal are shown in figure
7.32. Note that in both filters a very good estimation of the heigaal is obtained, as is
demonstrated by tHdSEzivalues shown in Table 7.3.

To appreciate the performance of the FL-AKF-FLA fusion atgorj the fused signal, the
actual signal, and both estimated signals are plotted in fig8& The obtaineMSEfvalue is
shown in Table 7.3. Note that, in this case, the fused data is ammurate than the data
obtained with any of the two sensors.

Finally, figure 7.34 shows the approximated measurement noiséazmeawalue, obtained
over the validation data. Note that practically the averagadce ofR does not change, and the
quasi-steady state is maintained.

Therefore, two simulated examples of neuro-fuzzy-AKF statenason and system
identification have been presented. System identification ofrtanlinear systems using the
series-parallel model has been performed. The identificatioreps was carried out based on
noisy signal coming from different sensors. It is worth remarkiivag by using a chirp signal
(sine wave whose frequency varies linearly with time) &aiaing signal and the error signal as
a measurement noise signal for the FL-AKFs inside the neumyfAKF structures, the
training of the neuro-fuzzy-AKF using the series-parallel ifieation model is stable as was
proved practically in the simulated examples. However, furtheestigation is needed to
determine if this is true for a broader class of systemsaeftoe under what conditions and for
what kind of systems this is true. This task is left as future veofdliow on from this research.
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Figure 7.30 Validation data generated wift)=sin(mt/50).
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Figure 7.31 Actual and estimated signals over the validation data.
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Figure 7.33 Fused and estimated signals compared with the actselfre® signal over the
validation data.
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Figure 7.34 Measurement noise covariance values obtained during the aalptatiess.
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The identified systems were validated using the paral@ein In both of the examples
presented, good approximation to the actual state variablesobtined. Note that, however,
the identification was carried out using noisy signals and the accuraey edttmates show that
the noise is effectively filtered by the neuro-fuzzy-AKFs.

MSDF of the neuro-fuzzy-AKF state estimates was perfdrmeing the FL-AKF-FLA
fusion algorithm. In example 1 the fused data, compared with theuredadata, is 52% more
accurate than sensor 1 which gives the most accurate me@sis from the two sensors.
However, if the fused data is compared with the estimatedit&aslightly less accurate than
the estimates performed by the neuro-fuzzy-AKF 1, which is nioee accurate of the
estimators. Nevertheless, by having two sensors and two neuyeAKlEs being fused
through the FL-AKF-FLA algorithm gives the complete system tharacteristic of fault
tolerance against transient and persistent faults, afouad in Chapter 6. In example 2 the
fused data is 79.6% more accurate than that given by sensor 2, svtiiehmore accurate of the
two sensors for this case. This data is also more acdheatehe estimated data obtained with
either of the neuro-fuzzy-AKF estimators. Particularly, theed data is 45% more accurate
than the data estimated by the neuro-fuzzy-AKF 2 which habdtier performance of either
sensor for this case.

7.7 Summary

In this chapter the neuro-fuzzy-SKF state estimator approagoged by Harrigt al [1999,
2000, 2002] has been reviewed. As a result of its analysis, a fgdhplersion of the neuro-
fuzzy-SKF has been proposed. A novel adaptive state estimetemed to as neuro-fuzzy-
AKF, has been proposed by substituting the SKF with a FL-AKF isithplified neuro-fuzzy-
SKF structure.

The neuro-fuzzy-AKF has as its main characteristic the Ipiigsiof using the error signal
in the identification process as the measurement signghddfL-AKF in order to estimate the
modelling error at the same time in which the identification ggeds performed. This has the
effect of stabilization during the training process.

Two simulated examples of neuro-fuzzy-AKF state estimatigsies identification, and
MSDF have been presented. The identification process wasdcaut based on noisy signals
coming from different sensors and using a series-parallel Imatide the identified models
were validated using a parallel model. MSDF of the esésmperformed by two neuro-fuzzy-
AKFs were carried out using the FL-AKF-FLA algorithm preasenin Chapter 6. Good results
in both system identification and MSDF were obtained.

At the end of this chapter both modelling and estimation problemsnprove the
performance, reliability and accuracy of the Kalman filter apph and the MSDF architectures
based on it have been studied. Solutions for both problems have tmmoseu and by
simulating several examples it has been demonstrated that thesensoldik very well.

In the next chapter the possibility of applying the proposed M&idRitectures in control
systems will be studied. In particular, their application inatea of auto-tuning of PID type
fuzzy logic controllers will be analysed.



CHAPTER 8
APPLICATION OF THE HYBRID MULTI-SENSOR DATA
FUSION ARCHITECTURES IN CONTROL SYSTEMS

8.1 Introduction

Although the developed MSDF architectures can be applied to a brogel shproblems, one
application that is of great interest for the author is in control st particular, the aim is to
explore the application of the previously developed MSDF algoritonagsign and tune PID-
type fuzzy logic controllers when there are multiple noisy @asnsieasuring the process output.
This chapter explores a way forward to achieve this aimt, Eiraovel designing and tuning
procedure for PID-type fuzzy logic controllers (PID-FLC) isr@leped. Next, the PID auto-
tuning procedure proposed by Astrom and Hagglund [1984] is extended andpeevé&br
tuning the scaling factors of a PID-FLC. Then, a novel procedurauto-tuning the PID-FLC
by using multiple noisy sensors is presented where the develof&F Mirchitectures of
chapter 6 can be applied.

8.2 A novel design and tuning procedure for PID type fuzzy logic contilers

In recent years fuzzy logic controllers (FLC) have been widskd for industrial processes
exploiting their heuristic nature associated with simplieibd effectiveness for both linear and
non linear systems [Bonissomee al, 1995] [King and Mamdani, 1997]. In particular, several
structures of PID-type FLC have been used (including Pl andA&D). consequence, research
into this type of FLC has increased considerably. Lately, gwareh effort has been focused on
the construction of an explicit link between the scaling faabRID-type FLC (PID-FLC) and
the three actions of traditional PID control (TPID). Theadiresult of this link would bring the
possibility of applying the systematic design and tuning method®& Tontrol to design and
tune PID-FLC.

Several approaches have been reported in the fuzzy contratuite establishing a link
between TPID and PID-FLC [Manat al, 2001] [Li and Tso, 2000] [Xtet al, 2000]. However,
these have often resulted in complicated mathematical exgressnd, moreover, some of the
parameters involved are heuristically established and thisstieus not specified. Indeed, the
task of constructing the link is not an easy one. First ofalleral structures of PID-FLC have
been proposed, and it is necessary to select the one most suitable for thettamsiithe link.
Second, based on the chosen structure, a clear and explicit réligtibesveen the parameters
that define this structure with the three control actions dbTd@ntrol have to be derived. And
finally, the systematic design and tuning methods of TPID contra babe translated for
designing and tuning the selected PID-FLC structure.

Based on the investigation of the relationship between thes gdi TPID control and the
scaling factors of a modified hybrid PID-FLC (MHPID-FLC)n ithis section a new
methodology for designing and tuning PID-FLC is presented [Eseamuiltl Mort, 2002a].
First, in section 8.2.1, a review of the different structureBIBFFLC is carried out. Next, in
section 8.2.2, the relationship between the proportional, integdaldarivative actions from
TPID control and the scaling factors of the MHPID-FLC is fouhdbugh mathematical
analysis and comparison. Then, in section 8.2.3, a design and tuniagymetor the MHPID-

147
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FLC is proposed. Next, in section 8.2.4, the auto-tuning methodology propogettm and
Hagglund [1984, 1995] is extended and developed for automatically tur@rgcaling factors
of the MHPID-FLC [Escamilla and Mort, 2002b]. It is shown how tbaliag factors can be
directly derived from the Ziegler-Nichols frequency responsdhote As a result, the
performance of the MHPID-FLC will be better than, or attleasgood as, that of its traditional
counterpart. Finally, in section 8.2.4, the viability of this approactdamonstrated by
simulating several benchmark processes taken from the literature.

8.2.1 Traditional PID and PID type fuzzy logic control structures

In traditional control the PI, PD and PID control algorithmseaeressed in discrete time as (to
avoid confusion, in this section the symboheans multiplication):

k
Upy, =Kp* g +K, *291* Ts

i=0

[
=K, D[ek +iDZ e* Tsj (8.1)
T =
c
Upp, :KP*ek+KD*T_Q:
=K, D(ek FK,* %) (8.2)
- * * : * * Cek
uPIDk_KP e +K, Zei Ts+K, T_S
i=0
1 & ce
=K,0O e +=0) e* Ts+ T, 0—~ 8.3
P [ k -I-i IZ:‘;) i d TSJ ( )
& =Y. ~ Yk (8.4)
ce, =e —¢e,; (8.5).

wheree is the error signakeis the change in erroy; is the set pointy is the process output,
the subscripk indicates the instant of timeg,=K,/K, , andT, =K,/K,. The term¥Kp, K, andKp

are referred to as the proportional, integral and derivgies. The parameteils and Ty are
known as the integral time and the derivative time, resmdygtiTs is used to denote the
sampling period of time.

