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ABSTRACT 
 
This research work concerns the development of novel adaptive multi-sensor data fusion 
(MSDF) architectures which combine fuzzy logic, neuro-fuzzy and Kalman filtering techniques. 

 
A novel adaptive scheme of the Kalman filter employing the principles of fuzzy logic is 
presented (referred to as fuzzy logic-based adaptive Kalman filter - FL-AKF). The adaptation is 
in the sense of dynamically adjusting the measurement noise covariance matrix R and/or the 
process noise covariance matrix Q from data as they are obtained. 
 
An original hybrid MSDF architecture integrating the FL-AKF and a fuzzy logic performance 
assessment scheme is proposed (referred to as FL-AKF-FLA). This architecture merges the 
measurement vectors coming from multiple sensors and obtains a fused state-vector estimate 
which better reflects the actual value of the parameters being measured. 
 
The MSDF architectures based on the standard Kalman filter (SKF) are extended and developed 
by including the FL-AKF. As a result, three novel adaptive MSDF architectures referred to as: 
fuzzy logic-based adaptive centralised Kalman filter (FL-ACKF), fuzzy logic-based adaptive 
decentralised Kalman filter (FL-ADKF), and fuzzy logic-based adaptive federated Kalman filter 
(FL-AFKF), are proposed. 
 
A neuro-fuzzy-SKF system identifier and state estimator scheme is simplified and combined 
with the FL-AKF to develop a novel neuro-fuzzy-adaptive Kalman filter approach, referred to 
as neuro-fuzzy-AKF. The implementation of the FL-AKF-FLA MSDF architecture to fuse the 
estimates performed by multiple neuro-fuzzy-AKFs is also proposed. 
 
The FL-ADKF is employed in a novel structure to design and auto-tune a modified hybrid PID-
type fuzzy logic controller (MHPID-FLC) embedded in a multiple sensory environment. First, a 
new methodology for designing and tuning the scaling factors of the MHPID-FLC is presented. 
Second, the well-known relay auto-tuning algorithm is extended and developed for applications 
to the auto-tuning of the scaling factors of the MHPID-FLC. Finally, an approach which 
combines a low-order modelling method with the FL-ADKF MSDF architecture is proposed. 
 
Examples developed under the MATLAB/SIMULINK simulation environment are presented to 
validate the proposed approaches. Good results are obtained in all cases. 
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CHAPTER 1 

INTRODUCTION 
 

 
1.1 The multi-sensor data fusion approach and objectives of this research programme 
 
When analysing a physical system, e. g. a chemical process, a heat exchanger, an aircraft etc., 
an engineer first attempts to develop a mathematical model that adequately represents some 
aspects of the behaviour of the system [Maybeck, 1979]. Next, he/she can investigate the system 
structure and modes of response by using the derived model and tools provided by system and 
control theories. If needed, compensators to alter these characteristics and provide appropriate 
inputs to generate desired system responses may be designed. However, the actual system 
behaviour only can be observed through measurement devices or sensors constructed to produce 
output data signals proportional to certain variables of interest. These sensor signals and the 
known inputs to the system constitute the only information that is directly discernible about the 
system behaviour. In most cases a single sensor cannot provide all the information required 
about the system under consideration. In addition, the observations made by a sensor are always 
subject to certain level of uncertainty and occasionally they are spurious or incorrect. In short, 
there is no such thing as a perfect sensor. Single sensor systems have no means of reducing this 
intrinsic uncertainty or in testing for erroneous measurements. Therefore, the possible failure of 
the sensor will result in complete system failure; single sensor systems are not robust and may 
fail with drastic consequences in critical systems [Durrant-Whyte, 1991]. Hence, there are 
several reasons to support the use of a number of different sensor devices in order to have a 
clearer and more robust picture of the system behaviour. These sensors yield functionally 
related signals, but now the problem is how to merge or fuse these signals to generate the best 
estimate of the variables of interest based on partially redundant and/or complementary data. 
This is the kernel of the Multi-Sensor Data Fusion approach. 
 

Within the above context, “the Multi-Sensor Data Fusion (MSDF) approach can be 
defined as the acquisition, processing, and synergistic combination of information 
gathered by various sensor devices and knowledge sources to provide a better 
understanding of a phenomenon under consideration” [Varshney, 1997]. Therefore, the idea 
of any MSDF approach is to create a synergistic process in which the consolidation of 
individual data creates a combined information resource with a more accurate and reliable value 
than that offered by any individual sensor. 
 

MSDF technology has undergone rapid growth since the late 1980’s. At the present time, the 
MSDF approach is in fast development and with a broad sphere of applications. In the past, the 
main applications of MSDF were made in military surveillance command and control [Waltz 
and Buede, 1986] [Luo and Kay, 1989] [Luo and Kay, 1992]. Nowadays, the application of 
MSDF techniques has spread to a wide variety of fields such as robotics, aerospace engineering, 
image processing, medical diagnostics, and pattern recognition [Luo et al, 2002] [Grossmann, 
1998] [Varshney, 1997]. 
 

Most of the proposed methods for MSDF make explicit assumptions about the nature of the 
sensed information. The most common assumptions include the use of a measurement model for 
each sensor, the incorporation of a statistically independent additive Gaussian noise term as a 
way of modelling the uncertainty (error) in the sensory data, and the assumption of statistical 
independence between the error terms for each sensor. All these assumptions are made with the 
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objectives of enabling the application of a broader variety of MSDF techniques and making the 
mathematics involved tractable. 

 
One of the most traditional techniques to develop MSDF is Kalman filtering. The Kalman 

filter [Kalman, 1960] is an optimal linear estimator which incorporates all the information that 
can be provided to it. It processes all available measurements, regardless of their precision, to 
estimate the current value of the variables of interest, with use of (1) knowledge of the system 
and measurement device dynamics, (2) the statistical description of the system noises, 
measurement errors, and uncertainty in the dynamics models, and (3) any available information 
about initial conditions of the variables of interest [Maybeck, 1979]. 

 
Recently, non-traditional techniques also have been used to develop MSDF algorithms. In 

particular, fuzzy and neuro-fuzzy systems have demonstrated their capability to deal with 
uncertain and inexact information in control and system modelling [Harris et al, 2002] [Brown 
and Harris, 1994]. This has inspired their application in other areas, including MSDF [Kuo and 
Cohen, 1999] [Kobayashi et al, 1998]. Both of these techniques belong to the so-called 
“artificial intelligence” technology, usually referred to as well as the “soft computing” approach 
[Zadeh, 1994]. 

 
The great interest in creating machines and systems that can mimic the behaviour of humans 

has given origin to artificial intelligence technology. The main paradigms for generating 
intelligence in machines and systems include artificial neural networks, evolutionary computing 
techniques, fuzzy systems, intelligent agents as well as the different combinations of these 
approaches [Harris et al, 2002]. All these techniques are aimed at dealing with data driven 
processes subject to imprecision, uncertainty, non-linearties and with little prior knowledge. 
From the different possible combinations of these techniques, the most successful of them is 
referred to as the neuro-fuzzy systems approach. 
 

Different techniques are being considered and investigated in the department of Automatic 
Control and System Engineering at the University of Sheffield to develop novel MSDF 
algorithms. These algorithms range from those based on traditional techniques, such as the well-
established Kalman filtering methods [Mirabadi, 1999], to those based on ideas from non-
traditional techniques derived from artificial intelligence technology [Prajitno, 2002]. However, 
little work has been made in exploring architectures considering the combination or fusion of 
both these approaches. The overall aim of the research project “Intelligent Adaptive Multi-
Sensor Data Fusion Using Hybrid Architectures” carried out in ACSE was especially 
focused to investigate the utilisation of synergistic combinations of fuzzy logic, neuro-fuzzy 
and Kalman filtering techniques to design novel adaptive MSDF architectures capable of 
dealing with uncertain and inexact information provided by imperfect sensors. The word 
“hybrid” in the title of this research project refers to the actual combination of traditional 
techniques with non-traditional techniques to reach the intended objective. 
 
 
1.2 Multi-sensor integration versus fusion 
 
Commonly, in the literature the multi-sensor integration and multi-sensor fusion terms are used 
interchangeably without any distinction. However, a distinction between the two concepts is 
needed in order to separate the more general issues involved in the integration of multiple 
sensory devices at the system architecture and control level, from the more specific issues 
involving the actual fusion of sensory information [Luo and Kay, 1989]. This distinction is 
given in this section, as well as a description of the main multi-sensor integration models found 
in the literature, while a complete description of the most popular MSDF algorithms is reserved 
for chapter 2. 
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Multi-sensor integration is the synergistic use of the information provided by multiple 
sensory devices to assist in the accomplishment of a task by a system [Luo and Kay, 1989; 
1992][Luo et al, 2002]. Multi-sensor fusion refers to any stage in the integration process where 
there is an actual combination or fusion of different sources of sensory information into one 
representational format [Luo et al, 2002]. 
 

Sensor integration is carried out using a hierarchical structure approach. These structures are 
useful in allowing an efficient representation of the different forms, levels, and resolutions of 
the information used for sensory processing and control [Luo et al, 2002]. Examples are the 
USA National Bureau of Standards (NBS) sensory and control hierarchy [Luo and Kay, 1989, 
1992], and the Joint Directors of Laboratories (JDL) models [Hall and Llinas, 1997][Hall, 
2002]. 

 
The NBS model was developed during the implementation of an experimental factory called 

the Automated Manufacturing Research Facility (AMRF). One of the objectives of the AMRF 
was the implementation of a multi-sensor interactive hierarchical robot control system. As can 
be seen in figure 1.1, the NBS model is a layered architecture, where complex tasks are 
partitioned into many progressively simpler tasks at lower levels. The main idea in this control 
structure is an ascending sensory processing hierarchy coupled to a descending task-
decomposition control hierarchy via the world models at each level. The division in levels of 
processing and control is based on the observation that the complexity of a control program 
grows exponentially as the number of sensors and their associated processing increases. The 
idea is to reduce the complexity by isolating related portions of the required processing at one 
level. 
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Figure 1.1 NBS sensory and control hierarchy used to control a multi-sensory robot (adapted 
from [Luo and Kay, 1989]). 
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The JDL data fusion process model is a conceptual model which identifies the processes, 
functions, categories of techniques, and specific techniques applicable to the data fusion process 
[Hall and Llinas, 1997] [Hall, 2002] [Varshney, 1997]. The basic components of this model are 
shown in figure 1.2. A short description of each block is given as follows: 
 

• Information sources. Here is included information coming from sensors and a priori 
information from databases or human inputs. 

• Source pre-processing. The objective of this block is to provide timely and the most 
pertinent data to the current situation in order to reduce processing load. This can be 
accomplished by data pre-screening and allocating data to appropriate processes. 

• Level one processing (object refinement). Here, positional, parametric, and identity 
information of an entity are fused. This processing involves four basic functions: data 
alignment (transformation of data to a common set of co-ordinates and units), tracking 
(refinement of position, velocity and other object attributes), data association (correlation 
of data with objects), and identification (refinement of the object’s identity estimate). 

• Level two processing (situation refinement). Processing at this level attempts to make a 
contextual description of the relationship between objects and observed events. A 
contextual meaning to a collection of entities is assigned; here it is incorporated 
environmental information, a priori knowledge, and observations. 

• Level three processing (threat refinement). At this level, based on the current situation, 
projections are made in order to evaluate future threats from an adversary. This task is 
fairly difficult because inferencing is based not only on results that can be obtained by 
computation but also on the strategies, tactics, doctrine, and political environment of the 
opposition. 

• Process refinement. This is a meta-process, a process concerned about other processes. It 
monitors the fusion process performance, identifies information needed to improve 
system performance, and allocates sensors and resources to achieve the mission 
objectives. 

• Database management. This is an important function required to support a successful 
fusion system. Functions needed are data retrieval, storage, archiving, compression, 
relational queries and data protection. 

• Human computer interaction. This interface provides a mechanism for human input and 
communication of data fusion results to operators and users. Additionally, there are 
provided methods of directing human attention as well as augmenting cognition, e.g., 
overcoming the human difficulty in processing negative information. 

 
 

Source 
Pre-processing 

Level One 
Object 

Refinement 

Level Two 
Situation 

Refinement 

Level Three 
Threat 

Refinement 

Sources 
Human 

Computer 
Interaction 

Support 
Database 

Fusion 
Database 

Database Management System 

Level Four 
Process 

Refinement 

DATA FUSION DOMAIN 

 
Figure 1.2 Basic components of the JDL data fusion process model (adapted from [Hall, 2002]). 
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Although the JDL model was originally developed for military applications, it has been used 
widely as a conceptual framework for the data fusion process in both military and non-military 
applications. However, it has its limitations, i.e., it does not handle adequately the multi-image 
fusion problem. But still it serves the purpose of unifying the data fusion concepts and 
providing a common terminology. 
 
 
1.3 Motivation for MSDF 
 
A MSDF algorithm can play a very important role in a system. This role can be evaluated with 
reference to the possible advantages that can be gained through the synergistic use of multi-
sensory information. These advantages can be decomposed into a combination of four primary 
aspects [Luo and Kay, 1989] [Grossmann, 1998] [Varshney, 1997]: 
 

a) Redundancy: Redundant information is provided from a group of sensors (or a single 
sensor over time) when each sensor perceives, possibly with a different accuracy, the same 
feature in the environment. The fusion of redundant information can reduce the overall 
uncertainty and thus increase the accuracy with which the features are sensed by the system. At 
the same time, multiple sensors providing redundant data increase the whole reliability in the 
case of a sensor error or failure. If one or more sensors fail or are unable to operate, then the 
system can continue to operate at a reduced performance level. 
 

b) Complementarity: Multiple sensors are able to perceive features in the environment that 
are impossible to perceive using just a single sensor. Multiple sensors can observe a region 
larger than the one observable by a single sensor. In addition, different sensors can provide 
different types of information appropriate under different circumstances and for different tasks. 
 

c) Timeliness: The speed of information provided by multiple sensors may be greater than 
that provided by a single sensor due to either the actual speed of operation of each sensor, or the 
processing parallelism that may be possible to achieve as part of the fusion process. 
Furthermore, since multiple sensors collect more data, a prescribed level of performance can be 
attained in a shorter time. 
 

d) Cost of the information: Less costly information can be obtained with multiple cheap 
sensors compared to the cost of the equivalent information obtained from a single highly 
reliable but costly sensor. 
 

More data and more sensors do not necessarily mean best information. The advantages 
gained through having multiple sensory data must be balanced with the possible drawbacks such 
as increased complexity or cost of the total system. 
 
 
1.4 Overview of the thesis 
 
The first task carried out in this investigation was to review the main existing MSDF 
algorithms. These algorithms can be broadly classified by the kind of techniques used in the 
fusion process as estimation methods, classification methods, inference methods, and artificial 
intelligence methods [Luo et al 2002]. In chapter 2 a review of the most popular MSDF 
algorithms in each class is given. The algorithms included are from estimation methods: the 
weighted average and the Kalman filter approaches; from classification methods: the K-means 
algorithm and the Kohonen feature map; from inference methods: the Bayesian inference and 
the Dempster-Shafer methods; and from artificial intelligence methods: the adaptive neural 
networks and fuzzy logic approaches. 
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From all the methods presented in chapter 2, Kalman filtering, fuzzy logic and neural 
networks are core to this thesis. Therefore, in chapter 3 a broader explanation of fuzzy inference 
systems (FIS), neural networks (NN) and neuro-fuzzy systems (the synergistic combination of 
FIS and NN) is given. A neuro-fuzzy system of particular interest in this research work is that 
which makes use of B-spline basis functions to implement membership functions. Thus, the 
reviewing of this class of neuro-fuzzy systems also is included in chapter 3. 

 
Before proposing MSDF architectures which consider the combination of Kalman filtering 

with fuzzy logic techniques, in chapter 4 a more detailed explanation of the standard Kalman 
filter algorithm and the Kalman filter-based MSDF approaches: centralised Kalman filter, 
decentralised Kalman filter, and federated Kalman filter, are reviewed. A popular alternative 
form of the standard Kalman filter also is reviewed. An important issue in Kalman filtering is 
the consistency of the estimates performed by the filter. Therefore, two statistical tests to verify 
this aspect of the standard Kalman filter algorithm are examined in this chapter. 

 
The problem of improving the performance of the standard Kalman filter (SKF), and in 

consequence the MSDF algorithms based on it, can be divided in two parts, a modelling 
problem and an estimation problem. The estimation problem is concerned with achieving better 
estimates through the proper use of the available process and measurement information. In that 
sense, the parameters to be adjusted to improve the performance or to maintain filter 
consistency are the statistical process noise and measurement noise information, the covariance 
matrices R and Q in the SKF. The SKF formulation assumes complete a priori knowledge of 
these process and measurement noise statistics. Whilst often they are assumed to be constant 
matrices, they may vary with time and, if this is so, then the nature of this variation is assumed 
to be known as well. However, in most practical applications these matrices are initially 
estimated or, in fact, are unknown. Therefore, using a SKF designed with fixed noise statistics 
in a changing dynamic environment is a major drawback. Thus, there is motivation for making 
the SKF adaptive with respect to the changing environment. In chapter 5 an on-line adaptive 
scheme of the Kalman filter employing the principles of fuzzy logic is presented, it is referred to 
as fuzzy logic-based adaptive Kalman filter (FL-AKF). The adaptation carried out is in the 
sense of adaptively adjusting the noise covariance matrices R and/or Q from data as it is 
obtained. 
 
 The SKF based MSDF architectures reviewed in chapter 4 require exact knowledge about 
the sensed environment and about the sensors. However, in real applications, only certain 
information is known about these elements. Therefore, in Chapter 6 four adaptive MSDF 
architectures based on the proposed FL-AKF are developed. These architectures are referred to 
as: fuzzy logic-based adaptive Kalman filter with fuzzy logic performance assessment scheme 
(FL-AKF-FLA), fuzzy logic-based adaptive centralised Kalman filter (FL-ACKF), fuzzy logic-
based adaptive decentralised Kalman filter (FL-ADKF), and fuzzy logic-based adaptive 
federated Kalman filter (FL-AFKF). 
 
 Whilst chapters 5 and 6 deal with the problem of estimation to improve the performance of 
the SKF and the MSDF algorithms based on it, chapter 7 deals with the modelling problem. The 
modelling problem is concerned with the development of better models that more accurately 
describe the system under consideration. Because for linear systems generally a model exists or 
can readily be obtained, in this chapter only non-linear systems are considered. In that sense, 
first the neuro-fuzzy-SKF developed by Harris et al [1999, 2000, 2002] is reviewed. Then, a 
simplified version of the neuro-fuzzy-SKF estimator is developed. After that, a novel neuro-
fuzzy adaptive Kalman filter (neuro-fuzzy-AKF) is designed based on the inclusion of the FL-
AKF in the neuro-fuzzy-SKF structure. Finally, the hybrid MSDF architecture FL-AKF-FLA is 
used to merge the estimates obtained from several neuro-fuzzy-AKFs. 
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 Although the developed MSDF architectures can be applied to a broad range of problems, 
one application which is of great interest for the author is in fuzzy control systems. In that sense, 
in chapter 8 first, a novel designing and tuning procedure for PID type fuzzy logic controllers 
(PID-FLC) is developed. Next, the auto-tuning procedure proposed by Astrom and Hagglund 
[1984] is extended and developed for tuning the scaling factors of PID-FLC. Then a novel 
procedure for auto-tuning PID-FLC by using multiple noisy sensors is presented. Here the 
developed MSDF architectures of chapter 6 can be applied. However, only the application of the 
FL-ADKF is exemplified. 
 
 Finally, in chapter 9 the conclusions and prospective future works of the research are 
presented. 
 
 
1.5 Contributions 
 
The following list provides a summary of the main contributions made by the author in this 
research programme: 
 

• The development of a novel Fuzzy Logic-based Adaptive Kalman Filter (FL-AKF) which 
synergistically combines Kalman filtering and fuzzy logic techniques. 

 
• The development of a novel MSDF architecture based on FL-AKFs and a fuzzy logic 

performance assessment scheme (referred to as FL-AKF-FLA architecture). 
 
• The development of three hybrid adaptive MSDF architectures based on the proposed FL-

AKF. These architectures are referred to as: fuzzy logic-based adaptive centralised Kalman 
filter (FL-ACKF), fuzzy logic-based adaptive decentralised Kalman filter (FL-ADKF), and 
fuzzy logic-based adaptive federated Kalman filter (FL-AFKF). 

 
• The simplification of the neuro-fuzzy modelling network structure proposed by Harris et al 

[1999, 2000, 2002]. 
 
• The simplification of the neuro-fuzzy-standard Kalman filter (neuro-fuzzy-SKF) state 

estimator proposed by Harris et al [1999, 2000, 2002]. 
 
• The development of a novel neuro-fuzzy-adaptive Kalman filter (neuro-fuzzy-AKF) state 

estimator which synergistically combines Kalman filtering, fuzzy logic, and neuro-fuzzy 
techniques. 

 
• The application of the FL-AKF-FLA MSDF architecture to merge the estimates obtained 

from multiple neuro-fuzzy-AKFs 
 
• The development of a novel design and tuning procedure for PID type fuzzy logic 

controllers. 
 
• The development of an auto-tuning procedure for PID type fuzzy logic controllers. 
 
• The application of the developed FL-ADKF architecture in the auto-tuning of PID type 

fuzzy logic controllers using multiple noisy sensors. 
 
 



 
8 

CHAPTER 2 

MULTI-SENSOR DATA FUSION TECHNIQUES  

 

 
2.1 General multi-sensor data fusion methods 
 
Over the years several MSDF algorithms have been developed and applied, individually and in 
combination, providing users with different degrees of information detail. The MSDF 
algorithms can be classified by levels in accordance with the amount of information they 
provide or by the kind of techniques used in the actual fusion process. 
 

As shown in Table 2.1, by the kind of techniques used in the fusion process the MSDF 
algorithms can be broadly classified as follows: estimation methods, classification methods, 
inference methods, and artificial intelligence methods [Luo et al 2002]. In this chapter an 
overview of MSDF algorithms selected as being typical, from each class in Table 2.1, are 
presented as follows. From estimation methods: the weighted average and the Kalman filter 
approaches; from classification methods: the K-means algorithm and the Kohonen feature map; 
from inference methods: the Bayesian inference and the Dempster-Shafer methods; and from 
artificial intelligence methods: the adaptive neural networks and fuzzy logic approaches. 
 

Table 2.1 Multi-sensor fusion algorithms classification 
Estimation methods Non recursive: 

   Weighted average 
   Least squares 
Recursive: 
   Kalman filtering 
   Extended Kalman filtering 

Classification methods Parametric templates 
Cluster analysis 
Learning vector quantization (LVQ) 
K-means clustering 
Kohonen feature map 
ART, ARTMAP, Fuzzy-ART network 

Inference methods Bayesian inference 
Dempster-Shafer method 
Generalized evidence processing 

Artificial Intelligence methods Expert systems 
Adaptive neural networks 
Fuzzy logic 

 
 
2.2 Estimation methods 
 
 
2.2.1 Weighted average 
 
One of the simplest and most intuitive general methods of sensor data fusion is to take a 
weighted average of redundant information provided by a group of sensors and use this as the 
fused value [Luo and Kay, 1992]. 
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Formally, the weighted average of N sensor measurements xi with weights 0 ≤ wi ≤ 1 is, 
 

∑
=

=
N

i
ii xwx

1

            (2.1) 

 
where ∑ =

i iw 1 and wi = 0 if xi is not within some specified thresholds. The weights can be used 

to account for the differences in accuracy between sensors, and a moving average can be used to 
fuse together a sequence of measurements from a single sensor so that the more recent 
measurements are given a greater weight. 
 
 If the xi, i=1,2,…,N measurements are assumed to be independent normally distributed 

random variables, with distribution ),N( 2
iix σ , then a linear weighted mean aggregation model 

combining these random variables into one random variable xf is given by [Basir and Shen, 
1999]: 
 

NNf xxx ββ L+= 11            (2.2) 

 
with variance, 
 

222
1

2
1

2
NNf σβσβσ L+=           (2.3) 

 
where βi is a positive weighting factor calculated by, 
 

∑
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β            (2.4) 

 
with, 
 

1
1

=∑
=

N

i
iβ            (2.5). 

 
 This method allows real-time processing of dynamic low-level data. However, in most cases 
the Kalman filter method is preferred because it provides a method that is nearly equal in 
processing requirements and, in contrast to a weighted average, results in estimates for the fused 
data that are optimal in a statistical sense. 
 
 
2.2.2 Kalman filtering 
 
The Kalman filter [Kalman, 1960] is a recursive, linear, optimal, real time data processing 
algorithm used to estimate the states of a dynamic system in a noisy environment. Kalman 
filtering is used in several multisensor systems. Mainly, it is used in those systems where it is 
necessary to fuse dynamic low-level redundant data in real time. If a linear model exist which 
describes the system under consideration, and both the system and sensor errors can be 
modelled as Gaussian noise, then the Kalman filter will provide unique statistically optimal 
estimates for the fused data. The recursive characteristic of the filter makes it appropriate for use 
in systems without large data storage capabilities. 
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The Kalman filtering can be applied in three different ways for MSDF purposes: Centralised 
(or standard Kalman filtering), decentralised, and federated Kalman filtering [Mirabadi et al, 
1996]. In centralised Kalman filtering, the data from all the sensors is fed into one filter where 
all measurements are processed centrally to yield an optimal solution. High computational load 
on the processor and also lack of robustness are the disadvantages of this method. 
 

In decentralised Kalman filtering, the standard Kalman filter is divided into one or more 
sensor-dedicated local filters and a master filter. Operationally, to obtain a global solution, the 
master filter periodically fuses outputs of local filters working in parallel. The computation load 
in this method is significantly reduced and the results may be locally suboptimal but globally 
optimal. 
 

The federated method of Kalman filtering is sometimes recognised as a special case of the 
decentralised method. It employs the principle of information sharing among the local Kalman 
filters to improve the fault tolerance performance of the system [Gao et al, 1993]. The possible 
information to be shared includes the kinematics process noise, the initial conditions 
information, and common measurement information. 
 
 Due to the importance of the Kalman filter algorithm for the development of the proposed 
hybrid MSDF architectures, a broader description of it and the different MSDF architectures 
based on it are given in chapter 4. 
 
 
2.3 Classification methods 
 
 
2.3.1 K-means clustering 
 
The K-means clustering algorithm partitions a collection of n vectors xj, j=1,…,n, into m groups 
(or clusters) Gi, i=1,…,m and finds a cluster center ci in each group such that a cost function (or 
an objective function) of dissimilarity (or distance) measure is minimised [Jang et al, 1997]. If 
the Euclidean distance is chosen as the dissimilarity measure between a vector xk in group j and 
the corresponding cluster center ci, then the cost function is defined as: 

 

∑ ∑∑
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        (2.6), 

 

where ∑ ∈
−=

ik Gk iki cJ
x

2
x

,
is the cost function within group i. Thus, the value of Ji depends 

on the geometrical properties of Gi and the location of ci. 
 
Therefore the K-means clustering algorithm follows four basic steps: 
 
(1) Initialise the cluster centers c1,…,cm by randomly selecting m points from among all 

of the data points. 
 
(2) Define the partitioned groups by building a matrix known as membership matrix U, 

which is an m×n binary matrix, where the element uij is 1 if the j-th data point xj 
belongs to group i, and 0 otherwise, this is: 
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    (2.7), 

 
which means that point xj is assigned to group i if ci is the closest center among all 
centers. 

 
(3) Compute the cost function in accordance with (2.6). The procedure is stopped if either 

the cost function is below a certain tolerance value or its improvement over previous 
iteration is below a certain threshold. 

 
(4) Update the cluster centers accordance with: 
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            (2.8), 

 

   where iG  is the size of Gi, or ∑ =
= n

j iji uG
1

; and go to step 2. 

 
 Although the K-means algorithm is one of the most widely used clustering techniques it has 
several drawbacks. The K-means algorithm performance depends on the choice of the initial 
cluster centers [Jang et al, 1997]. Additionally, there is no guarantee that it will converge to an 
optimum solution. Also, for solving large problems, a great amount of computational effort will 
be required. 
 
 
2.3.2 Kohonen feature maps 
 
In this section a special type of neural network named the Kohonen feature map, also known as 
the self-organising map (SOM) network [Kohonen, 1990], is reviewed; although, the general 
artificial neural networks approach is discussed in section 2.5.2. The SOM is a two layered 
neural network that can learn from complex, multi-dimensional data and transform them into 
visually decipherable clusters [Kiang, 2001]. The SOM network performs unsupervised training 
based on the competitive learning paradigm [Jang et al, 1997]. Unsupervised learning is 
characterised in that it does not require the knowledge of target values. The nodes in the 
network converge to form clusters to represent groups of entities with similar properties. The 
number and composition of clusters can be visually determined based on the output distribution 
generated by the training process. 
 
 The SOM network has two layers of nodes, as shown in figure 2.1(a), the input layer and the 
Kohonen (or output) layer. The input layer is fully connected to the two-dimensional Kohonen 
layer. The activation of each unit in the Kohonen layer is determined by multiplying the input 
from each input unit by its corresponding synaptic weight and then summing for all the inputs to 
a particular Kohonen unit. Mathematically, this is the dot product of the input vector 
x=[x1,…,xn]

T and the weight vector wi=[wi1,…,win]
T. 

 

i
T

n

j
ijji wxa wx== ∑

=1

          (2.9) 

 
where ai is the activation value of Kohonen unit i, and the term wij is the weight connecting 
input j with Kohonen unit i. Since in most SOM networks each input unit is connected to each 
Kohonen unit, a single processing cycle is the computation of the dot product of the input vector 
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and the weight matrix, which is composed of all the weight vectors of all the units in the 
Kohonen layer. Typically, the weight vectors and the input vectors are normalized before this 
operation. 
 

After calculating the activation values, the Kohonen unit with the largest activation is 
declared ‘‘the winner’’. Then, the weights of the winning unit are updated to more closely 
resemble the input vector that just stimulated it. An important concept in SOM networks is that 
not only the winning unit’s weights are updated, but also all of the units’ weights in a 
neighbourhood (see figure 2.1(b)) around the winner unit. As a result of these simple steps the 
network undergoes self-organization. 
 

Kohonen
layer

Input
layerx1 x2

Winner unit

Neighbouring
units

c

Nc

 
Figure 2.1 (a) A Kohonen SOM network with 2 inputs and 16 output units; (b) neighbourhood 
around a winner unit. 
 
 The learning procedure used in the SOM network uses a similarity measure to select a 
winning unit, which is the one with the largest activation. The training of the SOM network 
follows next procedure: 
 

(1) A winning output unit is selected as the one with the largest similarity measure between 
all weight vectors wi and the input vector x. When the Euclidean distance is chosen as 
the dissimilarity measure the winning unit c satisfies the following equation: 

 

i
i

c wxwx −=− min             (2.10), 

 
where the index c refers to the winning unit. 

 
(2) Let Nc denote a set of index corresponding to a neighbourhood around winner c. The 

weights of the winner and its neighbouring units are then updated by: 
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where t = 0,1,2,… is an integer representing the discrete time co-ordinate, and η is a small 
positive learning rate. The neighbourhood of a winning unit can be defined by using a 
neighbourhood function Ωc(i) around a winning unit c. One example of neighbourhood 
function is the Gaussian function defined as: 
 





 −−

=Ω
2

2

2σ
ci

c

pp
exp          (2.12), 

 

(a) (b) 
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where pi and pc are the positions of the output units i and c, respectively; σ reflects the scope 
of the neighbourhood. By using (2.12), (2.11) transforms to: 
 

)](w))[x(()(w)(w ttitt icii −Ω+=+ η1         (2.13), 

 
where i is the index for all output units. 

 
 It is suggested that in order to achieve better convergence, the learning rate η and size of 
neighbourhood σ should be gradually decreased with time [Kohonen, 1990]. 
 
 
2.4 Inference methods 
 
 
2.4.1 Bayesian inference 
 
Different sensor fusion algorithms have been devised according to the rules of probability 
theory [Luo and Kay, 1992, 1989] [Larsen, 1998] [Walts and Bude, 1986]. Particularly, 
Bayesian inference uses Bayes’ rule for calculating the conditional or a posteriori probability of 
a hypothesis being true given supporting evidence. 
 
 In general terms, Bayes’ rule evaluates the probability of occurrence of an arbitrary event A 
assuming that another event B has occurred: 
 

)(

)()(
)(

BP

APABP
BAP =           (2.14), 

 
where: 
 
 P(A|B) = a posteriori probability of occurrence of event A given that event B has occurred. 
    P(B|A) = probability of B conditioned on the occurrence of A; as well referred to as the 

likelihood function of A. 
   P(A) = a priori probability of A. 

 
Commonly, Bayes’ rule is thought of in terms of updating the belief about a hypothesis A in 

the light of new evidence B. Thus, the posterior belief P(A|B) is calculated by multiplying the 
prior belief P(A) by the likelihood P(B|A) that B will occur if A is true. The denominator P(B) in 
(2.14) is just a normalising constant that ensures the posterior adds up to 1. P(B) can be 
calculated by summing the numerator over all possible values of A, 
 

)()()( ii
i

APABPBP ∑=          (2.15). 

 
 For multi-sensor data fusion purposes [Larsen, 1998] [Klein, 1999], Bayes’ rule is generally 
used to support the fusion of identity information concerning some property of an object. This 
information is usually expressed in form of hypotheses about the identity of the object. Because 
of this, the field is referred to as identity fusion. For example, consider a set Θ containing N 
mutually exclusive and exhaustive hypotheses concerning the identity of some object: 
 

{ }NHHH ,,, 21 K=Θ             (2.16). 
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A sensor, database, or human can express belief in these hypotheses by a set of probabilities 
(a priori probabilities), P(Θ): 
 

{ })(,),(),()( 21 NHPHPHPP K=Θ         (2.17) 

 
where: 
 

∑
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i
iHP

1

1)(            (2.18). 

 
Now, consider that there are m sensors reporting parametric data zj (e.g. IR signatures, radar 

cross section, pulse repetition interval, etc) about an object whose identity is unknown. This 
represents new evidence about the object’s identity hypothesis Hi based on the sensor-specific 
observations. Next, given a probability distribution P(Hi), and an observation zj (the sub-script j 
means that the data is coming from the j-th sensor), an updated probability distribution, P(Hi|zj), 
contemplating the observation can be calculated using Bayes’ rule provided the conditional 
probability distribution, P(zj|Hi), of the measurement is known [Larsen, 1998]: 
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where a likelihood function or conditional probability, P(zj|Hi), is the probability of sensor 
output being zj given Hi is true. Here, the probability of a hypothesis, P(Hi), before fusion is the 
a priori probability and the updated probability, P(Hi|zj), is the a posteriori probability. The a 
priori and likelihood probability distributions are usually found using a large amount of 
statistical data obtained by offline experiments or by analysing the information available in the 
problem at hand [Klein, 1999]. 
 
 Thus, the probability of having observed object i from the set of N objects given evidence z1 
from sensor 1, evidence z2 from sensor 2, etc., is: 
 

)( mi zzzHP ∩∩∩ L21 , i=1,…,m       (2.20). 

 
 Finally, a joint declaration of identity can be selected by applying a decision rule. If the most 
probable hypothesis )( mi zzzHP ∩∩∩ L21  is selected as true, then the decision rule is referred 

to as the maximum a posteriori (MAP). Other decision rules exist, as the maximum likelihood, 
Neyman–Pearson, etc., an explanation of these rules can be found in [Klein, 1999]. A graphical 
representation of an identity fusion process using Bayesian inference is shown in figure 2.2. 
 
 Thus, the Bayesian inference method provides a mathematical structure to combine identity 
declarations from multiple sensors to obtain a new improved joint identity declaration. As 
inputs, the method requires the likelihood functions P(zj|Hi) for each sensor and entity and the a 
priori probabilities that the hypotheses P(Hi) are true. If a priori information does not exist 
about the relative likelihood of Hi, then the principle of indifference can be used in which P(Hi) 
for all i are set equal. 
 
 Bayesian theorem implementation in data fusion is limited by this technique’s inability to 
depict the level of uncertainty in a particular sensor state, as well as its inability to ensure 
consistency in a collection of interrelated propositions. Other frequently cited drawbacks of a 
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Bayesian inference-based data fusion algorithm are its heavy computer processing and memory 
requirements. 
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Figure 2.2 Graphical representation of an identity fusion process using Bayesian inference. 

 
 
2.4.2 Dempster–Shafer evidential reasoning 
 
Dempster–Shafer Evidential Reasoning (DSER) is an alternative to Bayesian inference. DSER 
is a generalisation of the Bayesian inference approach that offers a way to combine uncertain 
information from disparate sensor sources [Bogler, 1987]. 
 

For example, consider the same set of hypotheses as before: 
 

{ }NHHH ,,, 21 K=Θ              (2.21). 

 
In DSER the set of hypotheses is called the frame of discernment, and each hypothesis in Θ 

is called a singleton. A disjunction of singletons is referred to as a proposition. The set of all 2N 
possible propositions, denoted by 2Θ, is the power set of Θ. Thus, 2Θ contains all possible 
subsets of Θ, including Θ itself, the empty set Ø, and each of the singletons, this is: 
 

{ }}{,},{},{,},Ø NN HHHHHHH ∨∨∨∨{,=Θ KKK 212112    (2.22). 

 
 Conversely to the Bayesian inference where evidence has to be represented as a vector of N 
probabilities relating only to the singletons (to the hypotheses in Θ), in DSER evidence is 
represented as probability masses relating to one or more propositions. 
 

The actual distribution of probability masses among the propositions is defined using a mass 
function: 
 

]1,0[2: →Θm              (2.23), 

 
and termed as a basic probability assignment (BPA). Thus, (2.23) maps a unit probability mass 
or belief across the elements of 2Θ subject to next conditions: 
 

0(Ø) =m                (2.24) 
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2
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Θ∈A

Am                (2.25). 

 
where m(A) is called A’s basic probability number (BPN) or simply the mass of A. Any subset A 
of Θ with m(A) > 0 for a particular belief function is called a focal element of that function. 
 

If a given source or sensor expresses some evidence where the masses sum up to less than 
one, the remaining mass is assigned to the disjunction of all singletons (H1∨H2∨…∨HN) 
sometimes referred to as the general level of uncertainty. 
 
 The total support S committed to a particular proposition A is the sum of all masses assigned 
to all proper subsets B of A: 
 

∑
⊆

=
AB

BmAS )()(              (2.26), 

 
where S(A) is called the support (or belief) function of A, and defines the lower probability or 
minimum likelihood of each proposition A. In a similar manner, another function is defined by: 
 

)()( ASAPl −=1              (2.27), 
 

where Pl(A) is known as the plausibility function of A, A is the complement of A, i.e. 
AA −Θ= ; and )( AS  is called the doubt function of A: 

 

)()( ASADbt =              (2.28). 
 
 The plausibility function determines the upper probability or maximum likelihood of A and 
represents the mass that is free to move to the support of A as additional information becomes 
available. Plausibility can be though of as the extent to which the evidence does not support the 
negation of a proposition [Henkind and Harrison, 1988]. 
 

The difference between the plausibility and the support function is known as the uncertainty 
function of A, u(A). This is: 
 

)()()( ASAPlAu −=           (2.29). 
 
where u(A) represents the mass that has not been assigned for or against belief in A. 
 

The DSER approach allows the representation of total ignorance concerning the proposition 
A since S(A) = 0 does not imply Dbt(A) > 0, even though Dbt(A) = 1 does imply S(A) = 0. This 
cannot be possible in the Bayesian approach where u(A) = 0 for all A∈2Θ. The interval formed 
by combining the support with the plausibility of A is known as the uncertainty interval: 
[S(A),Pl(A)]. The uncertainty interval represents, by its magnitude, how conclusive the 
information is for proposition A. For example, the interval [0,1] represents total ignorance 
concerning A. Whereas the intervals [0,0] and [1,1] represent A as being false and true, 
respectively. A graphical representation of the above concepts is shown in figure 2.3. 
 

Thus, DSER provides the formalism to combine the probability masses provided by multiple 
sensors for compatible propositions. Propositions are compatible when their intersection exists. 
The intersection of the propositions having the largest probability mass is selected as the output 
of the fusion process. Therefore, if zi is a piece of evidence (a measurement from a sensor) that 
induces BPA mi, and zj is a piece of evidence which induces BPA mj, then the BPA induced by 
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the conjunction of evidence zi and zj is denoted by mi ⊕ mj. The DSER theory defines the 
following combination rule (which is known as Dempster’s rule) for determining mi ⊕ mj when 
A≠Ø: 
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         (2.30), 

 
where X,Y ∈ 2Θ. Thus, (2.25) specifies the combined probability mass assigned to A. The 
combination of the two propositions is also known as taking the orthogonal sum. 
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Figure 2.3 Support, plausibility, and uncertainty interval for a proposition (adapted from [Klein, 
1999]). 
 
 The denominator in (2.30) is a normalisation factor that forces the new masses to sum to 
unity. It can be viewed as a measure of the degree of conflict or inconsistency in the information 
provided by the sensors. Note that if the factor is 0 the sensors are completely inconsistent and 
then the orthogonal sum operation is undefined. Note, as well, that by definition Ø must be 
assigned a mass probability of zero. 
 