As in traditional control, in fuzzy control there are the analisgstructures of the PI type
fuzzy logic controller (PI-FLC), PD type fuzzy logic contesli(PD-FLC) and PID type fuzzy
logic controller (PID-FLC). Their basic structures fosaiete-time are shown in figure 1; inside
these structures a fuzzy control system (FCS) develops the tell-known processes of
fuzzification, rule evaluation and defuzzification [DriankeVv al, 1993] [Lee, 1990]. The
parameters GE, GCE, GCE1 and GCEZ2 are called the input sfadings, while GU and GCU
are called the output scaling factors. The PI-FLC and PDJ&¥& been extensively studied
[Lee, 1990] [Lee, 1993] [Jantzen, 1997] [Tang and Mulholland, 1987], areldthieved wide
acceptance in both academic research and industrial appigatiowever, the PID-FLC is
considered to be still at its early stage of developmentfRadv, et al, 1993] [Li and Tso,
2000]. This is shown by the numerous recent research papers ngpibei exploration of
different PID-FLC structures [Jantzen, 1999] [Li and Tso 200@iMet al, 1999] [Woo.et al,
2000] [Xu, et al, 2000].
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Figure 8.1 Structures for (a) PI-FLC, (b) PD-FLC, and (c) PID-FLC.

In the literature several PID-FLC structures have beepgsed. Initially, the PID-FLC
structures were designed considering three terms as irgagdfigure 8.1c) [Driankowet al,
1993] [Abdelnour,et al, 1991]. Obviously, the rule base of these fuzzy controllerbreet
dimensional (3-D), which makes it difficult to obtain since 3abrmation is usually beyond
the sensing capability of a human expert. To overcome this prptile intuitive solution is the
combination of a PI-FLC and a PD-FLC to form a PID-FLC. Thisaitdas been developed
basically in two ways, a parallel combination (PPID-FLC) ankybrid combination (HPID-
FLC).

The PPID-FLC structure was first proposed by Li and Gatland [129@ lately has been
studied by Xuet al, [2000]. In this structure the three-term PID-FLC is divided itwo
separate Pl and PD parts. Thus two rule bases are used, onBl{bt.@ and one for a PD-
FLC; the output is obtained by adding the respective crisp ¢anitput, as is shown in figure
8.2a. This structure has the advantage that both rule baséwadimensional avoiding the
difficulty of designing a 3-D rule base. Consequently the designPID rule base becomes the
design of both a Pl and a PD rule base. These two rule basegtshaa@me inputs, which
reduces the tuning complexity.

The HPID-FLC structure was first proposed by Li [1997], and lately been studied by
Mannet al [1999], Li and Tso [2000]. In the HPID-FLC structure a common twaeedsional
rule base is employed. This rule base is shared for both the@®&hkd the PD-FLC parts, as is
shown in figure 8.2b. It means that, once appropriate scaling factoeelected, a PID control
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strategy is implemented by combining a Pl incremental algoitena PD positional algorithm
using a two-term fuzzy control rule base without any incréashe number of rules. This
simplifies the PID-FLC structure as it is simpler, eagieimplement and faster in computation.
The PI rule base is selected as the one used, because Bl isondrmally more important for
steady state behaviour.

Figure 8.2 PI + PD-FLC structures for: (a) PPID-FI) HPID-FLC.

8.2.2 Mathematical analysis and comparison

First, in order to avoid derivative kick in the ilepentation of (8.3) a modified derivative term
is used. Additionally, when the Ziegler-Nichols itum formulae is applied generally a set point
weighting factorf is employed to reduce overshoot [Astrom and Haghli995]; therefore,
(8.3) is transformed as follows,

— * 1 * : * * Cyk
Upp, = Kp (,BDyrk—yk)+? > g* Ts-Td E
i i=0

K
=Kp* B* yrk_KPyk-I-Kl*Zq* TS_KD*% (8.6).
=0

Observe in (8.6) that the derivative teng /Ts in (8.3) has been replaced bycy, /Ts. The

incorporation of the above modification in the HAFDC structure modifies it as is shown in
figure 8.3. This modified HPID-FLC (MHPID-FLC) sirture is the one used in this approach.

Next, if the following assumptions are made:

1. The FCS inside the MHPID-FLC structure is a firaler Sugeno fuzzy model
[Takagi and Sugeno, 1985], with fuzzy rules offibren:

If Eis AandCEis B thenu=p*E +q*CE+r
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where A and B are fuzzy sets in the antecedente\whq, andr are all constants.
2. The FCS rule base consists of four rules:

R If Eis N andCEis N thenu=p*E+ q*CE +r;
R.: If Eis N andCEis P theru=p*E+ g,*CE +r,
Rs If Eis P andCEis N thenu = ps*E + gz*CE + 13
Ry If Eis P andCEis P theru=ps*E + q;*CE +14

where the coefficient constanps =g = 1, andr; = 0; fori = 1, 2, 3, 4. The
linguistic labels for the fuzzy sets mean P = Rasiand N = Negative.

3. The universe of discourse for both FCS inputs isnatised on the range [-1, 1].
4. The membership functions of the input variablEsand CE, to the FCS are
triangular complementary adjacent fuzzy sets [E#taml999] [Gravel and

Mackenberg, 1995], and they are defined as shoviiguine 8.4(a).

5. The product-sum compositional rule of inferencegkm 1992] is used in the stage
of rule evaluation.

6. The weighted average is used in the defuzzificgtimeess.
then the FCS inside the MHPID-FLC structure is ¢hmaplest that can be considered, and its

output is given by the sum of its inputs. This FE€&nown as the normalised and linear FCS
[Jantzen, 1999]; its control surface is shown guife 8.4(b).

CuU

F | CU

Degree of (@

membership

1

4

Figure 8.4 (a) Membership functions for E and Qij; ontrol surface of the normalised and
linear FCS.
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Thus, under the assumptions 1 to 6 the controlubwif, of the MHPID-FLC (see Figure
8.3) is the sum of the PI-FLC output and the PD-futput parts,

Uppp, = Up, +Upp, (8.7)

but, each the Pl and PD parts can be written as:

k k
U, = (cu * GCU *Ts)=GCU * Ts* > cu,
i=0

i=0

k
=GCU *Ts* {GE * e - GCE * ﬁ} (8.8)
i=0 Ts
C
Ups =U, *GU =GU * [GE* e, - GCE* %} 8.9).
“ S

Substituting (8.8) and (8.9) in (8.7) results in:
Upp, = Up, + Upp,

k k
=GCU*GE* Y e *Ts—GCU* GCE* Y ¢y,
i=0 i=0
+GU *GE*e, -GU * GCE * Y«

Ts

<

k
=GCU *GE* ) e *Ts-GCU * GCE * y,
i=0
* * — — * *Cyk
+GU *GE* (y, -V,)-GU*GCE T

-

=GU*GE*y, —-(GCU*GCE+GU*GE)* Yy,

k
+GCU*GE*Zei*Ts—GU*GCE*% (8.10).
S

i=0

Therefore, if (8.10) and (8.6) are compared, thes noted that the MHPID-FLC controller
works like a TPID controller with set point weighgi factor and modified derivative term. The
equivalent set-point weight, proportional, integaad derivative gains are:

K,CB=GULGE (8.11)
K, = GCU OGCE + GU OGE (8.12)
K, :% =GCU OGE (8.13)
K, =K, LT, =GULGCE (8.14).

This means that the scaling factors of the MHPIOERian be derived from the proportional,
integral and derivative gains obtained for the itiadal PID controller using well known
methods, i. e. the Ziegler-Nichols tuning methodtfAm and Hagglund, 1995]. A procedure for
this task is presented in next section.
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8.2.3 Designing and tuning of the modified hybrid PID-FLC

If the values oK, K|, andKp or alternatively the values &%, T;, andT, are available, then the
values of GE, GCE, GU and GCU in the MHPID-FLC stue (see figure 8.3) can be
calculated in the following way. The proportionalig given by (8.12) can be separated in two
parts:

K, =GCULGCE+GU LGE

=alK,+(@1-a)CK, (8.15)

from here it follows,
GCU LGCE =a LK, (8.16)
GULGE=(1-a)CK, (8.17).

From (8.11) and (8.17) it can be directly deduded,t
L=1-a (8.18).

From assumption 3 it is clear that the possibleieslof E are in the range [-1, 1], thus in
order to avoid saturation, GE is selected as:

GE =1 (8.19).

In consequence, from (8.19), (8.17) becomes,
GU = (1-a)K; (8.20).

In a similar way, from (8.19), (8.13) becomes,
GCU =K, (8.21).

Calculating GCE from (8.14) gives,

GCE = Ko (8.22a),
GU
and from (8.20) in (8.22a) gives,
K D
GCE = —+—— (8.22b).
l-a)0K,

Thus, once the parameteris defined, the scaling factors can be calculatgdg Equations
(8.19) to (8.22). But now the question is how stdhke parametewr be properly defined? First
of all a has to satisfy (8.16) and (8.20), thus from (8&1d (8.22b) in (8.16) gives,

KD

KiO——-———=alK, (8.23)
@-a)* K,
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and solving (8.23) for gives,

, K, OK,

-—a“+a-= (8.24).
K¢
But, from traditional PID control,
Kp . _
K, = i Ky =Ky OTy, (8.25).
Thus, from (8.25) in (8.24) gives,
—az+a—Tr—d=O (8.26)

and applying the relation betwe@nandTy given by the Ziegler-Nichols frequency response
tuning method, which formulae to calculate the PHdameter is given in Table 8.1, leads to,

_at+g-L_p (8.27).
4
Finally, solving equation (8.27) results in,

a, =a, = (8.28).

N

Therefore, by substituting the valueafn (8.20) and (8.22b), the solutions for GU andE5C
become straightforward.

The previous development means that the MHPID-FECequivalent to its traditional
counterpart given by (8.6) whefis selected as 0.5, calculated from (8.18), aredZiegler-
Nichols frequency response method is used to tumedntroller. The formulation of the scaling
factors in function oKp, T;, andTy is straightforward. A summary of the relationshgtween
the scaling factors of the MHPID-FLC and the gaifists traditional counterpart is given in
Table 8.2.