 The main criticism of DSER is that it is not as theoretically rigorous as Bayesian approach. 
In addition, a major disadvantage of DSER is that the algorithm’s computational complexity is 
significantly higher compared to Bayesian fusion approach (as Θ increases, 2Θ increases 
exponentially). 
 
 
2.5 Artificial intelligence methods 
 
 
2.5.1 Fuzzy logic 
 
If traditional logic (referred to here as crisp logic) is defined as the science that studies the 
formal principles of reasoning, then fuzzy logic can be defined as the science that studies the 
formal principles of approximated reasoning [Zadeh, 1988], of which crisp reasoning 
(traditional reasoning) is a particular case. Fuzzy logic has its origin in the theory of fuzzy sets, 
first proposed by Zadeh in 1965 as a way of dealing with the inexact nature of the human 
reasoning [Zadeh, 1965]. With his proposal, Zadeh offered a more appropriate conceptual 
scheme to represent the knowledge expressed in natural language than that provided by crisp 
logic. 
 

Fuzzy logic was motivated by the necessity to find a conceptual structure adequate to 
manipulate the inherent vagueness and imprecision present in the representation that humans 
have of the world. Fuzzy logic rests in the affirmation that a concept generally has not defined 
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borders. In crisp logic concepts are forced to have abrupt limits. However, people do not use 
abrupt limits when expressing ideas about concepts. 
 

In fuzzy logic an object is not restricted to be totally a member or totally not a member of a 
given set. Here an object is allowed to be partially a member of different sets at the same time, 
but at different degrees. This is possible because in fuzzy sets theory membership is a matter of 
degree [Zadeh, 1977], and thus, an object may have a grade of membership intermediate 
between zero (non-membership) and unity (full membership), this is in the whole range [0,1]. 
The grade in which an object is member of a set is defined by a membership function. 
 

In addition to membership functions, in fuzzy logic different operators exist which are 
analogous to those found in crisp logic. Operations on fuzzy sets such as union, intersection, and 
complement are defined in order to manipulate fuzzy memberships. A description of the main 
operations on fuzzy sets is given in appendix A. 

 
Thus, fuzzy logic offers a framework that can be used to represent processes of multi-sensor 

fusion [Hirota et al, 1992]. Each sensor reading can be viewed as a membership function of a 
fuzzy set. Fuzzy rules can be defined for quantifying a fused reading using the values of the 
membership functions. Then the information coming from different sensors can be combined by 
means of a fuzzy inference system (FIS), where fuzzy sets are used as adjectives in a qualitative 
rule base. The effect of each rule in the inference process is proportional to the degree of truth 
of the fuzzy sets associated with it. Therefore, by using fuzzy sets the uncertainty in multi-
sensor fusion can be directly represented in the inference (i. e., fusion) process. This is possible 
because each proposition, as well as the actual implication operator, are allowed to be assigned 
a real number from 0 to 1 to indicate its degree of truth [Luo et al, 2002]. Consistent logical 
inference can take place if the uncertainty of the fusion process is modelled in some systematic 
fashion. A broader description of the inference process carried out in a FIS is presented in 
Chapter 3. 
 
 A disadvantage in fuzzy-logic based approaches is that as the number of inputs (sensors) 
grows, the number of rules grows as well. As a consequence, the inference process will require 
significant computational resources. 
 
 
2.5.2 Neural networks 
 
In section 2.3.2 the self-organising map, which is a special type of neural network, was 
discussed. In this section the general artificial neural networks approach is reviewed. An 
artificial neural network or simply a neural network (NN) is defined as a collection of 
processing elements (called neurons) and connection weights. The neurons and weights are 
structured in a network which is able to perform a mapping from an input space to an output 
space: Rn→Rm [Gupta and Rao, 1994]. A NN can have several layers, and each layer can have 
more than one neuron. The arrangement of neurons in layers or stages of processing is supposed 
to mimic the layered structure of a certain portion of the human brain. 
 

The main function of each neuron in a NN is to perform a mapping from Rn to R1. This 
mapping involves two distinct processing stages. The first one is a summation of the weighted 
inputs. While the second one involves the application of an activation function to the sum 
obtained in the first stage. The activation function can be one of many types, which can generate 
continuous or discrete outputs. 
 

The main characteristic of a NN is its capability of storing knowledge in the connection 
weights. A procedure called learning algorithm is used to successively adjust the connection 
weights in order to find those values for which a better approximation is obtained to the desired 
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output. The learning algorithms can be either supervised or unsupervised. A supervised learning 
algorithm is that which involves the presentation of training input-output data and a subsequent 
modification of the network weights to achieve the desired mapping between inputs and outputs. 
An unsupervised learning algorithm involves the presentation of the input data only, followed 
by a self-organisation of the network through a modification of the network weights. 

 
The network structure, which includes many neurons and connection weights, is what gives a 

NN its computational capabilities. NNs have been successfully applied in several areas 
including pattern recognition, system identification, and control systems. A broader description 
of how a NN works is given in Chapter 3. 
 

One of the applications of NNs in MSDF is in what is known as feature-level fusion [Klein, 
1999], as is graphically represented in figure 2.4. As is shown there, target features are extracted 
from several sensors, e.g. millimetre-wave radar, passive infrared sensor, and laser radar. These 
features are combined to form a composite vector that is used as input to a NN. The NN, which 
has been trained off-line to recognise the targets of interest and differentiate them from false 
targets, assigns observed objects to particular classes with some degree of confidence. It is 
necessary to remark that the training should be performed using information coming 
simultaneously from all the sensors. If one or more sensors are replaced for one of a different 
type, then the training procedure must be repeated. 
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Figure 2.4 Feature-level fusion using an artificial neural network. 

 
 In general, NNs can be applied to solve three typical MSDF problems [Corcoran and 
Lowery, 1995]: classification, quantification and description. Classification problems are those 
where a system is required to relate the multidimensional input data to a predefined class that 
represents the state of the input space. An example of this kind of problem is condition 
monitoring, where multi-sensor information is used to indicate the condition of a process or 
system, and any faults that may exist in that process. Quantification problems are those 
involving the processing of multi-sensor information to describe the input space in order to 
extract the values of primary variables within that space. An example of this type of problem is 
that of measuring vehicle exhaust emissions using cross-sensitive sensors, where concentrations 
of component gases such as carbon monoxide and nitrous oxide need to be extracted and 
assigned a value, e. g. 25 parts per million [Corcoran and Lowery, 1995]. Description problems 
involve the extraction and presentation of meaningful features or concepts that are 
representative of the input space. An example of this kind of problem might be the calculation 
of the overall risk of a road-vehicle accident depending on multi-sensor data describing the 
vehicle speed, proximity to other vehicles, visibility and road conditions. 
 
 Due to their computational capabilities, NNs are becoming more widely used as processing 
tools to solve problems where multi-sensor information is involved. The reason is that NNs are 
able to provide a mechanism for the enhancement of the quality of information derived from 
multiple sensors. 
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2.6 Summary 
 
MSDF algorithms can be classified by the kind of techniques used in the fusion process namely 
estimation methods, classification methods, inference methods, and artificial intelligence 
methods. In this chapter a review of the most popular MSDF algorithms in each class has been 
presented. 
 
 From the estimation methods, the weighted average method is a very intuitive and simple 
method. However, Kalman filtering is preferred because the solution it provides is optimal in a 
statistical sense and its computational requirements does not increase a lot compared with those 
of the weighted average method. 
 
 In classification methods the main task is to partition a multidimensional feature space into 
distinct regions, each representing an identification or identity class. Two popular methods for 
this kind of task are K-means clustering and the Kohonen feature map. K-means clustering 
algorithm is one of the commonly used unsupervised learning algorithms. While an adaptive K-
means update rule forms the basis of the Kohonen feature map approach. 
 
 From inference methods, Bayesian inference allows multisensor information to be combined 
in accordance with the rules of probability theory. Particularly, Bayes’ rule provides a 
relationship between the a priori probability of a hypothesis, the conditional probability of an 
observation given a hypothesis, and a posteriori probability of the hypothesis. Dempster-Shafer 
reasoning is an extension of the Bayesin inference approach that make explicit any lack of 
information concerning a proposition’s probability by separating firm support for the 
proposition from just its plausibility. 
 

Finally, from artificial intelligence methods, artificial neural networks can be trained to 
represent sensor information and, through associate recall, complex combinations of neurons 
can be activated in response to different sensory stimuli [Luo et al, 2002]. Fuzzy logic allows 
the uncertainty in multisensor fusion to be directly represented, by using fuzzy sets, in the 
inference process. 
 

The selection of any algorithm in an actual application has to be made in accordance with the 
problem under consideration and having in mind the objective of the sensor fusion process. 
From all the methods presented in this chapter, Kalman filtering, fuzzy logic and neural 
networks are core to this thesis. Therefore, in chapter 3 a broader explanation of fuzzy systems, 
neural networks and neuro-fuzzy systems (the synergistic combination of fuzzy systems and 
neural networks) is given. While in chapter 4, a more detailed explanation of the Kalman 
filtering-based MSDF approaches is presented. 
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CHAPTER 3 

NEURO-FUZZY SYSTEMS 
 

 
3.1 Introduction 
 
There are two concepts that are inherent to the human reasoning: imprecision and uncertainty. 
Because of that, our way of interpreting the world is generally done using vague propositions, 
uncertain data or appreciative judgements. However, this way of thinking is not captured in 
traditional logic and traditional computing. This fact has been perceived by several thinkers that 
in the past have tried to develop a mathematical structure capable of capturing this characteristic 
of the human way of thinking. As a result, several approaches have been devised and nowadays 
they are grouped in the so-called Soft Computing (SC) technology. 
 

Soft computing (SC) is a term coined by Lotfi A. Zadeh [Zadeh, 1994], the father of fuzzy 
logic [Zadeh, 1965], to refer to systems that try to mimic the ability of the human mind to 
effectively employ modes of reasoning that are approximate rather than exact. In traditional 
(hard) computing any imprecision and uncertainty is considered as undesirable. By contrast in 
SC the aim is to design systems capable of exploiting the tolerance for imprecision and 
uncertainty, learning from examples, and adapting to changes in the operating conditions. 
 
 SC is not a technique alone, but a group of them. The principal members of SC are fuzzy 
logic (FL), neural networks (NN), genetic computing (GC), and probabilistic reasoning (PR) 
[Tsoukalas and Uhrig, 1997]. The main contributions of FL in SC are a methodology for dealing 
with imprecision, approximate reasoning, rule-based systems, and computing with words. NN 
contributes with system identification, learning, and adaptation. GC contributes with 
systematised random search and optimisation. PR contributes with decision making and 
management of uncertainty. Thus, these methodologies are synergistic and complementary 
rather than competitive. For this reason, it is advantageous to use them in different 
combinations, leading to the so-called “hybrid intelligent systems” [Jang et al, 1997]. 
Nowadays, the most visible and successful hybrid intelligent systems of this type are neuro-
fuzzy systems. 
 

Neuro-fuzzy systems integrate two complementary approaches: fuzzy logic and neural 
networks. On the one hand, neural networks are capable of recognising patterns and adapting 
themselves to cope with changing environments; if there is data available, or if it can be learned 
from a simulation or real task, then a neural network can be used. Secondly, fuzzy inference 
systems incorporate human knowledge and perform inferencing and decision making; if there is 
knowledge that can be expressed in rules, then a fuzzy system can be built. What neuro-fuzzy 
systems do is put together in a single methodology all the above characteristics. Therefore these 
characteristics are desirable in any MSDF architecture. 

 
In the last chapter different techniques of MSDF were described. There were included those 

architectures which make use, separately, of fuzzy logic and neural networks technologies. 
However, as one of the objectives of this work is the development of intelligent MSDF using 
hybrid architectures, which include both these techniques, in this chapter fuzzy systems, neural 
networks, and neuro-fuzzy systems are broadly described. The concepts presented here will be 
used in later chapters. 
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3.2 Fuzzy inference systems 
 
Imprecision and uncertainty are inherent concepts which pertain to the inexact nature of human 
reasoning. As a result, our way of interpreting the world is generally seen as a function of vague 
propositions, uncertain data and appreciative judgements. However, this way of thinking is not 
taken into account in traditional logic (here referred to as crisp logic), where only two 
fundamental premises exist: true and false, 0 and 1. Lotfi A. Zadeh noticed this and created a 
new logic, called fuzzy logic [Zadeh, 1973], in order to attempt to capture the uncertainty 
present in our reasoning when interpreting the world. This logic is based on the theory of fuzzy 
sets [Zadeh, 1965] proposed in his seminal paper of 1965. 
 

The main purpose of fuzzy logic is to allow the use of vague concepts to characterize the 
variables of a system and its interrelations using words or propositions expressed in a natural or 
artificial language. This is possible because, in fuzzy sets theory, an object is no longer 
restricted to be totally a member or not a member of a set. Instead, an element may have a grade 
of membership intermediate between full membership and non-membership, in the whole range 
[0,1]. For example, if an object has a degree of membership of 0.7 to a particular set, the same 
element has a degree of membership of 0.3 to the complement of that set. Evidently, the theory 
of fuzzy sets is an extension of the traditional theory of sets, where this last case is included at 
the extremes. In other words, whereas in traditional logic a set has hard borders, in fuzzy logic 
the borders of a set are not sharply defined. Instead, the borders are soft allowing an object a 
smooth transition between being member or not a member of a particular set. Therefore, using 
fuzzy logic, systems can be designed to be able to capture, in the form of heuristic rules, the 
ability that all human beings possess to model a system or process using natural language. 
 

In its origins, due to its name, fuzzy logic was considered as something obscure and without 
mathematical or logical foundation. Consequently, after Zadeh published his article, this new 
logic remained in the background. However, in 1973 Professor E. Mamdani at the University of 
London used, for the first time, fuzzy logic to design the automatic control of a small steam 
machine, giving the origin to fuzzy control systems (FCS) or fuzzy inference systems (FIS). 
Since the publication in 1975 of the results obtained by Mamdani [Mamdani and Assilian, 
1975], FISs have had a great variety of applications ranging from industrial processes to home 
appliances. Nowadays, FISs are applied in a wide range of areas including automatic control, 
signal processing, time-series prediction, information retrieval, data classification, decision 
making, and so on. 
 

 
 
 
 

                                                                                                                                                                                                                                                                                                                                                                                     Fuzzy Inference System 
 
 
 
 

 

                            Knowledge Base 

        Fuzzy sets 
    Fuzzy operators 
  
   

    Fuzzy rule base 
   Inference engine 

  

 Fuzzification 
  

 

  Defuzzification 
  

 

         Rule 
     evaluation 

 Real input 
 values 

 Real output  
 value 

 
Figure 3.1 Basic structure of a FIS. 

 
 In general terms, a fuzzy inference system (FIS) is a computing framework based on the 
concepts of fuzzy logic [Jang et al, 1997]. The basic structure of a FIS is shown in figure 3.1. As 
can be seen, a FIS consists of 3 fundamental processes: fuzzification, rule evaluation, and 
defuzzification. All these processes are assisted by a knowledge base which comprises a fuzzy 
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rule base, an inference engine, fuzzy sets and fuzzy operators. In the following sections, a 
description of these processes is given. 
 
 
3.2.1 Fuzzification process 
 
The knowledge is represented inside a FIS through a fuzzy rule base and fuzzy sets. Thus, in 
order to perform inferences inside the FIS, using an inference engine and fuzzy operators, it is 
necessary to transform the real-valued input information into fuzzy sets. This transformation is 
carried out through a process known as fuzzification. 
 

For simplicity, consider a multiple-input single-output (MISO) FIS: U ⊂ Rn → R, where U is 
a compact universe of discourse; the process of fuzzification maps the real input vector x = (x1, 
x2,…,xn ) ⊂ Rn to fuzzy sets defined in U. Where a fuzzy set F in a universe of discourse U is 
characterised by a membership function µF(·):U → [0,1], which associates with each element u 
of U a real number µF(u) that lies in the unit interval [0,1], with µF(u) representing the grade of 
membership of u in F. F may be a linguistic label such as small, very small, big, very big, etc. 
The support of F is the crisp set of points in U at which µF(u)>0. A fuzzy set whose support is a 
single point in U with µF(·) = 1.0 is referred to as fuzzy singleton [Zadeh, 1965, 1973, 1977]. 

 
Specifically, if x is an input variable to the FIS, and x = x0 ∈ U is an input value, then the 

output of the process of fuzzification is a fuzzy set in U, F = fuzzifier(x0); where the operator 
fuzzifier transforms the real input value x0 to a linguistic value or fuzzy set, F. 
 
 There are several different methods to develop the process of fuzzification, but two are the 
most popular: 
 

a) Singleton fuzzification. This method maps the input x to a fuzzy singleton, F, with 
membership function: 
 


 =

=
caseotheranyin

xxif
xF 0

1
)( 0µ         (3.1) 

 
b) Approximated fuzzification: 
 

δµ <−≠ 00)( xxifonlyandonlyxF        (3.2) 

 
where δ is a parameter that is determined in accordance with the context of each application. 
 
 In most applications reported in the literature the function F = fuzzifier(x0) takes the special 
form of F = x0 for each measured value of the variable of interest [Murphy, 1991]. In other words, 
a crisp value at the input of a FIS is mapped to a singleton defined by the point x0 ∈ U. Usually, if 
the input to the FIS is a measurement, then the fuzzification procedure used is the singleton one. 
 
 
3.2.2 Process of rule evaluation 
 
In general terms, the process of rule evaluation involves a fuzzy rule base and a fuzzy inference 
engine. A fuzzy rule base is integrated by a set of linguistic rules expressed in the form: “ if a set 
of conditions is satisfied, then a set of actions is taken”. The part if of the rule is known as the 
antecedent, and the part then of the rule is known as the consequent. 
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 The inference engine is an interpreter of the rule base; its task is the calculation of a fuzzy 
conclusion from a set of fuzzy if-then rules and one or more conditions. This fuzzy conclusion 
is obtained employing an inference mechanism called approximate reasoning, derived from 
fuzzy logic theory. The basic inference rule of this reasoning is the generalised modus ponens 
(GMP) [Lee, 1990] [Jang and Sun, 1995]. For example, consider a multiple-input-single-output 
(MISO) FIS with two input variables and fuzzy rule base of the form: 
 

Rj : If  x is Aj  and  y is Bj  then  z is Cj         (3.3) 

 
where  j=1,2,...,m; m = number of rules; x, y and z are linguistic variables; jA  and jB  are 

linguistic values of the linguistic variables x, y and z in the universes of discourse U, V and W, 
and characterised by the membership functions )(x

jAµ , )(y
jBµ  and )(z

jCµ , respectively. 

 
Now, suppose that the rule base (3.3) includes a single rule written as “if x is A and y is B 

then z is C ”. Thus, the corresponding problem for GMP is expressed as: 
 

Premise 1 (fact):    x  is  A′  and  y  is B′ 
Premise 2 (rule):    If  x is A and  y is B  then  z is C      (3.4). 

 

Consequence (conclusion): z  is C′. 
 
where A′ is close to A, B′ is close to B, and C′ is close to C. Note that when A′ = A, B′ = B, and 
C′ = C the GMP reduces to the traditional modus ponens. 

 
The rule in premise 2 above can be implemented as a fuzzy relation (or implication). This 

relation is written as: 
 

WVUCBAR ××∈→×=          (3.5), 
 
which membership function is specified by [Jang and Sun, 1995]: 
 

),,(),,( )( zyxzyx CBAR →×= µµ            

)()()( zyx CBA µµµ ∧∧=          (3.6) 

 
where the symbol ∧ is used to denote the fuzzy operator of intersection, or fuzzy AND (a 
general description of the main operations on fuzzy sets is given in Appendix A). 
 

Applying the compositional rule of inference [Zadeh, 1973], the fuzzy conclusion C  ́of the 
inference procedure is expressed as: 
 

  RBAC o)''(' ×=  

)()''( CBABA →××= o          (3.7), 
 
where o denotes the composition operator. Thus, using (3.6), the membership function of C ' is 
evaluated as: 
 

)()]()()()([

)]()()([)]()([)(

'',

'','

zyxyx

zyxyxz

CBABAyx

CBABAyxC

µµµµµ
µµµµµµ

∧∧∧∧∨=

∧∧∧∧∨=
        

)()]}()([{)]}()([{ '' zyyxx CBByAAx µµµµµ ∧∧∨∧∧∨=       (3.8) 
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where the symbol ∨ is used to denote the fuzzy operator of union, or fuzzy OR. 
 
 At this point, let define: 
 

)]()([ ' xxw AAxA µµ ∧∨=          (3.9a) 

)]()([ ' yyw BByB µµ ∧∨=          (3.9b) 

 
where wA represents the degree of compatibility between A and A′; similarly, wB represents the 
degree of compatibility between B and B′. Substituting (3.9) in (3.8) results in: 
 

)()(' zwwz CBAC µµ ∧∧=          (3.10) 

 
but, if it is defined w = wA ∧ wB , then (3.10) transforms to: 
 

)()(' zwz CC µµ ∧=           (3.11). 

 
 In (3.11) w is called the firing strength or degree of fulfilment of this rule, and it represents the 
degree to which the antecedent part of the rule is satisfied [Jang and Sun, 1995]. A graphical 
interpretation of this result is shown in figure 3.2 when the fuzzy operators for union and 
intersection are selected to be the maximum (max) and minimum (min), respectively. In this case o 
is called the max-min composition operator [Jang et al, 1997], and the whole inference procedure 
is called the max-min compositional rule of inference [Brown and Harris, 1994]. Observe in figure 
3.2 that the resulting membership function for C′  is equal to the membership function of C 
clipped by the firing strength w. 
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Figure 3.2 Approximate reasoning for a rule with two antecedents. 

 
 The previous development can be extended for the case of a rule base with m rules as is 
detailed next. For a MISO system with two inputs and one output, the problem for GMP is 
expressed as: 
 

   fact:     x  is  A′  and  y  is B′ 
rule 1:    If  x is A1 and  y is B1  then  z is C1  
rule 2:    If  x is A2 and  y is B2  then  z is C2  

            … 
            … 

rule m:    If  x is Am and  y is Bm  then  z is Cm       (3.12). 
 

conclusion:    z  is C′. 
 
 Therefore, each rule in (3.12) can be implemented as a fuzzy relation: 
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jjjj CBAR →×=   for j = 1,2,…,m      (3.13) 

 
Applying the max-min compositional rule of inference, and using its characteristic of being 

distributive over the ∨ operator [Lee, 1990], the fuzzy conclusion C  ́of the inference procedure 
(3.12) is expressed as: 
 

)()(' 21 mRRRBAC ∨∨∨′×′= Lo                

])[(])[(])[( 21 mRBARBARBA oLoo ′×′∨∨′×′∨′×′=        

mCCC ′∨∨′∨′= L21                     (3.14). 

 
where jC′  is the inferred fuzzy set for rule j. Then, using the result given by (3.11) the 

membership function of each fuzzy set jC′  is obtained as: 

 
)]([)( zwz

jj CjC µµ ∧=′   for j = 1,2,…,m     (3.15) 

 
 Finally, the membership function of the resulting fuzzy set C′  inferred from the complete 
set of fuzzy rules is given by the union of the resulting conclusion derived from individual rules, 
 

)]([)]([)]([)(
21 21' zwzwzwz

mCmCCC µµµµ ∧∨∨∧∨∧= L    (3.16) 

 
where wj indicates the degree of fulfilment of the j-th rule; )(z

jCµ  is the membership function of 

the fuzzy set Cj (j=1,2,...,m; m = number of rules). Figure 3.3 shows a graphical representation 
of the operation of fuzzy reasoning for the case described. Note, that in this case the singleton 
fuzzification procedure has been used to transform the inputs x0 and y0 into fuzzy sets. 
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Figure 3.3 Graphical representation of the fuzzy reasoning procedure for multiple rules with 
multiple antecedents and max-min compositional rule of inference being used. 
 
 In the previous development the max and min operators were adopted for fuzzy union and 
fuzzy intersection, respectively. But, in fact, any S-norm and T-norm (see Appendix A) can be 
adopted for these fuzzy operations [Lee, 1990]. The selection of a specific S-norm and T-norm 
defines a specific type of fuzzy reasoning and gives its name to the compositional rule of 
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inference. From the possible types of fuzzy reasoning, three are the most used: max-min, max-
product [Jang and Sun, 1990], and sum-product [Kosko, 1991], a resume is given in Table 3.1. 
 

Table 3.1 Types of fuzzy reasoning most used. 
Composition 
operator 

Union 
operator 

Intersection 
operator 

Name 

max-min max min Max-min compositional rule of inference 
max-product max product Max-product compositional rule of inference 
sum-product sum product Sum-product compositional rule of inference 

 
 If the operators max and product (arithmetic product) are chosen for fuzzy union and 
intersection, respectively, then the composition is called the max-product compositional rule of 
inference. The calculation of the fuzzy conclusion for this case is obtained as: 
 

)]([)]([)]([)(
21 21' zwzwzwz

mCmCCC µµµµ ⋅∨∨⋅∨⋅= L     (3.17). 

 
Figure 3.4 shows a graphical representation of the fuzzy reasoning operation when the max-

product compositional rule of inference is used. Note, that the singleton fuzzification procedure 
has been used to transform the inputs to fuzzy sets. 
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Figure 3.4 Graphical representation of the fuzzy reasoning for multiple rules with multiple 
antecedents and max-product compositional rule of inference being used. 
 
 If the operators sum (arithmetic summation) and product are chosen for fuzzy union and 
intersection, respectively, then the composition is called the sum-product compositional rule of 
inference. In this case the fuzzy conclusion is obtained as: 
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Figure 3.5 shows graphically the fuzzy reasoning operation when the sum-product 

compositional rule of inference is used. Note, that the singleton fuzzification procedure has been 
used to transform the inputs to fuzzy sets. 
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Figure 3.5 Fuzzy reasoning for multiple rules with multiple antecedents and sum-product 
compositional rule of inference being used. 
 
 
3.2.3 Defuzzification process 
 
Basically, the defuzzification process is a mapping from a space of fuzzy sets defined over an 
output universe of discourse into a space of crisp (non-fuzzy) values. In other words, the 
defuzzification process transforms the fuzzy conclusion C  ́ into a crisp and concrete value z0, 
which is given as the FIS output. In general there are several methods to perform the process of 
defuzzification [Lee, 1990] [Jang et al, 1997] [Driankov et al, 1993]; the most commonly used 
are described next. 
 
• Centre of Area (COA). The most often used of the defuzzification methods is the centre of 
area method. This method obtains the crisp output value applying the following formula: 
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where )(' zCµ  is the aggregated output membership function. 

 
• Bisector of area (BOA). The BOA defuzzification method satisfies: 
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where α = min {z | z ∈ W} and β = max {z | z ∈ W}. That is, the vertical line z = z0 partitions the 

region between z = α, z = β, y = 0 and )(' zy Cµ=  into two regions with the same area. 

 
• Mean of Maximum (MOM). The MOM method calculates a crisp output value by averaging 
the support values of the inferred fuzzy set C ,́ at which membership value reach a maximum µ*. 
Mathematically, this is expressed as: 
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where Z  ́= {z | ∗= µµ )(' zC }. In particular, if )(' zCµ has a single maximum at z = z*, then z0 = 

z*. 
 
• Smallest of Maximum (SOM). The SOM defuzzification method gives as crisp output the 
minimum (in terms of magnitude) of the maximising z. 
 
• Largest of Maximum (LOM). The LOM defuzzification method gives as crisp output the 
maximum (in terms of magnitude) of the maximising z. because their obvious bias the SOM and 
LOM defuzzification methods are not used as often as the other three methods. 
 
 Figure 3.6 shows a graphic comparison of the different FIS crisp outputs obtained with each 
defuzzification method for a given fuzzy set C′ . 
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Figure 3.6 Comparison of the crisp FIS output obtained with the different defuzzification methods. 
 
 
3.2.4 Types of fuzzy inference systems 
 
In what follows, the three types of most commonly used FISs are introduced: 
 

1) Mamdani FIS Model: The first FIS proposed was developed by Mamdani and Assilian in 
1975 [Mamdani and Assilian, 1975]. This type of FIS was designed as a controller for a steam 
engine and boiler combination using a set of linguistic “if-then” control rules obtained from 
experienced human operators. The distinctive characteristic of this type of FIS is that in both 
antecedent and consequent parts of the rules, the values of the variables used are defined by 
membership functions, where the most commonly used are the triangular, trapezoidal, and 
Gaussian membership function. The type of reasoning used in this type of FIS is the max-min 
compositional rule of inference, and the type of defuzzification method used is the COA 
method, as it is graphically represented in figure 3.3. 
 
 The original Mamdani FIS model has been modified in different ways. Two of the most used 
variations are those where the max-min composition operator is substituted by the max-product 
and sum-product composition operators. These cases were previously discussed in section 3.2.2 
and are graphically illustrated in figures 3.4 and 3.5, respectively. 
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 2) Sugeno FIS Model: The Sugeno FIS model (also known as TSK fuzzy model) was 
proposed by Takagi, Sugeno and Kang [Sugeno and Kang, 1988] [Takagi and Sugeno, 1985] as 
an effort to develop a systematic approach to generate fuzzy rules from a given input-output 
data set. The main characteristic of this type of FIS is that the fuzzy rules used have the form: 
 

if x is A and y is B then z = f(x,y)        (3.22) 
 
where x, y and z are linguistic variables, A and B are fuzzy sets in the antecedent, and z = f(x,y) 
is a crisp function in the consequent. 
 

Generally, f(⋅) is defined as a polynomial in the input variables x and y, but it can be any 
function appropriately defined in order to describe the output of the system within the fuzzy 
region specified by the antecedent of the rule. If f(⋅) is a first-order polynomial then the FIS is 
called a first-order Sugeno FIS model. Whereas if f(⋅) is defined as a constant, then the FIS is 
called a zero-order Sugeno FIS model. The zero-order Sugeno FIS model can be interpreted as a 
special case of the Mandani FIS model, in which each rule consequent is specified by a fuzzy 
singleton. The zero-order Sugeno FIS model as well can be interpreted as a special case of the 
Tsukamoto fuzzy model (described later); in which each rule consequent is specified by a 
membership function given as a step function crossing at the consequent. A special 
characteristic of the zero-order Sugeno FIS model is that it has been proven, under certain 
constraints, to be functionally equivalent to a radial basis function network [Jang and Sun, 
1993]. Another characteristic of the zero-order Sugeno FIS model is that the smoothness of the 
resulting input-output behaviour decisively depends on the existence of enough overlap between 
membership functions in the antecedent of the rules. 
 
 The overall output of a Sugeno FIS model is obtained via a weighted average of the crisp 
outputs given by the fired rules, as is graphically represented in figure 3.7 for a first-order 
Sugeno model. Note that, using a weighted average, the time-consuming nature of the 
defuzzification procedure is enormously reduced. 
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Figure 3.7 Reasoning in a first-order Sugeno fuzzy model. 

 
 3) Tsukamoto FIS model: In the Tsukamoto FIS model the consequent of each fuzzy rule is 
represented by a fuzzy set with a monotonical membership function [Tsukamoto, 1979], as is 
shown in figure 3.7. As a result, the inferred output of each rule is defined as a crisp value 
induced by the rule’s firing strength. The overall output is taken as the weighted average of the 
outputs given by the fired rules. Figure 3.7 illustrates the whole reasoning procedure for a two-
input system with two rules being firing. 
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Figure 3.8 Reasoning in a Tsukamoto FIS model. 

 
Up to this point, the processes involved in a FIS have been described, together with the three 

different types of FIS found in the literature. In subsequent sections the concepts of artificial 
neural networks, or simply neural networks, and the so-called neuro-fuzzy systems, the 
synergistic combination of neural networks and fuzzy systems, will be explained. 
 
 
3.3 Artificial neural networks  
 
An artificial neural network or simply a neural network (NN) is defined as a collection of 
processing elements (called neurons) and connection weights (generally denoted as w). These 
neurons and weights are structured to perform a mapping from an input space to an output space 
Rn→Rm [Gupta and Rao, 1994]. This mapping can be very simple and linear or can be very 
complex and non-linear; it only depends on the structure of the NN and the functionality of each 
neuron. Nowadays there are a lot of morphologies of NNs and many others are being 
investigated. As an example, from a structural point of view, by their architecture NNs can be 
classified as static or dynamic, with only one level or several. By their connections, NNs can be 
classified as feedforward NNs, feedback NNs, laterally connected, topologically ordered and 
hybrids. For a more detailed description of NNs morphologies see [Gupta and Rao, 1994]. 
Figure 3.9 shows a typical feedforward NN, which in practice is one of the most used. 
 

 
Figure 3.9 A typical feedforward NN. 
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As is shown in figure 3.9, a NN can have several layers, and each layer can have more than 
one neuron. The main function of each neuron in a NN is the collection of all its weighted 
inputs, an evaluation of a predefined mathematical operation, usually a dot product followed by 
a non-linear function, and the production of a single output. In other words, a neuron performs a 
mapping from Rn to R1. Mathematically, the transformation carried out by a neuron can be 
described by the equation: 
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          (3.23) 

 
where: x1,...,xn are the inputs to the neuron; 1kw ,..., knw  are the connection weights for the inputs 

(the first subscript refers to the neuron in question and the second subscript refers to the input to 
which the weight is connected); ky  is the neuron output; Ψ[⋅] is some activation function 

[Haykin, 1999]. Generally, the activation function is non-linear and has a threshold or bias bk. If 
we define x0 = +1 and kk bw =0 , then (3.23) can be rewritten as: 
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and a graphical representation of the transformation carried out by a neuron is shown in figure 
3.10. 
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Figure 3.10 Graphical representation of the transformation carried out by a neuron. 

 
 The main characteristic of a NN is the storage of knowledge in the connection weights wkj. 
This knowledge is acquired using a procedure called the learning algorithm. This algorithm 
successively adjusts the connection weights to find those values for which a better 
approximation is obtained to the desired output. 
 
 Broadly, learning algorithms can be classified as error-based (also known as supervised) or 
output-based (also known as unsupervised) [Gupta and Rao, 1994]. Error-based learning 
algorithms use an external reference signal (teacher) to generate an error signal from the 
comparison between the reference signal and the obtained response. Based on this error signal a 
NN adjusts its connection weights to improve the system performance. In this case it is 
assumed, a priori , that a desired answer is available. This desired answer is a set of training data 
(a pattern of input-output pairs) which is used to train the NN. A graphical representation of the 
error based learning scheme is shown in figure 3.11. 
 
 The general equation for the error-based learning algorithm is of the form: 
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with: 
 

)()()1( tetxtw kjkj η=+∆         (3.26) 

)()()( tytyte kdk −=         (3.27) 

 
where wkj(t) is the connection weight corresponding to the input xj(t). The parameter ∆wkj(t) is 
the change in the connection weight wkj(t) (the adjustment) over an instant in time, η  is a 
parameter called learning rate, yd(t) is the desired neural output, yk(t) is the actual neural output, 
and ek(t) is called the error signal. The back propagation algorithm [Rumelhart et al, 1986] is 
the most popular of this kind of learning algorithm. 
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Figure 3.11 Error based (supervised) learning scheme. 

 
On the other hand, output-based learning algorithms do not incorporate a reference signal. 

They generally involve a self-organising principle that relies only upon local information and 
internal control mechanisms in order to discover emergent collective properties. The two most 
important forms of this kind of learning algorithm are Hebbian learning and competitive 
learning [Gupta and Rao, 1994] [Haykin, 1999]. For space reasons, these algorithms are not 
described here, but the interested reader is referred to the cited references for a broader 
explanation of them. 

 
The network structure, which includes many neurons and connection weights, is what gives a 

NN its computational capabilities. The arrangement of neurons in layers or stages of processing 
is supposed to mimic the layered structure of a certain portion of the human brain. This scheme 
of multilayer NN (MNN) has tested better computational capabilities than the one with a single 
layer. In particular, MNNs, which use the error back propagation learning algorithm, have been 
successfully applied in several areas including pattern recognition, system identification, and 
control systems. 

 
Up to this point, NN have been described in general. In what follows next, the different 

combinations of neural networks and fuzzy inference systems are discussed. 
 
 
3.4 Neuro-fuzzy systems 
 
In general terms, a neuro-fuzzy system is a system in which fuzzy inference systems (FIS) and 
neural networks (NN) are used in combination. The main idea of this combination is to take 
advantage of the different characteristics that each approach has. It has been shown in distinct 
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ways that a feedforward NN and a special kind of FIS are universal approximators [Blum and 
Li, 1991][Castro, 1995][Hornik, 1989][Kosko, 1994][Wang, 1992]. Thus, both FISs and NNs 
solve problems by performing function approximation. On one side, if there is available 
knowledge expressed in rules, then a FIS can be built. On the other side, if data exists, or 
learning can be acquired from a simulation or real task, then a neural network can be used. Both 
techniques try to model expert behaviour. 
 
 A NN can be applied to a problem if there are valid training data (examples of input/output 
pairs). In this case supervised learning, such as back propagation in multilayer NN, is used to 
train the network to solve the problem. If nothing is known about valid outputs, but there is an 
evolution or error measure on the effects that are caused by the outputs of the neural network, 
then unsupervised learning can be used in order to adjust the parameters of the net and solve, in 
this way, the problem. A mathematical model of the problem of interest is not needed, and nor is 
any form of prior knowledge. However, an interpretation of the solution obtained from the 
learning process cannot be extracted. Thus, the neural network is a black box. Another 
disadvantage is the impossibility of adding or initialising a neural network with prior 
knowledge, if there is any. The learning process itself can take a very long time, and there is no 
guarantee of success. 
 
 An advantageous property attributed to neural networks is their fault tolerance regarding 
their inputs and changes in their structure. However, if the problem under investigation changes 
too much compared to the former training data, then the neural network may not be able to cope 
and retraining will be necessary. 
 
 On the other hand, a FIS can be used to solve a problem if there is knowledge about the 
solution in the form of linguistic if-then rules. In this case, suitable fuzzy sets are defined to 
represent linguistic terms; such as big, very big, slow, fast etc. These terms are used within the 
rules and the FIS is created from these rules. A formal model of the problem of interest is not 
needed and also training data is not needed. However, without if-then rules (maybe formulated 
by an expert) or data from which they can be derived, the fuzzy system cannot be created. 
Additionally, to make the FIS work properly, a long tuning process may be necessary. By way 
of contrast, fuzzy systems are also considered fault-tolerant regarding small changes in their 
inputs or system parameters. 
 
 FIS and NN have had, individually, an enormous success in the solution of many and varied 
tasks. This, taken with the characteristics mentioned above, has caused a proliferation in the 
engineering literature of many papers that describe or use distinct combinations of FIS and NN. 
Thus, in order to clarify the approach, a classification of them is needed. Nauck et al [1997] 
suggest that these combinations can be classified into four branches: 1) Fuzzy neural networks 
systems, 2) Concurrent neural/fuzzy systems, 3) Cooperative neuro-fuzzy models, and 4) 
Hybrid neuro-fuzzy models. A short description of each one of these systems is given below. 
 
 
3.4.1 Fuzzy neural networks systems 
 
In this combination fuzzy methods are used in NNs to learn faster or perform better. The main 
objective of this kind of system is to enhance the learning capabilities or the performance of a 
NN. This can be done, by using fuzzy rules to change the learning rate [Haykin, 1994] or by 
creating a network that works with fuzzy inputs and fuzzy logic operators [Ishibuchi et al., 
1995]. A fuzzy NN has the same structure as a NN, but some or all of its components and 
parameters may be described through the mathematics of fuzzy logic theory. Thus, there are 
many possibilities for fuzzification of a NN and hence a variety of them have been proposed 
[Tsoukalas and Uhrig, 1997] [Gupta, 1994]. The obtained system cannot be interpreted in terms 
of fuzzy if-then rules, because the system is based on NNs with black box characteristics. 



INTELLIGENT ADAPTIVE MULTISENSOR DATA FUSION USING HYBRID ARCHITECTURES 35 

3.4.2 Concurrent neural/fuzzy systems 
 
Generally, in this type of system a NN is used to pre-process or post-process the information 
coming in to, or coming out from a FIS. Both systems work together on the same task, but 
without influencing each other. This means that a system is not used to determine the 
parameters of the other and each one can be identified separately. In figure 3.12 is shown a 
concurrent neural/fuzzy system where a NN is used as a pre-processor for a FIS; while in figure 
3.13 is shown a concurrent neural/fuzzy system where a NN is used as a post-processor for a 
FIS. 
 

 

NN FIS 

 
Figure 3.12 Concurrent neural/fuzzy system where a NN is used as pre-processor for a FIS. 
 

 

NN FIS 

 
Figure 3.13 Concurrent neural/fuzzy system where a NN is used as a post-processor for a FIS. 
 
 Concurrent neural/fuzzy systems, where a NN is used as pre-processor for a FIS are suited 
for applications where the input variables of a FIS cannot be measured directly, so they have to 
be created by a combination of several values. A NN can be used as an adaptive information 
compressor [Nauck et al., 1997]. On the other hand, concurrent neural/fuzzy systems where a 
NN is used as a post-processor for a FIS can be used for cases where the output of a FIS cannot 
be applied directly to a process. In this case it may be necessary to combine the FIS output with 
other parameters. Then, a NN can be used to perform this combination. 
 