Further, fine-tuning can be made based on theiaekdtip between the scaling factors of the
MHPID-FLC and the three control actions of tradiab PID control. This fine-tuning, can be
developed in two ways: a) by modifying the scafiactors, b) by modifying the control surface
of the FCS inside the MHPID-FLC structure. Thesecpdures are described in the following
sections.

Table 8.1 PID parameters according to the
Ziegler-Nichols frequency response method

Kp Ti Tg
0.6 Ky (1/2)Ty (1/8)Ty
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Table 8.2 Relationship between the scaling faaibthe
MHPI-FLC and the gains of its traditional countetpa

GE GCE GU GCU
1 Z*KD & KI
K, 2
1 2% T, K, K,

2 T

8.2.3.a Fine-tuning the MHPID-FLC by modifying the scaling factors

The role of the scaling factors of the MHPID-FLG1dze determined by analogy with the gains
of the traditional PID controller. Assuming thattkialue of GE is fixed as 1 and using the
information from Table 8.2, general guidelinesffoe tuning the scaling factors of the MHPID-
FLC can be given. Changing the value of GCU wifeeff both the proportional control term
and the integral control term, see (8.12) and {(8.TBus, increasing the value of GCU will
produce a faster but less stable control. The dfgpestion will cause the opposite effect.
Changing the value of GU affects both the propogiaontrol term and the derivative control
term, see (8.12) and (8.14). Therefore, increasilegvalue of GU produces both faster and
more stable control. But this is only true up toeatain limit, if GU is raised above this limit
then it will result in reduced stability in contr@becreasing the value of GU will produce the
opposite effect. Finally, a change in the valu&&fE will affect both the proportional control
term and the derivative control term, see (8.12) @ha14). Therefore, increasing the value of
GCE causes a faster and more stable control. Bdtrahe case of GU, if GCE is raised above
of certain limit the system will be destabilisedddiionally, because GCE is an input scaling
factor, it has to be manipulated carefully to avséduration. It is recommended to first adjust
the output scaling factors, and if necessary, adpeE afterwards. A summary of the whole
analysis is presented in Table 8.3.

Table 8.3 Effects of the scaling factors on spewbsaability

Speed Stability
GCU increases increases reduces
GU increases increases increases
G CE increases increases increases

8.2.3.b Fine-tuning the MHPID-FLC by modifying the control suface of the FCS inside
the structure

The main advantage of considering a first-orderag&Sugeno FCS inside the MHPID-FLC
structure is that by changing the values of thesequent parameterg, q andr in the fuzzy
rules, the FCS control surface is modified. Thisngethat by changing the FCS control surface,
without modifying the scaling factors found initial the strength of the three PID control
actions can be regulated. For example, figure Bdbvs the FCS control surface obtained with
modified consequent parameteps=p,=2.5, 01=04=3, r1=r4,=0, p,=ps=0.4, 0,=05=0.4, r,=r5=0.
With these consequent parameters the strengtle afathtrol action is increased at the extremes,
when E and CE are larger, and reduced when E andr€Bear zero, near the steady state.
Additionally, note that the transition between wger and a weaker control action is made
smoothly. In effect, it means that a kind of gaicheduling is obtained. However, the
modification of the consequent parameters maked-@@ control surface non-linear, and so
they have to be manipulated carefully.
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Figure 8.5 FCS control surface with modified congayq parameters.

8.2.4 Auto-tuning of the scaling factors of the MHPID-FLC

Based on the development given in section 8.28,rétay auto-tuning algorithm for TPID
control proposed by Astrom and Hagglund [1984, 1885 be extended and developed to auto-
tune the scaling factors of the MHPID-FLC as islaxgd next. First of all the scaling factors
have to be a function &, andT, (see Table 8.1), thus from (8.20), (8.21), andZBwe have,

K, 06*K,

GU = = 03*K, (8.29)
2 2
cou =Ko o 067K, 5. Ky (8.30),
T, 05*T, T,
Ko*T
GCE=2*—f 9 =2*T = %*Tu = %*Tu (8.31).

P
The values oK, andT,, called the “ultimate gain” and “ultimate periodspectively, can be

obtained from a relay feedback experiment as shoviigure 8.6. Therefore, the ultimate gain
and the ultimate frequency can be calculated fltimexperiment as,

K = C T = (8.32)

whereh is the relay amplitudea is the process output amplitude, aswglis the oscillation
frequency of the process output. It has been shmwAstrom and Hagglund [1984] that the
simple estimation oK, andT, based on zero-crossing and peak detection worlgsnel. Thus
this method is used in this procedure and the gafaend are used to calculate the scaling
factors of the MHPID-FLC. A summary of the relaship between the scaling factors of the
MHPID-FLC and the Ziegler-Nichols frequency respotising formulae is given in Table 8.4.

Table 8.4 Relationship between the scaling faaibteke MHPID-FLC
and the Ziegler-Nichols frequency response tunimmiilae

GE GCE GU GCU

1 K
1 = 1.2+ v
i 0.3* K, T,
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Figure 8.6 Relay feedback experiment.

8.2.5 Simulation and comparisons

In this section the viability of this approach isngbnstrated by simulating several benchmark
processes taken from the literature. Three autmguexperiments for each process have been
developed in Matlab/Simulink environment, togethéh the Fuzzy Logic Toolbox. The first
and second experiments use the relay experimeattmtune the gains of the TPID control
given by equation (8.3), and the TPID given by ¢igna(8.6) (referred to as TPID2) with a set-
point weighting facto3 = 0.5. In both these cases the tuning formulaergin Table 8.1 is
applied. The third experiment is developed to sataila relay auto-tuning procedure for the
MHPID-FLC. Here the scaling factors are obtaineglypg the formulae given in Table 8.4.

After a relay experiment, a unit step and a unétdigerturbation are introduced on the
processes in order to observe their responsespiiduess responses under auto-tuned TPID,
TPID2, and MHPID-FLC, control are plotted and comgghfor each case as is described as
follows.

1) First-order plus dead time process [Hah@l, 1991]:

e—O.Zs
G,(s) = 8.33).
()= o7 (8.33)
1.6
1.4
1.2- - TPID 7
— MHPID-FLC
1r and TPID2 e

e I E— relay and vy, i

0.6

0.4 i

o2 Ts=0.04s |
) o s ' Ku=8.006,Tu=0.72
O a=0.0159h=0.1 -

e > a & s 10

Time (sec)

Figure 8.7 Comparison of set-point and load digtnde responses f@(s).
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2) Second-order plus dead time process (Hahgl, 1991; Zhuang and Atherton, 1993):

-04s
e

G,(s) =—— 8.34).
2( ) (S+1)2 ( )
1.4
1.2+
1l —— TPID
-_ MHPID-FLC
and TPRIDZ2
0.8~ -——- relay and vy,
0.6
0.4
o.=| Ts=0.01s
L Ku=5.409,Tu=2.94
Oh~ e a=0.02354h=0.1 -
0.2 1 1 1 1 1 I 1
[®] 5 10 15 20 25 30 35 40

Time (sec)

Figure 8.8 Comparison of set-point and load digtnde responses f@(s).

3) High-order process (Zhaet, al,, 1993):

G,(s) = 27 . (8.35).
(s+1)(s+3)
1.4
1.2+ i
—— TPID .
1- —— MHPID-FLC -1 C T
and TPRPIDZ2
0.8+ ——— relay and y_ n
0.6+ =
0.4 .
Ts=0.01s

e=2r Ku=5.301Tu= 2.7

o) N a=0.02402h=01

o2 - : : : : : :
(o) 5 10 15 20 25 30 35 40
Time (sec)
Figure 8.9 Comparison of set-point and load digtnde responses f@(S).
4) Non-minimum phase process (Haagal, 1991):
1-14s
G,(s) = (8.36).

(s+1)°
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Figure 8.10 Comparison of set-point and load distnce responses fG(s).

From the results observed in figures 8.7 to 8.18 itoted that the overshoot in the step-
response (undershoot for proc&yis excessive when TPID control is used. But,aershoot
is reduced by approximately 60% when MHPID-FLC a&ath2 control are employed.
However, this reduction in overshoot is accomparigda small reduction in the speed of
response (the rise time increases). Note that lgx#ueé same response is obtained when
MHPID-FLC and TPID2 control are used. Thus it isy&d that the MHPID-FLC is equivalent
to its traditional counterpart given by (8.6) wh8is selected as 0.5. This means that the set-
point weighting factor is embedded in the MHPID-F&tucture. Note that in all cases the load
disturbance rejection is the same. Thus the MHRLD-And the TPID2 controllers sacrifice
speed of response to a far smaller degree in ¢odatain a substantial reduction in overshoot
with respect to TPID control. However, this doesaftect the load disturbance response.

Note that in all the processes considered, goautrao performances were obtained.
However, if necessary, fine tuning can be perforrogdnodifying the scaling factors or by
modifying the FCS control surface inside the MHADC structure. This latter procedure will
be exemplified in the next section.

8.3 Auto-tuning and MHPID-FLC using multiple noisy sensors

There are several practical problems that musbhed in order to implement an auto-tuner. In
the development presented in the previous sectsmme of these practical problems have not
been taken into account. It is necessary, for el@np account for measurement noise. In real
processes, the measurement noise in sensor déviaaavoidable so, therefore, any practical
method of auto-tuning should be able to overcomasmement noise.