 
3.4.3 Cooperative neuro-fuzzy models 
 
In cooperative neuro-fuzzy systems, a NN or a NN learning algorithm has as objective the 
determination of certain parameters of a FIS (rules, rule weights and/or fuzzy sets). When the 
learning phase finishes the FIS can work without the NN. Subsequently, cooperative neuro-
fuzzy models can be divided into four approaches [Nauck et al., 1997]: a) cooperative neuro-
fuzzy systems that learn fuzzy sets offline, b) cooperative neuro-fuzzy systems that learn fuzzy 
rules offline, c) cooperative neuro-fuzzy systems that learn fuzzy sets online, and d) cooperative 
neuro-fuzzy systems that learn rule weights. A short description of each one of these approaches 
is given below. 
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3.4.3.a Cooperative neuro-fuzzy systems that learn fuzzy sets offline 
 
In this class of cooperative systems training data is used by a NN to determine the membership 
functions of a FIS (see figure 3.14). The function of the NN is to find suitable parameters to 
define the membership functions or to perform an approximation of the fuzzy sets. The obtained 
fuzzy sets are used together with fuzzy rules, given separately, to build the FIS. In this case the 
set of training data is a set of degrees of membership corresponding to specific input values. 
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Figure 3.14 Cooperative neuro-fuzzy system that learns fuzzy sets offline. 

 
 
3.4.3.b Cooperative neuro-fuzzy systems that learn fuzzy rules offline 
 
In this case a NN is used to determine the fuzzy rules of a FIS. Training data is used by a NN to 
accomplish a clustering approach. A self-organising feature map or a similar architecture is 
generally used to learn the rules offline. Once the rules have been learnt, they are used together 
with fuzzy sets, provided separately, to implement a FIS. Figure 3.15 shows a system of this 
type. 
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Figure 3.15 Cooperative neuro-fuzzy system that learns fuzzy rules offline. 

 
 
3.4.3.c Cooperative neuro-fuzzy systems that learn fuzzy sets online 
 
In this type of cooperative system, the parameters that define the fuzzy sets for a FIS are 
determined online. This can be carried out during the use of the FIS to adapt the membership 
functions. Initial membership functions have to be specified, and an error measure that guides 
the learning process of the NN is also needed. Usually, the whole NN is not present, only the 
neural learning algorithm is employed. Figure 3.16 shows a graphic representation of this type 
of cooperative neuro-fuzzy system. 
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Figure 3.16 Cooperative neuro-fuzzy system that learns fuzzy sets online. 

 
 
3.4.3.d Cooperative neuro-fuzzy systems that learn rule weights 
 
In this case a NN or a learning algorithm is used in order to determine rule weights for the fuzzy 
rules of a FIS. This task can be performed online or offline. These weights can have several 
interpretations. For example Kosko [1992] defines them as rule influences, while Brown and 
Harris [1994] as rule confidences. Whatever the name, the main idea is to give a weight to each 
rule in the rule base and adjust them to obtain a better performance of the FIS. In figure 3.17 a 
system of this type is represented. 
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Figure 3.17 Cooperative neuro-fuzzy system that learns rule weights. 

 
 
3.4.4 Hybrid neuro-fuzzy models 
 
In these systems, a NN and a FIS are combined in a homogeneous way. This means that the 
obtained system cannot be divided and it can be interpreted either as a special NN with fuzzy 
parameters, or as a FIS arranged in a parallel distributed manner. The main idea of a hybrid 
neuro-fuzzy system is to represent a FIS as a special neural-network-like architecture and then 
apply a learning algorithm, such as back propagation or normalised least mean squares (NLMS) 
directly to train the system. Examples of this kind of architecture are the ANFIS system [Jang, 
1993] [Jang and Sun, 1995] and the neuro-fuzzy network with B-splines used to implement 
fuzzy sets [Brown and Harris, 1994] [Harris et al, 1996]. A special characteristic of these 
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systems is that, once the system has been trained, the solution found can be interpreted in the 
form of linguistic if-then rules. 
 

Nowadays the most successful of the four types of neuro-fuzzy systems described is the 
hybrid neuro-fuzzy model. However, because of the existence of many kinds of NN and the 
increased interest in researching in this area, it is hoped that more neuro-fuzzy models will 
appear in the near future. The main objective of these systems is to increase the intelligence 
capability of automatic systems. There, the concept of “intelligence” is defined as the capability 
of a system for learning and adaptation [Harris et al 2002]. 
 
 A hybrid neuro-fuzzy system which is of great interest for the purposes of this work is the 
one which uses B-splines to implement fuzzy sets. In the next section, this hybrid neuro-fuzzy 
system is described and its advantages over other approaches are given. This hybrid neuro-fuzzy 
system will be used in Chapter 7 to design an adaptive MSDF architecture. 
 
 
3.5 B-spline based hybrid neuro-fuzzy systems 
 
The B-spline based hybrid neuro-fuzzy approach was originally proposed and developed by 
Brown and Harris [Brown and Harris, 1994]. In their early work, they established the first links 
between NNs and FISs, producing the first hybrid neuro-fuzzy adaptive system, which has the 
linguistic transparency of FISs coupled with the analytical tractability of NNs [Harris et al, 
2002]. 
 
 B-spline functions are local, compact, piecewise polynomials of a given order k, for which a 
simple recurrence relationship exists [Brown and Harris, 1994] [Zhang and Knoll, 1998]. B-
spline functions have been widely used in surface fitting applications, but they also are suited to 
define fuzzy membership functions as is described next. 
 

Assume x is a general input variable that is defined on the universe of discourse [x1,xm]. 
Given a sequence of ordered parameters, known as a knot vector: [x1,x2,…,xm]T, the i-th 
normalised B-spline basis function Ni,k of order k is defined as: 
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with i = 1,…,m – k. Figure 3.18 shows B-spline basis functions of order k = 1, 2, 3, 4, with knot 
vector = [0,1,2,3,4,5,6]T. 
 
 Each one of the univariate B-spline basis function Ni,k can be used to define a membership 
function for a corresponding fuzzy set. The selection of the order k of the B-spline basis 
function determines these characteristics: degree, shape, width, and overlap of the resulting 
fuzzy sets. For example, Table 3.2 shows these characteristics for k up to four. The width of a 
fuzzy set is measured by the number of knot intervals and the overlap degree by how many 
fuzzy sets are defined on each knot interval (see figure 3.18). Thus, by specifying only the order 
k and a knot vector, a set of membership functions can be implemented using the recursive 
relation (3.28), whose shape is determined by the order k, and where each membership function 
has compact support k units wide. Additionally, the membership functions can be defined to 
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form a partition of unity ∑ =
=m

i ki xN
1 , 1)(  in the universe of discourse of the corresponding 

linguistic variable. 
 

 
Figure 3.18 B-spline basis functions of order k = 1, 2, 3, 4, with knot vector = [0,1,2,3,4,5,6]T. 

 
Table 3.2 Fuzzy sets characteristics defined by the order of the B-spline basis function 
Order k 1 2 3 4 
Degree 0 1 2 3 
Shape Rectangular Triangular Quadratic Cubic 
Width 1 2 3 4 
Overlap 1 2 3 4 

 
In this context, by using B-splines to implement fuzzy sets an interesting class of neuro-

fuzzy systems can be implemented. This class of neuro-fuzzy systems, considering a MISO 
system, is implemented by satisfying these conditions: 

 
a) The real-valued inputs to the neuro-fuzzy system are represented via fuzzy singletons (a 

singleton fuzzification method is used), 
b) B-splines are used to implement fuzzy sets in the antecedent part of fuzzy rules, 
c) Fuzzy singletons are used to define the consequent part of fuzzy rules, 
d) Algebraic operators are used to implement fuzzy logic functions (product for intersection 

sum for union, and sum-prod compositional rule of inference), 
e) The COA defuzzification method is used. 

 
If all the above conditions are satisfied, then the output of this class of neuro-fuzzy systems 

is given by: 
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i aaxNy i (x))((x) ∑∑∏
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==
11 1

ψ        (3.29) 

 

where )( i
k
i xN i  are univariate B-spline basis functions (the order of the B-splines are omitted 

for brevity), which define the linguistic values (fuzzy sets) of input variables x1,…xi,…,xn; aj is 
the singleton consequent of rule j, which in this case is considered as a network weight; j = 
1,…,p, p = number of rules in the fuzzy rule base; and (x)jψ  is the j-th multivariate B-spline 

basis function, x = [x1,…,xn]
T. 
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A graphical representation of a neuro-fuzzy system of this class is shown in figure 3.19. This 
class of neuro-fuzzy system has several important characteristics [Harris et al, 1999]: it (i) 
produces smoother interpolation, (ii) provides an equivalence between NNs and FISs, and (iii) 
enables FISs to be readily analysed. Additionally, this class of neuro-fuzzy system satisfies the 
Stone-Weirstrass theorem [Harris et al, 2002] and so they can approximate any continuous 
nonlinear function f (x) defined on a compact domain with arbitrary accuracy. 
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Figure 3.19 Structure of a neuro-fuzzy system using B-splines. 

 
 Equation (3.29) means that the output of the described neuro-fuzzy system is simply a 

weighted sum of multivariate B-spline basis functions, (x)jψ , for which the weights aj can be 

trained by a linear optimisation algorithm. The j-th multivariate B-spline basis function (x)jψ , 

is generated by multiplying n univariate basis functions )( i
k
i xN i : 

 

∏
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==
n

i
i

k
in

k
n

kk
j xNxNxNxN in

1
2211

21 )()()()((x) Lψ     (3.30). 

 
An example of a two dimensional multivariate B-spline basis function formed by two 

quadratic univariate basis functions is shown in figure 3.20. 
 

The equivalence between the class of neuro-fuzzy systems described by (3.29) and FISs is 
demonstrated next. Consider a FIS with B-spline basis functions used to implement fuzzy sets in 
the antecedent of the fuzzy rules, it means that the fuzzy rule base is of the form: 
 

Rj : If x1 is )( 11
1 xNk  and x2 is )( 22

2 xNk  and ⋅ ⋅ ⋅ and xn is )( n
k
n xN n  then y is aj  (3.31) 

 
where the above fuzzy rules have been numbered by j = 1,2,…,p. Each j corresponds to an 
ordered sequence k1,…,ki,…,kn; where ki = 1,2,…,mi; and mi is the number of fuzzy sets, in this 

case univariate B-spline basis functions )( i
k
i xN i , defined as linguistic values of variable xi, i = 

1,..,n, n is the number of input variables to the FIS. 
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 If fuzzy singletons are used to represent the real-valued inputs and the product operator is 
used for fuzzy intersection, then the firing strength1 of the j-th rule, µj(x), is given by [Brown 
and Harris, 1994]: 
 

∏
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Figure 3.20 A two-dimensional quadratic multivariable B-spline basis function. 

 
 Next, using the COA defuzzification method the real output from the rule set (3.31) is given 
by: 
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Finally, since B-splines have a partition of unity, ∑ =
=i

i

i
m

k i
k
i xN

1
1)( , (3.33) reduces to 

(3.29): 
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 Thus, the neuro-fuzzy system shown in figure 3.19 can be seen either as a B-spline neural 
network or as a FIS with membership functions implemented using B-spline basis functions 
[Wu and Harris, 1997]. The training of the neuro-fuzzy system, where the free parameters are 
the weights a1,…,ap, can be carried out using many of the traditional learning algorithms used in 
feed-forward neural networks. However, in the rest of this section, only the least mean squares 
(LMS) and normalised least mean squares (NLMS) training algorithms are described. 
 

                                                 
1 Note that instead of using the symbol w to denote the firing strength, as in section 3.2.2, here the symbol 

µj(x), is used. This new notation reflects its dependence on the input vector x and will be used onwards. 
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First, note that if a vector of weights a = [a1,…,ap]
T and a vector of multivariate B-spline 

basis functions ψ(x(t))= [ψ1(x(t)),…,ψp(x(t))]T are defined, then (3.29) can be rewritten as: 
 

a))(x())(x())(x( tatty T
j

p

j
j ψψ ==∑

=1

       (3.34) 

 
where the argument t has been included to denote the time step of an iterative process involved 
in adjusting the network weights. Now, if there exist a set of training pairs {x(t) yd(x(t))}, where 
yd(x(t)) is the desired output for a given input x(t) = [x1(t),…,xn(t)]

T at time step t, then the 
neuro-fuzzy system described by (3.34) can be trained in the weight vector a using the LMS or 
NLMS algorithms. Both LMS and NLMS are instantaneous training algorithms, this means that 
the weights are adapted on-line. These algorithms adjust the weights by using information 
provided by only a small subset of training pairs and by making an estimate of the mean squared 
error (MSE) at time step t. 
 

The error signal ε(t) measured at time t is defined as the difference between the desired and 
the actual neuro-fuzzy system output values: 
 

))(x())(x()( tytyt d −=ε          (3.35). 

 
 The objective of the LMS learning algorithm is to apply a sequence of corrective 
adjustments to the network weights in order to make the output signal come closer to the desired 
signal in a step-by-step manner [Haykin, 1999]. This objective is achieved by minimising a cost 
function, J(a), defined in terms of the error signal as: 
 

( )22
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2
1

a ))(x())(x()()( tytytJ d −== ε          (3.36). 

 
The LMS algorithm is based on the use of instantaneous values for the cost function. 

Therefore, differentiating (3.36) with respect to the weight vector a yields: 
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a
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t
J εε          (3.37). 

 
Let a(t) denote the value of the weight vector [a1(t),…,ap(t)] of the neuro-fuzzy system 

excited by the signal input vector x(t) at time step t. Thus, (3.35) can be rewritten as: 
 

)())(x())(x()( tttyt T
d aψε −=         (3.38). 

 
 Hence, 
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and from (3.39) in (3.37) gives, 
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         (3.40), 

 
this result is used as an estimate of the gradient vector of the cost function at time t: 
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))(x()()(ˆ ttJ ψε−=∇ a            (3.41). 
 

Finally, employing the method of steepest descent [Widrow and Stearns, 1985] successive 
adjustments are applied to the weight vector a in the direction opposite to the estimated gradient 

)(ˆ aJ∇ , which results in the LMS learning algorithm formulated as: 
 

))(x()()()( tttt ψηε+=+ aa 1         (3.42), 
 
where η is the learning-rate parameter. The adjustment of the weight vector continues until the 
system reaches a steady state. At this point the learning process is terminated. 
 
 A possible drawback of using the LMS learning algorithm is that the reduction in the output 
error depends on the size of the transformed input vector. If the variance in magnitude is large, 
then small values of η are required for stable learning. This can greatly increase the time taken 
for training [Brown et al, 1996]. 
 

An alternative algorithm, where the dependency on the size of the transformed input is 
removed, is the NLMS learning algorithm. In this algorithm the weight vector is updated by 
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where, if the learning-rate parameter η is in the range (0,2), then stable learning is assured 
[Brown et al, 1996]. 
 
 A proof of convergence of both learning algorithms can be obtained, but these are not 
described here. The reader interested is referred to [Haykin, 1999] [Brown et al, 1996] [Widrow 
and Stearns, 1985]. 
 

In conclusion, as a result of using B-spline basis functions to define fuzzy membership 
functions in the described neuro-fuzzy system, several properties are gained: 
 

• A simple and stable recursive relationship is used to evaluate the grade of membership for 
any input x. 

• The basis functions have a compact support, which means that knowledge is stored locally 
across only a small number of basis functions. 

• The basis functions form a partition of unity, which also implies that the corresponding 
fuzzy variables are complete. 

 
 Additionally, once the training has been completed, the resulting system is readily 

interpretable in form of if-then rules. This means that the black box aspect of a neural network is 
avoided, and it is also possible to obtain new knowledge from the system. 
 
 
3.6 Summary 
 
In this chapter FISs and NN have been described. Firstly, FISs form a consistent methodology 
to capture the way in which humans interpret the surrounding world. Thus, by using common-
sense fuzzy rules a FIS is capable of characterise the variables of a system and its interrelations. 
Secondly, NNs are capable of learning from examples and store this knowledge in network 
weights distributed throughout the net. 
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 From the aforementioned characteristics, both approaches can be synergistically combined in 
different ways: fuzzy neural networks, concurrent neural/fuzzy systems, cooperative neuro-
fuzzy models and hybrid neuro-fuzzy systems. The most successful of these combinations are 
hybrid neuro-fuzzy systems. 
 
 A particular type of hybrid neuro-fuzzy system is that which makes use of B-spline basis 
functions to implement membership functions. These systems take advantage of the three basic 
properties that B-spline functions have: positivity, compact support, and partition of unity. As a 
result, once the training has finished, the neuro-fuzzy system is interpretable in form of if-then 
rules. 
 
 The concepts presented here will be used in proceeding chapters to develop novel hybrid 
MSDF architectures. 
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CHAPTER 4 

KALMAN FILTERING AND MULTI-SENSOR DATA 

FUSION ARCHITECTURES 
 

 
4.1 Introduction 
 
The previous two chapters reviewed general MSDF techniques, and the neuro-fuzzy approaches 
respectively. Before proposing MSDF architectures considering hybrid traditional-non-
traditional techniques, specifically combining the Kalman filter and neuro-fuzzy techniques, 
now it is necessary to describe the Kalman filtering approach and the MSDF architectures based 
on it. 
 
 The Kalman Filter algorithm was first published in 1960 by R. E. Kalman. In his famous 
paper Kalman described a recursive solution to the discrete data linear filtering problem 
[Kalman, 1960]. Since then, the Kalman filter has been the subject of extensive research and 
applications. With the advances in digital computing, Kalman filtering applications have 
diversified into many areas, but the majority of the applications are found in the areas of 
autonomous or assisted navigation, where, specifically, the Kalman filter has two main tasks: 
tracking and multisensor data fusion. 
 
 In this chapter, a broad description of the Kalman filter algorithm and the MSDF 
architectures based on it are given. A deeper description of the Kalman filter algorithm can be 
found in [Maybeck, 1979] [Billings, 1980] [Welch and Bishop, 1995] and [Brown and Hwang, 
1997]. 
 
 
4.2 The Kalman filter algorithm 
 
The Kalman filter is an optimal recursive data processing algorithm [Kalman, 1960] [Maybeck, 
1979] [Brown and Hwang, 1997] that provides a linear, unbiased, and minimum error variance 
estimate of the unknown state vector n

kx ℜ∈  at each instant k = 1,2,…, (indexed by the 

subscripts) of a discrete-time process that is governed by the linear stochastic difference 
equation: 
 

kkkkkk wuBxx ++Φ=+1          (4.1) 

 
with the discrete measurement vector m

kz ℜ∈  given by: 

 

kkkk vxHz +=            (4.2) 

 
where: 
 
  xk = (n×1) state vector at time k. 
  Φk = (n×n) state transition matrix. 
  Bk = (n×l) matrix that relates the control input uk ∈ ℜl to the state vector xk. 
  uk = (l×1) vector of the input forcing function. 
  wk = (n×1) process noise vector. 
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  zk = (m×1) measurement vector at time k. 
  Hk = (m×n) measurement sensitivity matrix. 
  vk = (n×1) vector of additive measurement noise. 
 
 Both wk and vk are assumed to be uncorrelated1 zero-mean Gaussian white noise sequences 
with covariances: 
 

{ } 0=kwE  for all  k,           (4.3) 

{ } 0=kvE  for all  k,              (4.4) 

{ }  ≠
=

=
ki

kiQ
wwE T

ik 0

,k           (4.5) 

{ }  ≠
=

=
ki

kiR
vvE T

ik 0

,k             (4.6) 

{ } 0=T
ik vwE   for all  k and i           (4.7) 

 
where E{ ⋅} is the statistical expectation operator, Qk is the process noise covariance matrix, and 
Rk is the measurement noise covariance matrix. If wk in (4.1) is replaced by Γkwk, where Γk is a 
process noise distribution matrix, then Qk becomes T

kkkQ ΓΓ . 

 
 The objective of the Kalman filter is to estimate the value of the state vector xk+1 given all the 
information available up to the current instant of time, i. e. zk,…,z0 and uk,…,u0. In accordance 
with Welch and Bishop [1995], this objective is reached in the Kalman filter algorithm by using 
a form of feedback control: the filter estimates the process state at some time and then obtains 
feedback in the form of (noisy) measurements. In this sense, the equations for the Kalman filter 
can be arranged into two groups: time update equations and measurement update equations. The 
time update equations project forward, ahead in time, the current state and error covariance 
estimates to obtain the a priori estimates for the next step. The measurement update equations 
incorporate a new measurement into the a priori estimate to adjust the projected estimate and 
obtain an improved a posteriori estimate (the feedback part of the filter). From another point of 
view, the time update equations can also be considered as predictor equations, while the 
measurement equations can be considered as corrector equations. 
 
 Therefore, the specific Kalman filter equations are organized into two groups, 
 

i) Time update (or prediction) equations: 
 

kkkkk uBxx +Φ= +−+ )()(1 ˆˆ           (4.8) 

k
T
kkkk QPP +ΦΦ= +−+ )()(1              (4.9). 

 
 These equations project, from time step k to step k+1, the current state and error covariance 
estimates to obtain the a priori estimates, denoted by (–), for the next time step. 
 
ii)  Measurement update (or correction) equations:  
 

1
)()( ][ −

−− += k
T
kkk

T
kkk RHPHHPK         (4.10) 

]ˆ[ˆˆ )()()( −−+ −+= kkkkkk xHzKxx            (4.11) 

)()( ][ −+ −= kkkk PHKIP              (4.12). 

                                                           
1 The Kalman filter algorithm can be extended to accommodate the cases when correlation exists between the two noise sequences 
or when correlated measurement noise is present but they are not considered here, the reader interested in those cases is referred to 
[Grewal and Andrews, 1993]. 
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 These equations incorporate a new measurement into the a priori estimates to obtain the 
improved a posteriori estimates, denoted by (+). A graphical representation of the Kalman filter 
algorithm is shown in figure 4.1. 
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Figure 4.1 Graphical representation of the Kalman filter algorithm. 

 
 In the above equations, )(ˆ +kx  is an estimate of the system state vector xk, and Pk(+) is the 

covariance matrix corresponding to the state estimation error defined by 
 

{ }T
kkkkk xxxxEP )ˆ)(ˆ( )()()( +++ −−=         (4.13). 

 
 In equation (4.11) the term )(ˆ −kk xH  is referred to as the one-stage predicted measurement, 

which is the best prediction of what the measurement at time k will be before it is actually taken. 
The difference between the actual measurement zk and its one-stage prediction is called the 
measurement residual rk [Maybeck, 1979] defined as: 
 

)(ˆ −−= kkkk xHzr           (4.14). 

 
 Here it is necessary to mention that in the literature the term )ˆ( )( −− kkk xHz  is frequently 

referred to as the innovation sequence and the name “residual” is reserved for the quantity 
)ˆ( )( +− kkk xHz , which does not appear explicitly in the algorithm. Therefore, in this work the 

name residual will be retained. 
 
 The weighted residual, ]ˆ[ )( −− kkk xHzK , acts as a correction to the predicted estimate )(ˆ −kx  

to form the estimation )(ˆ +kx ; the weighting matrix Kk is referred to as the filter gain or the 

Kalman gain matrix. 
 
 In the algorithm the matrices Φk, Bk and Hk are assumed to be known. Qk and Rk are 
nonnegative definite matrices whose values are also assumed to be known. The Kalman filter 
algorithm starts with initial conditions at 0=k  being: )(0ˆ −x , and )(0 −P . With the progression 

of time, as new measurements zk become available, the cycle prediction-correction of states and 
the corresponding error covariances can follow recursively ad infinitum. 
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4.2.1 Alternative form of the Kalman filter algorithm 
 
The equations of the Kalman filter algorithm, as described in last section, can be algebraically 
manipulated into a variety of forms [Brown and Hwang, 1997]. One of the most useful 
alternative forms is that which expresses the algorithm in terms of the inverse of the error 
covariance matrix, instead of the covariance itself. This is: 
 

kk
T
kkk HRHPP 1

)(
1

)(
1 −

−
−

+
− +=          (4.15), 

 
which is known as the information matrix [Maybeck, 1979]. Similarly, an alternative expression 
for the Kalman filter gain is: 
 

1
)(

−
+= k

T
kkk RHPK           (4.16). 

 
 The demonstration of the equivalence between the above equations and their counterparts 
can be found in [Brown and Hwang, 1997] and [Maybeck, 1979]. Note that the expression for 
the Kalman gain now involves Pk(+), therefore, Kk must be computed after Pk(+). This means that 
the order in which Pk(+) and Kk are computed in the recursive algorithm is reversed from that 
given in the last section. 
 
 Finally, by using (4.16) and (4.12) the estimate update equation (4.11) at time k can be 
written in a different form as: 
 

kkkkkk zKxHKIx +−= −+ )()( ˆ][ˆ            

kkkkk zKxPP += −−
−

+ )()(
1

)( ˆ          (4.17), 

 
hence, the complete alternative Kalman filter algorithm is summarised graphically in figure 4.2. 
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Figure 4.2 Graphical representation of the alternative Kalman filter algorithm. 

 
 In terms of information, equation (4.15) means that the updated information is equal to the 
prior information plus the additional information obtained from the measurement at time k. In 
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addition, if Rk is block diagonal, the total added information can be divided into separated 
components, each one representing the contribution from the respective measurement block. 
 
 The presented alternative Kalman filter algorithm possesses some special characteristics, 
such as allowing a start-up procedure for the case of )(

1
0 −
−P  being singular. In other words, this 

means that the algorithm can be started with infinite uncertainty if the physical situation under 
consideration so dictates. 
 
 Note from figure 4.2 that two n×n matrix inversions are required for each recursive loop. 
This can lead to computational problems if the order of the state vector is large. Nevertheless, 
the alternative Kalman filter algorithm has several useful applications; one of these is in the 
decentralised Kalman filter as will be seen later in this chapter. 
 
 
4.2.2 Consistency of the Kalman filter algorithm 
 
When a constant parameter is estimated, the consistency of an estimator is defined as the 
convergence of the estimate to the actual value [Bar-Shalom and Li, 1993]. Convergence means 
that there is an asymptotic reduction to zero of the difference between the estimated and the 
actual value. In other words, this implies that the uncertainty about the true value reduces to 
zero asymptotically with time. 
 

In the case of the Kalman filter, which estimates the state of a system, there are two results, 
the current estimate of the state, )(ˆ +kx , and its associated error covariance matrix Pk(+). Thus, 

the definition of consistency has to be formulated in a different way. 
 
Consider first the definition of the phenomenon known as divergence: 
 
“If after an extended period of operation of the filter, the errors in the estimates eventually 

diverge to values entirely out of proportion to the rms values predicted by the equations of the 
filtering procedure, then the filter has diverged” [Fitzgerald, 1971]. 

 
Thus, in accordance with the above definition, the evaluation of the consistency of the 

Kalman filter estimates can be carried out based on its statistical characteristics. If all the 
requirements for optimality (given in section 4.2) are satisfied, then the first and second order 
moments of the state are: 

 
{ } 0ˆ )( =− +kk xxE            (4.18) 

{ } )()()( ]ˆ][ˆ[ +++ =−− k
T

kkkk PxxxxE        (4.19), 

 
which are the conditions that the filter should satisfy in order to be consistent. Condition (4.18) 
is known as the unbiasedness requirement for the estimates (i.e. zero mean estimation error), 
and condition (4.19) is known as the covariance-matching requirement (i.e. the actual mean 
squared error matches the filter-calculated covariance). 
 
 It is noteworthy to say that consistency and optimality are closely related in the Kalman filter 
setting. Since the filter gain is based on the filter-calculated error covariances, it follows that 
consistency is necessary for optimality. This is why a test of consistency is essential in order to 
verify the optimal operation of the filter. 
 
 Therefore, in order to test the consistency of the Kalman filter, three criteria need to be 
satisfied: 



CHAPTER 4 KALMAN FILTERING AND MULTISENSOR DATA FUSION ARCHITECTURES 50

a) The state errors should have zero mean and have magnitude commensurate with the state 
covariance as yielded by the filter. 

b) The filter residuals should also have the above property. 
c) The filter residuals should approximate a white noise process. 
 

The last two criteria are the only ones that can be tested in real data applications. The first 
criterion can be tested only in simulation. For this reason, here only the real time tests for the 
last two criteria are described. The reader interested in the test for the first criterion is referred to 
[Bar-Shalom and Xiao-Rong, 1993]. 
 
 The criterion b) can be tested using the normalised residual squared, εrk, (as well known as 
the normalised innovation squared) defined by: 
 

kk
T

krk rSr 1−=ε            (4.20), 

 
where rk is the measurement residual, defined by equation (4.14), and Sk its predicted residual 
covariance calculated by the Kalman filter algorithm, see equation 4.10, as: 
 

k
T
kkkk RHPHS += − )(           (4.21). 

 
Then, the time-averaged normalised residual squared (TANRS) is defined as: 
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 Thus, if the residuals are white, zero mean, and consistent with its calculated covariance Sk, 
then rnε  has a chi-square distribution with nm degrees of freedom. For a large enough n, the 

previous statements mean that rε  has to be equal to the dimension of the corresponding vector 

since it is chi-squared distributed [Bar-Shalom and Xiao-Rong, 1993], this is mr =ε , where m 
is the dimension of the measurement vector zk. This test is well known as the universally most 
powerful invariant test statistic (UMPITS), and is commonly used for testing the validity of 
process models [Stansfield, 2001]. 
 
 Criterion c) can be tested using the time-average autocorrelation defined by: 
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which tests the whiteness of the residuals l steps apart in a single sequence. The statistic (4.23) 
is, for a large enough n, in view of the central limit theorem, normally distributed. Thus, if the 
residuals are zero mean and white, then the mean of (4.23) is near zero and its variance is 1/n. 
 
 The described tests are based on replacing the ensemble averages by time averages based on 
the ergodicity of the residual sequence. 
 
 
4.3 Multi-sensor data fusion architectures based on the Kalman filter 
 
Kalman filtering has been used in the processing of data coming from multiple sensors. These 
sensors are assumed to be different hardware devices, and each one with its own data stream. If 
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all the measurements are processed by a single filter, then it is referred to as a centralised 
Kalman filter. If the measurements coming from each sensor are processed first by a local filter 
and then afterwards a master filter does the fusion process, then two alternatives of processing 
exist, a decentralised Kalman filter or a federated Kalman filter. In the next sections, each one 
of these MSDF architectures based on the Kalman filtering technique are described. 
 
 
4.3.1 Centralised Kalman filter 
 
In the centralised Kalman filter (from here referred to as CKF) the measurements coming from 
all sensors are processed by a single filter [Gao et al, 1993], as is represented graphically in 
figure 4.3. The CKF yields optimal estimates in the sense of minimum mean-squared error 
(MMSE), subject to the usual assumptions of linear dynamics and noise statistics. 
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Figure 4.3 Centralised Kalman filtering architecture. 

 
 Assuming that the measurements coming in to the CKF are from different independent 
sensors, the global measurement vector zk can be written as, 
 

TT
nk

T
kk zzz ][ 1 K=            (4.24), 

 
and the global measurement sensitivity matrix can be written as, 
 

TT
nk

T
kk HHH ][ 1 K=           (4.25). 

 
 Thus, the corresponding measurement equations for the measurements zik, linearly related to 
the components of the state vector xk, are, 
 

ikkikik vxHz +=            (4.26) 

 
where the subscript i denotes the i-th sensor and zik is the measurement vector coming from the 
i-th sensor at time k; and vik is the corresponding measurement noise vector with covariance 
matrix Rik. 
 
 If it is assumed that the vik vectors are uncorrelated across all sensors, then the global 
measurement noise covariance matrix Rk has a block diagonal structure, 
 

][ nkkk RRdiagblockR K1=            (4.27). 
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 Therefore, by using the global measurement vector, the global measurement sensitivity 
matrix, and the global measurement noise covariance matrix, given by equations (4.24), (4.25) 
and (4.27), respectively, the standard Kalman filter can be directly applied. 
 
 To achieve optimality, the CKF will result in a high computational load when implemented. 
Also there is the issue of the lack of robustness when there is spurious data in any of the 
sensors. For this reason several decentralised Kalman filtering approaches have been devised as 
is described in next sections. 
 
 
4.3.2 Decentralised Kalman filter 
 
The decentralised Kalman filter (from here referred to as DKF) is a two-stage data processing 
technique [Brown and Hwang, 1997] [Wei and Schwarz, 1990] [Hashemipour et al, 1988]. In 
the DKF the standard Kalman filter is divided into one or more sensor-dedicated local filters (1 
to n) and a master filter, as is graphically represented in figure 4.4. In the first stage, the local 
filters process their own data in parallel to yield the best possible local estimates. In the second 
stage, the master filter fuses the local estimates, yielding the best global estimate. As a result, 
the computational load can be significantly reduced by this technique. The results of each local 
Kalman filter may be locally suboptimal, but when combined they are globally optimal [Brown 
and Hwang, 1997]. 
 

 

Sensor 1 

Sensor 2 

Sensor n  

•  
•  
•  

Prediction 

M aster Filter 

z1k  

z2k 

znk  

Reference 
Sensor 

Local filter 1 

Local filter 2 

Local filter n  

•  
•  
•  Correction 

xR  

dx  

)()( ,ˆ −− kk Px       

)()( ,ˆ −− kk Px       

)()( ,ˆ −− kk Px       

)(
1

1)(1 ,ˆ +
−

+ kk Px       

)(
1

2)(2 ,ˆ +
−

+ kk Px       

)(
1

)( ,ˆ +
−

+ nknk Px       

)(
1

1)(1 ,ˆ −
−

− kk Px       

)(
1

2)(2 ,ˆ −
−

− kk Px       

)(
1

)( ,ˆ −
−

− nknk Px       

)(ˆ +kx       

 
Figure 4.4 Decentralised Kalman filtering architecture. 

 
 The set of equations of the DKF are described next. First, the i-th updated local system can 
be depicted by a state space model of the form: 
 

ikikikikikki wuBxx ++Φ=+ )1(          (4.28) 

 
with corresponding measurement equation: 
 

ikikikik vxHz +=            (4.29) 
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where xik is the state vector of the i-th local system, wik is the local system noise with covariance 
Qik, zik is the corresponding local measurement vector, and vik is the measurement noise with 
covariance Rik. 
 
 With the above definitions, each i-th local filter can compute its estimates based strictly on 
its own observations and using the standard Kalman filter algorithm. However, for convenience, 
the alternative form of the Kalman filter algorithm is used instead. This is: 
 
 Prediction equations: 
 

ikikikikki uBxx +Φ= +−+ )()()1( ˆˆ           (4.30) 

ik
T
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 Correction equations: 
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 Now, in order to express the global estimate )(ˆ +kx  in terms of the local estimates, the same 

assumptions made in the CKF case, expressed by equations (4.24), (4.25) and (4.27), are made 
here. Therefore, the global optimal estimate and associated error covariance are then calculated 
by: 
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 The convenience of using the alternative Kalman filter algorithm can be seen now. The local 
filters can pass directly their respective )(ˆ +ikx , )(

1
+

−
ikP , )(ˆ −ikx , and )(

1
−

−
ikP  on to the master filter, 

which, in turn, can then compute its global estimate. Equations (4.35) and (4.36) formulate the 
correction equations for the best global estimate of the state vector xk and its covariance matrix 
in terms of the local estimates and their covariances [Wei and Schwarz, 1990]. The global 
prediction of the state vector )(ˆ −kx  with its respective covariance matrix )( −kP  is computed 

from the prediction equations (4.8) and (4.9) given by the standard Kalman filter algorithm. 
 
 
4.3.2.a Decentralised Kalman filtering with feedback 
 
 In figure 4.4 it is suggested that a feedback from the master filter to the local filters can be 
considered (when the switches are closed). In fact, a DKF with feedback can be formulated as is 
explained next. In order to allow indirect measurement sharing, the predicted state vector )(ˆ −kx  

and its respective covariance )( −kP  can be fed back to the local filters. This feedback enables 

the local filters to reset their respective prior estimates more accurately with each step than they 
would be able to do otherwise [Brown and Hwang, 1997]. This feedback is achieved by letting: 
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)()( ˆˆ −− = kik xx            (4.37) 

)()( −− = kik PP            (4.38). 

 
 With these modifications, now the local correction equations are computed using the global 
predicted state vector and its respective covariance, this is: 
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and the global state estimation and respective covariance are calculated by: 
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 Note that there is no direct communication between the filters. However, there is indirect 
information sharing by feeding back )(ˆ −kx  with each step. This is due to the fact that )(ˆ −kx  is a 

linear combination of past measurements in all filters. 
 
 Observe too that the master filter maintains full optimality with the feedback architecture. 
Moreover, the local filters improve their optimality with respect to the DKF without feedback, 
but they still do not have full optimality with respect to all measurements [Brown and Hwang, 
1997]. 
 
 
4.3.3 Federated Kalman filter 
 
A special case of DKF is the federated Kalman filter [Carlson, 1990] [Gao et al, 1993] (from 
here referred to as FKF) which employs the principle known as “information sharing” among 
the local Kalman filters to improve the fault-tolerant performance of the system. A 
representation of this scheme is shown in figure 4.5. The possible information to be shared 
includes the kinematic process noise, the initial condition information, and common 
measurement information. Usually the kinematic process noise is the information selected to be 
shared [Gao et al, 1993]. 
 
 In design, the FKF is similar to the DKF. Here too a two-stage data processing algorithm is 
used. The difference between the two approaches is the information sharing process of the 
former. In consequence, the same conditions for the DKF are considered for the FKF. Then in 
the description of the FKF the same n local subsystems defined by equation (4.28) with 
respective measurement systems given by equation (4.29) are considered here. 
 
 Now, let the fused (full centralized) solution be represented by the covariance matrix )(+fkP  

and the state vector )(ˆ +fkx , the i-th local filter solution by )(+ikP  and )(ˆ +ikx , and the master filter 

solution by )(+mkP  and )(ˆ +mkx . Thus, if the local and master filter solutions are statistically 

independent, they can be optimally combined by [Carlson, 1990]: 
 

)(
1

)(
1

)(
1

1)(
1

+
−

+
−

+
−

+
− +++= mknkkfk PPPP L            (4.43) 



INTELLIGENT ADAPTIVE MULTISENSOR DATA FUSION USING HYBRID ARCHITECTURES 55

)()(
1

)()(
1

)(1)(
1

1)()(
1 ˆˆˆˆ ++

−
++

−
++

−
++

− +++= mkmknknkkkfkfk xPxPxPxP L     (4.44). 

 

Sensor 1

Sensor 2

Sensor n

•
•
•

Prediction

Master Filter

z1

z2

zn

Reference
Sensor

•
•
•

Correction

xR

δx

)(
1

1,ˆ +
−
fkfk Px β

Local filter 1
)(

1
11 ,ˆ +

−
kk Px

Local filter 2

Local filter n

)(
1

2,ˆ +
−
fkfk Px β

)(
1

22 ,ˆ +
−
kk Px

)(
1,ˆ +

−
nknk Px

)(
1,ˆ +

−
fknfk Px β

)(
1,ˆ +

−
fkfk Px

 
Figure 4.5 Federated Kalman filtering architecture. 

 
 The main idea of the FKF is to construct individual local and master solutions in such a way 
that they can be combined at any time by the above equations. 
 
 Therefore, the FKF algorithm follows the procedure now given: 
 
1) Divide the fused (global filer) error covariance Pf, and the common process noise covariance 

Qf in so way that the i = 1,…,n,m local filters and the master filter each receive fractions βi, 
βm of the total information, and set local state estimates to the fused (global) state estimate 
value )(ˆ +kx : 

 
11 −− = fiik QQ β            (4.45) 

)(
1

)(
1

+
−

+
− = fkiik PP β               (4.46) 

)()( ˆˆ ++ = fkik xx               (4.47) 

 
where βi, (i = 1,…,n,m) are information-sharing factors. The conservation of information 
principle dictates that the information-sharing factors βi sum to unity: 
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2) Local filters and the master filter process their prediction equations independently: 
 

ikikikikki uBxx +Φ= +−+ )()()1( ˆˆ         (4.49) 
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 with i = 1,…,n,m. 
 
3) Each local filter processes its own sensor measurement using, for convenience, the 

alternative Kalman filter algorithm: 
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where i = 1,2,…,n. 

 
4) The fusion algorithm combines master filter and local filter estimates after each correction 

cycle by: 
 

)(
1

1

)(
1

)(
1

−
−

=

+
−

+
− += ∑ mk

n

i
ikfk PPP            (4.54)  += +

=

+
−

−−
−

++ ∑ )(

1

)(
1

)()(
1

)()( ˆˆˆ ik

n

i
ikmkmkfkfk xPxPPx          (4.55), 

 
and projects ahead the current master state and error covariance estimates. Note that in 
equations (4.54) and (4.55) instead of using )(+mkP  and )(ˆ +mkx  they use )(−mkP  and )(ˆ −mkx . This 

is because there is no measurement information available to update the master filter. 
 
 It is necessary to mention here that, by using the information sharing principle, local filters 
use partial information, subsequently the output of local filters lack optimality. However, if all 
conditions are met, the global solution is optimal. 
 
 An issue to be confronted in the FKF design is how the total information is to be divided 
among individual filters to achieve the highest improvement in performance, efficiency and 
fault tolerance. 
 
 
4.4 Summary 
 
In this chapter the standard Kalman filter algorithm together with a popular alternative form, 
have been described. An important issue is the consistency of the estimates given by the filter. 
Thus two statistical tests have been described to verify this aspect of the algorithm. For the 
purposes of this work, these tests will be of great relevance in the next chapter where a fuzzy 
logic-based adaptive Kalamn filter will be formulated. 
 
 Basically there are three architectures for multisensor data fusion based on the standard 
Kalman filter: centralised, decentralised and federated Kalman filtering. These approaches have 
been described in this chapter. The idea of decentralised processing will be used in chapter 6 
where an hybrid multisensor data fusion architecture will be developed. 
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CHAPTER 5 

ADAPTIVE KALMAN FILTERING 

THROUGH FUZZY LOGIC  

 

 
5.1 Statement of the problem and motivation 
 
The problem of improving the performance of a standard Kalman filter can be divided in two 
parts, a modelling problem and an estimation problem [Mohamed and Schwarz, 1999]. First, the 
modelling problem basically is connected with the development of better models that more 
accurately describe the system in question. In this case the uncertain parameters needed to be 
adjusted can be part of the system model (i. e. state transition matrix) and/or the measurement 
model (i. e. measurement design matrix). On the other hand, the estimation problem is 
concerned with achieving better estimates through the proper use of available process and 
measurement information. In this case the parameters to be adjusted are the statistical process 
noise and measurement noise information though the covariance matrices Rk and/or Qk. 
 

As described in the previous chapter, the standard Kalman filter [Kalman, 1960] formulation 
(from here referred to as SKF) assumes complete a priori knowledge of the process and 
measurement noise statistics, matrices Qk and Rk. Whilst often they are assumed to be constant 
matrices, they may vary with time (index k) [Welch and Bishop, 1995] and, if this is so, then the 
nature of this variation is assumed to be known as well. However, in most practical applications 
these matrices are initially estimated or, in fact, are unknown. Additionally, both the 
measurement noise and process noise are assumed to be uncorrelated zero-mean Gaussian white 
noise sequences, which is reasonable in most cases. The problem here is that the optimality of 
the estimation algorithm in the SKF setting is closely connected to the quality of the a priori 
process noise and measurement noise statistics [Brown and Hwang, 1997] [Mehra, 1970]. It has 
been shown that inadequate initial statistics reduce the precision of the filter estimated states or 
introduce biases to the filter estimates [Sangsuk-Iam and Bullock, 1990]. In fact, incorrect a 
priori information can cause practical divergence of the filter [Fitzgerald, 1971]. 
 

From the above comments it can be argued that using a SKF designed with fixed noise 
statistics in a changing dynamic environment is a major drawback. Thus, there is motivation for 
making the SKF adaptive with respect to the exact environment. The purpose of an adaptive 
Kalman filter formulation (from here referred to as AKF) is to reduce or bound the errors in the 
estimation by modifying or adapting the Kalman filter to the real data. 
 
 In this chapter an on-line adaptive scheme of the Kalman filter employing the principles of 
fuzzy logic is presented. The adaptation is in the sense of adaptively adjusting the noise 
covariance matrices Rk and/or Qk from data as they are obtained. The main advantages derived 
from the use of a fuzzy logic technique, compared to traditional adaptation schemes, are the 
simplicity of the approach, the possibility of including heuristic knowledge about the 
phenomenon under consideration, and the ability to deal with uncertain information. 
 
 The chapter is organized as follows. First a review of the traditional approaches to AKF is 
presented. After that, the fuzzy logic-based AKF approach is outlined. Next, in order to 
demonstrate the effectiveness of this approach, an illustrative example is presented and 
comparisons with respect to the SKF and traditional AKF approaches are given. Finally, 
conclusions are given which summarise the outcome of this chapter. 
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5.2 Traditional adaptive Kalman filter approaches 
 
Since the development of the SKF algorithm [Kalman, 1960] different traditional AKF 
formulations have been devised [Mehra, 1972] [Moghaddamjoo and Kirlin, 1989] [Mohamed 
and Schwarz, 1999] [Jazwinski, 1969]. A common factor in all these approaches is the use of 
the measured data and the filter residual sequence in order to estimate the unknown noise 
statistics. Recently, Mohamed and Schwarz [1999] have classified these procedures into two 
main approaches: multiple-model-based adaptive estimation (MMAE) and innovation-based 
adaptive estimation (IAE). In both techniques the concept of utilising the new information 
available in the residual is used but they differ in their implementation. 
 
 In the SKF algorithm the residual sequence, generally denoted as rk, is the difference 
between the actual measurement zk received by the filter and its predicted value )(ˆ −kk xH : 

 
)ˆ( )(−−= kkkk xHzr             (5.1). 

 
 If all the assumptions for an optimal KF are met, then the residual sequence is a linear 
combination of independent Gaussian random variables [Jazwinski, 1970] [Maybeck, 1979]. As 
a result, the residual sequence is a white Gaussian sequence of mean zero and covariance 

k
T
kkkk RHPHS += −)( . This means that the value of the residual rk cannot be predicted from its 

previous values. For this reason the residual sequence represents the information content in the 
new observation and is considered the most relevant source of information for the filter 
adaptation. In addition, from the SKF algorithm it is known that the Kalman gain is proportional 
to the inverse of Sk. Thus, the residual sequence becomes a useful tool for judging the 
performance of the filter in actual practice. The residual sequence is available to us, as is its 
statistics. By checking whether residuals indeed possess their (theoretical) statistical properties, 
the performance of the Kalman filter can be assessed. 
 

In the MMAE approach, a bank of Kalman filters runs in parallel with different models of 
the statistical filter information matrices, i.e. the process noise covariance matrix Qk and/or the 
measurement noise covariance matrix Rk. In the IAE technique, the adaptation is made directly 
to the statistical information matrices Qk and/or Rk based on the changes observed in the filter 
residual. A brief review of these approaches is given next. 
 
 
5.2.1 Multiple model adaptive estimation algorithm 
 
In the multiple model adaptive estimation (MMAE) approach, originally proposed by Magill 
[1965], a bank of SKFs runs in parallel [Brown and Hwang, 1997] [Caputi, 1995] [Maybeck, 
1989], as shown in figure 5.1. Each SKF runs under a different realisation of the uncertain 
parameter vector α (the process noise covariance matrix Qk and/or the measurement noise 
covariance matrix Rk). 
 
 At each time step, k, the MMAE filter does three things, as follows: 
 

• First, each SKF in the bank of filters computes its own estimate )(ˆ ikx α , which is 

hypothesised assuming that α = αi (for i = 1,2,…, L; L is the total number of SKFs used). 
 

• Second, the system computes the a posteriori probabilities for each of the hypotheses using 
Bayes’ rule as, 
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where p(αi zk) is the probability that the parameter vector, α, equals the i-th vector αi at time 
k given all the past measurements up to and including the current measurement, i.e. z1,…, zk. 
The distribution p(αi) is assumed known, although in general, p(αi) is unknown, and hence a 
uniform distribution is assumed. The unknown parameter vector is assumed to have a finite 
number of possible realisations [Magill, 1965] [Chear et al, 1997], so the conditional 
densities p(zk |αi) in equation (5.2) are computed recursively as: 
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where m is the dimension of the measurement vector, rk is the residual, and Sk its 
corresponding covariance matrix, both calculated in the i-th SKF. Note that the denominator 
in (5.2) is simply the sum of all the computed numerator terms and thus is the scale factor 
required to ensure that all p(αi zk) sum to one. 

 
• Finally, the scheme forms the adaptive optimal estimate of x as a weighted sum of the 

estimates produced by each of the individual SKFs as, 
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where p(αi | zk) is the weighting factor of the i-th SKF. 
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Figure 5.1 Structure of the MMAE filter. 

 
 As measurements evolve with time, the adaptive scheme learns which of the filters is the 
“correct” one and its weighting factor will tend to one, while the weighting factors of the 
remaining “mismatched” SKFs will tend toward zero. The bank of filters accomplishes this by 
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looking at the sums of the weighted squared residuals. The SKF with the smallest sum prevails. 
This is because the filter that has been modelled correctly will produce residuals with near zero 
mean. Of course, unless the bank contains all the possible realisations of the parameter vector, 
the correct filter will not necessarily be the optimal, but only the “best” one from those 
available. 
 
 The described MMAE approach has some drawbacks. Since the unknown parameters are 
assumed to be constant over time, this kind of adaptive filter cannot be readjusted if the 
parameter actually varies slowly with time. Some ad hoc procedures, such as periodic re-
initialisation, have to be used if the scheme is to adapt to a slowly varying parameter situation. 
Another problem in the MMAE approach is the fact that having a bank of SKFs running in 
parallel increases the computational requirements when more SKFs are considered to be in the 
bank. 
 
 Moreover, the main problem of the MMAE approach is that its performance is dependent 
upon a significant difference between the residual characteristics in the correct and mismatched 
filters. To avoid errors in selecting the correct filter, it is important not to add too much 
dynamics pseudonoise during filter tuning, since this tends to mask differences between good 
and bad models [Maybeck, 1989] [Caputi, 1995]. 
 
 
5.2.2 Innovation based adaptive estimation algorithm 
 
The innovation based adaptive estimation (IAE) approach [Mehra, 1970, 1972] [Mohamed and 
Schwardz, 1999] is based on the improvement of the filter performance through the adaptive 
estimation of the filter statistical information, the matrices Rk and/or Qk. The adaptation 
mechanism is based on the whiteness of the filter residual sequence, equation (5.1). In this 
technique the measurement and process noise covariance matrices are adapted directly as 
follows: 
 

T
kkkkk HPHrCR )(ˆˆ −−=           (5.5) 

T
kkkk KrCKQ ˆˆ =             (5.6) 

 
where )(−kP  is the state covariance matrix before update, kK  is the Kalman gain matrix, both 

obtained in the SKF algorithm; and krĈ  is an estimate of the actual covariance matrix of the 

residual sequence. 
 

Having available the residual sequence rk, its actual covariance matrix krĈ  in (5.5) and (5.6) 

is approximated by its sample covariance through averaging inside a sliding estimation window 
of size WS, 
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1ˆ            (5.7) 

 
where 10 +−= WSki  is the first sample inside the estimation window. The window size, WS, is 

chosen empirically to give some statistical smoothing. 
 
 The described adaptive KF algorithm implies that two additional blocks for computing the 
actual residual covariance matrix and both Rk and/or Qk have to be added to the SKF 
formulation, as is shown in figure 5.2. 
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Figure 5.2 Additional blocks in the IAE filter. 

 
The derivation of (5.5) and (5.6) were initially formulated by Mehra [1972] and lately re-

derived by Mohamed [1999] using a maximum likelihood criterion (the reader interested in the 
whole procedure is referred to the cited references). 
 
 There is no method that is completely free of some limitations. In the described IAE care has 
to be taken in the choice of the sliding window size. This is particularly important if both Rk and 
Qk are adapted simultaneously, which may end in a suboptimal solution or even filter 
divergence [Mohamed, 1999]. Also, off-line covariance propagation is not possible within the 
adaptive Kalman filter algorithm because of its dependency on the residual sequence that is in 
turn dependent on the external measurements. 
 
 
5.3 Development of a fuzzy logic-based adaptive Kalman filter  
 
In this section a novel fuzzy logic-based adaptive Kalman filter is developed. First a review of 
the existenting approaches is given. After that, the proposed fuzzy logic-based adaptive Kalman 
filter is described. Three cases are considered: adaptive estimation of the measurement noise 
covariance matrix Rk only, adaptive estimation of the process noise covariance matrix Qk only, 
and adaptive estimation of the measurement and process noise covariance matrices, Rk and Qk, 
simultaneously. Finally, some remarks about the stability of the adjusting procedure are given. 
 
 
5.3.1 Previous works 
 
In the past, some domain specific fuzzy logic-based approaches to AKF have been proposed 
[Lalk, 1994] [Wang and Goh, 1999] [Kobayashi et al, 1995, 1998]. In these works, some 
domain specific performance measures have been considered as input features to a fuzzy 
inference system (FIS) which works in supervisory mode adjusting some of the KF uncertain 
parameters. For example, in Kobayashi, et al [1998], three different FISs were used to adjust the 
matrices Pk, Qk and Rk in order to reduce the effects of errors due to sensor inaccuracies in a 
global positioning system (GPS). Rk is adjusted through a FIS which inputs are based on the 
distance travelled by a vehicle between GPS updates and the geometrical dilution of precision 
(GDOP value) of the receiver as contributors to sensor noise. The covariance matrices Pk and Qk 
are influenced by the estimation performance and hence are adjusted online through another two 
FISs involving such performance metrics as inputs. Thus, approaches such as these can only be 
applied when plant and sensor noise sources are identified and, consequently, their degradation 
or improvement can be monitored to tune the noise covariances online. In most real life 
applications such information is either not available at all or hard to obtain. Therefore, in most 
real situations, measurement residuals are the only available information for adaptation 
purposes. 
 
 Some authors have tried to derive general application AKF approaches. For example, in 
[Abdelnour et al, 1993] and later in [Sasiadek and Wang, 1999] the use of a fuzzy logic 
controlled exponential-weighting scheme for preventing filter divergence is proposed. The idea 
explored there is that of monitoring the whiteness property of the filter residual in order to 
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evaluate the performance of the filter. If the filter deviates from certain bounds, then corrective 
actions are taken through adjusting the exponential weighting factor. This factor increases or 
decreases the noise covariance matrices Rk and Qk. But, as was demonstrated initially by 
Alspach [1972] and reaffirmed by Sangsuk-Iam and Bullock [1990], the whiteness test on the 
residual sequence is insufficient to adequately evaluate the KF performance. Another example is 
the work of Jetto et al [1999] where a covariance matching technique is used to develop a fuzzy 
logic based approach to AKF. Here the FIS is used to adjust a factor, through which, the process 
noise covariance matrix Qk is tuned. However, the adjustment is carried out solely based on the 
size of the filter residual. The idea was to maintain the magnitude of the filter residual neither 
too near nor too far from zero by increasing or reducing the value of Qk. In this case, the 
monitoring scheme used to evaluate the KF performance is rather involved and not easy to 
implement. 
 
 Unlike the above approaches, it is argued that, in this work, the proposed fuzzy logic-based 
AKF scheme is applicable across all domains. In addition, due to the use of fuzzy logic, it is 
easy to understand and implement. The proposed fuzzy logic-based AKF algorithm is described 
next. 
 
 
5.3.2 The proposed fuzzy logic-based adaptive Kalman filter 
 
In this section a fuzzy logic-based adaptive Kalman filter (from here referred to as FL-AKF) is 
presented [Escamilla and Mort, 2000; 2001c]. The adaptation is in the sense of dynamically 
adjusting on-line the measurement noise covariance matrix Rk and/or the process noise 
covariance matrix Qk using a Fuzzy Inference System (FIS). This relaxes the a priori 
measurement noise statistical assumptions and significantly benefits the Kalman filter 
performance if the noise statistics change or evolve with time. The main advantages derived 
from the use of fuzzy techniques, with respect to traditional adaptation schemes, are the 
simplicity of the approach, the possibility of including heuristic knowledge about the 
phenomenon under consideration, and the ability to deal with uncertain information. 
 

The fuzzy logic adaptation scheme is based on the technique known as covariance-matching 
[Mehra, 1972]. The basic idea behind this technique is to make the residual sequence consistent 
with its theoretical covariance value. If a statistical analysis of the residual sequence shows 
discrepancies between its theoretical and its actual covariance, this latter measure being 
approximated through averaging inside a moving window, then adjustments for matrices Rk 
and/or Qk are derived. The adjustments are generated on-line by a FIS based on the knowledge 
of the size of the discrepancy. In this way the size of the discrepancy is reduced and maintained 
at a minimum while at the same time the consistency between the residuals and their statistics is 
preserved. 
 
 
5.3.2.a Adaptive estimation of the measurement noise covariance matrix Rk only 
 
In the context of the SKF algorithm the measurement noise covariance matrix Rk represents the 
accuracy of the measurement instrument. Thus, the enlargement of the covariance matrix Rk for 
measured data means that we trust this measured data less and have more faith in the prediction. 
Assuming that the process noise covariance matrix Qk is completely known, here an algorithm 
employing the principles of fuzzy logic is derived to adaptively adjust the matrix Rk. This is 
achieved in two steps; first, having available the residual sequence rk, defined by Eq. (5.1), its 
theoretical covariance is, 
 

k
T
kkkk RHPHS += −)(            (5.8) 
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obtained in the SKF algorithm. Second, if it is noted that the theoretical covariance of rk has 
discrepancies with its actual value, then a FIS derives adjustments for Rk based on the 
knowledge of the size of this discrepancy. The objective of these adjustments is to correct this 
mismatch as much as possible and, in this way, maintain the consistency between the theoretical 
and actual residual statistics. 
 
 In order to detect and monitor the size of the discrepancy between Sk and its actual value, a 
new variable is defined. This variable is called the Degree of Mismatch (referred to as DoMk), 
 

kkk rCSDoM ˆ−=             (5.9). 

 

where the actual residual covariance krĈ  is estimated by equation (5.7), rewritten here, 
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where 10 +−= WSki  is the first sample inside the sliding estimation window. The window size, 

WS, is chosen empirically to give statistical smoothing. 
 

The basic idea of adaptation used by a FIS to derive adjustments for Rk is as follows. It can 
be deduced from (5.8) that an increment in Rk will increment Sk, and vice versa. Thus, Rk can be 
used to vary Sk in accordance with the value of DoMk in order to reduce the discrepancies 

between Sk and krĈ . Note that all matrices Sk, krĈ , Rk and DoMk have the same dimension m×m 

(recall that m is the dimension of the measurement vector zk). Thus, under the assumption that 
the measurement noise is an uncorrelated and Gaussian noise sequence, Rk is a diagonal matrix 
whose elements are the variances of the individual components of the measurement noise vector 
vk. This means that the diagonal elements of Rk can be adapted in accordance with the diagonal 
elements of DoMk. From here, three general rules of adaptation are defined: 
 

1. If DoMk(i,i) ≅ 0 (this means Sk(i,i) and ),(ˆ iirC k  match almost perfectly) then 

maintain Rk(i,i) unchanged. 

2. If DoMk(i,i) > 0 (this means Sk(i,i) is greater than its actual value ),(ˆ iirC k ) then 

decrease Rk(i,i). 

3. If DoMk(i,i) < 0 (this means Sk(i,i) is smaller than its actual value ),(ˆ iirC k ) then 

increase Rk(i,i). 
 

where Sk(i,i), ),(ˆ iirC k , Rk(i,i) and DoMk(i,i), i=1, 2,…, m; are the diagonal elements of Sk, krĈ , 

Rk and DoMk, respectively. 
 
 Thus, a single-input-single-output (SISO) FIS can be used to sequentially generate the tuning 
or correction factors for the elements in the main diagonal of Rk, and this correction is made in 
this way, 
 

kkk RiiRiiR ∆+= − ),(),( 1           (5.10) 

 
where ∆Rk is the adjusting factor for Rk(i,i). ∆Rk is the FIS output and DoMk = DoMk(i,i) is the 
FIS input. A graphical representation of this adjusting process is shown in figure 5.3. 
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 Following the general rules of adaptation, the FIS can be implemented considering three 
fuzzy sets for DoMk: N = Negative, ZE = Zero, and P = Positive, describing the degree of 
mismatch; and three fuzzy sets for ∆Rk: I = Increase, M = Maintain, and D = Decrease, 
describing the action of correction to be taken. These membership functions are shown in figure 
5.4. There, the fuzzy sets are defined by the parameters a and b, which can be selected in 
accordance with the system under consideration. For example, if there is knowledge about the 
range in which the values in R can vary, then the maximum possible value can be selected as the 
initial value for a. The parameter b, which defines the maximum size of adjustment to the values 
in R, can be selected as a percentage of a, for example the 10% will produce smooth 
adjustments. Obviously, these initial values can be further tuned from simulation. Hence, only 
three fuzzy rules are included in the FIS rule base: 
 

1. If DoMk = N, then ∆Rk = I 
2. If DoMk = ZE, then ∆Rk = M 
3. If DoMk = P, then ∆Rk = D. 

 
 Finally, using the compositional rule of inference sum-prod and the center of area (COA) 
defuzzification method, Rk is adjusted in the FL-AKF as given by (5.10). 
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Figure 5.3 Graphical representation of the sequential algorithm to adjust Rk using a FIS. 

 

Figure 5.4 Membership functions for DoMk and ∆Rk. 
 
 From experimentation and simulation of many systems it was found that the fuzzy sets 
defined in the way shown in figure 5.4 give good results in most cases. However, if necessary, 
the shapes and number of fuzzy sets in the membership functions can be modified to fit the 
requirements of the problem under consideration. This is possible thanks to the use of the fuzzy 
logic technique which allows capturing the knowledge that the designer has over the system 
under consideration. 
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 It is necessary to remark here that, as alternatives to the sequential implementation, the 
adaptation algorithm can be implemented in two additional ways. In the first alternative, m 
parallel SISO FISs can be considered in order to adapt at once all the elements in the main 
diagonal of Rk, as it is shown graphically in figure 5.5(a). In the second alternative, a multiple-
input-multiple-output (MIMO) FIS with 3×m rules (a group of three rules for each element in 
the main diagonal is needed) in the rule base can be used to adjust at once all the elements in the 
main diagonal of Rk. This last alternative is represented graphically in figure 5.5(b). The use of 
any of the three ways of implementation: sequential, parallel or MIMO, depends on the 
computational resources and the problem under consideration. 
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Figure 5.5 Graphical representations of the alternatives for implementing the algorithm to adjust 
Rk. (a) m parallel SISO FISs implementation. (b) MIMO FIS implementation. 
 
 Similarly, from experimentation it was found that a good size for the moving window in 
(5.7) is WS = 15. 

(a) 

(b) 
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5.3.2.b Adaptive estimation of the process noise covariance matrix Qk only 
 
The process noise covariance matrix Qk represents the uncertainty in the process model. An 
increase in the covariance matrix Qk means that we have less faith in the process model and 
have more confidence in the measurement. Assuming that the measurement noise covariance 
matrix Rk is completely known, here an algorithm employing the principles of fuzzy logic is 
derived to adaptively adjust the matrix Qk. First, note that Eq. (5.8) can be rewritten as: 
 

k
T
kk

T
kkkkk RHQPHS ++ΦΦ= −−+−− )( )( 1111          (5.11). 

 
from the SKF algorithm. It can be deduced from Eq. (5.11) that the same basic idea of 
adaptation used by a FIS to derive adjustments for Rk can be used by another FIS to derive 
adjustments for Qk. However, if the state and measurement vectors of the system under 
consideration have not the same dimension, then it will result that the matrices Sk, krĈ , and 

DoMk will have dimension m×m, while the matrix Qk has dimension n×n. This means that the 
previous adjusting procedure cannot be used in this case. 
 
 In this case what is needed is to project the problem from the measurement space with 
dimension m, to the state space with dimension n. This projection can be done by including the 
Kalman gain in the calculation of DoMk, this is: 
 

T
kkk

T
kkkk KrCKKSKDoMK ˆ−=               (5.12a) 
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kkk
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T
kkkkk KrCKKRHQPHK ˆ])([ )( −++ΦΦ= −−+−− 1111   (5.12b) 

 
where the new variable DoMKk, of dimension n×n, is referred to as the Degree of Mismatch 

through the Kalman gain Kk, Sk is the theoretical covariance of the residual sequence, and krĈ  is 

its estimated value given by Eq. (5.7). The reason for including Kk in (5.12) is basically because 
it is a suitable matrix, it has dimension n×m, and because it is available from the SKF algorithm. 
Furthermore, if (5.12) is compared with (5.6), then it is realised that the factor T

kkk KrCK ˆ  is the 

estimation of the actual value of the process noise covariance matrix, kQ̂  [Mohamed, 1999]. 

Thus, (5.12) can be interpreted as the difference between the ‘theoretical’ value of Qk and its 
actual approximated value. Hence, it can be inferred from Eq. (5.12b) that a variation in Qk will 
affect the value of Sk+1. If Qk is increased then Sk+1 will be increased, and vice versa. This means 

that by augmenting or diminishing the value of Qk the mismatch between Sk and krĈ , detected 

through DoMKk, can be reduced. Therefore, under the assumption that the process noise is an 
uncorrelated and Gaussian noise sequence, Qk is a diagonal matrix whose elements are the 
variances of the individual components of the process noise vector wk. This means that the 
diagonal elements of Qk can be adapted in accordance with the diagonal elements of DoMKk. 
From here, three general rules of adaptation are derived: 
 

1. If DoMKk(i,i) ≅ 0 (this means Sk(i,i) and ),(ˆ iirC k  match almost perfectly) then 

maintain Qk(i,i) unchanged. 

2. If DoMKk(i,i) > 0 (this means Sk(i,i) is greater than its actual value ),(ˆ iirC k ) then 

decrease Qk(i,i). 
3. If DoMKk(i,i) < 0 (this means Sk(i,i) is smaller than its actual value ),(ˆ iirC k ) then 

increase Qk(i,i). 
 

where Qk(i,i) and DoMKk(i,i), i=1, 2,…,n; are the diagonal elements of Qk and DoMKk, 
respectively. 
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 Thus, a SISO FIS can be used to sequentially generate the tuning or correction factors for the 
elements in the main diagonal of Qk, and this correction is made in this way, 
 

kkk QiiQiiQ ∆+= − ),(),( 1           (5.13) 

 
where ∆Qk is the correction factor for Qk(i,i). ∆Qk is the FIS output and DoMKk = DoMKk(i,i) is 
the FIS input. A graphical representation of this adjusting process is shown in figure 5.6. Here it 
is necessary to remark that in this case the adaptation will be reflected in the next time step 
(k+1). This is because in fact Qk-1 is the matrix that is affecting Sk and not Qk. 
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Figure 5.6 Graphical representation of the sequential algorithm to adjust Qk using a FIS based 
on DoMKk. 
 
 Following the general rules of adaptation, the FIS can be implemented considering three 
fuzzy sets for DoMKk: N = Negative, ZE = Zero, and P = Positive, describing the degree of 
mismatch though Kk; and three fuzzy sets for ∆Qk: I = Increase, M = Maintain, and D = 
Decrease, describing the action of correction to be taken. These membership functions are 
shown in figure 5.7. There, the fuzzy sets are defined by the parameters c and d, which can be 
selected in accordance with the system under consideration. For example, similar to the case for 
Rk, if the range in which the elements of Qk can vary is known, then the maximum possible 
value can be selected as the initial value of parameter c. d can be selected as a percentage of c, 
e.g. 10%. Further tuning of these parameters can be performed based on simulation results. 
Hence, only three fuzzy rules are included in the FIS rule base: 
 

1. If DoMKk = N, then ∆Qk = I 
2. If DoMKk = ZE, then ∆Qk = M 
3. If DoMKk = P, then ∆Qk = D. 

 

 
Figure 5.7 Membership functions for DoMKk and ∆Qk. 
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 Finally, using the compositional rule of inference sum-prod and the COA defuzzification 
method, Qk is adjusted in the FL-AKF as given by Eq. (5.13). 
 
 Here also from experimentation was found that the shapes and distribution of the fuzzy sets 
shown in figure 5.7 give good results in most cases. Nevertheless, if required the shapes and 
number of fuzzy sets can be modified to fit the needs of the problem under consideration. 
 
 In a similar way as for Rk, as alternatives to the sequential implementation, the adaptation 
algorithm for Qk can be implemented in two additional ways. In the first alternative, n parallel 
SISO FISs can be considered in order to adapt simultaneously all the elements in the main 
diagonal of Qk, as it is shown graphically in figure 5.8(a). In the second alternative, a MIMO 
FIS with 3×n rules (a group of three rules for each element in the main diagonal is required) in 
the rule base can be used to adjust simultaneously all the elements in the main diagonal of Qk. 
This alternative is represented graphically in figure 5.8(b). 
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Figure 5.8 Graphical representations of the alternatives for implementing the algorithm to adjust 
Qk. (a) n parallel SISO FISs implementation. (b) MIMO FIS implementation. 
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5.3.2.c Adaptive estimation of the measurement and process noise covariance matrices, Rk 
and Qk, simultaneously 

 
It is worth nothing here that, because the same scheme for adapting R-only and Q-only is used, 
in the case of simultaneously adapting Rk and Qk numerical difficulties can be encountered in 
real data. Due to the approximations made, care has to be taken in the choice of the adaptive 
filter parameters such as the moving average window size. 
 
 In general, the simultaneous adaptation of Rk and Qk may lead to an unstable and divergent 
filter estimate and should, therefore, be avoided. 
 
 
5.3.3 Stability of the adjusting procedure 
 
In the FL-AKF algorithm the measurement noise covariance matrix Rk (or the noise covariance 
matrix Qk) is changed in such a way that the statistics of the filter’s residuals approach that of 
the optimum Kalman filter. This procedure originates a kind of stabilising negative feedback in 
the statistics of the residual sequence of the filter. Although the stability formulation of this 
method is not readily accessible, due to the use of fuzzy logic techniques, it can be easily 
understood by the arguments given next. 
 
 The role of matrices Rk and Qk in the SKF setting is to adjust the Kalman gain in such a way 
that it controls the filter bandwidth as the state and the measurement errors vary 
[Moghaddamjoo and Kirlin, 1989]. At steady state the filter gain remains constant, as matrices 
Rk and Qk are kept constant, regardless of changes in the system dynamics or the update 
measurement quality. This problem is solved in the FL-AKF by adjusting the values of Rk and 
Qk in an adaptive manner. 
 
 If only Rk is adapted (or only Qk is adapted), then it can be argued that in this method Rk (or 
Qk) is the only unknown parameter which controls the Kalman gain, Qk (or Rk) is assumed to be 
known. Let us assume that, due to some disturbances (i.e. unknown sudden changes in vk and/or 
wk), the optimal (theoretical) covariance of the residual sequence becomes less than its actual 
(estimated) value. The resultant residual sequence will then become inconsistent with its 
covariance. Detection of this inconsistency through DoMk (or DoMKk) will demand an 
increment in Rk (or Qk), which will, in turn, increase the theoretical value of the residual 
covariance (Sk changes in the direction which approaches its actual value). On the other hand, if 
the optimal (theoretical) covariance of the residual sequence is larger than its actual value, 
detection of this inconsistency through DoMk (or DoMKk) will demand a decrement in Rk (or 
Qk). Decreasing Rk (or Qk) will then decrease the theoretical value of the residual covariance (Sk 
changes again in the direction which approaches its actual value). This correction continues 
until Sk reaches a quasi steady-state in the vicinity of its actual value. Therefore, deviations of Sk 
from its actual value, due to any changes in the actual noise sequences, not only are controlled 
by Rk (or Qk), but also will be reduced in time. This behaviour can be referred to as a negative 
feedback which has a stabilising role in the overall performance of the fuzzy logic-based 
adaptation algorithm. 
 
 
5.3.4 Illustrative example 
 
To demonstrate the effectiveness and accuracy of the developed FL-AKF, several experiments 
have been carried out and results are presented in this section. These experiments were 
developed under the MATLAB/SIMULINK modelling environment. 
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 Consider the following dynamic system which models an object moving in a circular 
trajectory at constant speed with process noise and measurement noise [Zhu, 1999]: 
 +Φ= +
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where Φ is a constant rotational matrix, and H is a constant measurement matrix, given by, 
 −

=Φ
)300/2cos()300/2sin(

)300/2sin()300/2cos(

ππ
ππ

       (5.16) −
=

7071.07071.0

7071.07071.0
H            (5.17). 

 
 As the speed of the object is constant, its state vector is simply its position in the plane, a 
two-element vector: xk=[xk yk]

T. With initial state x0=[100 0]T and absence of noise the object 
will move in a circle of radius 100 about the origin of the coordinate space. 
 
 The initial conditions for Kalman filtering are defined as: Tx ][ˆ )( 01000 =− , 

1
30 10 −

− += ].[)( IHHP T . The process and measurement noise vectors wk and vk are 

uncorrelated zero-mean Gaussian white noise sequences with covariance matrices Qk and Rk 
specified in each particular simulation. 
 
 The FISs used to adjust Rk and Qk in the FL-AKF are specified in sections 5.3.2.a and 
5.3.2.b. The parameters used to define the fuzzy membership functions are presented in table 
5.1. The size of the sliding window in Eq. (5.7) was selected as 15. 
 

Table 5.1 Parameters for the FISs used to adjust Rk and Qk 
 

Parameter FIS used to 
adjust R k 

FIS used to 
adjust Q k 

a 5  
b 0.3  
c  5 
d  0.3 

  
 
 Simulation 1: The purpose of this simulation is to investigate the performance of the 
developed FL-AKF under correct initial noise statistics. The performance of the FL-AKF is 
compared with those of a SKF, a traditional AKF using the IAE algorithm (referred to as 
TAKF-IAE and described in section 5.2.1), and a traditional AKF using the MMAE algorithm 
(referred to as TAKF-MMAE and described in section 5.2.2). 
 
 The system under consideration was simulated for 300 sec with a sample time T=0.5 sec. 
This means that the object completes two circles. The actual process and measurement noise 
covariance matrices are constant matrices given as: 
 =

10

01
Q            (5.18) 
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10

02
R               (5.19). 

 
 To compare performances, the following mean squared error (MSE) measures were used: 
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where xk is the actual value of the position in the X axis and kx̂  its estimated value; yk is the 

actual value of the position in the Y axis and kŷ  its estimated value; xk is the actual value of the 

state vector and kx̂  is its estimated value; n is the number of samples. 

 
 The consistency of the filter in each case is tested using the time-averaged normalised 
innovation squared (TANIS) measure [Bar-Shalom and Xiao-Rong, 1993], defined as: 
 

∑
=

−=
n

k
kk

T
kr rSr

n 1

11ε           (5.23). 

 
 If the residuals are white, zero mean, and consistent with the calculated covariance Sk, then 

mr =ε , where m is the dimension of the measurement vector zk. 
 
 Results: Table 5.2 shows the Kalman gain matrix (K), residual covariance matrix (S), MSE 
measures, and TANIS values obtained for each case together with the initial values given to Rk 
and Qk (referred to as R0 and Q0, which in this case are the actual correct values). Note that the 
results for the SKF case are optimal due to the use of the correct noise statistics. For the FL-
AKF and the TAKF-IAE three results are presented, when Rk is adjusted only (R-only), when Qk 
is adjusted only (Q-only) and when both Rk and Qk are adjusted (R&Q). In the TAKF-MMAE 
four SKFs are considered in the bank of filters where one of them has the correct noise statistics 
values and the others are incorrectly specified, as indicated in the last two columns of the table. 
Obviously, in both the FL-AKF and TAKF-IAE approaches, the value of Qk and/or Rk is 
dynamically tuned. For this reason, the values of K and S change as time progresses, and thus in 
Table 5.2 the values shown for K and S are those obtained averaging over all the samples. In the 
SKF case the values shown for K and S are those obtained once the system has reached the 
steady-state. In the TAKF-MMAE case the values presented for K and S are those of the SKF 
which the algorithm has selected as the best one. 
 
 To have a clearer picture of the differences, in Table 5.3 the percentage of degradation in 
performance of the FL-AKF, the TAKF-IAE, and the TAKF-MMAE algorithms with respect to 
the optimal SKF (considering the optimal MSE measure and TANIS value), which has the 
correct values of noise statistics, are presented. From Table 5.3 it can be noted that under correct 
noise statistics the FL-AKF performance degrades on average by only 4%, with respect to the 
optimal SKF. While the TAKF-IAE degrades on average by 19.4%, considering the R-only and 
the Q-only cases, because for the R&Q case, a divergence of the filter is observed. Since the 
TAKF-MMAE algorithm quickly converges to the optimal SKF, which is part of the bank of 
filters, the degradation in this last case is imperceptible. However, if the SKF with the correct 
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noise statistics is not in the bank of filters, then the degradation could be very severe, as will be 
shown in simulation 2. 
 

Table 5.2 Performance under correct noise statistics: summary of results, simulation 1 
Filter Adaptation K S MSEx MSEy MSE TANIS R0 Q0 

SKF Optimal 
 

0.3542   -0.4384 
0.3529    0.4357 

4.0         -0.0099 
-0.0099   2.618 

0.7551 0.8532 1.608 2.002 R Q 

R-only 0.3717   -0.4329 
0.371      0.4307 

3.74       -0.0068 
-0.0068   2.78 

0.7973 0.8747 1.672 2.144 R Q 

Q-only 0.3428   -0.4232 
0.3506    0.4388 

3.964      0.0501 
0.0501    2.593 

0.7576 0.878 1.636 2.061 R Q 

FL-AKF 

R&Q 0.3308   -0.3826 
0.3419    0.4007 

3.725      0.0538 
0.0538    2.795 

0.799 0.9122 1.711 2.175 R Q 

R-only 0.39      -0.448 
0.377     0.4311 

3.904      0.0739 
0.0739    2.969 

0.9273 1.028 1.956 2.018 R Q 

Q-only 0.2975   -0.4207 
0.3011    0.4278 

3.82       -0.0065 
-0.0065   2.854 

0.8567 1.028 1.884 2.331 R Q 

TAKF- 
IAE 

R&Q 0.6023   -0.6058 
0.3008   -0.0738 

70.03       45.43 
45.43       40.49 

8.086 103.2 111.3 2.063 R Q 

SKF 1    5R 5Q 
SKF 2    2.5R 2.5Q 
SKF 3 0.3542   -0.4384 

0.3529    0.4357 
4.0         -0.0099 
-0.0099   2.618 

2.002 R Q 

TAKF- 
MMAE 

SKF 4   

 
 
0.7549 

 
 
0.8531 

 
 
1.608 

 0.5R 0.5Q 

 
Table 5.3 Percentage in degradation with respect to the optimal SKF: Simulation 1 

Filter Adaptation % of degradation 
in performance 

% of deviation 
TANIS test 

R-only 3.98 +7.09 
Q-only 1.74 +2.95 

FL-AKF 

R&Q 6.4 +8.64 
R-only 21.64 +0.8 
Q-only 17.16 +16.43 

TAKF-IAE 

R&Q 6821.64 +3.05 
TAKF-MMAE Correct noise 

statistics in the 
bank 

 
0 

 
0 

 
 In addition, the last column of table 5.3 shows the percentage of deviation (positive or 
negative) of the TANIS values with respect to their optimal value, 2; the greater the deviation, 
the greater the inconsistency of the filter. Note that in order to have a good judgement of the 
performances, not only it is necessary to look at the MSE values, but it is also important to look 
at the TANIS values too. Both must be near to their optimal values to assess that the filter is 
working correctly. 
 
 For a graphical view of results, in figure 5.9(a) the actual and estimated trajectories of the 
moving object obtained by the FL-AKF, R-only adaptation, are presented. Note that only a 
slightly difference in trajectories can be seen. In figure 5.9(b) the MSE for the estimated state 
vector is shown as a function of time. In figure 5.10(a) the adaptation of the diagonal elements 
of matrix Rk can be observed, this is a typical realisation. Note how these values reach a quasi 
steady-state very near to their actual values. In figure 5.10(b) the diagonal elements of matrix 
DoMk are shown. Note how these values are well maintained, with a slight oscillation, near the 
value of zero. Additionally, figure 5.11(a) presents the variation observed in the elements of the 
Kalman gain matrix, while figure 5.11(b) shows the variation of the elements in the residual 
covariance matrix, both obtained by the FL-AKF, R-only case. 
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Figure 5.9(a) Actual and estimated trajectories. (b) MSE on the estimated state vector; 
simulation 1, FL-AKF, R-only case. 
 

 
Figure 5.10(a) Estimated diagonal elements of the measurement noise covariance matrix Rk. (b) 
Diagonal elements of matrix DoMk; simulation 1, FL-AKF, R-only case. 
 

(a) 

(b) 

(a) (b) 
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Figure 5.11(a) Elements of the Kalman gain matrix. (b) Elements of the residual covariance 
matrix; simulation 2, FL-AKF, R-only case. 
 
 Simulation 2: The purpose of this simulation is to investigate the performance of the FL-
AKF under incorrect initial noise statistics. The performance of the proposed FL-AKF is 
compared with that of a SKF, a TAKF-IAE algorithm, and a TAKF-MMAE algorithm. 
 
 The system described by Eqs. (5.14) to (5.17) was simulated for 300 sec with a sample time 
T=0.5 sec. As in simulation 1, the actual process and measurement noise covariance matrices 
are constant matrices defined by Eq. (5.18) and Eq. (5.19). However, in this case the initial 
values for R and Q (R0 and Q0) are incorrectly specified, as is pointed out in the last two 
columns of Table 5.4. For example R0=5R means that the initial value of R is five times bigger 
than its correct value. 
 