Measurement noise represents disturbances thairtdisfformation about the process
variables obtained from the sensors. As for thesomesnent noise in the relay test discussed
previously, these disturbances may give errorseiteation of peaks and zero-crossings. As a
consequence, when using an ordinary relay in therament, a small amount of noise can make
the relay switch randomly.

In the context of system identification, noise lsoaa significant issue. It is apparent that in
almost all identification methods a low noise-tgrsil ratio is required [Ljung, 1987]. In system
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identification, noise-to-signal ratio [Haykin, 1988 usually defined as:

noise-to-signal power spectrum ratio meangraspectrum density of noise  (8.37)
mean power of signal

denoted byN; or:

noise-signal mean ratiq mean (abs(noise)) (8.38)
mean (abs(signal))

denoted byN,.

In considering the influence of noise in the coligroperformance, measurement noise will
be fed into the system through feedback. It wilhgmte control actions and control errors.
Furthermore, high frequency components in the mreasent signal might be amplified by the
controller and cause wear on the actuator [Astrothtdagglund, 1995]. Therefore, care should
always be taken to reduce noise by appropriaterifi. Because the measurement noise is
usually of high frequency, a low pass filter geligrs used to reduce the measurement noise
effects.

Several solutions have been given to the measutenmse issue in the relay feedback
experiment. For example, Astrom and Hagglund [19®4ited out that a hysteresis in the relay
is a simple way to reduce the influence of measar¢moise. The width of hysteresis should be
bigger than the noise band [Astrom and Hagglun®5].%and it is usually chosen as 2 times
larger than the noise amplitude [Haetcal, 1993].

In this section a novel approach to deal with tloésen issue in both the auto-tuning
procedure and the control performance for the MHPLZ in a multi-sensor environment is
proposed. The basic idea consists of combining rdeent low-order modelling method
proposed by Wangt al [1997] with the FL-ADKF approach, as is shown igufe 8.11. It is
assumed that multiple sensors, which may have rdiife accuracy levels (different
measurement noise amplitudes), are used to detertherprocess output. The idea of using
multiple sensors is to have a control system whih operate with good accuracy even when
the measurement noise level is very high and wfferdnt characteristics for each sensor. The
character of the noise is defined by its frequericynay be high-frequency fluctuations or it
may be low-frequency calibration errors. With savsensors it is possible to reduce calibration
errors but with only one sensor nothing can be daleut calibration errors [Astrom and
Hagglund, 1995]. Therefore, it is desirable to d@wyean auto-tuning procedure and a PID
controller considering multiple sensors.

The scheme shown in figure 8.11 consists of sévaraetional blocks. A biased relay
feedback experiment is used to find the procesgalripoint information and the steady-state
gain. A noise amplitude analyser and signal selestosed to estimate the noise bands and the
noise covariance in each sensor. Based on the baigis, this block selects the signal with the
least noise band to perform the relay experimetit itvi The data obtained from the biased relay
experiment is used by a model identifier to appr@te the process transfer function as a first
order plus dead-time. The obtained transfer functiotransformed to its discrete state-space
representation. This state-space model is used By-AKFs, which are fed by the respective
noisy process output signali, and adaptive decentralised Kalman filtering idgrened. Thus,

a FL-ADKF fuses and filters all the noisy measuretrgignals. The fused estimated process
output ¥ is used as measurement signal to compare witleitaference signal and calculate

the error signal, which is fed to the MHPID-FLC. tlre next section the model identifier and
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translator to state-space representation is destrifsiter that, the noise amplitude analyser and
signal selector is explained. Then, the completmntification and auto-tuning procedure is
summarised.

[MHPID-
"IFLC

Vi
Vi + 2 U Y, v+ yvi

> _ sw » Procesy
1

Biased relay

Z<..

Y+ YW

v

FL-ADKF

< FL-AKF 1 [

A4

o

YV [1 T2 Filter

N
swe \€ Y | Masterle{FL-AKF 2

<« FL-AKF N [3

state-space
model
Model identifier and  |¢d

translator to state-space
representation i

A

Noise amplitude analyses
and signal selector

A

Figure 8.11 Auto-tuning the MHPID-FLC by using niplé noisy sensors.

8.3.1 Model identifier and translator to state-space representation

A large number of processes can be characterisethdyfirst order plus dead-time model
[Seborget al, 1989]:

Ke—LS
G(S):'$ZZTI (8.39).

For these kinds of processes Wah@l[1997] have proposed a biased relay feedbackdest
derive the formulae that could precisely yield thdtical point and the static gain
simultaneously with a single relay test. The biasay is shown in figure 8.12.



CHAPTER 8 APPLICATION OF THE HYBRID MSDF ARCHITECTRES IN CONTROL SYSTEMS 162

‘ku

v

=£ &

H—H

Figure 8.12 The biased relay.

Under the biased relay feedback, the process im@utd the process outputis shown in
figure 8.13. For the process given in (8.39) thigpoly converges to the stationary oscillation in
one period T+ Ty2), and the oscillation is characterised by:

A = (o + )KA-eT)+e e (8.40)

A = (- i)K@A-etT)—ge™’T (8.41)

T =Tin2HKe K- UK +e (8.42)
. HK + 1K —€

and

2uKe"'" — 1K - K + &

T,=TIn (8.43).
HK = K —&
I
U

I

A,
N i N -
Ad T \ y

Figure 8.13 Oscillatory waveforms under a biasdayréeedback (adapted from [Waweg al,
1997]).

The above four equations are the accurate expressgio the period and the amplitude of the
limit cycle oscillation of the first order plus ditéime process. Therefore, by measuring any
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three ofA,, Aq, Tu, andTy,, the parameters of the mode! T andL can be calculated from
(8.40) to (8.43). Solving these equations is aoteslitask. However, the calculations can be
simplified if K is obtained by an alternative procedure. This gadace consists in calculatitg

as the ratio of DC components in the output andtinp

Tul+Tu2
Ly

K = (8.44).
jo u(t)dt

Having available the value &, the normalised dead-time of the proc@ss L/T can be
obtained from (8.40) or (8.41) as:

o=inHtHK=-¢

8.45
(o T DK~ A, (849
or
O=in K HIK=¢ (8.46).
(,U - :Uo)K + Aj
It then follows from (8.42) and (8.43) that:
o a -1
T =T |In2HKE K Z K+ e (8.47)
MK+ 1K - &
or
o _ _ -1
T :Tu{ln Z”KZK H < HoK + ‘fj (8.48).
T HK —E
The dead time is thus calculated as:
L=TO (8.49).

Therefore, the previous development can be sumethris the following identification
procedure:

Identification ProcedureThe biased relay experiment is performed. The magputu(t)
and outputy(t) are recorded, and the periods and the amplitudgeeadiscillation are measured.
Then follow the next steps:

» Step 1: ComputK from (8.44).
» Step 2: Comput® from (8.45) or (8.46).
e Step 3: Computé& from (8.47) or (8.48).
e Step 4: Computk from (8.49).
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Wang et al [1997] presented several examples which demoassitrdite accuracy of the
method for both noisy and noisy-free sensors.dffitocess to be identified is of the form (8.39)
and there is no measurement noise, then the parenwitained with the biased relay method
give an almost exact identification of the procpasameters. Furthermore, because in practice
many high-order processes can be well approximayditst-order plus dead-time models, the
biased relay method can also be used to model ggesaf higher order. The results for some
typical high-order processes also are presentpVamget al, 1997]. There, the Nyquist curves
of the real processes and the obtained modelsoanpared and it is observed that they are very
close to each other over a phase range ofrD Ttherefore, this low-order modelling is accurate
enough for PID control design in most cases ashailpractically demonstrated later.

For the case where there is noise in the measuatentbe above method still proved to give
good results. However, in this case the paraméferd,, and Ay have to be calculated by
averaging over those values obtained over sevec#< In their paper, Wareg al[1997] used
the values obtained over eight cycles of stationapjllations.

Therefore, once the biased relay experiment idechiwut, an approximated model of the
process is available as a first-order transfertfancin order to use this model in the FL-AKFs
(see figure 8.11) it is necessary to translate itst state-space representation. This is performed
in two stages. First the transfer function in comtius time is transformed to its corresponding
state-space representation. Second, having awailabl continuous state-space representation,
this is translated to its corresponding digitalnforBoth transformations can be directly
performed by using only two commands in the MATL@BAHtrol Systems Toolbox
environment. Thus, having available the processaiodits digital state-space representation,
this model can be used by the FL-ADKF to performD#S

8.3.2 Noise amplitude analyser and signal selector

The noise amplitude analyser and signal selectdonpes several tasks. First, it determines the
noise bands in each sensor. The noise band castibmted by measuring the peak-to-peak
amplitude of the output signal when the procest steady-state [Astroet al, 1993]. Second,
an estimation of the measurement noise covariaaltes,R;, of each sensor is performed over
the data collected during a certain period of t{foe this task a block from the MATLAB/DSP
Block Set is employed). Finally, the signal withetminimum noise band is selected as the
output signal of this block.

8.3.3 Identification and auto-tuning procedure using multiple noisy sesors

From the previous sections and referring to fighidel, the proposed identification and auto-
tuning procedure is therefore summarised as follows

1. SWiis in position 1SW2is in position 1. First, in the “listening perigd)-12 sec, the noise
bands and the measurement noise covariance irseashr are estimated. The sensor signal
with the smallest noise band is selected to beafedip the biased relay.

2. A biased relay is applied at tinhes 12 sec.
3. Data is registered over five cycles of stationasgiltations. By averaging the values

obtained over these five cycles, the param€idy,, andA, are calculated and the values of
T, and Ty, are measured over the fifth cycle. With these matars, the value of the
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normalised proces® is calculated using (8.45) or (8.46). Similarfyjs calculated from
(8.47) or (8.48). Then, the dead tirhds calculated from (8.49) and the process transfer
function is modelled as a first-order plus deadktinfhe obtained transfer function is
transformed to its corresponding continuous ancrelie state-space representations.

4. At the end of the fifth cycle all the FL-AKFs arectizated using the state-space
representation of the plant and MSDF is performsitigithe FL-ADKF; then the fused
output is used as process out@My?2is switched to position 2. The initial conditicios the
FL-AKFs are defined a%(0) = 0, X (0)= 0,i= 1,2,...N. Because an estimation of the

measurement noise covariance vaRid¢or each sensor has been obtained in step 1, these
values are used in the corresponding FL-AKFs. These while the covariance valu&s

are assumed to be known, they are not adaptedeir-thAKFs. Instead, the unknown
values of the process noise covariance matgesvhich represent the uncertainty in the
process model, are the ones that are adaptivelystedj in the FL-AKFs. This will
compensate for the modelling errors, recalling ttha model used is an approximated
model.

5. During the sixth cycle, the ultimate gain and thenate frequency are calculated as:

K, = ap (8.50)
A+ A D/2
T, =T, +T, (8.51)

Note that (8.50) is similar to (8.32) with= zanda = (A,+| A, |)/2; wherey is the value

of the relay amplitude when the bias is taken antj a is the ultimate amplitude of the
process output.

6. With K, andT, available, the scaling factors of the MHPID-FL@ aalculated using the
formulae given in table 8.4.

7. Finally, at the end of oscillation &WL1is switched to position 2 and the loop MHPID-FLC
— Process is closed.

Afterwards, the performance of the controller canirivestigated by introducing a set-point
change and a load-disturbance at particular timpsstin order to test the effectiveness of the
proposed approach, three examples are presenteel mext section.

8.3.4 lllustrative examples

The viability of the previously described approaish demonstrated by simulating three
processes taken from [Wangt al 1997]. The experiments were developed under the
Matlab/Simulink simulation environment (see Append). It is assumed that there are two
sensors in the scheme shown in figure 8.11. Thesunement noise in each sensor, for all the
experiments, is defined as a Gaussian zero-meae whise sequence with variances 0.008 and
0.033 forv; andv,, respectively.

Recall that the FCS inside the MHPID-FLC workshwitormalised inputs, in the range [-1,
1]. This normalisation is carried out by dividingetinputs between the maximum range of
variation of the error signal, which in this caseassumed to be [-10, 10]. Therefore, the
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normalisation factor is (1/10) applied to both itgpe and—y. Obviously, the controller output
needs to be denormalised; therefore, the controligput is multiplied by a denormalisation
factor, 10 in this case.

The processes studied and the corresponding pa@mahbtained from the biased relay
experiment are listed in Table 8.5. The scalingdiscof the MHPID-FLC obtained from the
auto-tuning procedure for each process are showiale 8.6. In order to analyse the set-point
and load-disturbance responses, a step change ohit0and a load disturbance, also of 10
units, are applied at appropriate time steps. Biipaint and load-disturbance responses under
MHPID-FLC for the plant in examples 1, 2 and 3 ah®wn in figures 8.14(a), 8.15(a), and
8.16(a), respectively. From these figures it candied that slightly sluggish set-point and load-
disturbance responses are obtained. This is mdieeable in examples 2 and 3. However, as
was mentioned in section 8.3.2.a, the control perémce can be further improved by
modifying the value of the consequent parameigrs, andr, in the fuzzy rules of the FCS
inside the MHPID-FLC structure. Therefore, to impgrothe control performance, the
consequent parameters are modified as is indidatedble 8.7. The improved set-point and
load-disturbance responses under MHPID-FLC forplaets in examples 1, 2 and 3 are shown
in figures 8.14(b), 8.15(b), and 8.16(b), resp&tyivNote that the scaling factors found in the
auto-tuning procedure are left unchanged.

Table 8.5 Estimated parameters from biased relpgréxent

Example Process Biased relay test results Model parameters
Tu T2 A A K T L
e—Zs
1 25+ 1 3.35 4.0 1.714 -1.302 1.002.871 2.021
e—ZS
2 m 5.55 6.45 1.543 -1.267 1.184.585 2.849
e—0.55
2.95 3.35 2.106 -1.672 1.21%.592 1.892
(s+1)(s° +s+1)
Table 8.6 Scaling factors obtained from the autorm procedure
Example Process Scaling factors MHPID-FLC
GE GCE GCcU GU
e -2s
1 2s + 1 1 1.837 0.2757 0.5065
e -2s
2 m 1 3.0 0.1812 0.5437
e—O.Ss
3 1 1.575 0.2568 0.4045

(s+1)(s*+s+1)
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Table 8.7 Modified consequent parameters

Example Process Consequent parameter§lodified cons. parameters
Rule p q r Rule p q r
e 2s 1 1 1 0 1 1.8 03 0
1 2 1 1 0 2 0.4 04 O
2s +1 31 1 0 3 04 04 O
4 1 1 0 4 1.8 03 0
e 2s 1 1 1 0 1 2.3 05 0
2 o1 V2 2 1 1 0 2 0.4 04 O
(2s+1) 3 1 1 o0 3 04 04 O
4 1 1 0 4 2.3 05 0
g% 1 1 1 0 1 2.5 02 O
3 2 2 1 1 0 2 0.1 01 O
(s+D(s"+s+) 3 7 1 ¢ 3 01 01 O
4 1 1 0 4 2.5 02 0
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Figure 8.14 Set-point and load-disturbance resmofmethe plant in example 1, (a) with the
original consequent parameters, (b) with the mediionsequent parameters.
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Figure 8.15 Set-point and load-disturbance resmofmethe plant in example 2, (a) with the
original consequent parameters, (b) with the mediionsequent parameters.

Note in figures 8.14 to 8.16 that as the orddhefprocess increases, less noise is filtered by
the FL-ADKEF. In other words, this means that aguaitcurate model is obtained when the plant
is effectively of first-order. However, if the ondef the plant increases, then the accuracy of the
approximated model decreases. As a result, theedlthe process noise covariar@ewhich
is adaptively adjusted, is increased to take iotmant this increased modelling error. This can
be appreciated in figure 8.17, where the valud?;@f andQ(t) in the FL-AKF 1, fed by sensor
1, are plotted for each one of the examples. ReraethiatR andQ controls the bandwidth of
the filter. Thus, whileR is maintained constant) is constantly changing increasing or
decreasing the bandwidth of the filter and, in eguence, increasing or reducing the filtering
action.

Therefore, from the results obtained in the sitadaxamples, it was demonstrated that the
described auto-tuning procedure is effective whera are multiple noisy sensors measuring
the process output. Good results of MSDF and sifjtering also were obtained.
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Figure 8.16 Set-point and load-disturbance resmofmethe plant in example 3, (a) with the
original consequent parameters, (b) with the mediionsequent parameters.
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Figure 8.17 (a) Values &%(t) andQ(t) in the FL-AKF 1, fed by sensor 1, example 1.
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Figure 8.17 (c) Values @#,(t) andQ(t) in the FL-AKF 1, fed by sensor 1, example 3.

8.4 Summary

A new methodology for designing and tuning the iagafactors of a modified hybrid PID
type fuzzy logic controller (MHPID-FLC) has beenepented. First, a direct relationship
between the scaling factors of the MHPID-FLC and ginoportional, integral and derivative
actions of its traditional counterpart has beerivddr Second, based on this relationship, the
scaling factors are obtained using the well-knowegker-Nichols frequency response method.
A remarkable point is that based on this relatignsthe auto-tuning algorithm proposed by
Astrom and Hagglund [1984] has been extended anelaiged for applications to the tuning of
the scaling factors of the MHPID-FLC.

General guidelines for fine tuning and further ioying the performance of the MHPID-FLC
were given. It has been shown that this fine-turmiaig be carried out in two ways: 1) modifying
the scaling factors, 2) modifying the control sadeaof the fuzzy control system inside the
MHPID-FLC structure.

The application of the proposed FL-ADKF MSDF arehitire in control systems has been
studied. In particular, in this chapter a novelrapph to deal with the noise issue in both the
auto-tuning procedure and the control performararettie MHPID-FLC, in a multi-sensor
environment has been proposed. This approach ceslasinow-order modelling method with
the FL-ADKF approach. The proposed methodology t@ated in several simulated benchmark
processes. Good results were obtained.



CHAPTER 9
CONCLUSIONS

9.1 Main results and conclusions of this research work

The objective of this research work was especially fatuseinvestigate the utilisation of
synergistic combinations of fuzzy logic, neuro-fuzzy and Kalmiserifig techniques to design
novel adaptive MSDF architectures capable of dealin witcertain and inexact information
provided by imperfect sensors. Having in mind the above objectieemain results and
conclusions of this research work are summarised in this section.

The different techniques used, developments achieved, and appbcatudied in this
research work are graphically represented in figure 9.1.

@ O Techniqu
@ Developmer
O Applicatior

Figure 9.1 Different techniques used, developments achieved, alichtpps studied in this
research work.

As can be seen in figure 9.1, the kernel of this research haskbeen the utilisation of
different combinations of three main technologies: Kalman Filgje(KF), Neural Networks
(NN), and Fuzzy Logic (FL). Some of these combinations alreaelyeported in the literature
and, therefore, they are indicated as existent technel@gigjreen). The proposed approaches,
which are novel synergistic combinations of the techniques mentianedndicated in red.