 Results: Table 5.4 shows the Kalman gain matrix, residual covariance matrix, MSE 
measures, and TANIS values obtained for each case together with the values given to R0 and Q0. 
For the SKF case three results are presented, when only R0 is incorrect, when only Q0 is 
incorrect, and when both R0 and Q0 are incorrect. For the FL-AKF and the TAKF-IAE three 
results are presented, when only Rk is adjusted (R-only), when only Qk is adjusted (Q-only) and 
when both Rk and Qk are adjusted (R&Q), with corresponding initial noise statistics given in the 
last two columns of the table. In the TAKF-MMAE case, four SKFs are considered in the bank 
of filters where none of them has the correct noise statistics, as is seen in the last two columns of 
the table. In the FL-AKF and TAKF-IAE cases the values of K and S change as time progress, 
thus in Table 5.4 the values shown for K and S are those obtained by averaging over all the 
samples. In the SKF case the values shown for K and S are those obtained once the system has 
reached the steady-state. In the TAKF-MMAE case the values presented for K and S are those 
of the SKF which the algorithm has selected as the best. 
 
 In Table 5.5 the percentage of degradation in performance of the SKF, the FL-AKF, the 
TAKF-IAE, and the TAKF-MMAE algorithms with respect to the optimal SKF (considering the 
optimal MSE measure and TANIS value), is presented. It can be seen from Table 5.5 that the 
performance of the SKF with incorrect initial noise statistics is severely affected. This is evident 
when R0 or Q0 is incorrect. However, note that when both matrices are incorrect, the value of K 
and the MSE measures are identical to those of the optimal filter; but the values of S and TANIS 
are very far from the optimal ones. This reveals a big inconsistency of the filter. This is the 
reason why it is argued here that the evaluation of the filter performance should be made based 
on both MSE and TANIS measures. This affirmation agrees with the results obtained by 
Alspach in his early work [1972], where it is shown that the same steady-state Kalman gain can 
be obtained with different values of R and Q. However, a given value of S and K is obtained 
with only a specific value of R and Q. This is supported by the results obtained with the FL-

(a) 

(b) 
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AKF. Note in Table 5.4 that the values of K and S are very near to the optimal ones in the three 
cases considered. Thus, thanks to the fuzzy logic-based adaptation, good levels of performance 
and filter consistency are maintained, as is shown in Table 5.5. From this table it is obvious that 
the only algorithm capable of maintaining good performance as well as consistency, when initial 
incorrect noise statistics are given, is the proposed FL-AKF. Note, as well, how the performance 
of the TAKF-MMAE algorithm is severely affected when the SKF with correct noise statistics 
is not in the bank of filters. Moreover, this last algorithm cannot do any better than to converge 
to the filter with the best performance from the filters in the bank, which could be one that is 
very far from the optimal. 
 

Table 5.4 Performance under incorrect noise statistics: summary of results, simulation 2 
Filter Adaptation K S MSEx MSEy MSE TANIS R0 Q0 

None 0.1921   -0.2558 
0.1897    0.2511 

13.7       -0.0357 
-0.0357   7.793 

0.9995 1.313 2.312 0.7001 5R Q 

None 0.5415   -0.6043 
0.5412    0.6036 

8.531     -0.0147 
-0.0147   6.854 

1.041 1.046 2.087 0.9215 R 5Q 

SKF 

None 0.3542   -0.4384 
0.3529    0.4357 

20.0       -0.0494 
-0.0494   13.09 

0.7549 0.8533 1.608 0.4005 5R 5Q 

R-only 0.3635   -0.4221 
0.3627    0.4197 

4.09       -0.0078 
-0.0078   2.923 

0.7814 0.8898 1.671 2.043 5R Q 

Q-only 0.3581   -0.4387 
0.3644    0.4513 

4.192      0.0206 
0.0206    2.8 

0.7872 0.8609 1.648 1.958 R 5Q 

FL-AKF 

R&Q 0.3851   -0.4445 
0.3972    0.4682 

4.22        0.0835 
0.0835    3.005 

0.7958 0.8908 1.687 2.073 5R 5Q 

R-only 0.0356   -0.0229 
-0.0035   0.0265 

8.82E4    -1878 
-1878     9.23E4 

9.22E4 8.97E4 1.82E5 3.648 5R Q 

Q-only 0.3036   -0.426 
0.3069    0.4326 

3.963     -0.0159 
-0.0159   2.969 

0.8777 1.023 1.901 2.295 R 5Q 

TAKF- 
IAE 

R&Q 0.9821   -1.041 
0.9809   -1.067 

8.755     -0.7715 
-0.7715     7.541 

6.277 4.785 11.06 2.069 5R 5Q 

SKF 1    5R Q 
SKF 2 0.5415   -0.6043 

0.5412    0.6036 
8.531     -0.0147 
-0.0147   6.854 

0.9215 R 5Q 

SKF 3    0.2R 0.2Q 

TAKF- 
MMAE 

SKF 4   

 
1.03 

 
1.043 

 
2.073 

 5R 5Q 

 
Table 5.5 Percentage in degradation with respect to the optimal SKF: Simulation 2 

Filter Adaptation % of degradation 
in performance 

% of deviation 
TANIS test 

None, incorrect R0 43.78 -65.03 
None, incorrect Q0 29.79 -53.97 

SKF 

None, incorrect R0 and Q0 0 -79.99 
R-only 3.92 +2.05 
Q-only 2.49 -2.2 

FL-AKF 

R&Q 4.91 +3.55 
R-only Diverge +82.22 
Q-only 18.22 +14.63 

TAKF-IAE 

R&Q 587.8 +3.35 
TAKF-MMAE Incorrect noise 

statistics in the bank 
28.92 -53.97 

 
 In order to appreciate the adaptation carried out in the FL-AKF, R-only case, in figure 
5.12(a) the estimated diagonal elements of the measurement noise covariance matrix Rk are 
shown. Note how these values quickly converge to their actual values where they then are 
maintained with a slight oscillation. In figure 5.12(b) the diagonal elements of matrix DoMk are 
shown and we see how these values are maintained near to zero. In figures 5.13(a) and 5.13(b) 
the elements of the Kalman gain matrix and the residual covariance matrix are shown, 
respectively. Here it can be appreciated how these values converge to quasi steady-states near to 
their optimal values. 
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Figure 5.12(a) Estimated diagonal elements of the measurement noise covariance matrix Rk. (b) 
Diagonal elements of matrix DoMk; simulation 2, FL-AKF, R-only case. 
 

 
Figure 5.13(a) Elements of the Kalman gain matrix. (b) Elements of the residual covariance 
matrix; simulation 2, FL-AKF, R-only case. 
 
 In order to examine the adaptation performed in the FL-AKF, Q-only case, in figure 5.14(a) 
the estimated diagonal elements of the process noise covariance matrix Qk are shown and they 
quickly converge to their actual values. In figure 5.14(b) the diagonal elements of matrix 
DoMKk are shown. It can be seen that these values are maintained very near to zero. In figures 
5.15(a) and 5.15(b) the elements of the Kalman gain matrix and the residual covariance matrix, 
respectively, are shown. It can be appreciated how these values converge to values very near to 
their optimal. 
 
 Simulation 3: The purpose of this simulation is to investigate the performance of the 
developed FL-AKF under non-stationary noise profiles. The performance of the FL-AKF is 
compared with those of a SKF, a TAKF-IAE algorithm, and a TAKF-MMAE algorithm. The 
measurement noise profiles used are shown in figure 5.16; while the process noise profiles used 
are shown in figure 5.17. 
 
 The system under consideration was simulated for 300 sec with a sample time T=0.5 sec. 
The actual process and measurement noise covariance matrices are assumed as unknown. 
However, R0 and Q0 are specified as shown in Table 5.7; recall that Q and R are defined by 
(5.18) and (5.19), respectively. Three experiments for each filter were carried out as is detailed 
in Table 5.6. 
 

(a) (b) 

(a) (b) 
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Figure 5.14(a) Estimated diagonal elements of the measurement noise covariance matrix Qk. (b) 
Diagonal elements of matrix DoMKk; simulation 2, FL-AKF, Q-only case. 
 

 
Figure 5.15(a) Elements of the Kalman gain matrix. (b) Elements of the residual covariance 
matrix; simulation 2, FL-AKF, Q-only case. 
 

Table 5.6 Experiments carried out in simulation 3 
 

 
Experiment 

Measurement 
noise Profile 

Process 
noise profile 

Covariance matrices 
Rk                     Qk 

Exp. 1 non-stationary =
2

1

k

k
k

v

v
v  

Stationary 
 

Qk = Q 

 
Adapted 

 
Constant 

Exp. 2 Stationary 
 

Rk = R 

non-stationary =
2

1

k

k
k

w

w
w  

 
Constant 

 
Adapted 

Exp. 3 non-stationary =
2

1

k

k
k

v

v
v  

non-stationary =
2

1

k

k
k

w

w
w  

 
Adapted 

 
Adapted 

  
 
 Results: Table 5.7 shows the MSE measures and TANIS values obtained for each case 
together with the values given to R0 and Q0, and the experiment performed. Note that the best 
results are those obtained with the proposed FL-AKF. This is thanks to the adaptation carried 
out, where matrices R and/or Q are adapted in such a way as to reflect, as closely as possible, 
the actual statistics of the noise profiles. 
 
 

(a) (b) 

(a) 

(b) 
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Figure 5.16 Measurement noise profiles used in simulation 3. 

 

 
Figure 5.17 Process noise profiles used in simulation 3. 

 
Table 5.7 Performance under non-stationary noise profiles: summary of results, simulation 3 

Filter Adaptation MSEx MSEy MSE TANIS R0 Q0 Experiment 
_ 1.085 1.386 2.47 3.257 R Q Exp. 1 
_ 0.6544 0.6424 1.297 1.645 R Q Exp. 2 

SKF 

_ 0.7536 1.174 1.927 2.514 R Q Exp. 3 
R-only 0.8807 1.165 2.045 2.173 R Q Exp. 1 
Q-only 0.5934 0.5478 1.141 1.997 R Q Exp. 2 

FL-AKF 

R&Q 0.6265 1.185 1.812 2.117 R Q Exp. 3 
R-only 1.12E7 1.29E7 2.4E7 3.954 R Q Exp. 1 
Q-only 0.7818 0.7013 1.483 2.228 R Q Exp. 2 

TAKF-IAE 

R&Q 21.97 23.62 45.59 2.148 R Q Exp. 3 
SKF 1 1.048 5R Q 
SKF 2 1.516 R 5Q 
SKF 3  0.2R 0.2Q 

TAKF-MMAE 

SKF 4 

 
1.26 

 
1.816 

 
3.076 

 5R 5Q 

 
Exp. 1 

SKF 1  5R Q 
SKF 2 0.8032 R 5Q 
SKF 3  0.2R 0.2Q 

TAKF-MMAE 

SKF 4 

 
1.01 

 
0.9934 

 
2.004 

 5R 5Q 

 
Exp. 2 

SKF 1 0.7462 5R Q 
SKF 2 1.212 R 5Q 
SKF 3  0.2R 0.2Q 

TAKF-MMAE 

SKF 4 

 
1.015 

 
1.896 

 
2.911 

 5R 5Q 

 
Exp. 3 

 
 In order to have a clearer picture of the adaptation being carried out, plots are presented 
corresponding to the R-only case under non-stationary measurement noise profiles. Figure 
5.18(a) shows the diagonal estimated elements of matrix Rk and figure 5.18(b) shows the 
diagonal elements of matrix DoMk. The diagonal elements of Rk are dynamically adjusted to fit 
as well as possible the observed measurement noise profiles. The dynamic in the noise profiles 
is reflected in the residual sequences as can be seen in figure 5.19 where the residual sequences 
are shown with their respective 2σ bounds. Finally, in figure 5.20(a) the elements of the Kalman 
gain matrix are shown; while in figure 5.20(b) the elements of the residual covariance matrix are 
shown, it can be seen how the elements of these matrices are dynamically adjusted. 
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Figure 5.18(a) Diagonal estimated elements of matrix Rk. (b) Diagonal elements of matrix 
DoMk; Simulation 3, R-only case, non stationary measurement noise profiles used. 
 

 
Figure 5.19 Residual sequences and their respective 2σ bounds; Simulation 3, R-only case, non 
stationary measurement noise profiles used. 
 

 
Figure 5.20(a) Elements of the Kalman gain matrix. (b) Elements of the residual covariance 
matrix; Simulation 3, R-only case, non stationary measurement noise profiles used. 
 
 
 

(a) 

(b) 

(a) (b) 

(a) (b) 
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5.4 Summary 
 
In this chapter a fuzzy logic-based adaptive Kalman filter (FL-AKF) has been developed. The 
adaptation is in the sense of dynamically adjusting the measurement noise covariance matrix R 
and/or the process noise covariance matrix Q from data as they are obtained. This method uses 
the covariance-matching technique to determine if adjustments to R and/or Q are needed. An 
example showing the efficiency of this method has been presented. We note that superior 
performances were obtained with the FL-AKF than those obtained with a SKF and two different 
traditional adaptive Kalman filter approaches. 
 

The role of the matrices R and Q in the SKF setting is to adjust the Kalman gain in such a 
way that it controls the filter bandwidth as the state and measurement errors vary. A major 
drawback of the SKF formulation is that at steady state its bandwidth and Kalman gain remain 
constant regardless of the changes in the system dynamics or the updated measurement quality. 
This is due to its fixed constant matrices R and Q. Conversely, the bandwidth and Kalman gain 
in a FL-AKF keeps changing as long as the system dynamics and statistics of the noise under 
which it operates change, as was particularly shown in simulation 3 in the previous section. This 
dynamic adaptive property of the FL-AKF is a direct result of adapting R and/or Q. 
 

Another main characteristic of the developed FL-AKF approach is that the filter a priori 
statistical information is of secondary importance because it is estimated within the algorithm 
itself, as was shown in simulation 2. It must be remembered that the quality of these a priori 
noise statistics is of great importance in the SKF formulation. 
 

The size of the sliding window over which the actual covariance of the residual is estimated 
has an impact on the adaptive filter performance. The smaller the window size, the faster the 
changes that can be captured by the FL-AKF. From numerous simulations not presented here, it 
was found that a good empirical value for the size of the sliding window is between 10 to 20 
samples. 
 
 The numerical complexity added to the SKF in order to build a FL-AKF is marginal. From 
the simulations carried out it was observed that using only three simple fuzzy sets (triangular 
membership functions) and only three fuzzy rules for each element in the main diagonal of Q 
and/or R are sufficient to ensure good adaptation. 
 
 In next chapters the developed FL-AKF will be the base over which novel hybrid adaptive 
MSDF architectures are built. The main objective to achieve there will be that these MSDF 
architectures inherit the adaptive features of the proposed FL-AKF approach. 
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CHAPTER 6 

HYBRID KALMAN FILTER-FUZZY LOGIC ADAPTIVE 

MULTI-SENSOR DATA FUSION ARCHITECTURES 
 

 
6.1 Introduction 
 
The Kalman filter-based MSDF architectures presented in chapter 4 require exact knowledge 
about the sensed environment and about the sensors. However, in real applications, only certain 
information is known about the sensed environment and there is no such thing as a perfect 
sensor. Therefore, there is scope for the development of more robust Kalman filter-based MSDF 
architectures. These architectures should be capable of adaptation to changes in the sensed 
environment and also deal with imperfect sensors. 
 

In the MSDF literature only some approaches to adaptive MSDF are reported. From these, 
there are those based on the well-established Kalman filtering methods [Hong, 1991] [Zhang et 
al, 2002], and those based on recent ideas coming from soft computing technology [Kuo and 
Cohen, 1999] [Kobayashi et al, 1998]. However, little work has been done in exploring 
architectures that consider the combination of both these approaches. In this chapter, novel 
adaptive MSDF architectures, referred to as hybrid Kalman filter-fuzzy logic adaptive MSDF 
architectures, that combine these approaches are formulated [Escamilla and Mort, 2002, 2001a, 
2001b]. The proposed architectures are designed based on the fuzzy logic-based adaptive 
Kalman filter developed in Chapter 5 [Escamilla and Mort, 2000, 2001c]. 
 
 The general idea explored here is the combination of the advantages that both Kalman 
filtering and fuzzy logic techniques have. On the one hand, Kalman filtering is recognized as 
one of the most powerful traditional techniques of estimation: the Kalman filter provides an 
unbiased and optimal estimate of a state-vector in the sense of minimum error variance 
[Maybeck, 1979]. On the other hand, the main advantages derived from the use of fuzzy logic 
techniques, with respect to traditional schemes, are the simplicity of the approach, the capability 
of fuzzy systems to deal with imprecise information, and the possibility of including heuristic 
knowledge about the phenomenon under consideration [Zadeh, 1973]. 
 
 In the remainder of this chapter, first a clear definition of the problem under consideration is 
formulated. Then the proposed hybrid adaptive MSDF architectures are described. After that, 
the effectiveness of the proposed MSDF approaches is demonstrated through exhaustive 
simulation of an illustrative example. In this study, the fault-tolerant performance of the 
proposed MSDF approaches is also investigated. A final discussion and a summary are given to 
conclude the chapter. 
 
 
6.2 Problem formulation 
 
Assume that a discrete-time process can be modelled by, 
 

kkkkkk wuBxx ++Φ=+1             (6.1) 

ikkikik vxHz += , i = 1,…,N          (6.2) 
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where n
kx ℜ∈  is a state vector at instant of time denoted by the subscript k, Φk 

nn×ℜ∈  is a 

state transition matrix, Bk 
ln×ℜ∈  relates the control input uk ∈ ℜl to the state vector xk, wk 

nℜ∈  represents the modelling errors characterised by the error covariance matrix Qk. There are 
N measurement models described by (6.2), each of which corresponds to a local measurement. 
Thus, the local vector zik 

mℜ∈  describes the measurement made by sensor i at instant of time k. 

Hik 
nm×ℜ∈  is the i-th measurement sensitivity matrix. The noise (or error) in each measurement 

is represented by the vector vik and specified by matrix Rik. In other words, the measurement 
noise covariance matrix Rik reflects the precision of the i-th sensor. wk and vik are modelled as 
uncorrelated zero-mean Gaussian noise sequences with covariance matrices Qk and Rik 
satisfying: 
 

{ } 0=kwE  for all  k,           (6.3) 

{ } 0=ikvE  for all  k,           (6.4) 

{ }  ≠
=

=
kj

kjQ
wwE T

jk 0

,k           (6.5) 

{ }  ≠
=

=
kj

kjR
vvE T

ijik 0

,ik              (6.6) 

 
where E{⋅} is the statistical expectation operator. 
 
 It is assumed that the known information about the sensed environment and sensors is 
captured in the known matrices Φk, Hik, and Qk, while the unknown matrix Rik models the 
uncertain and inaccurate information about the sensed environment and sensors. Hence, the 
objective of this chapter is to develop adaptive MSDF architectures capable of obtaining a fused 
estimated state vector kx̂  that determines the parameters being measured as precisely as 

possible by combining the information coming from N imperfect sensors. By adaptive we mean 
that the MSDF process is capable of adjusting on-line the unknown matrices Rik to fit, as closely 
as possible, the actual statistics of the noise profiles present in the measured data. By an 
imperfect sensor we mean that the noise profile present in it has uncertain statistics and these 
statistics are not necessarily stationary. In addition, sensors can be subject to transient and 
persistent failures. 
 
 
6.3 Hybrid adaptive MSDF architectures 
 
In the following sections, four hybrid adaptive MSDF architectures are proposed. These 
architectures are referred to as: fuzzy logic-based adaptive Kalman filter with fuzzy logic 
performance assessment scheme (FL-AKF-FLA), fuzzy logic-based adaptive centralised 
Kalman filter (FL-ACKF), fuzzy logic-based adaptive decentralised Kalman filter (FL-ADKF), 
and fuzzy logic-based adaptive federated Kalman filter (FL-AFKF). These architectures are 
designed based on the fuzzy logic-based adaptive Kalman filter developed in Chapter 5 
[Escamilla and Mort, 2000, 2001c]. 
 
 
6.3.1 Hybrid architecture FL-AKF-FLA 
 
In this section a novel hybrid MSDF architecture combining the FL-AKF developed in Chapter 
5 and a fuzzy logic performance assessment scheme is presented. Figure 6.1 shows a schematic 
representation of the proposed MSDF architecture. The objective of the proposed architecture, 
referred to as FL-AKF-FLA, is to combine the measurement-vectors coming from N disparate 
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sensors, each one with different measurement dynamics and noise characteristics, to obtain a 
fused state-vector estimate that better reflects the actual value of the parameters being measured. 
To reach this objective, first each measurement-vector coming from each sensor is fed to a FL-
AKF. Second, a subsystem called a fuzzy logic assessor (FLA) is monitoring and assessing the 
performance of each FL-AKF. Thus, there are N sensors, N FL-AKFs, and N FLAs working in 
parallel as is represented in Figure 6.1 (the time-step subscript is not indicated for simplicity). 
The task of each FL-AKF is to obtain a state-vector estimate based on the measurement-vector 
coming from its own sensor. While the task of each FLA is to assess the performance of its 
corresponding FL-AKF through assigning to it a degree of confidence factor. Finally, the fused 
state-vector estimate is obtained using a weighting average scheme based on the assigned 
degree of confidence factors (see figure 6.1). Each FL-AKF is constructed as was specified in 
chapter 4. The FLA subsystem and the weighted average fusion scheme are described as 
follows, in this description the subscript indicating the time-step has been omitted for simplicity. 
 

 

Sensor 1 

Sensor 2 

Sensor N 

• 
• 
• 

• 
 
 
• 
 
 
• 

• 
• 
• 

 z1 

 z2 

 zN 

FL-AKF 1 

FLA 1 

11cx̂  1x̂  

DoM1    R1 

c1 

FL-AKF 2 

FLA 2 

22cx̂  2x̂  

DoM2    R2 

c2 

FL-AKF N 

FLA N 

NN cx̂  

DoMN    RN 

cN 
Nx̂  

fx̂   

Σ 

Σ 

 
Figure 6.1 Proposed hybrid FL-AKF-FLA MSDF architecture (the time-step subscript is not 
indicated for simplicity). 
 
 Each FLA subsystem assigns a degree of confidence factor, or simply confidence factor, 
denoted as cj, to its corresponding FL-AKF state-vector estimate jx̂ , j=1,…,N. The degree of 

confidence is calculated based on the current values of the absolute value of the degree of 
mismatch DoMj, which is a measure of the size of discrepancy between the theoretical value 
of the residual covariance matrix Sj and its estimated actual value jrĈ , and the adjusted 

measurement noise covariance matrix Rj. First, the elements of a vector of confidence values 
[cj

i…cj
m]T is calculated in a recursive way by a two-inputs-one-output FIS, as is graphically 

represented in figure 6.2. The i-th degree of confidence cj
i, a number on the interval [0, 1], is an 

indicator of the level of performance of the FL-AKF. This performance is evaluated through 
two measures, the level of consistency between the theoretical and actual residual covariance 



CHAPTER 6 HYBRID KALMAN FILTER-FUZZY LOGIC ADAPTIVE MSDF ARCHITECTURES 84 

(indicated by matrix DoMj), and the actual level of measurement noise present in the 
corresponding sensor (indicated by matrix Rj). Note that both matrices DoMj and Rj have the 
same dimension m×m, where m is the dimension of the measurement vector. 
 
 The FIS used in each FLA has as inputs the (i,i) elements in DoMj and Rj, i=1,…,m; and 
as output the i-th degree of confidence cj

i (see figure 6.2). The membership functions for 
DoMj and Rj are shown in figure 6.3. There the fuzzy labels mean: ZE = Zero, S = Small, and 
L = Large. For the output cj

i, three fuzzy singletons are defined with the labels: G=1=Good, 
AV=0.5=Average, and P=0=Poor. The parameters g and h that define the fuzzy sets in the input 
linguistic variables can be specified in accordance with the application under consideration. 
 
 Nine rules complete the fuzzy rule base of the FIS as is given in Table 1, which is known as 
a decision table. Each cell in the decision table indicates the rule consequent corresponding to 
the rule antecedent; this last term is defined by the intersection of the linguistic values (fuzzy 
sets) of the FIS inputs. For example, rule 1 is defined as “if DoMj is ZE and Rj is ZE then cj

i 
is G”. The fuzzy rules are based on two simple heuristic considerations. First, if the current 
value of DoM is near to zero and the current value of R is near to zero, then it means there is 
consistency between the theoretical and actual residual covariance, and a low level of noise is 
present in the sensor. Therefore, the FL-AKF filter is working almost perfectly, in consequence 
a degree of confidence near the maximum 1 should be assigned to it. Second, if one or both of 
these values increases far from zero, it means that the filter performance is degrading; thus the 
degree of confidence assigned by the FIS is decreased accordingly down to the minimum 0. 
Thus, using the compositional rule of inference sum-prod and the centre of area defuzzification 
method, the FIS obtains each cj

i degree of confidence value. 
 

FL-AKF

FIS

 i = 1

DoMj = DoMj(i,i)  i = m

 i = i + 1

|DoMj| Rj

 i = 1

Rj = Rj(i,i)
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Figure 6.2 Process of calculating the degree of confidence values. 
 

   
Figure 6.3 Membership functions for DoMj and Rj. 
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 Once all the elements cj
i have been obtained an averaged degree of confidence, which 

represents the averaged performance of the corresponding FL-AKF is calculated by, 
 

m

cc
c

m
jj

j

++
=

L

1

           (6.7). 

 
 The degree of confidence cj can be interpreted as a measure of the reliability of the j-th FL-
AKF. A higher degree of confidence means we have a higher confidence in that the estimated 
state-vector represents the actual value of the parameters being measured. At the same time, the 
degree of confidence acts as a weighting factor used for fusion purposes. 
 
 Finally, the fused state-vector estimate is obtained using a weighted average scheme based 
on the assigned confidence factor values. This is, 
 

NN
N

NN
f xcxc

cc

cxcx
x ˆˆ

ˆˆ
ˆ ++=

++
++= L

L

L

11
1

11       (6.8) 

 
with 
 

∑
=

=
N

j
j

j
j

c

c
c

1

 , j=1,…,N          (6.9). 

 
Table 1 Decision table of the FIS used in each FLA 

              R j

DoM j
ZE S L

ZE G G AV

S G AV P

L AV P P

 
 
 In order to prevent possible conflicts, one modification is incorporated. If the sum of all the 

degrees of confidence is equal to zero: 0
1

=∑
=

N

j
jc , then the fused output is simply the average of 

the N state-vector estimates: 
 

N

xx
x N

f

ˆˆ
ˆ ++= L1            (6.10). 

 
 
6.3.2 Fuzzy logic-based adaptive centralised Kalman filter 
 
The standard CKF algorithm was described in section 4.3.1 and a summary of it is given in 
Table 6.2. In this section the idea used in the FL-AKF, developed in the previous chapter, is 
extended to the CKF structure to develop a fuzzy logic-based adaptive CKF (from here referred 
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to as FL-ACKF) for MSDF purposes. Here the adaptation is in the sense of dynamically tuning 
the global measurement noise covariance matrix Rgk. The structure of the proposed FL-ACKF is 
shown in figure 6.4. 
 
 By analysing the algorithm of the CKF (see Table 6.2) it is evident that the same idea used in 
the FL-AKF of having a fuzzy logic-based adaptation scheme (see figure 6.5) is directly 
applicable to developing a FL-ACKF. First, the global residual sequence rgk is defined as, 
 

)(ˆ −−= kgkgkgk xHzr          (6.11), 

 
which has dimension (mN)×1; where m is the dimension of the measurement vector, N is the 
number of sensors (equal to the number of measurement vectors), subscript k indicates the 
instant of time, and subscript g is used to mark the global condition of the parameters. 
 

S en so r 1
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•
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•
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 zN k

 S g k    r g k
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 R g k

 
Figure 6.4 Fuzzy logic-based Adaptive Centralised Kalman Filter (FL-ACKF). 

 
 Thus, by using the global measurement sensitivity matrix Hgk, and the global measurement 
noise covariance matrix Rgk, the global theoretical residual covariance matrix is, 
 

gk
T
gkkgkgk RHPHS += −)(          (6.12). 

 
 The actual global residual covariance can be estimated through averaging inside a sliding 
window, 
 

∑
=

=
k

ii

T
gigigk rr

WS
rC

0

1ˆ            (6.13) 

 
where 10 +−= WSki  is the first sample inside the estimation window, WS is the window size, 

which is chosen empirically to give statistical smoothing, and k is the sample-time step. 
 
 Therefore, a global Degree of Mismatch (DoMgk), indicative of the size of the discrepancy 
between the global theoretical residual covariance Sgk and its estimated actual value gkrĈ , can be 

defined as, 
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gkgkgk rCSDoM ˆ−=           (6.14). 

 
 Note that all matrices Sgk, gkrĈ , DoMgk and Rgk have the same dimension (mN)×(mN). 

Because of this, the elements in the main diagonal of DoMgk can be used to adjust the elements 
in the main diagonal of Rgk. Remember that under the assumption of having uncorrelated and 
Gaussian measurement noise sequences, Rgk is a diagonal matrix whose elements are the 
variances of the individual components of the measurement noise vectors v1k,…,vNk. Therefore, 
from (6.6) it is deduced that by increasing the elements in the main diagonal of Rgk the elements 
in the main diagonal of Sgk are increased, and vice versa. With this, the size of the mismatch 
(DoMgk) between the theoretical and actual value of the global residual covariance can be 
regulated through changing the value of the diagonal elements of Rgk. As a result, the filter 
consistency is maintained. Furthermore, Rgk is adjusted to fit the actual statistics of the noise 
profiles present in the sensors. 
 

Table 6.2 Summary of the standard 
Centralised Kalman Filter (CKF) algorithm 

 

Process model Global   KF 

 

State space model: 
 

kkkkkk wuBxx ++Φ=+ )( 1  

 

Measurement equation: 
 

ikkikik vxHz +=  

i = 1,…,N 
N is the number of sensors 
 
 

 

Global model: 
 

TT
Nk

T
kgk zzz ][ K1=

TT
Nk

T
kgk HHH ][ K1=  

][ Nkkgk RRdiagblockR K1=  
 

Prediction equations: 
 

kkkkk uBxx +Φ= +−+ )()()( ˆˆ 1  

k
T
kkkk QPP +ΦΦ= +−+ )()()( 1  

 

Correction equations: 
 

1−
−− += ][ )()( gk

T
gkkgk

T
gkkk RHPHHPK  

]ˆ[ˆˆ )()()( −−+ −+= kgkgkkkk xHzKxx  

)()( ][ −+ −= kgkkk PHKIP  

 
  

 
Therefore, mN SISO FISs, each one using three general rules of adaptation, can be 

implemented to adjust the diagonal elements of Rgk. The three general rules of adaptation are: 
 

1. If DoMgk(i,i) ≅ 0 (this means Sgk(i,i) and ),(ˆ iirC gk  match almost perfectly) then 

maintain Rgk(i,i) unchanged. 

2. If DoMgk(i,i) > 0 (this means Sgk(i,i) is greater than its actual value ),(ˆ iirC gk ) then 

decrease Rk(i,i). 

3. If DoMgk(i,i) < 0 (this means Sgk(i,i) is smaller than its actual value ),(ˆ iirC gk ) then 

increase Rgk(i,i). 
 
where Sgk(i,i), ),(ˆ iirC gk , Rk(i,i) and DoMgk(i,i), i=1,…,mN, are the elements in the main diagonal 

of Sgk, gkrĈ , Rgk and DoMgk, respectively. Finally, Rgk is adjusted in this way: 
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),(),(),( )( iiRiiRiiR gkkggk ∆+= −1 ;  i=1,…,mN      (6.15) 

 
where ∆Rgk(i,i) is the tuning or correction factor for Rgk(i,i). Each correction factor is the output 
of a different FIS, while each of the elements in the main diagonal of DoMgk is the input to the 
corresponding FIS. A graphical representation of this adjusting process is shown in figure 6.5. 
 
 Each one of the FISs used in the fuzzy logic-based adaptation algorithm is constructed as 
was explained in section 5.3.2.a; thus its development is not repeated here and the reader is 
referred to that section. It is necessary to remark that inside the fuzzy logic-based adaptation 
algorithm, shown in figure 6.5, mN parallel SISO FISs, with three fuzzy rules each one, are 
considered. However, a sequential or a MIMO FIS implementation can replace the parallel 
implementation. In the sequential implementation a single SISO FIS is executed mN times until 
all the adjusting factors for Rgk are calculated. While in the MIMO FIS implementation a single 
FIS with 3mN rules is implemented to obtain at once all the adjusting factors. A broader 
explanation of the sequential and MIMO implementations can be found in section 5.3.2.a. 
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6.5 Fuzzy logic-based adaptation scheme. 

 
 
6.3.3 Fuzzy logic-based adaptive decentralised Kalman filter 
 
A summary of the standard DKF algorithm is presented in Table 6.3. A broader description of it 
is given in section 4.3.2. In this section a fuzzy logic-based adaptive DKF is proposed (from 
here referred to as FL-ADKF). The FL-ADKF is based on the FL-AKF developed in chapter 5. 
 

The structure of the proposed FL-ADKF is shown in figure 6.6. As can be seen, this 
architecture is similar to the standard DKF architecture, but, in this case, instead of having N 
local SKFs, there are N local FL-AKFs working in parallel. Each one of the FL-AKFs is built as 
was described in Chapter 5. However, here solely the case where only the measurement noise 
covariance matrix R is adjusted is implemented. From Table 6.3 it can be noted that the standard 
DKF algorithm can work without any alteration when FL-AKFs are used as local filters. The 
difference is that instead of having constant matrices Rik, they are dynamically adjusted to fit the 
actual statistics of the noise profiles present in the sensors. The master filter or fusion algorithm 
is applied directly using the information coming from the local FL-AKFs. This makes the whole 
structure adaptive. 
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Table 6.3 Summary of the standard Decentralised Kalman Filter (DKF) algorithm 
 

Process model Local KFs Master filter 

 
State space model: 
 

ikikikikikki wuBxx ++Φ=+ )1(

 
 
Measurement equation: 
 

ikikikik vxHz +=  

 
i = 1,…,N 
 

 
Prediction equations: 
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Figure 6.6 Fuzzy logic-based Adaptive Decentralised Kalman Filter (FL-ADKF). 

 
 
6.3.4 Fuzzy logic-based adaptive federated Kalman filter  
 
The standard FKF algorithm was described in section 4.3.3. A summary of it is given in Table 
6.4. From an analysis of the FKF algorithm it can be deduced that the FL-AKF can be used to 
build a fuzzy logic-based adaptive FKF (from here referred to as FL-AFKF) algorithm. 
 
 The structure of the FL-AFKF is shown in figure 6.7. Like the FL-ADKF, the FL-AFKF is 
designed by substituting the local standard KFs with FL-AKFs, as can be seen in figure 6.7. 
However, in this case due to the use of the information sharing principle this substitution can 
not be directly applied. Observe in Table 6.4 that the common process noise covariance matrix 
Qk and the fused error covariance matrix )( +fkP  are affected by the information sharing factor 
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(1/βi) before being used in the local and master filters’ prediction equations. In consequence, the 
local theoretical residual covariance Sik does not represent the information corresponding to 
local filers, but reflects the global shared information. Therefore, these values cannot be used to 
determine the local degree of mismatch values (DoMik) for purposes of adaptation of local Rik 
matrices. Note that the local residual sequence values ( )(ˆ −−= ikikikik xHzr ) are not affected by 

the information sharing factor and, consequently, neither the ikrĈ  values. Thus, what is needed 

is to obtain local theoretical residual covariance matrices representing the information 
corresponding to local filters only. 
 
 A solution to the above problem can be formulated as follows. First, from the standard FKF 
algorithm, the covariance residual matrix of the i-th filter is obtained by, 
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but by using the information sharing factor it is known that )()( )/( ++ = fkiik PP β1  and 

kiik QQ )/( β1= , thus (6.16) transforms to, 

 
Table 6.4 Summary of the standard Federated Kalman Filter (FKF) algorithm 

Process model Local KFs Master filter

State space model:
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Figure 6.7 Fuzzy logic-based Adaptive Federated Kalman Filter (FL-AFKF). 
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 Equation (6.18) means that each local filter uses a fraction (1/βi) of the factor ][ )(
T
ikfkik HPH −  

to calculate Sik. Thus, by compensating this with the factor (βi) its effect in Sik is removed, this 
is: 
 

ik
T
ikfkikiiik RHPHS += − ])[/( )(

* ββ 1           

ik
T
ikikik RHPH += −)(               (6.19), 

 

where *
ikS  is the value used to calculate the local degree of mismatch values: 

 

ikikik rCSDoM ˆ* −=           (6.20), 

 

and ikrĈ  is calculated using the local residual values: 

 

∑
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where 10 +−= Nkj  is the first sample inside the estimation window. Therefore, by using a fuzzy 

logic-based adaptation algorithm the i-th local measurement noise covariance matrix Rik is 
dynamically adjusted to fit the statistics of the actual measured data. Each adaptation algorithm 
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is implemented as is specified in section 5.3.2.a. A graphical representation of the calculation of 

a local matrix *
ikS  is shown in figure 6.8. 
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Figure 6.8 Graphical representation of the calculation of a local matrix *

ikS . 

 
 
6.4 Illustrative example 
 
In this section an illustrative example with four noisy sensors is outlined to demonstrate the 
effectiveness and accuracy of the proposed hybrid Kalman filter-fuzzy logic adaptive MSDF 
architectures. Exhaustive simulations have been carried out and results are presented in this 
section. The experiments where developed under the MATLAB/SIMULINK simulation 
environment (a resume of the different implemented simulation models is given in Appendix B). 
 
 Consider the following linear system, which corresponds to a vehicle moving in one-
dimensional co-ordinate space [Gao et al, 1993] [Chaer et al, 1997]: 
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where pk and sk are the position and velocity of the vehicle, respectively. The kinematics of the 
vehicle is described by two Guassian white random sequences with variances of 0.2m2 in 
position and 0.02m2s-2 in velocity, as indicated by matrix Qk. The system is assumed to have 
four independent navigation sensors whose measurement models are defined as follows: 
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where 1

ikz  and 2
ikz  are observations of the vehicle position and velocity, respectively, as 

measured by the i-th sensor; ikH  is the i-th measurement sensitivity matrix; T
ikikik vvv ][ 21= , i = 

1, 2, 3, 4, are uncorrelated zero-mean Gaussian white noise vector sequences with covariance 
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matrices ikR  defined in each particular simulation. The process initial conditions are defined as 
TTspx ][][ 00000 == . 

 
 The parameters that define the fuzzy sets in the FISs used in each FL-AKF to adjust ikR  are 

a = 5 and b = 0.3. While the parameters which define the fuzzy sets in the FISs used in each 
FLA algorithm in the FL-AKF-FLA architecture are g = 1.5 and h = 3. The size of the sliding 
window in all FL-AKFs is selected as 15. In all simulations the value of the sharing factor βi, 
required in the standard FKF and the FL-AFKF, is defined to be equal for all local and master 
filters, this is βi = 1/5 = 0.2 (there are considered four local filters plus one master filter). 
 
 Simulation 1: The objective of this simulation is to investigate and compare the performance 
of the proposed adaptive MSDF architectures when initial measurement noise covariance 
matrices Ri0 are correctly specified and no adaptation is performed. This means that the 
adaptation procedure in the local FL-AKFs is switched off in all architectures (in strict sense, 
standard Kalman filters (SKFs) are used as local filters). In consequence, it is expected to obtain 
optimal results in the FL-ACKF, FL-ADKF and FL-AFKF, which will be the base for 
comparison purposes. 
 
 The correct measurement noise covariance matrices are constant matrices defined as: 
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 Therefore, the system defined by (6.22)-(6.26) was simulated together with the four MSDF 
algorithms for 80 sec with a sample time of ∆t = 0.2 sec. The initial conditions for Kalman 
filtering in all cases were specified as: T

ix ][ˆ )( 000 =−  and 20 10IPi =− )( . 

 
 Results: For comparison purposes, the following root mean squared error (RMSE) 
performance measures were adopted: 
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where kp  is the actual position, kp̂  is the estimated position, ks  is the actual velocity, and kŝ  

is the estimated velocity of the vehicle at instant of time k. xk is the actual state-vector value, and 

kx̂  is the estimated state-vector value at instant of time k; L is the number of samples. 