171
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Obviously, these developments were designed as new architeciygesorm MSDF, and for
this reason the MSDF approach is indicated as an applicatite igraphic, marked in cyan.
The application of the developed MSDF approaches to MHPID-FLG isiadicated in figure

9.1. This is a new development and a novel application of MSDF faherahat block is

marked in both red and cyan. A short description of the main devetbpraehieved in this
research programme is given as follows.

» The development of a novel Fuzzy Logic-based Adaptive Kalman Filter (FL-AKF) which
synergistically combines Kalman filtering and fuzzy logic techniques.

In this work, a general application adaptive Kalman filter approach wasged. This novel
development is referred to as fuzzy logic-based adaptive Kalitten {FL-AKF). The
adaptation is in the sense of dynamically adjusting the measntemise covariance matix
and/or the process noise covariance mafrikom data as they are obtained. The adaptation
task is carried out by a fuzzy inference system (FIS), whises a covariance-matching
technique and “common sense” rules to determine if adjustmeRtartd/orQ are needed.

The role of the matrica® andQ in the standard Kalman filter (SKF) setting is to adjbst t
Kalman gain in such a way that it controls the filter bandwik the state and measurement
errors vary. A major drawback of the SKF formulationhat at steady state its bandwidth and
Kalman gain remain constant regardless of the changes igdteensdynamics or the updated
measurement quality. This is due to its fixed constant matfcand Q. Conversely, the
bandwidth and Kalman gain in the FL-AKF keeps changing as lotiteasy/stem dynamics and
statistics of the noise under which it operates change. This dynamic adappesypof the FL-
AKF is a direct result of adaptirfiggand/orQ.

Another main characteristic of the developed FL-AKF approachasthe filter a priori
statistical information is of secondary importance becauseedstimated within the algorithm
itself. It must be remembered that the quality of thesei@imoise statistics is of great
importance in the SKF formulation.

The size of the sliding window over which the actual covagasfahe residual is estimated
has an impact on the adaptive filter performance. The snibewindow size, the faster the
changes that can be captured by the FL-AKF. From numerous sonsldtiwas found that a
good empirical value for the size of the sliding window is between 10 to 3flesam

The numerical complexity added to the SKF in order to build a KE-& marginal. From
the simulations carried out it was observed that using thmge simple fuzzy sets (triangular
membership functions) and only three fuzzy rules for each eleméné main diagonal o
and/orR are sufficient to ensure good adaptation.

An example showing the efficiency of the FL-AKF was presente@eior performance
was obtained with the FL-AKF over those obtained with a SHdF tavo different traditional
adaptive Kalman filter approaches.

e The development of a novel MSDF architecture based on FL-AKFs and a fuzzy logic
performance assessment scheme (FL-AKF-FLA architecture).

A novel hybrid MSDF architecture integrating the developedARE- and a fuzzy logic
performance assessment scheme was proposed (referred teAREHLA). This architecture
merges the measurement vectors coming fhrdisparate sensors, each one with different
measurement dynamics and noise characteristics, and obtainsdasfasevector estimate
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which better reflects the actual value of the parametergybeeasured. This is achieved in
several stages, first each measurement-vector coming fach sensor is fed to a FL-AKF.
Second, a subsystem called a fuzzy logic assessor (FLAjorstoring and assessing the
performance of each FL-AKF. Thus, there BreensorsN FL-AKFs, andN FLAs working in
parallel. The task of each FL-AKF is to obtain a stateereastimate based on the
measurement-vector coming from its own sensor; while thedfisach FLA is to assess the
performance of its corresponding FL-AKF through assigning tal@gree of confidence factor,
a number on the interval [0, 1]. Finally, the fused state-vectima® is obtained using a
weighting average scheme based on the assigned degree of confidemse fac

The role of the FLA in the proposed FL-AKF-FLA approach is ogimportance because
the fusion of the information is carried out based on the degfemmfidence generated by this
component. It is noteworthy to indicate that only two variabkes reeeded to monitor the
performance of each FL-AKF and only nine ‘common sense’ rukesisgd in the FIS used in
the FLA.

A simple FLA-weighting average structure is used to fiuse data in the FL-AKF-FLA
architecture. Compared to the other proposed architecturesmtiies this structure less
demanding in computing terms to carry out the data fusion process.

» The development of three hybrid adaptive MSDF architectures based on the proposed FL-
AKF: fuzzy logic-based adaptive centralised Kalman filter (FL-ACKF), fuzzy logic-based
adaptive decentralised Kalman filter (FL-ADKF), and fuzzy logic-based adaptive federated
Kalman filter (FL-AFKF).

An examination of the literature reported three MSDF agchites based on the standard
Kalman filter: centralised Kalman filter (CKF), decaised Kalman filter (DKF), and
federated Kalman filter (FKF). Therefore, an obvious extensib the proposed FL-AKF
approach was the development of the corresponding adaptive M8bifeetures based on it.
These novel architectures are referred to as: fuzzy logic-basedivadagsitralised Kalman filter
(FL-ACKF), fuzzy logic-based adaptive decentralised Kalmaerfi(FL-ADKF), and fuzzy
logic-based adaptive federated Kalman filter (FL-AFKF).

In the FL-ACKF the sensor measurements, the measurementacoeamatrices and the
measurement sensitivity matrices are merged to form thewalis® information to a central
FL-AKF. Therefore, the application of the FL-AKF as the globstimator in an adaptive
centralised data fusion scheme is straightforward.

The FL-ADKF processes the information in two stages. In tisedtage, the local FL-AKFs
process their own data in parallel to yield the best possibl &stimates. In the second stage,
the master filter fuses the local estimates, yielding tisé glebal estimate. This architecture is
similar to that of the standard DKF, but instead of halrigcal SKFs there are considerdd
local FL-AKFs working in parallel. In addition, instead of havingal constant matriceRy,
they are dynamically adjusted to fit the actual statisticshe noise profiles present in the
sensors. This makes the whole FL-ADKF structure adaptive.

As the FL-ADKF, the FL-AFKF was developed by substituting ltheal SKFs with FL-
AKFs. However, in this case, due to the use of the informatiarirgy principle, an additional
routine was added to the algorithm. The objective of the iaddltroutine was to obtain local
theoretical residual covariance matrices representingnfoeniation corresponding to local
filters only. With that, the local measurement noise covariamigicesR can be dynamically
adjusted to fit the statistics of the actual measured data.



CHAPTER 9 CONCLUSIONS 174

Therefore, these three approaches exploit the advantagelothakKalman filtering and
fuzzy logic techniques have: the optimality of the Kalmanrfitad the capability of fuzzy
systems to deal with imprecise information using “common sense” rules.

An illustrative example was presented to demonstrate thetieffieess and accuracy of the
proposed FL-AKF-FLA, FL-ACKF, FL-ADKF, and FL-AFKF approachesxhBustive
simulations under different measurement noise conditions and withttmut the presence of
faults were carried out. The results from the simulatidmewved that the proposed hybrid
adaptive MSDF architectures are effective in situationerevhthere are several sensors
measuring the same parameters, but each one has differenuremant dynamic and noise
statistics. From the results of the illustrative exanglwas concluded that the FL-AKF-FLA
architecture is the fastest, the FL-ADKF gives the mostiiate fused data, and the most fault-
tolerant (for transient and persistent faults) architectuteeisL-AKF-FLA.

The selection of one of the proposed hybrid adaptive MSDFtectires for a particular
application can be made taking into account their charaotsristid the objectives followed in
the problem at hand. For example, if it is necessary to haste pfocessing without the
requirement of a lot of computational resources, the FL-AKE-&pproach is adequate for this
task. However, if accuracy is the main concern then the FL-ADKbeapplied. If the sensors
are subjected to transient or persistent faults, then botkltteKF-FLA and the FL-ADKF
approaches are the indicated. The FL-AFKF appears to be mdablasuior fault detection
purposes. The FL-ACKF could be applied in cases where there gréwanbr three sensors
and the state vectors are of dimension two or three only. §tisdause of the computational
resources needed to process all the information at thetsamenhich increases as the number
of sensors grows.

» The simplification of both the neuro-fuzzy modelling network structure and the neuro-fuzzy-
standard Kalman filter (neuro-fuzzy-SKF) state estimator, proposed by Harris et al [ 1999,
2000, 2002] .

The first layer of the neuro-fuzzy modelling network proposed énrislet al [1999, 2000,
2002] is composed of FISs. All the FISs have as input the vectand use the same fuzzy rule
base. Consequently, all these FISs share the same yedtomed with the degree of truth
valuesgi(x) of the antecedent parts of the fuzzy rules. Instead of coimgjdecomplete FISs, it
was proposed here to build the neuro-fuzzy modelling network considesimgle antecedent
rule evaluator in which the calculation of the degree of tralbes/(x) is performed. Then,

these values are distributed amanggctor blocksﬁaq , which constitute the consequent parts of

the n rule sets, to obtain the corresponding output parameters. mpéfis the neuro-fuzzy
network structure obtaining the same results, as was demonstrated er Zhapt

The simplification of the neuro-fuzzy network does not alteclhtaracteristic of being easy
to translate to a state-space representation as is ikdpyirthe SKF. In fact, exactly the same
procedure used in the original network can be followed. Therefois, straightforward to
include the simplified neuro-fuzzy network in the indirect and dineciro-fuzzy-SKF schemes
to perform state estimations. In both the indirect and diragtorAeizzy-SKF schemes, instead
of using the original neuro-fuzzy modelling network, the singaifneuro-fuzzy modelling
network is employed. Therefore a simplified neuro-fuzzy-SKFeststimator structure is
obtained.
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e The development of a novel neuro-fuzzy-adaptive Kalman filter (neuro-fuzzy-AKF) state
estimator which synergistically combines Kalman filtering, fuzzy logic, and neuro-fuzzy
techniques.

A novel adaptive state estimator, referred to as a neury-BaKF, was proposed by
substituting the SKF with a FL-AKF in the simplified neuro-y4&KF state estimator
structure.

The neuro-fuzzy-AKF has as its main characteristic theilpbiysof using the error signal
in the identification process as the measurement signghddfL-AKF in order to estimate the
modelling error at the same time in which the identificatiwocess is performed. This has a
stabilising effect during the training process.

In practice, system identification using the neuro-fuzzy-AKf loa implemented using two
different approaches. The first is a series-parallel moddlewhe second is merely a parallel
model. In the series-parallel model the previous process inpuudpdt are fed into the neuro-
fuzzy-AKF and the error signal is used as a measurement $agnidde FL-AKF. Hence, the
past values of the input and output of the plant form the input vectiie neuro-fuzzy-AKF
whose outputy(t) corresponds to the estimate of the plant output at any instéimet. This

model is similar to the direct neuro-fuzzy-SKF approach and, tirerethe same learning
procedure used for that case can be applied here.

In the parallel model the previous neuro-fuzzy-AKF output isbiack to the identification
model and the error signal is used as measurement signlaé fBLtAKF. Due to the feedback,
the identification model becomes nonlinear in the parameters. Takesmthe gradient
calculations a nonlinear optimisation problem, which requiredfareit learning technique.
Due to this, it was proposed that a series-parallel neuro-#iKEymodel be used during the
process of system identification. Once the system under ceesiciehas been identified, and
assuming that the output error tends to a small value asynaitotso thaty(k)= y(t), the

series-parallel model can be replaced by a parallel neurg-AKE model without serious
consequences [Narendra and Parthasarathy, 1990].

» The application of the FL-AKF-FLA MSDF architecture to merge the estimates obtained
from multiple neuro-fuzzy-AKFs.

The implementation of the FL-AKF-FLA MSDF architecturéngsneuro-fuzzy-AKFs was
proposed. This architecture is similar to that presented Ipjtiait now the FL-AKFs are
substituted by neuro-fuzzy-AKFs. Therefore, in this case the iatiwmthat is being fused are
the estimated nonlinear plant outpytét), performed by different neuro-fuzzy-AKFs. The
fusion process is carried out through a weighted average scheatbdrathe confidence values
calculated by the Fuzzy Logic Assessors (FLAs). The FLAessasthe performance of each
neuro-fuzzy-AKF, and calculate a degree of confidence value asfogzy inference system
(FIS). Each FIS has as inputs the absolute value of the ®efidismatch [[DoM[) and the
estimated value oR(t), calculated in each neuro-fuzzy-AKF (specifically, in eathAKF).
Therefore, the application of the FL-AKF-FLA for MSDF using mefuzzy-AKFs is
straightforward.

Two simulated examples of neuro-fuzzy-AKF state estimatigstem identification, and
MSDF were presented. The identification process was caoigdoased on noisy signals
coming from different sensors and using a series-parallel Inatide the identified models
were validated using a parallel model. MSDF of the esésmperformed by two neuro-fuzzy-
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AKFs were carried out using the FL-AKF-FLA algorithm. Good resuh both system
identification and MSDF were obtained.

Therefore, both modelling and estimation problems to improve therpenfice, reliability
and accuracy of the Kalman filter approach and the MSDF artthiégscbased on it were
studied. Solutions for both problems were proposed and by simulatiagakexamples it was
demonstrated that these solutions work very well.

* The development of a novel design and tuning procedure for PID type fuzzy logic
controllers.

A new methodology for designing and tuning the scaling factoesmbdified hybrid PID
type fuzzy logic controller (MHPID-FLC) was presented. Thiscedure was derived from the
establishment of a direct relationship between the three aatiomiditional PID (TPID)
control and the scaling factors of the MHPID-FLC. It was pdotreat the MHPID-FLC works
like a TPID controller with set-point weighting factor of 0.5 amddified derivative term.
Based on this relationship, a set of formulae were derived ¢alat# the scaling factors of the
MHPID-FLC employing the well-known Ziegler-Nichols frequency responsthat.

General guidelines for fine tuning and further improving the performaihttee MHPID-FLC
were given. It was shown that this fine-tuning can be carriethduto ways: 1) modifying the
scaling factors, 2) modifying the control surface of the fuzaytrol system inside the MHPID-
FLC structure.

* The devel opment of an auto-tuning procedure for PID type fuzzy logic controllers.

Based on the relationship established between TPID and the MFRIDthe systematic
design and tuning methods of TPID control can be extended and developgplications in
designing and tuning of the MHPID-FLC. In particular, the yrekuto-tuning algorithm
proposed by Astrom and Hagglund [1984] was extended and developed foatapmid¢o the
auto-tuning of the scaling factors of the MHPID-FLC.

The proposed methodology was tested in several simulated bengimmeekses. In all cases
the MHPID-FLC performance is equivalent to its traditionalirderpart. Thus, the set-point
weighting factor is embedded in the MHPID-FLC structurés not necessary to specify it as
another variable. However, in this case it is a fixed value (0.5).

* The application of the developed FL-ADKEF architecture in the auto-tuning of PID type fuzzy
logic controllers using multiple noisy sensors.

Although the developed MSDF architectures can be applied to d tmoge of problems, in
this work the application in the PID type fuzzy logic contrpp@ach was explored. In
particular, the FL-ADKF was employed in a novel structure teigihe and auto-tune the
MHPID-FLC embedded in a multiple sensory environment. The prdpayseroach combines a
low-order modelling method with the FL-ADKF MSDF architectuféis approach effectively
deals, as was demonstrated by simulating several examplastheiinoise issue in both the
auto-tuning procedure and the control performance for the MHPID-FLC.
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9.2 Future work

The choice of the form and parameters that define the futzyised in the FISs inside the
FL-AKF structure to adjud® and/orQ was made out using a trial and error scheme. Obviously,
this process is time consuming and depends on the problem under cdiosidémaorder to
save time in an actual application, some guidelines to detertime parameters that define the
fuzzy sets were given based on the experience gained througlatsigh many examples.
However, it may be possible that for a particular applioatiese guidelines do not work and
some time must be spent in experimentation and simulation to firmbtrect parameters. This
can be a drawback of the adjustment algorithm, and so a solbtaidse found. The author
suggests the idea of exploring the utilisation of a neuro-faggiem or a genetic algorithm to
automatically adjust the fuzzy sets to the requirements of the pratblband.

From the illustrated example of the FL-AKF, it was demmatstl that the adaptation
procedure is stable whéhonly or Q-only are adjusted. However, this characteristic is not very
clear when botiR andQ are adjusted simultaneously. A deeper analysis of this case is needed to
determine in what circumstances this adaptation procedure Is.staladdition, an adaptive
procedure, that was not explored here, is the adaptati®haofdl Q in an alternating manner.
That is, adapt one of these matrices for a certainghefitime, and then adapt the other matrix
for another certain period of time, and so on. It would be intagesti observe the performance
of the FL-AKF using this procedure and determine when it can be applied.

The four developed hybrid Kalman filter-fuzzy logic adaptive DWSarchitectures (FL-
AKF-FLA, FL-ACKF, FL-ADKF, and FL-AFKF) demonstrated good imsic fault-tolerant
characteristics against transient and persistent faltis was not the case against permanent
faults. However, permanent faults are easy to detect by samglthe adjusted measurement
noise covariance matrices or by analysing the residual seegiehherefore, it will not be too
difficult to develop a fault detection and recovery algorithm, fcangple applying a voting
technique or a residual-based scheme, to overcome the existence of thisfaind

In the two simulated examples presented of neuro-fuzzy-stidte estimation and system
identification a chirp signal (sine wave whose frequencyesgdinearly with time) was used to
obtain the data to train the network. By using this kind of signal as anyaiiginal and the error
signal as a measurement noise signal for the FL-AKI@éniie neuro-fuzzy-AKF structure, the
training of the neuro-fuzzy-AKF using the series-parallel ifieation model is stable as was
proved practically. However, further investigation is neededetermine if this is true for a
broader class of systems or to define under what condition®amdhét kind of systems this is
the case. This task is left as future work to follow on from this relsear

System identification using the neuro-fuzzy-AKF was perfornmed series-parallel model
configuration. In practice, a parallel model configuration also casppéed. However, due to
the feedback, the identification model becomes nonlinear in thenpemes. This makes the
gradient calculations a nonlinear optimisation problem, whicjuires a different learning
technique. Therefore, the determination of the kind of learaiggrithms (e. g. dynamic back
propagation [Narendra and Parthasarathy, 1990]) that can be applieid rase should be
studied.

The neuro-fuzzy-AKF state estimator was proposed for single-sipgle-output (SISO)
non-linear systems. The case for multiple-input-multiple-outputVi® non-linear systems
was not considered here and is left as a future work.

The proposed neuro-fuzzy-AKF state estimator suffers the pnoldé the curse of
dimensionality [Brown and Harris, 1994] associated with medium or large irgp#ce
modelling tasks. This means that the number of rules in the neuro-fuzzy ngdelivork (and
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the associated data required for training) is an exponentiation of the input space
dimension. This poses a practical limitation to systems withadl gmput space dimension (e. g.
<6). In the literature several constructional algorithms haes Ipeoposed as a solution to the
above problem. Two examples are the adaptive spline modellingthigd ASMOD) [Harriset

al, 1997] and the neuro-fuzzy system design and construction algdhtbabec) [Hong and
Harris, 2001]. The possible application of these algorithms iméuweo-fuzzy-AKF for large
input space modelling is an interesting point worth investigating.