 
 Table 6.5 shows the RMSE values obtained by employing each one of the four MSDF 
architectures, as well as the RMSE values obtained by local FL-AKFs. As expected, due to the 
use of the correct noise statistics, the RMSE values for the fused data using the FL-ACKF, FL-
ADKF and FL-AFKF are exactly the same, and these values are optimal. 
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Table 6.5 Performance measures: Simulation 1 

MSDF
Architecture

RMSEp RMSEs RMSEx Conditions

FL-AKF-FLA 0.5376 0.3444 0.6384 Fused data
FL-AKF 1 0.8334 0.4791 0.9613 Correct R10 and no adaptation
FL-AKF 2 0.6892 0.3347 0.7661 Correct R20 and no adaptation
FL-AKF 3 0.6038 0.4890 0.7770 Correct R30 and no adaptation
FL-AKF 4 0.8771 0.4425 0.9824 Correct R40 and no adaptation
FL-ACKF 0.4720 0.2924 0.5552 Fused data, Correct R i0 and no

adaptation (optimal case)
FL-ADKF 0.4720 0.2924 0.5552 Fused data (optimal case)
FL-AKF 1 0.8334 0.4791 0.9613 Correct R10 and no adaptation
FL-AKF 2 0.6892 0.3347 0.7661 Correct R20 and no adaptation
FL-AKF 3 0.6038 0.4890 0.7770 Correct R30 and no adaptation
FL-AKF 4 0.8771 0.4425 0.9824 Correct R40 and no adaptation
FL-AFKF 0.4720 0.2924 0.5552 Fused data (optimal case)
FL-AKF 1 0.8270 0.4245 0.9296 Correct R10 and no adaptation
FL-AKF 2 0.7708 0.3995 0.8682 Correct R20 and no adaptation
FL-AKF 3 0.7133 0.3603 0.7991 Correct R30 and no adaptation
FL-AKF 4 0.8924 0.3675 0.9651 Correct R40 and no adaptation

 
 
 Analysing the data in Table 6.5, a comparison of performance measures based on the 
obtained RMSEx values can be carried out as follows. The performance measure of the FL-AKF-
FLA is 15% away from the optimal value. However, this performance measure is better than the 
obtained with any local filter. Specifically, the FL-AKF-FLA is 20% more accurate than local 
FL-AKF 2, which has the best individual performance measure. The performance measure of 
the FL-ACKF cannot be compared with local filters, because in this case there are no local 
filters. But this comparison indeed can be carried out in the case of the FL-ADKF and the FL-
AFKF. The fused data obtained with the FL-ADKF is 38% (considering the RMSEx value) more 
accurate than the obtained with local FL-AKF 2, which has the best individual performance 
measure in this case. Meanwhile, the performance measure obtained by using the FL-AFKF is 
44% better than that obtained with local FL-AKF 3, which has the best performance measure in 
this case. Finally, note that on average the results obtained with local filters in the FL-AFKF are 
slightly less accurate than those obtained with local filters in the FL-ADKF. This is not 
surprising because in the FL-AFKF each local filter uses partial information in performing local 
estimations. Also it is noteworthy to mention that, in accordance with the theory, the results of 
each local filter in both the FL-ADKF and the FL-AFKF may be locally suboptimal, but when 
combined (fused) they are optimal, as those results obtained with the FL-ACKF. In this 
simulation this is possible because all conditions for optimality are present. 
 
 In order to appreciate graphically the results, in figure 6.9 the actual position and the 
estimated position of the vehicle, obtained with the FL-AKF-FLA algorithm and each of its 
local FL-AKFs, is plotted. While in figure 6.10 the actual position and the estimated position of 
the vehicle, obtained with the FL-ADKF and each of its local FL-AKFs, is plotted. 
 
 Simulation 2: The goal of this simulation is to investigate the performance of the proposed 
MSDF architectures when initial measurement noise covariance matrices Ri0 are incorrectly 
specified and no adaptation is performed. This means that the adaptation procedure in the FL-
AKFs is switched off in all architectures, as it is in simulation 1, but now the conditions for 
optimality are not present. Thus, it is expected that the performance measure values will be 
significantly degraded with respect to those obtained in simulation 1. 
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Figure 6.9 Actual position and estimated position of the vehicle obtained with the FL-AKF-FLA 
and each of its local FL-AKFs, simulation 1. 
 

 
Figure 6.10 Actual position and estimated position of the vehicle obtained with the FL-ADKF 
and each of its local FL-AKFs, simulation 1. 
 
 The system under consideration was simulated together with the four MSDF algorithms for 
80 sec with a sample time of ∆t = 0.2 sec. The initial conditions for Kalman filtering are the 
same that those defined in simulation 1. The correct measurement noise covariance matrices are 
those given by (6.26). However, in this case it is assumed that these values are unknown. 
Therefore, an initial guess is made as: 
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 Results: Table 6.6 shows the performance measures obtained with the MSDF architectures as 
well as those obtained with local filters. By comparing these results with the optimal 
performance measures (considering the RMSEx values), it is observed that the FL-AKF-FLA 
performance measure is degraded in 33%, while the CKF, DKF, and FKF performances are 
degraded in 15.6%. These results prove that by having switched off the adaptation procedure in 
the FL-AKFs (this is having standard KFs) and using incorrect measurement noise statistics, the 
MSDF performances are substantially degraded. This fact can be graphically seen in figure 6.11, 
where the actual position and the estimated position of the vehicle obtained with the FL-ADKF 
and each of its local FL-AKFs are plotted. Finally, if the FL-AKF-FLA performance is 
compared with the one obtained in simulation 1 then a degradation of 15.8% is observed. 
 

Table 6.6 Performance measures: Simulation 2 

MSDF
Architecture

RMSEp RMSEs RMSEx Conditions

FL-AKF-FLA 0.5681 0.4729 0.7391 Fused data
FL-AKF 1 1.0010 0.5457 1.1400 Incorrect R10 and no adaptation
FL-AKF 2 0.7472 0.4265 0.8604 Incorrect R20 and no adaptation
FL-AKF 3 0.6065 0.5019 0.7872 Incorrect R30 and no adaptation
FL-AKF 4 0.9773 0.4892 1.0930 Incorrect R40 and no adaptation
FL-ACKF 0.5403 0.3464 0.6418 Fused data, incorrect Ri0 and no

adaptation
FL-ADKF 0.5403 0.3464 0.6418 Fused data
FL-AKF 1 1.0010 0.5457 1.140 Incorrect R10 and no adaptation
FL-AKF 2 0.7472 0.4265 0.8604 Incorrect R20 and no adaptation
FL-AKF 3 0.6065 0.5019 0.7872 Incorrect R30 and no adaptation
FL-AKF 4 0.9773 0.4892 1.0930 Incorrect R40 and no adaptation
FL-AFKF 0.5403 0.3464 0.6418 Fused data
FL-AKF 1 1.3160 0.4207 1.3820 Incorrect R10 and no adaptation
FL-AKF 2 0.9182 0.3535 0.9840 Incorrect R20 and no adaptation
FL-AKF 3 0.6899 0.3992 0.7971 Incorrect R30 and no adaptation
FL-AKF 4 1.2190 0.4024 1.2830 Incorrect R40 and no adaptation  

 

 
Figure 6.11 Actual position and estimated position of the vehicle obtained with the FL-ADKF 
and each of its local FL-AKFs, simulation 2. 
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 Simulation 3: The purpose of this simulation is to investigate the performance of the 
proposed adaptive MSDF algorithms when initial measurement noise covariance matrices Ri0 
are correctly specified and adaptation is performed. Thus, in this case the adaptation procedure 
in the local FL-AKFs is switched on in all architectures. This simulation will show the level of 
degradation in performance, compared with the optimal performance measures, when carrying 
out adaptation under the correct noise statistics. 
 
 The system under consideration and the MSDF algorithms were simulated for 80 sec with a 
sample time ∆t = 0.2 sec. The initial conditions for Kalman filtering are the same than those 
defined in simulation 1. The correct measurement noise covariance matrices are those given by 
(6.28). 
 
 Results: Table 6.7 shows the obtained performance measures for the local FL-AKFs and the 
four MSDF algorithms. Comparing these results with the optimal performance measures 
(considering the RMSEx values), it is observed that the FL-AKF-FLA performance is degraded 
by 15%, the FL-ACKF and the FL-AFKF performances are degraded only 0.3%, while the FL-
ADKF performance is degraded by 0.25%. It is remarkable that the degradation in performance 
presented in the FL-ACKF, the FL-ADKF, and the FL-AFKF fusion algorithms is almost 
imperceptible. This means that, if the actual initial noise statistics are specified and the 
adaptation algorithm is switched on, then the performance of these three MSDF architectures 
remain near to the optimal. Note also that, if the FL-AKF-FLA performance is compared with 
the one obtained in simulation 1, then a degradation of only 0.06% is observed. 
 
 Figure 6.12 shows the actual position and estimated position of the vehicle obtained with the 
FL-ADKF and each of its local FL-AKFs. The way in which the elements in the main diagonal 
of matrices R1k, R2k, R3k, and R4k are adjusted in each of the local FL-AKFs of the FL-ADKF can 
be appreciated in figure 6.13. Note that, because the correct initial values are given, the 
performed adjustment maintains these values in a quasi steady-state around the original and 
correct values. 
 

Table 6.7 Performance measures: Simulation 3 

MSDF
Architecture

RMSEp RMSEs RMSEx Conditions

FL-AKF-FLA 0.5433 0.336 0.6388 Fused data
FL-AKF 1 0.8429 0.4753 0.9677 Correct R10 and adaptation
FL-AKF 2 0.6981 0.3466 0.7795 Correct R20 and adaptation
FL-AKF 3 0.6112 0.4817 0.7782 Correct R30 and adaptation
FL-AKF 4 0.861 0.4632 0.9777 Correct R40 and adaptation
FL-ACKF 0.4722 0.2953 0.5569 Fused data, orrect R i0 and

adaptation
FL-ADKF 0.4718 0.2954 0.5566 Fused data
FL-AKF 1 0.8429 0.4753 0.9677 Correct R10 and adaptation
FL-AKF 2 0.6981 0.3466 0.7795 Correct R20 and adaptation
FL-AKF 3 0.6112 0.4817 0.7782 Correct R30 and adaptation
FL-AKF 4 0.861 0.4632 0.9777 Correct R40 and adaptation
FL-AFKF 0.4722 0.2953 0.5569 Fused data
FL-AKF 1 0.8399 0.4238 0.9408 Correct R10 and adaptation
FL-AKF 2 0.7829 0.4036 0.8808 Correct R20 and adaptation
FL-AKF 3 0.7164 0.3927 0.8170 Correct R30 and adaptation
FL-AKF 4 0.8748 0.3917 0.9585 Correct R40 and adaptation
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Figure 6.12 Actual position and estimated position of the vehicle obtained with the FL-ADKF 
and each of its local FL-AKFs, simulation 3. 
 

 
Figure 6.13 Adjustment of the elements in the main diagonal of matrices R1k, R2k, R3k, and R4k in 
each of the local FL-AKFs of the FL-ADKF, Simulation 3. 
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 Simulation 4: The objective of this simulation is to investigate the performance of the 
proposed adaptive MSDF architectures when the initial measurement noise covariance matrices 
Ri0 are incorrectly specified and adaptation is performed. Thus, the adaptation procedure in the 
FL-AKFs is switched on in all architectures. This simulation will show how the adaptation of 
the elements in the main diagonal of matrices R1k, R2k, R3k, and R4k is carried out. 
 
 The MSDF algorithms and the system under consideration were simulated for 80 sec with a 
sample time ∆t = 0.2 sec. The initial conditions for Kalman filtering are the same than those 
defined in simulation 1. The incorrect measurement noise covariance matrices are those given 
by (6.30). 
 
 Results: Table 6.8 shows the obtained performance measures for the local FL-AKFs and the 
four adaptive MSDF algorithms. Comparing these results with the optimal values (considering 
the RMSEx values), next observations are made. The degradation in performance of the FL-
AKF-FLA algorithm is 15.7%. In the case of the FL-ACKF and the FL-AFKF, the degradation 
is 1.6%. The minimum degradation in performance is observed in the FL-DKF, which is 1.5%. 
Note that, however the performance of the FL-AKF-FLA is far from the optimal, this is better 
than the performance observed in any local FL-AKF. Particularly, the performance of the FL-
AKF-FLA is better in 20.5% with respect to the performance observed in the FL-AKF 3, which 
has the best individual performance measure. In figure 6.14 is shown the actual position and 
estimated position of the vehicle obtained with the FL-ADKF and each of its local FL-AKFs. 
 

It is remarkable to mention that on average the degradation in performance observed in the 
FL-ACKF, the FL-ADKF and the FL-AFKF is less than 2%. This means that the adaptation 
carried out in each one of these algorithms effectively tune the value of the corresponding 
measurement noise covariance matrices to fit the actual noise statistics. This can be appreciated 
graphically in figure 6.15 where the values of the elements in the main diagonal of matrices R1k, 
R2k, R3k, and R4k in each of the local FL-AKFs of the FL-ADKF are plotted. 
 

Table 6.8 Performance measures: Simulation 4 

MSDF
Architecture

RMSEp RMSEs RMSEx Conditions

FL-AKF-FLA 0.5435 0.3428 0.6426 Fused data
FL-AKF 1 0.8537 0.4712 0.9751 Incorrect R10 and adaptation
FL-AKF 2 0.7019 0.3467 0.7829 Incorrect R20 and adaptation
FL-AKF 3 0.6118 0.4743 0.7741 Incorrect R30 and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 Incorrect R40 and adaptation
FL-ACKF 0.4753 0.3038 0.5642 Fused data, incorrect R i0 and

adaptation
FL-ADKF 0.4745 0.3041 0.5636 Fused data
FL-AKF 1 0.8537 0.4712 0.9751 Incorrect R10 and adaptation
FL-AKF 2 0.7019 0.3467 0.7829 Incorrect R20 and adaptation
FL-AKF 3 0.6118 0.4743 0.7741 Incorrect R30 and adaptation
FL-AKF 4 0.8652 0.4612 0.9804 Incorrect R40 and adaptation
FL-AFKF 0.4753 0.3038 0.5642 Fused data
FL-AKF 1 0.8672 0.4222 0.9646 Incorrect R10 and adaptation
FL-AKF 2 0.7907 0.3965 0.8845 Incorrect R20 and adaptation
FL-AKF 3 0.7156 0.4000 0.8198 Incorrect R30 and adaptation
FL-AKF 4 0.8917 0.3946 0.9751 Incorrect R40 and adaptation
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Figure 6.14 Actual position and estimated position of the vehicle obtained with the FL-ADKF 
and each of its local FL-AKFs, simulation 4. 
 

 
Figure 6.15 Adjustment of the elements in the main diagonal of matrices R1k, R2k, R3k, and R4k in 
each of the local FL-AKFs of the FL-ADKF, simulation 4. 
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 Simulation 5: The goal of this simulation is to investigate the performance of the proposed 
adaptive MSDF architectures under different noise profiles in the sensors. Four different noise 
profiles, with different statistics, are being considered as is shown in figure 6.16. 
 

 
 

Figure 6.16 Noise profiles used in simulation 5; (a) Constant variance Gaussian noise sequence 
N(0,0.5); (b) Uniform distribution random noise sequence [-1,1]; (c) Uniform distribution 
random noise sequence increasing with time [-4,4]; (d) Uniform distribution random noise 
sequence decreasing with time [-4,4]. 
 
 The four MSDF algorithms and the system under consideration were simulated for 80 sec 
with a sample time ∆t = 0.2 sec. The initial conditions for Kalman filtering are the same that 
those defined in simulation 1. It is assumed that the actual noise statistics in all sensors are 
unknown, but an initial guess of the measurement noise covariance matrices is made as given by 
(6.30). It is expected that the adjusting procedure will tune the values of the diagonal elements 
of matrices R1k, R2k, R3k, and R4k to fit, as closely as possible, the actual statistics of the noise 
profiles. The noise profiles used in each specific sensor are those indicated in the last column of 
Table 6.9. 
 
 Results: Table 6.9 shows the obtained performance measures for the local FL-AKFs and the 
four adaptive MSDF algorithms. Comparing these results (considering the RMSEx values), the 
following remarks can be made. The worst performance measure is obtained with the FL-AKF-
FLA algorithm, while the best performance measure is obtained with the FL-ADKF. The 
performance measure obtained with both the FL-ACKF and the FL-AFKF is exactly the same, 
and this is 2.8% worse than the obtained with the FL-ADKF. The performance measure of the 
FL-AKF-FLA is 20.5% worst than that obtained with the FL-ADKF algorithm. However, this 
performance measure, compared with local filters, is 18.6% better than that observed in local 
FL-AKF 2, which from this group of filters has the best performance measure. 
 
 A graphical view of the obtained results can be appreciated in figure 6.17, where the actual 
and estimated position of the vehicle, made by each one of the local FL-AKFs and the FL-
ADKF, is plotted. The way in which the adjusting procedure tunes the values of the diagonal 

(a) (b) 

(c) (d) 
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element of matrices R1k, R2k, R3k, and R4k in each of the local FL-AKFs of the FL-ADKF, trying 
to match the actual statistics of the noise profiles, can be appreciated in figure 6.18. Note that 
good approximation to the actual noise statistics is achieved in all cases. It is interesting to note 
that if there is a non-stationary statistics (but zero-average) noise profile present in any of the 
sensors, as in sensors 3 and 4 in this simulation, then the adjusting procedure tunes the 
covariance values in the corresponding measurement covariance matrices to fit and follow, as 
closely as possible, the actual dynamic statistics of the noise profiles. 
 

Table 6.9 Performance measures: Simulation 5 
 

M SDF 
Architecture 

RM SEp RM SE s RM SEx Conditions 

FL-AK F-FLA 0.3701 0.2818 0.4652 Fused data 
FL-AK F 1 0.4796 0.2833 0.5570 v k

1 = noise 1, vk
2 = noise 2 

FL-AK F 2 0.4393 0.3334 0.5516 v k
1 = noise 2, vk

2 = noise 1 
FL-AK F 3 0.6403 0.3534 0.7314 v k

1 = noise 3, vk
2 = noise 4 

FL-AK F 4 0.5430 0.4009 0.6749 v k
1 = noise 4, vk

2 = noise 3 
FL-ACKF 0.3213 0.2291 0.3946 Fused data 
Sensor 1    v k

1 = noise 1, vk
2 = noise 2 

Sensor 2    v k
1 = noise 2, vk

2 = noise 1 
Sensor 3    v k

1 = noise 3, vk
2 = noise 4 

Sensor 4    v k
1 = noise 4, vk

2 = noise 3 
FL-AD KF 0.3113 0.2285 0.3862 Fused data 
FL-AK F 1 0.4796 0.2833 0.5570 v k

1 = noise 1, vk
2 = noise 2 

FL-AK F 2 0.4393 0.3334 0.5516 v k
1 = noise 2, vk

2 = noise 1 
FL-AK F 3 0.6403 0.3534 0.7314 v k

1 = noise 3, vk
2 = noise 4 

FL-AK F 4 0.5430 0.4009 0.6749 v k
1 = noise 4, vk

2 = noise 3 
FL-AFKF 0.3213 0.2291 0.3946 Fused data 
FL-AK F 1 0.5219 0.3137 0.6089 v k

1 = noise 1, vk
2 = noise 2 

FL-AK F 2 0.4803 0.3155 0.5736 v k
1 = noise 2, vk

2 = noise 1 
FL-AK F 3 0.5872 0.3364 0.6767 v k

1 = noise 3, vk
2 = noise 4 

FL-AK F 4 0.5746 0.2879 0.6427 v k
1 = noise 4, vk

2 = noise 3 
  

 

 
Figure 6.17 Actual position and estimated position of the vehicle obtained with the FL-ADKF 
and each of its local FL-AKFs, simulation 5. 
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Figure 6.18 Adjustment of the elements in the main diagonal of matrices R1k, R2k, R3k, and R4k in 
each of the local FL-AKFs of the FL-ADKF, simulation 5. 
 
 
6.4.1 Analysis and comparison of fault-tolerant characteristics 
 
In all the simulations carried out in the previous sections it is assumed that there are no faults 
present in the sensors. However, in real situations there is always the possibility of having 
sensor failures. In the literature it has been demonstrated that the CKF approach lacks 
robustness when there is spurious data in any of the sensors [Gao et al, 1993] [Brown and 
Hwang 1997]. Conversely, it has been shown that both DKF and FKF approaches have better 
fault-tolerant performance than can be achieved with a CKF [Wei and Schwarz, 1990] [Gao et 
al, 1993]. In this section simulations are carried out in order to investigate, analyse and compare 
the fault-tolerant performance of the four proposed adaptive MSDF architectures. In particular, 
the fault-tolerant performances against three kinds of sensor failures, transient faults, persistent 
faults and permanent faults, are investigated. For this analysis the same process and sensors 
defined by (6.22)-(6.25) are used. The simulations carried out and results obtained are presented 
as follows. 
 
 Simulation 6: The objective of this simulation is to investigate how each one of the proposed 
hybrid adaptive MSDF approaches responds to the presence of transient faults, and to examine 
which design is the most fault-tolerant. Hence, the adaptive MSDF algorithms and the system 
under consideration were simulated for 80 sec with a sample time ∆t = 0.2 sec. The initial 
conditions for Kalman filtering are the same than those defined in simulation 1. It is assumed 
that the correct measurement noise covariance matrices, given by (6.26), are unknown. 
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Therefore, an initial guess is made as given by (6.30). Transient faults are introduced in sensor 3 
(which is the most accurate sensor for position measurements) in each MSDF architecture, at 
times t = 20, 30, 40, 50 and 60 sec, with values 20, -20, 20, -20, and 20 meters respectively, for 
position measurements. 
 
 Results: The performance measures defined by (6.27)-(6.29) are used to compare results. In 
Table 6.10 the obtained RMSE performance measures are tabulated. From that data it can be 
observed that the most fault-tolerant performance is provided by the FL-AKF-FLA, while the 
worst fault-tolerant performance is that seen in both the FL-ACKF and the FL-AFKF. The FL-
ADKF has an intermediate fault-tolerant performance. 
 

Table 6.10 Performance measures: Simulation 6 
 

MSDF 
Architecture 

RMSEp RMSEs RMSEx Conditions 

FL-AKF-FLA 0.5943 0.33357 0.6826 Fused data 
FL-AKF 1 0.8537 0.4712 0.9751 Incorrect R10 and adaptation 
FL-AKF 2 0.7019 0.3467 0.7829 Incorrect R20 and adaptation 
FL-AKF 3 1.2800 0.5093 1.3780 Incorrect R30 and adaptation 
FL-AKF 4 0.8652 0.4612 0.9804 Incorrect R40 and adaptation 
FL-ACKF 0.6572 0.3072 0.7255 Fused data, incorrect R i0 and 

adaptation 
FL-ADKF 0.6472 0.3066 0.7161 Fused data 
FL-AKF 1 0.8537 0.4712 0.9751 Incorrect R10 and adaptation 
FL-AKF 2 0.7019 0.3467 0.7829 Incorrect R20 and adaptation 
FL-AKF 3 1.2800 0.5093 1.3780 Incorrect R30 and adaptation 
FL-AKF 4 0.8652 0.4612 0.9804 Incorrect R40 and adaptation 
FL-AFKF 0.6572 0.3072 0.7255 Fused data 
FL-AKF 1 0.9128 0.4237 1.0060 Incorrect R10 and adaptation 
FL-AKF 2 0.8353 0.3966 0.9247 Incorrect R20 and adaptation 
FL-AKF 3 1.5090 0.4111 1.5640 Incorrect R30 and adaptation 
FL-AKF 4 0.9420 0.3966 1.0220 Incorrect R40 and adaptation 

 

 
 
 Analysing the performances obtained by local filters, the following remarks can be given. In 
both the FL-AKF-FLA and the FL-ADKF, only the performance of the local FL-AKF 3, which 
is processing the faulty data, is degraded. Meanwhile, the performances of the other local filters 
are unaffected and equal to those results shown in Table 6.8, which correspond to the results 
obtained under the same conditions but without the faulty data in the local FL-AKF 3. 
Conversely, note that the performances of all local filters in the FL-AFKF are affected by the 
faulty data in sensor 3. This is due to the sharing information carried out and the feedback of the 
fused estimated state vector to each local filter. 
 
 Figure 6.19 shows the actual position and the fused estimated position of the vehicle 
obtained with the FL-AKF-FLA architecture. It can be appreciated that the transient faults are 
practically without effect in the fused estimated position. In figure 6.20 the actual, measured and 
estimated position of the vehicle carried out by the FL-AKF 3 and sensor 3, in the FL-AKF-
FLA architecture, is shown. Note the effects that the transient faults, introduced at times t = 20, 
30, 40, 50, and 60 sec, have on the position estimates made by this local filter. In figure 6.21 the 
adjustment of the elements in the main diagonal of matrix R3k, FL-AKF 3, FL-AKF-FLA, can be 
appreciated. Note that, as a result of the presence of the faults, the value of R3k(1,1) is increased 
at those times where a fault is present. With the increment of the value of R3k(1,1), the value of 
the degree of confidence factor assigned to the local FL-AKF 3, c3, is reduced as can be seen in 
figure 6.22, which shows the degree of confidence factors assigned to each local FL-AKF state 
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vector estimation in the FL-AKF-FLA approach. Due to this increment in the measurement 
noise covariance value for the positioning data, the influence of the FL-AKF 3, which has the 
faulty data, in the fused estimated solution carried out by the FL-AKF-FLA algorithm is 
reduced. The performance assessment scheme of the FL-AKF-FLA algorithm does not exist in 
the other MSDF architectures. Therefore, the influence of the faulty data in their fused estimates 
is greater. As an example, the effects that the faults have in the estimates performed by the FL-
ADKF can be seen in figure 6.23. 
 

 
Figure 6.19 Actual position and estimated position of the vehicle obtained with the FL-AKF-
FLA architecture, simulation 6. 
 

 
Figure 6.20 Actual position, measured position ()(31

kz ), and estimated position of the vehicle 

obtained with the FL-AKF 3, FL-AKF-FLA, simulation 6. 
 
 Simulation 7: The goal of this simulation is to investigate the fault-tolerant performances of 
the adaptive MSDF algorithms when persistent faults (e. g. cycle slips in GPS applications [Gao 
et al, 1993]) are present in one of the sensors. Therefore, the adaptive MSDF algorithms and the 
system under consideration were simulated under the same conditions defined in the previous 
simulation. However, in this case three persistent faults were simulated in sensor 3 in each 
MSDF architecture, at times t = 20, 40, and 60 sec, with duration of 1, 1.6, and 2 sec, 
respectively, and all with values of 20 meters for position measurements. 
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Figure 6.21 Adjustment of the elements in the main diagonal of matrix R3k, FL-AKF 3, FL-
AKF-FLA, simulation 6. 
 

 
Figure 6.22 Degree of confidence factors assigned to each local FL-AKF state-vector estimate 
in the FL-AKF-FLA approach, simulation 6. 
 

 
Figure 6.23 Actual position and estimated position of the vehicle obtained with the FL-ADKF, 
simulation 6. 
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 Results: Table 6.11 shows the obtained performance measures for the local FL-AKFs and the 
hybrid adaptive MSDF algorithms. It can be noted that, like in the previous simulation, the most 
fault-tolerant performance is that of the FL-AKF-FLA, while the least fault-tolerant 
performance is that observed in both the FL-ACKF and the FL-AFKF. The FL-ADKF has an 
intermediate fault-tolerant performance. 
 

Table 6.11 Performance measures: Simulation 7 
 

MSDF 
Architecture 

RMSEp RMSEs RMSEx Conditions 

FL-AKF-FLA 0.7009 0.3406 0.7793 Fused data 
FL-AKF 1 0.8537 0.4712 0.9751 Incorrect R10 and adaptation 
FL-AKF 2 0.7019 0.3467 0.7829 Incorrect R20 and adaptation 
FL-AKF 3 2.4420 0.5577 2.5050 Incorrect R30 and adaptation 
FL-AKF 4 0.8652 0.4612 0.9804 Incorrect R40 and adaptation 
FL-ACKF 0.9099 0.3081 0.9607 Fused data, incorrect R i0 and 

adaptation 
FL-ADKF 0.8578 0.3071 0.9111 Fused data 
FL-AKF 1 0.8537 0.4712 0.9751 Incorrect R10 and adaptation 
FL-AKF 2 0.7019 0.3467 0.7829 Incorrect R20 and adaptation 
FL-AKF 3 2.4420 0.5577 2.5050 Incorrect R30 and adaptation 
FL-AKF 4 0.8652 0.4612 0.9804 Incorrect R40 and adaptation 
FL-AFKF 0.9099 0.3081 0.9607 Fused data 
FL-AKF 1 0.9787 0.4250 1.0670 Incorrect R10 and adaptation 
FL-AKF 2 0.8603 0.3985 0.9481 Incorrect R20 and adaptation 
FL-AKF 3 1.8470 0.4107 1.8920 Incorrect R30 and adaptation 
FL-AKF 4 1.0140 0.3955 1.0880 Incorrect R40 and adaptation 

 

 
 

From the analysis of the performances obtained by local filters, the following remarks can be 
given. As in the previous simulation, only the performance of the local FL-AKF 3, which is 
processing the faulty data, is degraded in both the FL-AKF-FLA and the FL-ADKF approaches. 
However, the performances of all local filters are degraded in the FL-AFKF. 
 
 The actual position and the fused estimated position of the vehicle obtained with the FL-
AKF-FLA approach are shown in figure 6.24. The minor influence of the persistent faults can 
be noted. In figure 6.25 the actual, measured and estimated position of the vehicle carried out by 
the local FL-AKF 3 in the FL-AKF-FLA architecture, are shown. Note how the persistent faults, 
introduced at times t = 20, 40, and 60 sec, strongly affect the estimations made by this local FL-
AKF. The way in which the adaptive estimation of the elements in the main diagonal of matrix 
R3k, FL-AKF 3, FL-AKF-FLA architecture, is affected by the introduction of the faulty data can 
be seen in figure 6.26. As a result of the presence of the faults, the value of R3k(1,1) is increased 
at the times when a fault is present. Due to this increment in the measurement noise covariance 
value for the position data, the degree of confidence value assigned to the state vector estimate 
carried out by the FL-AKF 3 is reduced. Consequently, its influence on the fused solution is 
decreased accordingly. The influence of the faulty data on the fused solution obtained with the 
other hybrid adaptive MSDF approaches is greater. To appreciate this graphically, the actual 
and fused position estimates performed by the FL-DAKF are shown in figure 6.27. 
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Figure 6.24 Actual position and estimated position of the vehicle obtained with the FL-AKF-
FLA architecture, simulation 7. 
 

 
Figure 6.25 Actual position, measured position ()(31

kz ), and estimated position of the vehicle 

obtained with the FL-AKF 3, FL-AKF-FLA, simulation 7. 
 

 
Figure 6.26 Adjustment of the elements in the main diagonal of matrix R3k, FL-AKF 3, FL-
AKF-FLA, simulation 7. 
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Figure 6.27 Actual position and estimated position of the vehicle obtained with the FL-ADKF, 
simulation 7. 
 
 Simulation 8: The goal of this simulation is to examine the fault-tolerant performances of the 
hybrid adaptive MSDF approaches when a permanent fault is present in one of the sensors. 
Therefore, the adaptive MSDF algorithms and the system under consideration were simulated 
under the same conditions defined in simulation 1. However, in this case a permanent fault is 
simulated in sensor 3 in each MSDF architecture, at time t = 40 sec, from this time the position 
value is stuck at a reading of 0 meters. 
 
 Results: Table 6.12 shows the obtained performance measures for the local FL-AKFs and the 
hybrid adaptive MSDF algorithms. From the RMSEx values of the fused data it is clear that the 
performances of all the adaptive MSDF algorithms are severely affected by the presence of a 
permanent fault in sensor 3. In fact, it can be said that none of the MSDF algorithms tolerates 
efficiently the presence of a permanent fault. Surprisingly, in this case the least affected 
approaches are the FL-ACKF and the FL-AFKF. It has been demonstrated that the traditional 
CKF has less fault tolerance capability than the traditional FKF [Gao et al, 1993] and, therefore, 
it was expected to observe the same characteristic in its adaptive counterpart. However, the fault 
tolerance capability of the FL-ACKF is similar to that observed in the FL-AFKF. This is due to 
the adaptation carried out in both approaches. Finally, note that the most affected approach is 
the FL-ADKF, while the FL-AKF-FLA has an intermediate level of affectation. 
 
 The actual and the estimated position of the vehicle obtained with the FL-ADKF and each of 
its local FL-AKFs are shown in figure 6.28. Note the strong effect that the permanent fault has 
on the fused position estimates. The effect that the permanent fault has on the estimates 
performed by the local FL-AKF 3 in the FL-ADKF can be seen in figure 6.29, where the actual 
position, the measured position ( )(31

kz ), and the estimated position of the vehicle performed by 

this filter are shown. Note the permanent fault introduced at time t = 40sec. 
 
 The strong influence of the fault in the fused estimates performed by the FL-ADKF can be 
explained by observing the effect that it has on the adjustment of R3k(1,1), which is shown in 
figure 6.30. After the fault is introduced, an initial constant increment is observed. However, 
due to the fact that the measured position value gets stuck at 0 meters, and with a zero level of 
noise, the corresponding noise covariance value is reduced accordingly to match this level of 
noise, as can be seen in figure 6.30. Obviously, the previous effect reflects the variations 
observed in the residual sequence, r3k(1,1), shown in figure 6.31, which corresponds to the 
position measured data, that after a sudden increment goes to zero after the persistent fault is 
introduced in sensor 3. As consequence of having a measurement noise covariance value of zero 
for position measurements carried out by the sensor 3, the FL-ADKF fusion algorithm takes into 
account more strongly the estimates performed by the FL-AKF 3 than the estimates performed 
by the other filters. Finally, as time progress, the FL-ADKF estimates become those of the zero 
measurement noise level FL-AKF, this is the number 3, as can be seen in figure 6.28. 
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Table 6.12 Performance measures: Simulation 7 
 

MSDF 
Architecture 

RMSEp RMSEs RMSEx Conditions 

FL-AKF-FLA 7.1360 0.8398 7.1860 Fused data 
FL-AKF 1 0.8537 0.4712 0.9751 Incorrect R10 and adaptation 
FL-AKF 2 0.7019 0.3467 0.7829 Incorrect R20 and adaptation 
FL-AKF 3 15.1900 1.4980 15.2600 Incorrect R30 and adaptation 
FL-AKF 4 0.8652 0.4612 0.9804 Incorrect R40 and adaptation 
FL-ACKF 4.2390 1.4470 4.4790 Fused data, incorrect R i0 and 

adaptation 
FL-ADKF 13.0500 1.4470 13.1300 Fused data 
FL-AKF 1 0.8537 0.4712 0.9751 Incorrect R10 and adaptation 
FL-AKF 2 0.7019 0.3467 0.7829 Incorrect R20 and adaptation 
FL-AKF 3 15.1900 1.4980 15.2600 Incorrect R30 and adaptation 
FL-AKF 4 0.8652 0.4612 0.9804 Incorrect R40 and adaptation 
FL-AFKF 4.2390 1.4470 4.4790 Fused data 
FL-AKF 1 7.3620 1.4630 7.5060 Incorrect R10 and adaptation 
FL-AKF 2 3.3990 1.4470 3.6940 Incorrect R20 and adaptation 
FL-AKF 3 3.0760 1.4360 3.3950 Incorrect R30 and adaptation 
FL-AKF 4 3.2670 1.4440 3.5720 Incorrect R40 and adaptation 

 

 
 

 
Figure 6.28 Actual and estimated position of the vehicle obtained with the FL-ADKF and each 
of its local FL-AKFs, simulation 8. 
 
 The position estimates performed by the FL-AFKF and each of its local FL-AKFs are shown 
in figure 6.32. Note that, due to the feedback carried out of the fused state-vector to the local 
filters, in this case the effect of the permanent fault in the fused position estimates is less drastic 
than that observed in the FL-ADKF. In the FL-AFKF the fused state estimates try to follow the 
tendency of the majority of the filters, and in this way the effect of the fault is reduced. 
However, due to the information sharing carried out, the effect of the fault is transmitted to all 
the local filters and, as a result, the local estimates are split up from the correct estimates. 
 

In figure 6.33 the actual position, the measured position ( )(31
kz ), and the estimated position of 

the vehicle performed by the local FL-AKF 3 in the FL-AFKF are shown. Note the way in 
which the permanent fault, introduced at time t = 40 sec, affects the estimates performed by this 
local filter. 
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Figure 6.29 Actual position, measured position ()(31

kz ), and estimated position of the vehicle 

obtained with the local FL-AKF 3, FL-ADKF, simulation 8. 
 

 
Figure 6.30 Adjustment of the elements in the main diagonal of matrix R3k, FL-AKF 3, FL-
ADKF, simulation 8. 
 

 
Figure 6.31 Residual sequence r3k(1,1) and its 2σ bounds, FL-AKF 3, FL-ADKF, simulation 8. 
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Figure 6.32 Actual and estimated position of the vehicle obtained with the FL-AFKF and each 
of its local FL-AKFs, simulation 8. 
 

 
Figure 6.33 Actual position, measured position ()(31

kz ), and estimated position of the vehicle 

obtained with the FL-AKF 3, FL-AFKF, simulation 8. 
 

 
Figure 6.34 Adjustment of the elements in the main diagonal of matrix R3k, local FL-AKF 3, 
FL-AFKF, simulation 8. 
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Figure 6.35 Residual sequence r3k(1,1) and its 2σ bounds, FL-AKF 3, FL-AFKF, simulation 8. 
 

The effect that the permanent fault has in the adjustment of the elements in the main 
diagonal of matrix R3k and the residual sequence r3k(1,1) in the FL-AKF 3 of the FL-AFKF are 
shown in figures 6.34 and 6.35, respectively. In this case, due to the sharing information 
principle and the feedback carried out, the effects are different than those observed in the FL-
ADKF. In this case R3k(1,1) is constantly increased and r3k(1,1) is maintained far from its 2σ 
limits. 
 
 
6.5 Discussion 
 
From a general analysis of the results obtained in the last two sections several remarks can be 
given: 
 
1) For the cases where faults are not present in the sensors, the fused data obtained with the FL-
AKF-FLA architecture is comparatively less accurate than that obtained with the other three 
proposed MSDF architectures. However, this fused data is more accurate than that obtained by 
any of its local filters. 
 
2) The role of the FLA in the proposed FL-AKF-FLA approach is of great importance because 
the fusion of the information is carried out based on the degrees of confidence generated by this 
component. In addition, only two variables are needed to monitor the performance of each FL-
AKF and only nine ‘common sense’ rules are used in the FIS used in the FLA. 
 
3) A simple FLA-weighting average structure is used to fuse the data in the FL-AKF-FLA 
architecture. Compared to the other architectures, this makes this structure less computationally 
demanding. 
 
4) If Gaussian zero-average noise sequences are present in the sensors and the correct 
measurement noise covariance matrices are specified having the adaptation procedure switched 
on in the FL-AKFs, then the fused data obtained with the FL-ACKF, the FL-ADKF and the FL-
AFKF remain very near to the optimal estimates. 
 
5) If Gaussian zero-average noise sequences are present in the sensors and the incorrect 
measurement noise covariance matrices are specified having the adaptation procedure switched 
on in the FL-AKFs, then the measurement noise covariance values are tuned to fit, as closely as 
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possible, the actual statistics of the noise profiles. As a result of this, the fused data obtained 
with the hybrid adaptive MSDF architectures are near to the optimal estimates. 
 
6) If there are non-stationary statistics but zero-average noise profile present in any of the 
sensors, then the adjusting procedure carried out in the FL-AKFs tunes the measurement noise 
covariance values to fit and follow, as closely as possible, the actual dynamic statistics of the 
noise profiles. As a result of this, the fused data obtained with all hybrid adaptive MSDF 
architectures is more accurate than the data obtained with any individual FL-AKF. 
 
7) In the cases where faults are not present in the sensors the most accurate fused data is that 
obtained with the FL-ADKF, while the least accurate fused data is that obtained with the FL-
AKF-FLA architecture. Both the FL-ACKF and the FL-AFKF have an intermediate level of 
accuracy. 
 
8) If transient or persistent faults are present in any of the sensors then the most fault-tolerant 
architecture is the FL-AKF-FLA, while the least fault-tolerant architectures are both the FL-
ACKF and the FL-AFKF. These last two architectures have similar performances (remember 
that in this work the sharing factors in the FL-AFKF were set to be equal for all local filters). 
The FL-ADKF has an intermediate fault-tolerant performance. 
 
9) All architectures do not have good fault-tolerant performances against permanent faults. 
However, permanent faults are easy to detect by analysing the adjusted measurement noise 
covariance matrices or the residual sequences. Therefore, several fault detection techniques, e.g. 
voting systems [Willsky, 1976] and residual-based detection systems [Maybeck, 1979], could be 
used to detect the faults and implement a fault recovery algorithm. This task is out of the scope 
of this thesis and is left as a future work. 
 
 Therefore, the selection of one of the proposed hybrid adaptive MSDF architectures for a 
particular application can be made taking into account the remarks given above and the 
characteristics and objectives followed in the problem at hand. For example, if it is necessary to 
have fast processing without the requirement of a lot of computational resources, the FL-AKF-
FLA approach is adequate for this task. However, if accuracy is the main concern then the FL-
ADKF can be applied. If the sensors are subjected to transient or persistent faults, then both the 
FL-AKF-FLA and the FL-ADKF approaches are adequate. The FL-AFKF appears to be more 
suitable for fault detection purposes. The FL-ACKF could be applied in cases where there are 
only two or three sensors and the state vectors are of dimension two or three only. This is 
because of the computational resources needed to process all the information at the same time, 
which increases as the number of sensors grows. 
 