The proposed design and auto-tuning procedure for the MHPID-FIsGeasted on several
simulated benchmark processes. General guidelines for fine tanthdurther improving the
performance of the MHPID-FLC by modifying the scaling factwese given. Alternatively,
fine-tuning can be carried out by modifying the control surface (bgifiying the consequent
parameters of the rules) of the FCS inside the MHPLD structure. This was practically
exemplified for the multiple sensor case. However, more resean the effects that the
modification of the control surface has on the performancen@fMHPID-FLC is needed.
General guidelines for this type of fine-tuning procedure need toddiermined and
investigated. This opens another interesting avenue of investigation.

The application of the proposed FL-ADKF MSDF architecture inrobislystems under a
multi-sensor scheme was proposed. In this case only lineamsystere considered. Recently,
in the literature has been reported the development ofctwalied multiple model adaptive
control approach [Schott and Bequette, 1997]. An extension of that appnohatirig multiple
sensors could be referred to as multiple-sensors multiple-mdaetige control. This approach
may be developed for both linear and non-linear systems usingLti&F and the neuro-
fuzzy-AKF approaches.

Finally, in the development of the MSDF approaches presented hbes been assumed
that the data being reported by the sensors is “true” infamatiowever, in some applications
(e. g. defence) artificial information may be produced to imeatly mislead the sensors.
Therefore, the data produced by the sensors would be “faléefmiation, although no
indication of it is actually present in the data itself. lasé cases, additional features would
need be added in order to produce a MSDF system capable ofveffediscriminating
between true and false information before the fusion procesarigd out. This area has not
been investigated in this work but offers an intriguing avenue of futseareh.
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APPENDIX A
THEORY OF FUZZY SETS: NOTATION,
TERMINOLOGY AND BASIC OPERATIONS

A.1 Fuzzy setsand terminology

Let U be a collection of objects, concepts or mathematical catistns denoted generically by
{u}. U is called the universe of discourse andepresents the generic elementibfZadeh,
1977]. For exampld,) may be the set of all real numbers; the set of intdyyets?2,..., 100; the
set of all residents in a city; the set of all studémta course; the set of objects in a room; the
set of all names in a telephone directory, etc. Universdgoburse are usually denoted by the
symbolsU, V, W,..., with or without subscripts and/or superscripts.

Definition A.1 Fuzzy set and membership function
A fuzzy subsetA of a universe of discoursd is characterised by a membership function

Ux:U - [0]] which associates with each elemenof U a numbery,(u) in the interval
[0,1], with ,(u) representing the grade of membershipuoh A [Zadeh, 1965, 19977]. A

fuzzy set inU or, equivalently, a fuzzy subset df is usually denoted by one of the uppercase
symbolsA, B, C, D, E, F, G, H, with or without subscripts and/or superscripts.

A fuzzy set can be denoted as follows:

Z 0o U a(u;)/u; , ifUis a collection of discrete objects. A1)
L UA(U)/u, ifUis a continuous space (usually the real ife

The summation and integration signs en (A.1) stand for the unian @f (1)) pairs; they
do not indicate summation or integration. Similarly, the symbols'/dnly a marker and does
not imply arithmetic division.

Definition A.2 Support
Thesupport of Ais the set of points i at which z, (u) is positive,

support(A) ={u |, (u) > O} (A.2).

Definition A.3 Height
Theheight of Ais the supremum of/, (u) overA,

hgt (A) = sgg{uA(U)} (A.3).

Definition A.4 Crossover point
A crossover point of A is a point inU whose grade of membershipAris 0.5,

crossover(A) ={u| u,(u) =0.5} (A.4).

186
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Definition A.5 Normality
A is normal if its height is unity andubnormal if this is not the case.

Definition A.6 Fuzzy singleton
A fuzzy set whose support is a single pointiimwith £, (u) =1.0 is called &uzzy singleton.

Definition A.7: a-level set

If Ais a fuzzy subset dl, then ana-level set of A is a non-fuzzy set denoted By, which
comprises all elements &f whose grade of membershipAnis greater than or equal to In
symbols:

A ={ulu,(u) 2 a} (A.5).

Definition A.8 Convex and concave fuzzy sets
A fuzzy setA is convex if and only if for alk (I [0,1] and alluy, u, in U:

,uA(/]ul+(1_/])u2)Zmin()uA(ul)uuA(uz)) (A.6).

In terms of thax-level set ofA, A is convex if and only if thé, are convex for alix [J (0,1].
Dually, A is concave if and only if:

,UA(/]ul + (1_/1)u2) < maX(IuA(ul)nLlA(UZ)) (A.7).

A.2 Operations on fuzzy sets

Assume thatA and B are fuzzy subsets dfi. Among the basic operations which can
performed on fuzzy sets are the following:

1. Thecomplement of A is denoted by’ and is defined by,
AD [ (A= pa(u) /u (A8).
2. Theunion of fuzzy setdA andB is denoted bYALIB and is defined by,
ADBA [ (#a(u)0 pg(u))/u (A.9),

wherelis the symbol for max.

3. Theintersection of A andB is denoted byAn B and is defined by:
An BA [ (#a(u) 0 pg(u))/u (A.10),

wherelis the symbol for min.

4. Theproduct of A and B is denoted by AB and is defined by,

AB A [ pa(u) g (u)/u (A.11).

be



APPENDIX A THEORY OF FUZZY SETS: NOTATION, TERMINOGDGY AND BASIC OPERATION 188
5. Theinvolution or A?, wherea is any positive number, is defied as:
ACA [ (Ha(u)?/u (A12).
As a special case of (A.12), the operatiocaricentration (CON) is defined as:
CON (A)QA2 (A.13),
while that ofdilation (DIL) is expressed by,
DIL (A)AA®® (A.14).
6. Thebounded sum of A andB is denoted byA [0 B and is defined by,
AD BA [ 10(,(u)+ fg(u))/u (A.15),
where + is the arithmetic sum.
7. Thebounded difference of A andB is denoted byA © B and is defined by,
Ao BA[ 00 (u,(u) = gg(u)/u (A.16)
where- is the arithmetic difference.
8. Theleft-square of A is denoted byA and is defined by,
2AQL,UA(U)/U2 (A.17),
whereVA{u? [uOU} . More generally,
TAL [ pa(u)/u” (A.18),

whereVA{u“ [uOU}.

9. If Ay,...,A, are fuzzy subsets df, andw,...,w, are non-negative weights adding up to
unity, then aconvex combination of A,,...,A, is a fuzzy seA whose membership function is

expressed by,
Ha =Wy gt W L,

where + denotes the arithmetic sum.

(A.19),

10. If A,,... A, are fuzzy subsets &f4,...,U,, respectively, theartesian product of A,,... A, is
denoted byA;x XA, and is defined as a fuzzy subset gk MIxU,, whose membership

function is expressed by,
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My, x...x’uAn (ul,__"un) ::uAl(ul) ... [],uph(un) (A.20).

Equivalently,

AxxA = () OOy (U,)/(Uye.n0U,) (A.21).

Upx-xUy

A.3T-norm and S-norm

Definition A.9 T-norm
A T-norm operator [Janegt al, 1997] is a two-place functioR([I)l satisfying:

T(0,0) =0,T(a,1) =T(1,2) =a (boundary)
T(a,b) < T(cd)if a<candb<d (monotonicity)
T(a,b) =T(b,a) (commutativity)
T(a,T(b,c)) = T(T(a,b),c) (associativity)

(A.22).

The first requirement imposes the correct generalizatiorcrisp sets. The second
requirement implies that a decrease in the membership valWesnd B cannot produce an
increase in the membership valueAinB. The third requirement indicates that the operator is
indifferent to the order of the fuzzy sets to be combined. Firthilyfourth requirement allows
us to take the intersection of any number of sets in any order afigailgroupings. Four of the
most frequently used T-norm operators are:

Mini mum: Tmin(a,b) = min@b) =aOb. )
Algebraic product:  Ty(a,b) = ab.
Bounded product: Tp(a,b) =00(@+b—1).

a, if b=l > (A.23).
Drastic product: Tp@b) =) p it a=1
0, if ab<l

Definition A.10 S-norm (T-conorm)
A Snorm (or T-conorm) operator [Jangt al, 1997] is a two-place functidi([I)l satisfying:

S1,1) =1,90,8) =94a,0) =a (boundary)
Sab)<Ycd)ifascandb<d (monotonicity)
Sa,b) =Yb,a) (commutativity)
Sa,9b,c)) = YFa,b),c) (associativity)

(A.24).

The justification of these basic requirements is similahab of the requirements for T-norm
operators. Four of the most frequently used S-norm operators are:

Mai mum: Swex(@,b) = max@,b) =adb. )
Algebraic sum: Ss(a,b) =a+ b—ab.
Bounded sum: Ss(a,b) =10(a+h).
a, if b=0. ’ (A.25).
Drastic sum: Sis(a,b) = b, if a=0.
0, if ab>0.
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SIMULINK MODELS

B.1 Main SIMULIK modelsused in Chapter 5
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B.2 Main SIMULIK modelsused in Chapter 6
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Figure B.10 Subsystem FL-AKF1: FL-AKF-FLA model.
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Figure B.19 Subsystem FL-AKF1: FL-AFKF model.
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B.3Main SIMULIK modelsused in Chapter 7
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Figure B.20 The Neuro-Fuzzy-AKF and FL-AKF-FLA fusion model.
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B.4 Main SIMULIK modelsused in Chapter 8
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