 
6.6 Summary 
 
Four hybrid adaptive MSDF architectures integrating Kalman filtering and fuzzy logic 
techniques have been presented. These architectures are referred to as: fuzzy logic-based 
adaptive Kalman filter with fuzzy logic performance assessment scheme (FL-AKF-FLA), fuzzy 
logic-based adaptive centralised Kalman filter (FL-ACKF), fuzzy logic-based adaptive 
decentralised Kalman filter (FL-ADKF), and fuzzy logic-based adaptive federated Kalman filter 
(FL-AFKF). These approaches exploit the advantages that both Kalman filtering and fuzzy logic 
techniques have: the optimality of the Kalman filter and the capability of fuzzy systems to deal 
with imprecise information using “common sense” rules. In this approach the linear estimations 
obtained by individual Kalman filters are improved through dynamically tuning the 
measurement noise covariance matrix Rk by means of a FIS. This prevents filter divergence and 
relaxes the a priori assumption about the initial value of Rk. It is particularly relevant that only 
three rules are needed to carry out the adaptation. 
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 An illustrative example was presented to demonstrate the effectiveness and accuracy of the 
proposed adaptive MSDF architectures. Exhaustive simulations under different measurement 
noise conditions and with or without the presence of faults were carried out. The results from 
the simulations show that the proposed hybrid adaptive MSDF architectures are effective in 
situations where there are several sensors measuring the same parameters, but each one has 
different measurement dynamic and noise statistics. Thus, the general idea of exploring the 
combination of traditional (Kalman filtering) with non-traditional (fuzzy logic) techniques for 
designing adaptive MSDF architectures appears to be a good avenue of investigation. 
 
 The FL-AKF developed in Chapter V together with a neuro-fuzzy approach for non-linear 
process modelling and identification will be used in the next chapter to design a neuro-fuzzy-
AKF state estimator. Then, the hybrid adaptive MSDF architectures developed in this chapter 
will be applied to merge the information coming from several neuro-fuzzy-AKF state 
estimators. 
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CHAPTER 7 

HYBRID NEURO-FUZZY-KALMAN FILTER ADAPTIVE 

MULTI-SENSOR DATA FUSION ARCHITECTURE 
 

 
7.1 Introduction 
 
As mentioned in Chapter 5, the problem of improving the performance (reliability and accuracy) 
of the Kalman filter and, in consequence, the MSDF architectures based on it, can be divided 
into two parts, a modelling problem and an estimation problem. In the previous two chapters, 
only the estimation problem has been tackled. Thus, in this chapter the modelling problem is 
considered. In that sense, neuro-fuzzy techniques, namely those described in Chapter 3, will be 
used for modelling and identification purposes. 
 
 In the hybrid adaptive MSDF architectures developed in Chapter 6 it is assumed that a model 
of the system under consideration is available in a state-space representation. However, what 
happens if this model is not available, or if the system under consideration is a non-linear one? 
In these cases, the developed architectures cannot be applied. Nevertheless, if there is a tool 
through which the system under consideration can be modelled and expressed in the form 
needed, then the proposed MSDF architectures can be applied. 
 
 Therefore, in order to deal with the above problem, research has been carried out in the area 
of identification and modelling of non-linear systems. The objective of this research was to find 
a suitable neuro-fuzzy approach capable of modelling and expressing in a state-space 
representation the system under consideration. In addition, the identification process should be 
carried out using solely the data coming from the sensors, which can be of a different kind but 
should be commensurate. In this way, the FL-AKF algorithm developed in Chapter 5 can be 
directly applied and, in consequence, the hybrid adaptive MSDF architectures proposed in 
Chapter 6 can be employed to merge the data coming from the identified system. 
 
 As a result of the research carried out, it was found that the neuro-fuzzy-SKF state estimator 
recently developed by Harris et al [1999, 2000, 2002] [Wu and Harris, 1997] is adequate for the 
purposes followed in this chapter. Therefore, first in this chapter the neuro-fuzzy-SKF state 
estimator approach is described. After that, a simplified version of it is proposed. Then, the 
simplified version of the neuro-fuzzy-SKF state estimator is used to develop a novel hybrid 
neuro-fuzzy-AKF state estimator. Finally, the FL-AKF-FLA hybrid adaptive MSDF 
architecture proposed in Chapter 6 is used to merge the data coming from several neuro-fuzzy-
AKF state estimators. 
 
 
7.2 The neuro-fuzzy-SKF state estimator 
 
Consider a general stochastic non-linear single-input-single-output (SISO) system represented 
by the discrete-time domain model: 
 

)())(,),(),(,),(()( twndtudtuntytyfty uy +−−−−−−= KK 11     (7.1), 

 
where f(·) is an unknown non-linear function, u(t) and y(t) are the system’s input and output, 
respectively; ny, nu, and d are positive integers assumed a priori and representing the orders and 
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time-delay of the model; w(t) denotes a white noise sequence representing observational and 
modelling errors. 
 
 In order to perform state estimates by applying Kalman filtering to the system (7.1) two 
alternatives can be devised. In the first, after the identification and linearisation of the unknown 
plant has been performed, an extended Kalman filter [Brown and Hwang, 1997] can be applied. 
However, the resulting extended Kalman filter is non-optimal due to the linear approximation; 
moreover, convergence cannot be guaranteed, and even divergence may occur [Wu and Harris, 
1996]. The second option is to look for another model of (7.1) that is easy to convert to an 
equivalent state-space form and then use a SKF. This second option is the one selected in the 
neuro-fuzzy-SKF design. 
 
 Hence, the non-linear system described by (7.1) can be re-expressed as: 
 

)()()()()( ytnt ntyOatyOaty
y

−++−= L11              

)()()()()( twndtuOadtuOa utntny
+−−++−−+ + L11     (7.2) 

 
where )( ti Oa  i = 1,…,n, n = ny + nu, are the unknown parameters which are functions of the 

measurable multi-dimensional operating points Ot. Ot may be some changing environmental 
operating condition that causes the system’s parameters to vary. The system (7.2) is an 
operating point dependent auto-regressive moving average (ARMA) model where the AR 
parameters are non-linear functions of the operating point Ot [Wu and Harris, 1996]. Also (7.2) 
is a special case of (7.1) when the measurable operation points Ot depend upon the past values 
of the system input and output [Wang et al, 1996a]. 
 
 The model described by (7.2) is easy to convert to a state space representation. This can be 
achieved by considering the operating point Ot as a function of time. In such a case, (7.2) can be 
re-expressed in the following time-varying ARMA form: 
 

)()()()()( yn ntytatytaty
y

−++−= L11              

)()()()()( twndtutadtuta unny
+−−++−−+ + L11       (7.3) 

 
where )(tai  i = 1,…,n, n = ny + nu, are the time-varying parameters. The system (7.3) can be 

represented in various state-space realisations, but the controllable state-space form is 
considered in the neuro-fuzzy-SKF as will be explained later. 
 
 The time-varying parameters, )(tai , in (7.3) can be approximated by using a neuro-fuzzy 

modelling network as is explained next. From (7.3) a vector of observations can be defined as: 
 

TT )](,),(),(,),([],,[)( uyn ndtudtuntytyxxtx −−−−−−== KLK 111    (7.4), 

 
where n = ny + nu. Based on (7.4) a Sugeno-type FIS [Takagi and Sugeno, 1985] can be 
designed in order to approximate the system given in (7.3) [Wu and Harris, 1997]. Consider as 
the FIS input the vector of observations x(t) ∈ ℜn, and as the FIS output the system value y(t) ∈ 
ℜ. Therefore, universes of discourse for each linguistic variable xi can be defined as Xi ⊂ ℜ, and 

for y as Y ⊂ ℜ (i = 1,2,…,n). Define fuzzy sets ik
iA , with ki = 1,2,…,mi and i = 1,2,…,n, using 

B-spline functions, as values of the linguistic variables xi. Then, fuzzy rules forming a complete 
rule base can be defined as: 
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j-th rule: if x1 is 1
1
kA and x2 is 2

2
kA and  ⋅ ⋅ ⋅  xn is nk

nA  then y(t) is yj(x)       (7.5), 

 
where yj(x) ∈ Y and j = 1,2,…,p; p is the number of fuzzy rules, which in order to have a 
complete rule base must satisfy p = m1m2 ⋅ ⋅ ⋅ mn. Generally, for a task of system identification, 
the function yj(x) in (7.5) is selected to be a linear combination of the components of the input 
vector [Takagi and Sugeno, 1985], this is: 
 

n
j
n

jj
j xaxaxaxy +++= L2211)(            (7.6), 

 

where j
ia  (i = 1,2,…,n; j = 1,2,…,p) are the unknown parameters. 

 
 The FIS defined by (7.5) and (7.6) form a local linear model of (7.3) [Harris et al, 1999]. If 
the algebraic product/sum fuzzy operators (see Appendix A) are selected, B-spline functions are 

used to define the membership functions of the fuzzy sets ik
iA , and the COA defuzzification 

method is used, then the real (crisp) output of the FIS is given by: 
 

∑∏
= =

=
p

j

n

i
ji

k
i xyxAty i

1 1

)()()(             

)()( xyx j

p

j
j∑

=

=
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µ              (7.7), 

 
where )(xjµ  represents the degree of truth value of the antecedent part of the j-th rule, and is 

given by: 
 

∏
=

=
n

i
i

k
ij xAx i

1

)()(µ              (7.8). 

 
 Equation (7.8) also can be seen as a multivariate B-spline basis function generated by 

multiplying the n univariate basis functions )( i
k
i xA i . A graphical representation of the FIS 

defined by the rule base (7.5) and equation (7.7) is shown in figure 7.1. This system can be seen 
either as a B-spline neural network or as a Sugeno-type FIS with membership functions 
implemented by B-spline basis functions [Wu and Harris, 1997]. A broader explanation of this 
special class of FIS, which characteristics makes it a hybrid neuro-fuzzy system, was given in 
Chapter 3, section 3.5. 
 
 The above described FIS can be reorganised to form a neuro-fuzzy modelling network [Wu 
and Harris, 1997] [Harris et al, 1999]. By substituting yj(x) defined with (7.6) into (7.7), it 
results in: 
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where: 
 

∑
=

=
p

j

j
iji axta

1

)()( µ , i=1,2,…,n         (7.10) 

 
is a linear combination of the degree of truth values of the antecedent part of the fuzzy rules. 
Note that (7.10) is similar to (7.7) where instead of having function factors yj(x) there are 

singleton factors j
ia . This means that each i-th parameter ai(t) can be approximated by a 

Sugeno-type FIS designed as was explained previously, but where the consequent parts of the 

fuzzy rules are defined using singleton fuzzy sets j
ia . One of these FIS is represented 

graphically in figure 7.2. Therefore, (7.9) is equivalent to (7.3). 
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Figure 7.1 Graphical representation of the FIS defined by the rule base (7.5) and equation (7.7). 
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Figura 7.2 FIS used to approximate the parameters ai(t). 

 
 If each auto-regressive parameter ai(t) in (7.9) is approximated by a FIS of the kind shown in 
figure 7.2, then a neuro-fuzzy modelling network representing the whole equation can be 
formed as is shown in figure 7.3. 
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Figura 7.3 Neuro-fuzzy modelling network. 

 
 The first layer of the neuro-fuzzy modelling network in figure 7.3 is composed of n FISs, 
where each FIS output corresponds to an auto-regressive parameter ai(t). All the FISs have as 
input the vector x and use the same fuzzy rule base. Consequently, all the FISs share the same 
vector φ, which is formed by the degree of truth values, µi(x), of the antecedent part of the fuzzy 
rules: 
 

T
p xxx )](,),(),([ µµµφ L21=          (7.11). 

 

 The free parameters of the network in figure 7.3 are the singletons (scalars) j
ia , that define 

the consequent part of the rules in each FIS. These singletons can be arranged in n vectors 
iaθ : 

 
Tp

iiia aaa
i

],,,[ L

21=θ , i = 1,2,…,n         (7.12), 

 
where each vector 

iaθ  contains the singletons corresponding to the consequent parts of the rules 

of the i-th FIS. 
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 The neuro-fuzzy modelling network can be trained using the LMS or the NLMS algorithms, 
as will be shown later. Therefore, a non-linear system given in the form (7.9) can be identified 
by the neuro-fuzzy modelling network shown in figure 7.3. 
 
 The model (7.9) can be easily translated to a state-space representation [Harris et al, 1997] as 
is required by the SKF algorithm. If the term corresponding to the input in (7.9) is represented 
by, 
 

)()()()(~
unn ndtuadtutatu

y
−−++−−= + L11       (7.13), 

 
then the model (7.9) becomes: 
 

)()(~)()()()()( twtuntyxatyxaty yny
++−++−= L11     (7.14), 
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 It follows that: 
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)()(~)()()()( twtutztatzta mny
++++= 11 L          

 
this leads to the following canonical controllable state-space representation: 
 

)()(~)()()( twtuBtztAtz Γ++=+1 , 00 zz =)(      (7.17) 

)()(~)()()( tvtuDtztCty ++=          (7.18) 
 
with: 
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T][ 10 L=Γ  ∈ ynℜ , )]()()([)( tatatatC
yn 12L=  ∈ ynℜ , and D = 1.   

 
where the mean of z(0) is the initial condition, given as 0z ; v(t) represents measurement noise. 

It is assumed that v(t) is modelled as a Gaussian zero mean white noise sequence. 
 
 Therefore, by using (7.17) and (7.18) the SKF can be directly applied: 
 
i) Time update (or prediction) equations: 
 

)(~)(ˆ)()(ˆ )()( tuBtztAtz +=+ +−1          (7.19) 
TT tQtAtPtAtP ΓΓ+=+ +− )()()()()( )()(1         (7.20) 

 
ii)  Measurement update (or correction) equations: 
 

1−
−− += )]()()()()[()()( )()( tRtCtPtCtCtPtK TT       (7.21) 

)](~)(ˆ)()()[()(ˆ)(ˆ )()()( tuDtztCtytKtztz −−+= −−+        (7.22) 

)()( )()]()([)( −+ −= tPtCtKItP               (7.23) 

)(~)(ˆ)()(ˆ )( tuDtztCty += +             (7.24) 
 
where ŷ(t) is the filtered system output. Note that there is a slight modification in the notation of 
the SKF with respect to that used in previous chapters. This has been made to indicate the time-
varying condition of the different matrixes included in the state space model. 
 
 Hence, a neuro-fuzzy-SKF structure can be used to produce state estimates. This structure 
can be arranged in two ways [Wu and Harris, 1997] [Harris et al, 1999]: (i) the indirect neuro-
fuzzy-SKF state estimation scheme, and (ii) the direct neuro-fuzzy-SKF state estimation 
scheme. Both structures are described as follows. 
 
 (i) The indirect neuro-fuzzy-SKF state estimation scheme. In this scheme the system 
identification and the state estimation by the SKF are performed separately, as is represented 
graphically in figure 7.4. First, the neuro-fuzzy network is used to identify the non-linear system 
model. Once the system model has been identified, it is fed to a separate SKF to perform state 
estimates indirectly. 
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Figure 7.4 Indirect neuro-fuzzy-SKF state estimation scheme. 
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Figura 7.5 Direct neuro-fuzzy-SKF state estimation scheme. 
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Figure 7.6 Connection between the neuro-fuzzy network of figure 7.3 and a SKF. 

 
 (ii) The direct neuro-fuzzy-SKF state estimation scheme. Here, the identification process and 
the state estimation by the SKF algorithm are combined in a bootstrap scheme, as is shown in 
figure 7.5, to produce state estimates directly. The connection between the neuro-fuzzy network 
of figure 7.3 and a SKF is implemented as is shown in figure 7.6. This structure can be viewed 
as a two-layered adaptive network, where the first layer is the neuro-fuzzy network shown in 
figure 7.3 and the second layer is a SKF which uses the auto-regressive parameters produced by 
the first layer to perform state estimates. Evidently, the SKF cannot be interpreted as a neural 



CHAPTER 7 HYBRID NEURO-FUZZY-KALMAN FILTER ADAPTIVE MSDF ARCHITECTURE 124

network, thus it is not explicitly seen how the training procedure of this structure can be carried 
out. This matter will be clarified in the following section. 
 
 
7.2.1 Training of the neuro-fuzzy-SKF state estimator 
 
In this section the training algorithms for the two neuro-fuzzy-SKF state estimation schemes, 
presented in the last section, are described. 
 
 a) Training of the indirect neuro-fuzzy-SKF state estimation scheme. The neuro-fuzzy 
modelling network shown in figure 7.3 is a two-layered neural network. The first layer is 
composed of n FISs that also can be viewed as B-spline neuro-fuzzy sub-networks, whose 
outputs correspond to the auto-regressive parameters ai(t). The second layer is simply the 
regression calculation of (7.9) [Wu and Harris, 1997]. Therefore, the free parameters of the 

network are the singletons jia  (the weights of the B-spline neuro-fuzzy sub-networks), which 

define the consequent part of the fuzzy rules in the first layer. The weights of the second layer 
can be considered as fixed in each iteration of the training procedure. Several training 
algorithms for traditional feedforward neural networks can be used to train the neuro-fuzzy-SKF 
network, but the NLMS, which was reviewed in section 3.5, is employed here. 
 
 At time t the input 
 

TT )](,),(),(,),([],,[)( uyn ndtudtuntytyxxtx −−−−−−== KLK 111 ∈∈∈∈ ℜn,    

 
is presented to the neuro-fuzzy modelling network of figure 7.3. In the forward pass the network 
calculates the output by (7.9), which is denoted by ỹ (see figure 7.4). Thus an error signal, ε(t), 
may be defined as: 
 

)(~)()( tytyt −=ε           (7.25). 
 
 The error signal needs to be propagated back through the network. But, because there are no 
free parameters in the second layer of the network, the error is propagated back through the 
second layer to the output of the first layer. Thus, the errors in ai(t), normalised by x(t)Tx(t), are 
given by, 
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T
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εε = , i = 1,2,…,n        (7.26). 

 
 Then, the errors 

iaε  can be used to update the free parameters ()(t
iaθ ) of the first layer. 

Therefore, the NLMS algorithm for the network is: 
 

)()()()(
)()()(

)()(
txtxttc

ttxt
tt

TT
i

aa ii 11
1

1
−−+

−+−=
φφ

εφηθθ      (7.27) 

 
with )(0

iaθ  given, 0 < η < 2 is the learning rate, and c > 0 is an arbitrarily small number which 

is added to avoid division by zero. 
 
 Proof of the convergence of the described training algorithm can be found in [Wang et al, 
1996a]. 
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b) Training of the direct neuro-fuzzy-SKF state estimation scheme. The neuro-fuzzy-SKF 
estimator shown in figure 7.6 can be viewed as a two-layered neural network. The first layer is 
composed of n FISs, whose outputs correspond to the auto-regressive parameters ai(t). The 
second layer corresponds to a SKF, which does not need to be trained. Nevertheless the SKF is 
not a neural network and information cannot pass through it inversely, the NLMS training 
algorithm can be used to train the network as is described as follows. 
 
 Using the definition of states given by (7.15), the state estimate )(ˆ tz  is: 
 

T
y tyntytz )](ˆ)(ˆ[)(ˆ 1−−= L            (7.28). 

 
 Substituting (7.28) and (7.13) in (7.26) results in the following regressive relation: 
 

)()()()()(ˆ)()(ˆ)()(ˆ unnyn ndtytadtutantytatytaty
yy

−−++−−+−++−= + LL 11 11  (7.29). 

 
 Equation (7.29) can be represented as a two-layered neural network, as is shown in figure 
(7.7). This means that it is possible to train the neural network using the NLMS algorithm as in 
the previous case. However, a slight modification needs to be performed. In the forward pass the 
network calculates the auto-regressive parameters ai(t), which are the outputs of the first layer, 
according to (7.10). Then, the state-space equations (7.17) and (7.18) are formed with these 
parameters and the state estimation is performed using the SKF algorithm, equations (7.19)-
(7.24), giving the state estimate )(ˆ tz  and output estimate )(ˆ ty . 
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Figure 7.7 Neuro-fuzzy network representing equation (7.29). 
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 Therefore, the NLMS training algorithm is given by: 
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where ε(t) and ξ(t) are defined as, 
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and )(ˆ ty  is the filter output at time t. 
 
 
7.3 The simplified neuro-fuzzy-SKF state estimator 
 
In the last section the neuro-fuzzy-SKF state estimator was described as originally proposed by 
Harris et al [1997, 1999, 2000]. However, from an analysis of the neuro-fuzzy-SKF state 
estimator, it is deduced that a simplified version of it can be obtained as is presented in this 
section. 
 
 The auto-regressive parameters ai(t) in (7.9) are non-linear functions which are approximated 
by FISs in the first layer of the neuro-fuzzy modelling network shown in figure 7.3. Note that all 
these FISs share the same vector φ, formed with the degree of truth values µi(x) of the 
antecedent parts of the fuzzy rules (see (7.11)). Therefore, instead of considering n complete 
FISs, the neuro-fuzzy network can be built considering a single antecedent rule evaluator in 
which the calculation of the degree of truth values µi(x) is performed. Then, these values are 

distributed among n vector blocks 
iaθ , which constitute the consequent parts of the n rule sets, 

to obtain the corresponding ai(t) parameters. This simplifies the neuro-fuzzy network structure 
as is shown in figure 7.8. 
 
 From the simplified neuro-fuzzy network structure of figure 7.8 the following equations can 
be deduced: 
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 (7.34) is equivalent to (7.9) and proves that the final result obtained with the simplified 
neuro-fuzzy modelling network is equal to the result obtained with the original neuro-fuzzy 
modelling network. 
 
 Alternatively, instead of arranging the free parameters of the simplified neuro-fuzzy network 

(or the original neuro-fuzzy network) in vectors 
iaθ , these can be arranged in vectors of the 

form: 
 

][ j
n

jjj aaaa L21= , j = 1,2,…,p        (7.35). 
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Figure 7.8 Simplified neuro-fuzzy modelling network. 

 
 Therefore, by using the vectors defined in (7.35) the output of the simplified neuro-fuzzy 
network can be calculated as: 
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where: 
 

)()( tyxaxaxatxa jn
j
n

jjj =+++= L2211 ,  j = 1,2,…,p     (7.37). 

 
 Note that (7.37) is equivalent to (7.6). Therefore, the solution given by (7.36) is equivalent to 
the solution given by (7.9) or (7.34). 
 
 The free parameters of the simplified neuro-fuzzy modelling network (or the original neuro-
fuzzy network) can be organised in a matrix form as is shown in Table 7.1. These parameters 

can be seen as column vectors 
iaθ  or as row vectors ja . Depending on which way the free 

parameters are taken, as column or row vectors, equation (7.34) or (7.36), respectively, is used 
to obtain the output of the neuro-fuzzy network. 
 
 The simplification of the neuro-fuzzy network does not alter its characteristic of being easy 
to translate to a state-space representation as is required by the SKF. In fact, exactly the same 
procedure used in the original network, and explained in section 7.2, can be followed. 
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Therefore, it is straightforward to include the simplified neuro-fuzzy network in the indirect and 
direct neuro-fuzzy-SKF schemes, shown in figures 7.4 and 7.5, to perform state estimations. In 
the indirect neuro-fuzzy-SKF scheme, instead of using the original neuro-fuzzy modelling 
network, the simplified neuro-fuzzy modelling network is employed. The connection between 
the simplified neuro-fuzzy network and a SKF in the direct neuro-fuzzy-SKF scheme is shown 
in figure 7.9. 
 

Table 7.1 
Matrix formed with the free parameters of the neuro-fuzzy network 
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Figure 7.9 Connection between the simplified neuro-fuzzy network and a SKF. 
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 With respect to the training of the simplified neuro-fuzzy-SKF, the procedures presented in 
section 7.2.1 are directly applied in both indirect and direct neuro-fuzzy-SKF state estimation 
schemes. Therefore, they are not repeated here. 
 
 
7.4 The neuro-fuzzy-AKF state estimator 
 
In this section the FL-AKF presented in Chapter 5 is used to develop a neuro-fuzzy-AKF state 
estimator (from here referred to as neuro-fuzzy-AKF). This is achieved by incorporating the FL-
AKF in the direct neuro-fuzzy-SKF scheme, as is shown in figure 7.10. Note that instead of 
employing a SKF, a FL-AKF is used and the error signal is fed to the FL-AKF. 
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Figure 7.10 Direct neuro-fuzzy-AKF state estimation scheme. 

 
 In practice, system identification using the neuro-fuzzy-AKF can be implemented using two 
different approaches. The first is a series-parallel model, while the second is merely a parallel 
model, resembling the corresponding neural network identification approaches [Narendra and 
Parthasarathy, 1990] [Nelles and Isermann, 1996]. 
 

In the series-parallel model the previous process input and output are fed into the neuro-
fuzzy-AKF and the error signal is used as a measurement signal for the FL-AKF as is shown in 
figure 7.11(a). Hence, the past values of the input and output of the plant form the input vector 
to the neuro-fuzzy-AKF whose output )(ˆ ty  corresponds to the estimate of the plant output at 
any instant of time t. This model is similar to the direct neuro-fuzzy-SKF approach and, 
therefore, the same learning procedure used for that case can be applied here. The way in which 
the error signal is managed in the neuro-fuzzy-AKF will be clarified later. 

 
In the parallel model the previous neuro-fuzzy-AKF output is fed back to the identification 

model and the error signal is used as measurement signal for the FL-AKF, as is shown in figure 
7.11(b). The parallel model is recurrent and therefore can predict an arbitrary number of steps 
into the future. However, due to the feedback, the model inputs )(ˆ ity −  depend on the model 
parameters. Therefore the identification model becomes nonlinear in the parameters. This makes 
the gradient calculations a nonlinear optimisation problem, which requires a different learning 
technique. In the neural network literature, it is argued that using a parallel identification model 
is a difficult problem [Nelles and Isermann, 1996]. Furthermore, the parameter optimisation 
may become unstable. Due to this, here the series-parallel neuro-fuzzy-AKF model is used 
during the process of system identification. Once the system under consideration has been 
identified, and assuming that the output error tends to a small value asymptotically so that 
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y(k)≈ )(ˆ ty , the series-parallel model can be replaced by a parallel neuro-fuzzy-AKF model 
without serious consequences [Narendra and Parthasarathy, 1990]. 
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Figure 7.11(a) Series-parallel Neuro-Fuzzy-AKF model. 
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Figure 7.11(b) Parallel Neuro-Fuzzy-AKF model. 

 
 During the training process the error signal in the neuro-fuzzy-AKF scheme is used as a 
measurement noise signal in the state-space representation of the system (equations 7.17 and 
7.18) used in the FL-AKF (see figure 7.11). By using an artificial process noise sequence 
[Haykin, 1999], w(t), with known and fixed covariance, Q(t)=Q ∀ t, of a low value, the 
covariance of the measurement noise, which in this case is the error signal, can be approximated 
by the adaptation algorithm in the FL-AKF. This is achieved by employing the algorithm of 
adaptive estimation of the measurement noise covariance matrix R(t) assuming that Q is known, 
described in Chapter 5, section 5.3.2.a. This means that at the same time in which the 
identification of the process is carried out an approximation of the mismatch between the 
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identified model and the actual model is carried out and this mismatch is represented by the 
estimated measurement noise covariance matrix R(t). 

 
Therefore, at the beginning of the training of the neuro-fuzzy-AKF using the series-parallel 

model, a low value for Q is given, which defines an artificial process noise sequence, and an 
initial guessed value for R(t) is defined. While Q is maintained constant over the whole training 
process, R(t) is adaptively adjusted to match the covariance value of the error sequence. At the 
end of each epoch an average of R(t) is obtained as: 
 

∑
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=
N

t

tR
N

R
1

1
)(             (7.38) 

 
where N is the number of training input-output samples using for training purposes. This 
averaged value, R, is used as initial measurement noise covariance for the next epoch. 
Consequently, as the identification process progresses, and if the nonlinear system is being 
correctly identified, the value of R decreases with each epoch until it reaches a quasi-steady 
state around a small value, indicating that the identification process has converged. This 
utilisation of the error signal as measurement signal for the state-space representation of the 
system used in the FL-AKF has the effect of stabilizing the training process. In addition, it helps 
to avoid the possible divergence of the filter because the FL-AKF has the knowledge of the 
approximated mismatch between the identified model and the actual system, represented as the 
measurement noise covariance value, R. 
 

Once the identification process is terminated, the switch SW in figure 7.11 is opened and an 
artificial measurement noise signal, v(t), with covariance R is used to substitute the error signal. 
 
 
7.5 MSDF using the neuro-fuzzy-AKF state estimator 
 
In the last chapter four adaptive MSDF architectures based on the FL-AKF, developed in 
Chapter 5, were presented. In order to apply these architectures a state-space representation of 
the system under consideration must be available. In section 7.4 a novel neuro-fuzzy-AKF for 
non-linear system identification and state estimation has been developed. As an interesting 
characteristic, the neuro-fuzzy-AKF is capable of identifying and expressing in the form of a 
time varying state-space representation the non-linear system under study. As a consequence, 
the FL-AKF can be directly applied. Therefore, in this section the hybrid architecture FL-AKF-
FLA (see section 6.3.1) is applied for MSDF of the information coming from N neuro-fuzzy-
AKFs. 
 
 The implementation of the FL-AKF-FLA scheme using neuro-fuzzy-AKFs is shown in 
figure 7.12. This scheme is similar to that presented in section 6.3.1, but here the FL-AKFs are 
substituted by neuro-fuzzy-AKFs. Note also, that in this case the information that is being fused 
are the estimated nonlinear plant outputs ŷi(t), carried out by the different neuro-fuzzy-AKFs, 
instead of the state vectors. The fusion process is carried out through a weighted average 
scheme based on the confidence values calculated by the Fuzzy Logic Assessors (FLAs). The 
FLAs are assessing the performance of each neuro-fuzzy-AKF, and calculate a degree of 
confidence value, ci, using a fuzzy inference system (FIS). Each FIS has as inputs the absolute 
value of the Degree of Mismatch (DoM) and the estimated value of R(t), calculated in each 
neuro-fuzzy-AKF (specifically, in each FL-AKF). For a complete description of the algorithm, 
the reader is referred to section 6.3.1. Therefore, the application of the FL-AKF-FLA for MSDF 
using neuro-fuzzy-AKFs is straightforward. 
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Figure 7.12 Implementation of the FL-AKF-FLA scheme using neuro-fuzzy-AKFs 

 
 
7.6 Simulation results 
 
In this section simulation results of nonlinear plant identification, state estimation, and MSDF 
using the neuro-fuzzy-AKF and the MSDF architecture described earlier are presented. Two 
benchmark processes taken from the literature are simulated. The MATLAB/SIMULINK 
platform for simulation was used and the developed SIMULINK models are presented in the 
Appendix B. 
 
 In both examples, during the identification process, a series-parallel model is used, but when 
the identification process is terminated the performance of the neuro-fuzzy-AKFs is evaluated 
using a parallel model, as is commonly reported in the neural networks literature [Narendra and 
Parthasarathy, 1990]. 
 
 One of the problems of LMS based learning algorithms is that they have a slow rate of 
convergence. In order to accelerate convergence, the learning rate η in (7.30) is changed as the 
number of epochs increases by using the relation [Haykin, 1999]: 
 

)(
)(
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ηη

++
=

n
n

1
0            (7.40) 

 
where η(n) is the learning rate at the current epoch n, η0 and ς are constants selected in order to 
define the decreasing rate of the learning-rate parameter. Obviously, η0 must be inside the 
permissible range (0, 2) for the learning-rate parameter value. In the simulations carried out in 
this study the values selected are η0 = 2, and ς = 50. 
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 The identification process was terminated when satisfactory correlation validity tests 
[Billings and Zhu, 1994]: )(τeeΦ , )(

)(
τ2eye

Φ , and )(
)(

τ2uye
Φ  were obtained. 

 
 Example 1. Consider a nonlinear system described by [Chen and Khalil, 1995] [Hong and 
Harris, 2001] [Liu et al, 1999]: 
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where z(t) is a state variable that has to be estimated from the measurements from two different 
noisy sensors: 
 

)()()( ttzty 11 ξ+=            (7.42) 

)()()( ttzty 22 ξ+=            (7.43) 
 
where ξ1(t) and ξ2(t) are independent Gaussian zero–mean white noise sequences with variances 
0.0025 and 0.0125 respectively. It means that sensor 1 is 5 times more accurate than sensor 2. 
 
 To train both neuro-fuzzy-AKF state estimators, a sequence of 1000 observations y1(t) and 
1000 observations y2(t) were generated using as input signal u(t) a chirp signal (sine wave 
whose frequency varies linearly with time) with initial frequency of 0.004 Hz, frequency at 
target time of 0.04 Hz, target time of 1000 sec, and sampling time of 1 sec. The generated input 
signal u(t), state signal z(t), and observation signals y1(t) and y2(t) are shown in figure 7.13. 
 
 Two neuro-fuzzy-AKFs were used to approximate the system. In both cases B-spline basis 
functions of order 2 were used as fuzzy sets for the input variables. The input vector to the 
neuro-fuzzy modelling network was predetermined as x(t)=[y(t-1), y(t-2), u(t-1), u(t-2)]T. The 
knot vectors for u(t-i) were defined as [-2, -1, 0, 1, 2], while the knot vectors for y(t-i) were 
specified as [-2.75, -1, 0.75, 2.5, 4.25]. These knot vectors were defined based on the maximum 
range of possible values for the input and output: [-1, 1] and [-1, 2.5], respectively. 
 
 The initial conditions for the FL-AKFs inside the neuro-fuzzy-AKF structures were defined 

as: Tzz ].[)(ˆ)(ˆ )()( 30000 21 == −− , == −−
10

01
00 21 )()( )()( PP , Q1 = Q2 = 2x10-5, R1(t) = R2(t) = 

0.02; while the initial state vectors were defined as: Tzz ].[)()( )()( 30000 21 == −−  (the sub-
indices refer to the number of neuro-fuzzy-AKF). As mentioned earlier, Q1 and Q2 were 
maintained as constants during the training process. However, the average of the estimated R1(t) 
and R2(t), obtained applying (7.38), were used as their initial values for the next epoch, whereas 
P1(1000) and P2(1000) were used as initial conditions for the next epoch. 
 
 The parameters that define the fuzzy sets in the FISs used in each FL-AKF to adjust Ri(t), are 
a = 5 and b = 0.3. While the parameters which define the fuzzy sets in the FISs used in each 
FLA algorithm in the FL-AKF-FLA MSDF architecture are g = 1.5 and h = 3. For practical 
reasons, seen in chapter 5, the size of the sliding window in all FL-AKFs is selected as 15. 
 
 In order to evaluate the performance of individual neuro-fuzzy-AKFs and the fusion 
algorithm, the following mean squared error measures were adopted: 
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where e1(t) and e2(t) are the error values between the estimated and measured signals, ez1(t) and 
ez2(t) are the errors between the estimated and actual state (noise free) signals, and ef(t) is the 
error between the fused estimated signal and the actual state signal. 
 

 
Figure 7.13 Input signal u(t), state signal z(t), observation y1(t), and observation y2(t). 

 
 The training process was carried out cyclically using the training data. At the end of each 
epoch (cycle), the validity correlation tests were carried out. The training process was 
maintained until acceptable correlation validity tests were obtained and the mean squared error 
values for both networks, given by (7.42a) and (7.42b), have converged. Figure 7.14 shows the 
model validity correlation tests for the neuro-fuzzy-AKF state estimators at epoch 500, which 
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showed satisfactory results, and thereafter the training process was stopped. The convergence of 
the MSEyi values is shown in figure 7.15. The MSEyi values obtained at the end of the training 
process are shown in Table 7.2. There also is given the MSEf value (given by (7.42e)) obtained 
by fusing the neuro-fuzzy-AKF estimates. 
 
 Figure 7.16 shows the performance of both neuro-fuzzy-AKFs at the end of the training 
process. From the inspection of that figure, it is obvious that the noise present in sensor 2 is 
greater than the noise present in sensor 1, and thus the error in the neuro-fuzzy-AKF 2 is 
greater. However, note that both neuro-fuzzy-AKFs perform a good approximation to the 
measured signal. The comparison of the estimated signals with the actual signal (the noise free 
signal z(t)) and the fused obtained signal at the end of the training process is shown in figure 
7.17. Note that only a slight error exists between the fused estimate and the actual signals. 
 
 Figure 7.18 shows the approximated measurement noise covariance values obtained at epoch 
500 for both neuro-fuzzy-AKFs. It can be appreciated that a quasi-steady state has been reached. 
The averaged measurement noise covariance values at this epoch were R1=0.0031 and 
R2=0.0129. Note that these values are very near to the actual measurement noise covariance 
values 0.0025 and 0.0125. These values as well support the assumption that the training process 
has converged. 
 

Table 7.2 Training and validation MSE measures 
Training Validation 

MSEy1 MSEy2 MSEf MSEy1 MSEy2 MSEf 
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Figure 7.14 Model validity correlation test for the Neuro-Fuzzy-AKF state estimators at the end 
of the training process. 
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Figure 7.15 MSEy1 and MSEy2 in the training process. 

 

 
Figure 7.16 Performance of the Neuro-Fuzzy-AKF state estimators at the end of the training 
process. 
 

 
Figure 7.17 Performance of the FL-AKF-FLA fusion algorithm at the end of the training 
process. 
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Figure 7.18 Measurement noise covariance values obtained at epoch 500. 

 
 A validation data set of 1000 samples of z(t), y1(t) and y2(t) were generated using the signal 
u(t)=sin(πt/80) as input with sample time of 1 sec. The generated validation signals are shown 
in figure 7.19. 
 

 
Figure 7.19 Validation signals generated with u(t)=sin(πt/80). 
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 Figure 7.20 shows the performance of both neuro-fuzzy-AKFs using the validation data 
where the estimated signals are compared with the measured signals. Note that good 
approximation is obtained. The MSEyi values obtained are shown in Table 7.2 and figure 7.21 
shows the estimated signals compared with the actual noise free signal. It is relevant to note that 
in both filters a very good estimation of the actual signal is obtained, as is demonstrated by the 
MSEzi values shown in Table 7.2. 
 
 In order to appreciate the performance of the fusion algorithm, the fused signal, the actual 
signal, and both estimated signals are plotted in figure 7.22. The obtained MSEf value is shown 
in Table 7.2. Note that, for this particular case, the fused data is slightly less accurate than the 
data obtained with sensor 1. 
 
 Finally, figure 7.23 shows the approximated measurement noise covariance value, obtained 
over the validation data. Note that effectively the averaged value of Ri does not change, and the 
quasi-steady state is maintained. 
 

 
Figure 7.20 Performance of the neuro-nuzzy-AKFs over the validation data. 

 

 
Figure 7.21 Actual and estimated signals over the validation data. 
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Figure 7.22 Fused and estimated signals compared with the actual noise free signal over the 
validation data. 
 

 
Figure 7.23 Measurement noise covariance values obtained during the validation process. 

 
 
 Example 2. Consider a nonlinear system described by [Harris et al, 2000]: 
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where z(t) is a state variable to be estimated from two different noisy sensor measurements: 
 

)()()( ttzty 11 ξ+=            (7.46) 

)()()( ttzty 22 ξ+=            (7.47) 
 
where ξ1(t) and ξ2(t) are independent Gaussian zero–average white noise sequences with 
variances 0.01 and 0.002 respectively. Note that in this case sensor 2 is 5 times more accurate 
than sensor 1. 
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 Two neuro-fuzzy-AKF state estimators were considered for the task of system identification 
and state estimation. To train both neuro-fuzzy-AKFs, a sequence of 500 observations for y1(t) 
and 500 observations for y2(t) were generated using as input signal u(t) a chirp signal with initial 
frequency of 0.004 Hz, frequency at target time of 0.04 Hz, target time of 500 sec, and sampling 
time of 1 sec. The generated training signals are shown in figure 7.24. 
 

 
Figure 7.24 Input signal u(t), output state variable z(t), observation y1(t), and observation y2(t). 

 
 The input vector to the neuro-fuzzy modelling networks was predetermined as x(t)=[y(t-1), 
y(t-2), u(t-1), u(t-2)]T. B-spline basis functions of order 2 were used as fuzzy sets for the input 
variables. The knot vectors for u(t-i) were defined as [-2, -1, 0, 1, 2], while the knot vectors for 
y(t-i) were specified as [-3.6 -1.4 0.8 3.0 5.2]. These knot vectors were defined based on the 
maximum range of possible values for the input and output: [-1, 1] and [-1.4, 3], respectively. 
 
 The initial conditions for the FL-AKFs inside the neuro-fuzzy-AKF structures were defined 

as: Tzz ][)(ˆ)(ˆ )()( 0000 21 == −− , == −−
10

01
00 21 )()( )()( PP , Q1 = Q2 = 2x10-5, R1(t) = R2(t) = 

0.02; while the initial state vectors were defined as: Tzz ][)()( )()( 0000 21 == −−  (the sub-indices 
refer to the number of neuro-fuzzy-AKFs). Q1 and Q2 were maintained as constants during the 
training process. However, the average of the estimated R1(t) and R2(t), obtained applying 
(7.38), were used as their initial values for the next epoch, whereas P1(500) and P2(500) were 
used as initial conditions for the next epoch. 
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 The parameters that define the fuzzy sets in the FISs used in each FL-AKF to adjust Ri(t), are 
a = 5 and b = 0.3, while, the parameters which define the fuzzy sets in the FISs used in each 
FLA algorithm in the FL-AKF-FLA MSDF architecture are g = 1.5 and h = 3. The size of the 
sliding window in all FL-AKFs is selected as 15. 
 
 The training data was used cyclically to train both neuro-fuzzy-AKFs. The validity 
correlation tests were carried out at the end of each epoch. The training process was maintained 
until acceptable correlation validity tests were obtained and the mean squared error values had 
approximately converged. The model validity correlation tests for the neuro-fuzzy-AKFs at 
epoch 400 are shown in figure 7.25, which showed satisfactory results, and thereafter the 
training process was stopped. The convergence of the MSEyi values is shown in figure 7.26. The 
MSEyi values at the end of the training process are shown in Table 7.3. The MSEf value 
obtained by fusing the neuro-fuzzy-AKF estimates also is given in Table 7.3. 
 
 The performance of both neuro-fuzzy-AKFs at the end of the training process is shown in 
figure 7.27. Note that the noise present in sensor 1 is greater than the noise present in sensor 2, 
and due to that the error in the neuro-fuzzy-AKF 1 is greater. However, both neuro-fuzzy-AKFs 
perform a good approximation to the measured signals. A comparison of the estimated signals 
with the actual signal z(t) and the obtained fused signal at the end of the training process is 
shown in figure 7.28. Note that there is a very small error between the fused estimated signal 
and the actual signal. 
 

Table 7.3 Training and validation MSE measures 
Training error Validation error 

MSEy1 MSEy2 MSEf MSEy1 MSEy2 MSEf 

 

10.94x10-3 
 

2.333x10-3 
 

4.786x10-4 
 

11.67x10-3 
 

3.281x10-3 
 

6.699x10-4 

   MSEz1 MSEz2 MSEf 

    

1.521x10-3 
 

1.223x10-3 
 

6.699x10-4 

Final averaged measurement noise 
covariance values: R1=0.011 R2=0.0023 

   

 

 
Figure 7.25 Model validity correlation test for the Neuro-Fuzzy-AKF state estimators at the end 
of the training process. 
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Figure 7.26 MSEy1 and MSEy2 during the training process. 

 

 
Figure 7.27 Performance of the Neuro-Fuzzy-AKF state estimators at the end of the training 
process. 
 

 
Figure 7.28 Performance of the FL-AKF-FLA fusion algorithm at the end of the training 
process. 
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 The approximated measurement noise covariance values obtained at the end of the training 
process for both neuro-fuzzy-AKFs are shown in figure 7.29. Note that a quasi-steady state has 
been reached. The averaged measurement noise covariance values at epoch 500 were R1=0.011 
and R2=0.0023, which are very near to the actual measurement noise covariance values 0.01 and 
0.002, respectively. This data also supports the assertion that the training process has converged. 
 

 
Figure 7.29 Measurement noise covariance values obtained at epoch 400. 

 
 A validation data set of 500 samples of z(t), y1(t) and y2(t) was generated using as input the 
signal u(t)=sin(πt/50) with sample time of 1 sec. The generated validation data is shown in 
figure 7.30. 
 
 The performance of both neuro-fuzzy-AKFs by using the validation data is shown in figure 
7.31, where the estimated signals are compared with the measured signals. Note that good 
approximation is obtained. The obtained MSEyi values for the validation data are shown in 
Table 7.3. The estimated signals compared with the actual noise free signal are shown in figure 
7.32. Note that in both filters a very good estimation of the actual signal is obtained, as is 
demonstrated by the MSEzi values shown in Table 7.3. 
 
 To appreciate the performance of the FL-AKF-FLA fusion algorithm, the fused signal, the 
actual signal, and both estimated signals are plotted in figure 7.33. The obtained MSEf value is 
shown in Table 7.3. Note that, in this case, the fused data is more accurate than the data 
obtained with any of the two sensors. 
 
 Finally, figure 7.34 shows the approximated measurement noise covariance value, obtained 
over the validation data. Note that practically the averaged value of Ri does not change, and the 
quasi-steady state is maintained. 
 
 Therefore, two simulated examples of neuro-fuzzy-AKF state estimation and system 
identification have been presented. System identification of two nonlinear systems using the 
series-parallel model has been performed. The identification process was carried out based on 
noisy signal coming from different sensors. It is worth remarking that by using a chirp signal 
(sine wave whose frequency varies linearly with time) as a training signal and the error signal as 
a measurement noise signal for the FL-AKFs inside the neuro-fuzzy-AKF structures, the 
training of the neuro-fuzzy-AKF using the series-parallel identification model is stable as was 
proved practically in the simulated examples. However, further investigation is needed to 
determine if this is true for a broader class of systems or to define under what conditions and for 
what kind of systems this is true. This task is left as future work to follow on from this research. 
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Figure 7.30 Validation data generated with u(t)=sin(πt/50). 

 

 
Figure 7.31 Actual and estimated signals over the validation data. 
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Figure 7.32 Performance of the neuro-fuzzy-AKFs compared with the actual signal. 

 

 
Figure 7.33 Fused and estimated signals compared with the actual noise free signal over the 
validation data. 
 

 
Figure 7.34 Measurement noise covariance values obtained during the validation process. 
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 The identified systems were validated using the parallel model. In both of the examples 
presented, good approximation to the actual state variables were obtained. Note that, however, 
the identification was carried out using noisy signals and the accuracy of the estimates show that 
the noise is effectively filtered by the neuro-fuzzy-AKFs. 
 
 MSDF of the neuro-fuzzy-AKF state estimates was performed using the FL-AKF-FLA 
fusion algorithm. In example 1 the fused data, compared with the measured data, is 52% more 
accurate than sensor 1 which gives the most accurate measurements from the two sensors. 
However, if the fused data is compared with the estimated data, it is slightly less accurate than 
the estimates performed by the neuro-fuzzy-AKF 1, which is the more accurate of the 
estimators. Nevertheless, by having two sensors and two neuro-fuzzy-AKFs being fused 
through the FL-AKF-FLA algorithm gives the complete system the characteristic of fault 
tolerance against transient and persistent faults, as was found in Chapter 6. In example 2 the 
fused data is 79.6% more accurate than that given by sensor 2, which is the more accurate of the 
two sensors for this case. This data is also more accurate than the estimated data obtained with 
either of the neuro-fuzzy-AKF estimators. Particularly, the fused data is 45% more accurate 
than the data estimated by the neuro-fuzzy-AKF 2 which has the better performance of either 
sensor for this case. 
 
 
7.7 Summary 
 
In this chapter the neuro-fuzzy-SKF state estimator approach proposed by Harris et al [1999, 
2000, 2002] has been reviewed. As a result of its analysis, a simplified version of the neuro-
fuzzy-SKF has been proposed. A novel adaptive state estimator, referred to as neuro-fuzzy-
AKF, has been proposed by substituting the SKF with a FL-AKF in the simplified neuro-fuzzy-
SKF structure. 
 
 The neuro-fuzzy-AKF has as its main characteristic the possibility of using the error signal 
in the identification process as the measurement signal for the FL-AKF in order to estimate the 
modelling error at the same time in which the identification process is performed. This has the 
effect of stabilization during the training process. 
 
 Two simulated examples of neuro-fuzzy-AKF state estimation, system identification, and 
MSDF have been presented. The identification process was carried out based on noisy signals 
coming from different sensors and using a series-parallel model, while the identified models 
were validated using a parallel model. MSDF of the estimates performed by two neuro-fuzzy-
AKFs were carried out using the FL-AKF-FLA algorithm presented in Chapter 6. Good results 
in both system identification and MSDF were obtained. 
 
 At the end of this chapter both modelling and estimation problems to improve the 
performance, reliability and accuracy of the Kalman filter approach and the MSDF architectures 
based on it have been studied. Solutions for both problems have been proposed and by 
simulating several examples it has been demonstrated that these solutions work very well. 
 
 In the next chapter the possibility of applying the proposed MSDF architectures in control 
systems will be studied. In particular, their application in the area of auto-tuning of PID type 
fuzzy logic controllers will be analysed. 
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CHAPTER 8 

APPLICATION OF THE HYBRID MULTI-SENSOR DATA 

FUSION ARCHITECTURES IN CONTROL SYSTEMS 
 

 
8.1 Introduction 
 
Although the developed MSDF architectures can be applied to a broad range of problems, one 
application that is of great interest for the author is in control systems. In particular, the aim is to 
explore the application of the previously developed MSDF algorithms to design and tune PID-
type fuzzy logic controllers when there are multiple noisy sensors measuring the process output. 
This chapter explores a way forward to achieve this aim. First, a novel designing and tuning 
procedure for PID-type fuzzy logic controllers (PID-FLC) is developed. Next, the PID auto-
tuning procedure proposed by Astrom and Hagglund [1984] is extended and developed for 
tuning the scaling factors of a PID-FLC. Then, a novel procedure for auto-tuning the PID-FLC 
by using multiple noisy sensors is presented where the developed MSDF architectures of 
chapter 6 can be applied. 
 
 
8.2 A novel design and tuning procedure for PID type fuzzy logic controllers 
 
In recent years fuzzy logic controllers (FLC) have been widely used for industrial processes 
exploiting their heuristic nature associated with simplicity and effectiveness for both linear and 
non linear systems [Bonissone et al, 1995] [King and Mamdani, 1997]. In particular, several 
structures of PID-type FLC have been used (including PI and PD). As a consequence, research 
into this type of FLC has increased considerably. Lately, the research effort has been focused on 
the construction of an explicit link between the scaling factors of PID-type FLC (PID-FLC) and 
the three actions of traditional PID control (TPID). The direct result of this link would bring the 
possibility of applying the systematic design and tuning methods of TPID control to design and 
tune PID-FLC. 
 

Several approaches have been reported in the fuzzy control literature establishing a link 
between TPID and PID-FLC [Mann, et al, 2001] [Li and Tso, 2000] [Xu, et al, 2000]. However, 
these have often resulted in complicated mathematical expressions and, moreover, some of the 
parameters involved are heuristically established and this heuristic is not specified. Indeed, the 
task of constructing the link is not an easy one. First of all, several structures of PID-FLC have 
been proposed, and it is necessary to select the one most suitable for the construction of the link. 
Second, based on the chosen structure, a clear and explicit relationship between the parameters 
that define this structure with the three control actions of TPID control have to be derived. And 
finally, the systematic design and tuning methods of TPID control have to be translated for 
designing and tuning the selected PID-FLC structure. 
 

Based on the investigation of the relationship between the gains of TPID control and the 
scaling factors of a modified hybrid PID-FLC (MHPID-FLC), in this section a new 
methodology for designing and tuning PID-FLC is presented [Escamilla and Mort, 2002a]. 
First, in section 8.2.1, a review of the different structures of PID-FLC is carried out. Next, in 
section 8.2.2, the relationship between the proportional, integral and derivative actions from 
TPID control and the scaling factors of the MHPID-FLC is found through mathematical 
analysis and comparison. Then, in section 8.2.3, a design and tuning procedure for the MHPID-
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FLC is proposed. Next, in section 8.2.4, the auto-tuning methodology proposed by Astrom and 
Hagglund [1984, 1995] is extended and developed for automatically tuning the scaling factors 
of the MHPID-FLC [Escamilla and Mort, 2002b]. It is shown how the scaling factors can be 
directly derived from the Ziegler-Nichols frequency response method. As a result, the 
performance of the MHPID-FLC will be better than, or at least as good as, that of its traditional 
counterpart. Finally, in section 8.2.4, the viability of this approach is demonstrated by 
simulating several benchmark processes taken from the literature. 
 
 
8.2.1 Traditional PID and PID type fuzzy logic control structures 
 
In traditional control the PI, PD and PID control algorithms are expressed in discrete time as (to 
avoid confusion, in this section the symbol ∗ means multiplication): 
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where e is the error signal, ce is the change in error, yr is the set point, y is the process output, 
the subscript k indicates the instant of time, 

IPi KKT = , and 
PDd KKT = . The terms KP, KI and KD 

are referred to as the proportional, integral and derivative gains. The parameters Ti and Td are 
known as the integral time and the derivative time, respectively. Ts is used to denote the 
sampling period of time. 
 

As in traditional control, in fuzzy control there are the analogous structures of the PI type 
fuzzy logic controller (PI-FLC), PD type fuzzy logic controller (PD-FLC) and PID type fuzzy 
logic controller (PID-FLC). Their basic structures for discrete-time are shown in figure 1; inside 
these structures a fuzzy control system (FCS) develops the three well-known processes of 
fuzzification, rule evaluation and defuzzification [Driankov et al, 1993] [Lee, 1990]. The 
parameters GE, GCE, GCE1 and GCE2 are called the input scaling factors, while GU and GCU 
are called the output scaling factors. The PI-FLC and PD-FLC have been extensively studied 
[Lee, 1990] [Lee, 1993] [Jantzen, 1997] [Tang and Mulholland, 1987], and have achieved wide 
acceptance in both academic research and industrial applications. However, the PID-FLC is 
considered to be still at its early stage of development [Driankov, et al., 1993] [Li and Tso, 
2000]. This is shown by the numerous recent research papers reporting the exploration of 
different PID-FLC structures [Jantzen, 1999] [Li and Tso 2000] [Mann, et al, 1999] [Woo, et al, 
2000] [Xu, et al, 2000]. 
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Figure 8.1 Structures for (a) PI-FLC, (b) PD-FLC, and (c) PID-FLC. 

 
In the literature several PID-FLC structures have been proposed. Initially, the PID-FLC 

structures were designed considering three terms as inputs (see figure 8.1c) [Driankov, et al, 
1993] [Abdelnour, et al, 1991]. Obviously, the rule base of these fuzzy controllers is three-
dimensional (3-D), which makes it difficult to obtain since 3-D information is usually beyond 
the sensing capability of a human expert. To overcome this problem, the intuitive solution is the 
combination of a PI-FLC and a PD-FLC to form a PID-FLC. This idea has been developed 
basically in two ways, a parallel combination (PPID-FLC) and a hybrid combination (HPID-
FLC). 
 

The PPID-FLC structure was first proposed by Li and Gatland [1996], and lately has been 
studied by Xu et al, [2000]. In this structure the three-term PID-FLC is divided into two 
separate PI and PD parts. Thus two rule bases are used, one for a PI-FLC and one for a PD-
FLC; the output is obtained by adding the respective crisp control output, as is shown in figure 
8.2a. This structure has the advantage that both rule bases are two-dimensional avoiding the 
difficulty of designing a 3-D rule base. Consequently the design of a PID rule base becomes the 
design of both a PI and a PD rule base. These two rule bases share the same inputs, which 
reduces the tuning complexity. 
 

The HPID-FLC structure was first proposed by Li [1997], and lately has been studied by 
Mann et al, [1999], Li and Tso [2000]. In the HPID-FLC structure a common two-dimensional 
rule base is employed. This rule base is shared for both the PI-FLC and the PD-FLC parts, as is 
shown in figure 8.2b. It means that, once appropriate scaling factors are selected, a PID control 

(a) 

(b) 

(c) 
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strategy is implemented by combining a PI incremental algorithm and a PD positional algorithm 
using a two-term fuzzy control rule base without any increase in the number of rules. This 
simplifies the PID-FLC structure as it is simpler, easier to implement and faster in computation. 
The PI rule base is selected as the one used, because PI control is normally more important for 
steady state behaviour. 
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Figure 8.2 PI + PD-FLC structures for: (a) PPID-FLC, (b) HPID-FLC. 
 
 
8.2.2 Mathematical analysis and comparison 
 
First, in order to avoid derivative kick in the implementation of (8.3) a modified derivative term 
is used. Additionally, when the Ziegler-Nichols tuning formulae is applied generally a set point 
weighting factor β is employed to reduce overshoot [Astrom and Hagglund, 1995]; therefore, 
(8.3) is transformed as follows, 
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Observe in (8.6) that the derivative term Tscek  in (8.3) has been replaced by Tscyk− . The 

incorporation of the above modification in the HPID-FLC structure modifies it as is shown in 
figure 8.3. This modified HPID-FLC (MHPID-FLC) structure is the one used in this approach. 

 
Next, if the following assumptions are made: 

 
1. The FCS inside the MHPID-FLC structure is a first-order Sugeno fuzzy model 

[Takagi and Sugeno, 1985], with fuzzy rules of the form: 
 

If E is A and CE is B then u = p*E + q*CE + r         

(a) 

(b) 
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where A and B are fuzzy sets in the antecedent, while p, q, and r are all constants. 
 
2. The FCS rule base consists of four rules: 
 

R1: If E is N and CE is N then u = p1*E + q1*CE + r1        
R2: If E is N and CE is P then u = p2*E + q2*CE + r2        
R3: If E is P and CE is N then u = p3*E + q3*CE + r3        
R4: If E is P and CE is P then u = p4*E + q4*CE + r4        

 
where the coefficient constants pi = qi = 1, and r i = 0; for i = 1, 2, 3, 4. The 
linguistic labels for the fuzzy sets mean P = Positive and N = Negative. 

 
3. The universe of discourse for both FCS inputs is normalised on the range [-1, 1]. 
 
4. The membership functions of the input variables, E and CE, to the FCS are 

triangular complementary adjacent fuzzy sets [Escamilla, 1999] [Gravel and 
Mackenberg, 1995], and they are defined as shown in figure 8.4(a). 

 
5. The product-sum compositional rule of inference [Kosko, 1992] is used in the stage 

of rule evaluation. 
 
6. The weighted average is used in the defuzzification process. 

 
then the FCS inside the MHPID-FLC structure is the simplest that can be considered, and its 
output is given by the sum of its inputs. This FCS is known as the normalised and linear FCS 
[Jantzen, 1999]; its control surface is shown in figure 8.4(b). 
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Figure 8.3 Modified HPID-FLC (MHPID-FLC) structure. 

 

 
 

Figure 8.4 (a) Membership functions for E and CE; (b) Control surface of the normalised and 
linear FCS. 
 

(a) (b) 
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Thus, under the assumptions 1 to 6 the control output uPID of the MHPID-FLC (see Figure 
8.3) is the sum of the PI-FLC output and the PD-FLC output parts, 
 

kkk PDPIPID uuu +=              (8.7) 

 
but, each the PI and PD parts can be written as: 
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Substituting (8.8) and (8.9) in (8.7) results in: 
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          (8.10). 

 
Therefore, if (8.10) and (8.6) are compared, then it is noted that the MHPID-FLC controller 

works like a TPID controller with set point weighting factor and modified derivative term. The 
equivalent set-point weight, proportional, integral and derivative gains are: 
 

GEGUK P ∗=∗ β                (8.11) 

GEGUGCEGCUK P ∗+∗=         (8.12) 

GEGCU
T

K
K

i

P
I ∗==            (8.13) 

GCEGUTKK dPD ∗=∗=          (8.14). 

 
This means that the scaling factors of the MHPID-FLC can be derived from the proportional, 

integral and derivative gains obtained for the traditional PID controller using well known 
methods, i. e. the Ziegler-Nichols tuning method [Astrom and Hagglund, 1995]. A procedure for 
this task is presented in next section. 
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8.2.3 Designing and tuning of the modified hybrid PID-FLC 
 
If the values of KP, KI, and KD or alternatively the values of KP, Ti, and Td are available, then the 
values of GE, GCE, GU and GCU in the MHPID-FLC structure (see figure 8.3) can be 
calculated in the following way. The proportional gain given by (8.12) can be separated in two 
parts: 
 

GEGUGCEGCUK P ∗+∗=             

PP KK ∗−+∗= )1( αα              (8.15) 
 
from here it follows, 
 

PKGCEGCU ∗=∗ α           (8.16) 

PKGEGU ∗−=∗ )1( α           (8.17). 
 

From (8.11) and (8.17) it can be directly deduced that, 
 

αβ −= 1             (8.18). 
 

From assumption 3 it is clear that the possible values of E are in the range [-1, 1], thus in 
order to avoid saturation, GE is selected as: 
 

1=GE             (8.19). 
 

In consequence, from (8.19), (8.17) becomes, 
 

PKGU )1( α−=            (8.20). 
 

In a similar way, from (8.19), (8.13) becomes, 
 

IKGCU =             (8.21). 
 

Calculating GCE from (8.14) gives, 
 

GU

K
GCE D=             (8.22a), 

 
and from (8.20) in (8.22a) gives, 
 

P

D

K

K
GCE

∗−
=

)1( α
         (8.22b). 

 
Thus, once the parameter α is defined, the scaling factors can be calculated using Equations 

(8.19) to (8.22). But now the question is how should the parameter α be properly defined? First 
of all α has to satisfy (8.16) and (8.20), thus from (8.21) and (8.22b) in (8.16) gives, 
 

P
P

D
I K

K

K
K ∗=

−
∗ α

α *)1(
         (8.23) 
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and solving (8.23) for α gives, 
 

2
2

P

DI

K

KK ∗
=+− αα           (8.24). 

 
But, from traditional PID control, 

 

i

P
I T

K
K =  ; dPD TKK ∗=         (8.25). 

 
Thus, from (8.25) in (8.24) gives, 

 

02 =−+−
i

d

T

Tαα           (8.26) 

 
and applying the relation between Ti and Td given by the Ziegler-Nichols frequency response 
tuning method, which formulae to calculate the PID parameter is given in Table 8.1, leads to, 
 

0
4

12 =−+− αα           (8.27). 

 
Finally, solving equation (8.27) results in, 

 

2

1
21 == αα            (8.28). 

 
Therefore, by substituting the value of α in (8.20) and (8.22b), the solutions for GU and GCE 

become straightforward. 
 
The previous development means that the MHPID-FLC is equivalent to its traditional 

counterpart given by (8.6) when β is selected as 0.5, calculated from (8.18), and the Ziegler-
Nichols frequency response method is used to tune the controller. The formulation of the scaling 
factors in function of KP, Ti, and Td is straightforward. A summary of the relationship between 
the scaling factors of the MHPID-FLC and the gains of its traditional counterpart is given in 
Table 8.2. 
 

Further, fine-tuning can be made based on the relationship between the scaling factors of the 
MHPID-FLC and the three control actions of traditional PID control. This fine-tuning, can be 
developed in two ways: a) by modifying the scaling factors, b) by modifying the control surface 
of the FCS inside the MHPID-FLC structure. These procedures are described in the following 
sections. 
 

Table 8.1 PID parameters according to the 
Ziegler-Nichols frequency response method 

KP Ti Td

0.6∗Ku (1/2)∗Tu (1/8)∗Tu
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Table 8.2 Relationship between the scaling factors of the 
MHPI-FLC and the gains of its traditional counterpart 

 

G E G C E G U  G CU  
1 

P

D

K

K
*2  

2
PK  IK  

1  
dT*2  

2
PK  

i

P

T

K  

  
 
 
8.2.3.a Fine-tuning the MHPID-FLC by modifying the scaling factors 

 
The role of the scaling factors of the MHPID-FLC can be determined by analogy with the gains 
of the traditional PID controller. Assuming that the value of GE is fixed as 1 and using the 
information from Table 8.2, general guidelines for fine tuning the scaling factors of the MHPID-
FLC can be given. Changing the value of GCU will affect both the proportional control term 
and the integral control term, see (8.12) and (8.13). Thus, increasing the value of GCU will 
produce a faster but less stable control. The opposite action will cause the opposite effect. 
Changing the value of GU affects both the proportional control term and the derivative control 
term, see (8.12) and (8.14). Therefore, increasing the value of GU produces both faster and 
more stable control. But this is only true up to a certain limit, if GU is raised above this limit 
then it will result in reduced stability in control. Decreasing the value of GU will produce the 
opposite effect. Finally, a change in the value of GCE will affect both the proportional control 
term and the derivative control term, see (8.12) and (8.14). Therefore, increasing the value of 
GCE causes a faster and more stable control. But, as for the case of GU, if GCE is raised above 
of certain limit the system will be destabilised. Additionally, because GCE is an input scaling 
factor, it has to be manipulated carefully to avoid saturation. It is recommended to first adjust 
the output scaling factors, and if necessary, adjust GCE afterwards. A summary of the whole 
analysis is presented in Table 8.3. 
 

Table 8.3 Effects of the scaling factors on speed and stability 

S p e e d S t a b i l i t y
G C U  i n c r e a s e s i n c r e a s e s r e d u c e s
G U    i n c r e a s e s i n c r e a s e s i n c r e a s e s
G C E  i n c r e a s e s i n c r e a s e s i n c r e a s e s

 
 
 
8.2.3.b Fine-tuning the MHPID-FLC by modifying the control surface of the FCS inside 

the structure 
 
The main advantage of considering a first-order Takagi-Sugeno FCS inside the MHPID-FLC 
structure is that by changing the values of the consequent parameters, p, q and r in the fuzzy 
rules, the FCS control surface is modified. This means that by changing the FCS control surface, 
without modifying the scaling factors found initially, the strength of the three PID control 
actions can be regulated. For example, figure 8.5 shows the FCS control surface obtained with 
modified consequent parameters: p1=p4=2.5, q1=q4=3, r1=r4=0, p2=p3=0.4, q2=q3=0.4, r2=r3=0. 
With these consequent parameters the strength of the control action is increased at the extremes, 
when E and CE are larger, and reduced when E and CE are near zero, near the steady state. 
Additionally, note that the transition between a stronger and a weaker control action is made 
smoothly. In effect, it means that a kind of gain scheduling is obtained. However, the 
modification of the consequent parameters makes the FCS control surface non-linear, and so 
they have to be manipulated carefully. 
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Figure 8.5 FCS control surface with modified consequent parameters. 

 
 
8.2.4 Auto-tuning of the scaling factors of the MHPID-FLC 
 
Based on the development given in section 8.2.3, the relay auto-tuning algorithm for TPID 
control proposed by Astrom and Hagglund [1984, 1995] can be extended and developed to auto-
tune the scaling factors of the MHPID-FLC as is explained next. First of all the scaling factors 
have to be a function of Ku and Tu (see Table 8.1), thus from (8.20), (8.21), and (8.22) we have, 
 

u
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KK
GU *3.0
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*6.0

2
===        (8.29) 
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uud
P
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4
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*

8
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*
*2 ====     (8.31). 

 
The values of Ku and Tu, called the “ultimate gain” and “ultimate period” respectively, can be 

obtained from a relay feedback experiment as shown in figure 8.6. Therefore, the ultimate gain 
and the ultimate frequency can be calculated from this experiment as, 
 

a

h
K u *

*4

π
=  ; 

u
uT

ω
π*2=         (8.32) 

 
where h is the relay amplitude, a is the process output amplitude, and ωu is the oscillation 
frequency of the process output. It has been shown by Astrom and Hagglund [1984] that the 
simple estimation of Ku and Tu based on zero-crossing and peak detection works very well. Thus 
this method is used in this procedure and the values found are used to calculate the scaling 
factors of the MHPID-FLC. A summary of the relationship between the scaling factors of the 
MHPID-FLC and the Ziegler-Nichols frequency response tuning formulae is given in Table 8.4. 
 

Table 8.4 Relationship between the scaling factors of the MHPID-FLC 
and the Ziegler-Nichols frequency response tuning formulae 

 

G E  G C E  G U  G C U  
 

1  uT*
4

1
 

 

uK*3.0  
u

u

T

K
*2.1  
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Figure 8.6 Relay feedback experiment. 

 
 
8.2.5 Simulation and comparisons 
 
In this section the viability of this approach is demonstrated by simulating several benchmark 
processes taken from the literature. Three auto-tuning experiments for each process have been 
developed in Matlab/Simulink environment, together with the Fuzzy Logic Toolbox. The first 
and second experiments use the relay experiment to auto-tune the gains of the TPID control 
given by equation (8.3), and the TPID given by equation (8.6) (referred to as TPID2) with a set-
point weighting factor β = 0.5. In both these cases the tuning formulae given in Table 8.1 is 
applied. The third experiment is developed to simulate a relay auto-tuning procedure for the 
MHPID-FLC. Here the scaling factors are obtained applying the formulae given in Table 8.4. 
 

After a relay experiment, a unit step and a unit load perturbation are introduced on the 
processes in order to observe their responses. The process responses under auto-tuned TPID, 
TPID2, and MHPID-FLC, control are plotted and compared for each case as is described as 
follows. 
 
1) First-order plus dead time process [Hang et al, 1991]: 
 

)1(
)(

2.0

1 +
=

−

s

e
sG

s

          (8.33). 

 

 
Figure 8.7 Comparison of set-point and load disturbance responses for G1(s). 

 
 

Ts = 0.04s 
Ku = 8.006, Tu = 0.72 
a = 0.0159, h = 0.1 
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2) Second-order plus dead time process (Hang, et al., 1991; Zhuang and Atherton, 1993): 
 

2

4.0

2 )1(
)(

+
=

−

s

e
sG

s

          (8.34). 

 

 
Figure 8.8 Comparison of set-point and load disturbance responses for G2(s). 

 
 
3) High-order process (Zhao, et al., 1993): 
 

33 )3)(1(

27
)(

++
=

ss
sG         (8.35). 

 

 
Figure 8.9 Comparison of set-point and load disturbance responses for G3(s). 

 
 
4) Non-minimum phase process (Hang, et al., 1991): 
 

34 )1(

4.11
)(

+
−=
s

s
sG          (8.36). 

 

Ts = 0.01s 
Ku = 5.409, Tu = 2.94 
a = 0.02354, h = 0.1 

Ts = 0.01s 
Ku = 5.301, Tu = 2.7 
a = 0.02402, h = 0.1 
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Figure 8.10 Comparison of set-point and load disturbance responses for G4(s). 

 
 

From the results observed in figures 8.7 to 8.10 it is noted that the overshoot in the step-
response (undershoot for process G4) is excessive when TPID control is used. But, the overshoot 
is reduced by approximately 60% when MHPID-FLC and PID2 control are employed. 
However, this reduction in overshoot is accompanied by a small reduction in the speed of 
response (the rise time increases). Note that exactly the same response is obtained when 
MHPID-FLC and TPID2 control are used. Thus it is proved that the MHPID-FLC is equivalent 
to its traditional counterpart given by (8.6) when β is selected as 0.5. This means that the set-
point weighting factor is embedded in the MHPID-FLC structure. Note that in all cases the load 
disturbance rejection is the same. Thus the MHPID-FLC and the TPID2 controllers sacrifice 
speed of response to a far smaller degree in order to obtain a substantial reduction in overshoot 
with respect to TPID control. However, this does not affect the load disturbance response. 
 
 Note that in all the processes considered, good control performances were obtained. 
However, if necessary, fine tuning can be performed by modifying the scaling factors or by 
modifying the FCS control surface inside the MHPID-FLC structure. This latter procedure will 
be exemplified in the next section. 
 
 
8.3 Auto-tuning and MHPID-FLC using multiple noisy sensors 
 
There are several practical problems that must be solved in order to implement an auto-tuner. In 
the development presented in the previous sections, some of these practical problems have not 
been taken into account. It is necessary, for example, to account for measurement noise. In real 
processes, the measurement noise in sensor devices is unavoidable so, therefore, any practical 
method of auto-tuning should be able to overcome measurement noise. 
 

Measurement noise represents disturbances that distort information about the process 
variables obtained from the sensors. As for the measurement noise in the relay test discussed 
previously, these disturbances may give errors in detection of peaks and zero-crossings. As a 
consequence, when using an ordinary relay in the experiment, a small amount of noise can make 
the relay switch randomly. 

 
In the context of system identification, noise is also a significant issue. It is apparent that in 

almost all identification methods a low noise-to-signal ratio is required [Ljung, 1987]. In system 

Ts = 0.01s 
Ku = 1.419, Tu = 7.2 
a = 0.08974, h = 0.1 



CHAPTER 8 APPLICATION OF THE HYBRID MSDF ARCHITECTURES IN CONTROL SYSTEMS 160 

identification, noise-to-signal ratio [Haykin, 1989] is usually defined as: 
 
noise-to-signal power spectrum ratio        mean power spectrum density of noise   (8.37) 

mean power of signal 
 
denoted by N1 or: 
 

 noise-signal mean ratio       mean (abs(noise))         (8.38) 
    mean (abs(signal)) 

 
denoted by N2. 

 
In considering the influence of noise in the controller performance, measurement noise will 

be fed into the system through feedback. It will generate control actions and control errors. 
Furthermore, high frequency components in the measurement signal might be amplified by the 
controller and cause wear on the actuator [Astrom and Hagglund, 1995]. Therefore, care should 
always be taken to reduce noise by appropriate filtering. Because the measurement noise is 
usually of high frequency, a low pass filter generally is used to reduce the measurement noise 
effects. 
 

Several solutions have been given to the measurement noise issue in the relay feedback 
experiment. For example, Astrom and Hagglund [1984] pointed out that a hysteresis in the relay 
is a simple way to reduce the influence of measurement noise. The width of hysteresis should be 
bigger than the noise band [Astrom and Hagglund, 1995], and it is usually chosen as 2 times 
larger than the noise amplitude [Hang et al, 1993]. 
 

In this section a novel approach to deal with the noise issue in both the auto-tuning 
procedure and the control performance for the MHPID-FLC in a multi-sensor environment is 
proposed. The basic idea consists of combining the recent low-order modelling method 
proposed by Wang et al [1997] with the FL-ADKF approach, as is shown in figure 8.11. It is 
assumed that multiple sensors, which may have different accuracy levels (different 
measurement noise amplitudes), are used to determine the process output. The idea of using 
multiple sensors is to have a control system which can operate with good accuracy even when 
the measurement noise level is very high and with different characteristics for each sensor. The 
character of the noise is defined by its frequency; it may be high-frequency fluctuations or it 
may be low-frequency calibration errors. With several sensors it is possible to reduce calibration 
errors but with only one sensor nothing can be done about calibration errors [Astrom and 
Hagglund, 1995]. Therefore, it is desirable to develop an auto-tuning procedure and a PID 
controller considering multiple sensors. 
 
 The scheme shown in figure 8.11 consists of several functional blocks. A biased relay 
feedback experiment is used to find the process critical point information and the steady-state 
gain. A noise amplitude analyser and signal selector is used to estimate the noise bands and the 
noise covariance in each sensor. Based on the noise bands, this block selects the signal with the 
least noise band to perform the relay experiment with it. The data obtained from the biased relay 
experiment is used by a model identifier to approximate the process transfer function as a first 
order plus dead-time. The obtained transfer function is transformed to its discrete state-space 
representation. This state-space model is used by N FL-AKFs, which are fed by the respective 
noisy process output signal yvi, and adaptive decentralised Kalman filtering is performed. Thus, 
a FL-ADKF fuses and filters all the noisy measurement signals. The fused estimated process 
output ŷ  is used as measurement signal to compare with it the reference signal and calculate 
the error signal, which is fed to the MHPID-FLC. In the next section the model identifier and 

= 

= 
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translator to state-space representation is described. After that, the noise amplitude analyser and 
signal selector is explained. Then, the complete identification and auto-tuning procedure is 
summarised. 
 

 

 yr 
Process 
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Figure 8.11 Auto-tuning the MHPID-FLC by using multiple noisy sensors. 

 
 
8.3.1 Model identifier and translator to state-space representation 
 
A large number of processes can be characterised by the first order plus dead-time model 
[Seborg et al, 1989]: 
 

1+
=

−

Ts

Ke
sG

Ls

)(           (8.39). 

 
For these kinds of processes Wang et al [1997] have proposed a biased relay feedback test to 

derive the formulae that could precisely yield the critical point and the static gain 
simultaneously with a single relay test. The biased relay is shown in figure 8.12. 
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 e 

 u 

 
Figure 8.12 The biased relay. 

 
Under the biased relay feedback, the process input u and the process output y is shown in 

figure 8.13. For the process given in (8.39) the output y converges to the stationary oscillation in 
one period (Tu1+ Tu2), and the oscillation is characterised by: 
 

TLTL
u eeKA // )()( −− +−+= εµµ 10        (8.40) 

TLTL
d eeKA // )()( −− −−−= εµµ 10         (8.41) 

εµµ
εµµµ

−+
+−+=

KK

KKKe
TT

TL

u
0

0
1

2
ln

/

       (8.42) 

 
and 
 

εµµ
εµµµ

−−
+−−=

KK

KKKe
TT

TL

u
0

0
2

2
ln

/

       (8.43). 

 

 
Figure 8.13 Oscillatory waveforms under a biased relay feedback (adapted from [Wang et al, 
1997]). 
 

The above four equations are the accurate expressions for the period and the amplitude of the 
limit cycle oscillation of the first order plus dead-time process. Therefore, by measuring any 
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three of Au, Ad, Tu1, and Tu2, the parameters of the model K, T and L can be calculated from 
(8.40) to (8.43). Solving these equations is a tedious task. However, the calculations can be 
simplified if K is obtained by an alternative procedure. This procedure consists in calculating K 
as the ratio of DC components in the output and input: 
 

∫
∫
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+

=
21

21

0

0

uu

uu

TT

TT

dttu

dtty
K

)(

)(
           (8.44). 

 
Having available the value of K, the normalised dead-time of the process Θ = L/T can be 

obtained from (8.40) or (8.41) as: 
 

uAK
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or 
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 It then follows from (8.42) and (8.43) that: 
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 The dead time is thus calculated as: 
 

Θ= TL             (8.49). 
 

Therefore, the previous development can be summarised as the following identification 
procedure: 
 

Identification Procedure. The biased relay experiment is performed. The process input u(t) 
and output y(t) are recorded, and the periods and the amplitudes of the oscillation are measured. 
Then follow the next steps: 
 

• Step 1: Compute K from (8.44). 
• Step 2: Compute Θ from (8.45) or (8.46). 
• Step 3: Compute T from (8.47) or (8.48). 
• Step 4: Compute L from (8.49). 
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 Wang et al [1997] presented several examples which demonstrated the accuracy of the 
method for both noisy and noisy-free sensors. If the process to be identified is of the form (8.39) 
and there is no measurement noise, then the parameters obtained with the biased relay method 
give an almost exact identification of the process parameters. Furthermore, because in practice 
many high-order processes can be well approximated by first-order plus dead-time models, the 
biased relay method can also be used to model processes of higher order. The results for some 
typical high-order processes also are presented in [Wang et al, 1997]. There, the Nyquist curves 
of the real processes and the obtained models are compared and it is observed that they are very 
close to each other over a phase range of 0 to π. Therefore, this low-order modelling is accurate 
enough for PID control design in most cases as will be practically demonstrated later. 
 
 For the case where there is noise in the measurements, the above method still proved to give 
good results. However, in this case the parameters K, Au, and Ad have to be calculated by 
averaging over those values obtained over several cycles. In their paper, Wang et al [1997] used 
the values obtained over eight cycles of stationary oscillations. 
 

Therefore, once the biased relay experiment is carried out, an approximated model of the 
process is available as a first-order transfer function. In order to use this model in the FL-AKFs 
(see figure 8.11) it is necessary to translate it to its state-space representation. This is performed 
in two stages. First the transfer function in continuous time is transformed to its corresponding 
state-space representation. Second, having available the continuous state-space representation, 
this is translated to its corresponding digital form. Both transformations can be directly 
performed by using only two commands in the MATLAB/Control Systems Toolbox 
environment. Thus, having available the process model in its digital state-space representation, 
this model can be used by the FL-ADKF to perform MSDF. 
 
 
8.3.2 Noise amplitude analyser and signal selector 
 
The noise amplitude analyser and signal selector performs several tasks. First, it determines the 
noise bands in each sensor. The noise band can be estimated by measuring the peak-to-peak 
amplitude of the output signal when the process is at steady-state [Astrom et al, 1993]. Second, 
an estimation of the measurement noise covariance values, Ri, of each sensor is performed over 
the data collected during a certain period of time (for this task a block from the MATLAB/DSP 
Block Set is employed). Finally, the signal with the minimum noise band is selected as the 
output signal of this block. 
 
 
8.3.3 Identification and auto-tuning procedure using multiple noisy sensors 
 

From the previous sections and referring to figure 8.11, the proposed identification and auto-
tuning procedure is therefore summarised as follows: 
 
1. SW1 is in position 1; SW2 is in position 1. First, in the “listening period”, 0-12 sec, the noise 

bands and the measurement noise covariance in each sensor are estimated. The sensor signal 
with the smallest noise band is selected to be fedback to the biased relay. 

 
2. A biased relay is applied at time t = 12 sec. 
 
3. Data is registered over five cycles of stationary oscillations. By averaging the values 

obtained over these five cycles, the parameter K, Au, and Ad are calculated and the values of 
Tu1 and Tu2 are measured over the fifth cycle. With these parameters, the value of the 
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normalised process Θ is calculated using (8.45) or (8.46). Similarly, T is calculated from 
(8.47) or (8.48). Then, the dead time L is calculated from (8.49) and the process transfer 
function is modelled as a first-order plus dead-time. The obtained transfer function is 
transformed to its corresponding continuous and discrete state-space representations. 

 
4. At the end of the fifth cycle all the FL-AKFs are activated using the state-space 

representation of the plant and MSDF is performed using the FL-ADKF; then the fused 
output is used as process output, SW2 is switched to position 2. The initial conditions for the 
FL-AKFs are defined as xi(0) = 0, )(ˆ 0ix = 0, i= 1,2,…,N. Because an estimation of the 

measurement noise covariance value Ri for each sensor has been obtained in step 1, these 
values are used in the corresponding FL-AKFs. Therefore, while the covariance values Ri 
are assumed to be known, they are not adapted in the FL-AKFs. Instead, the unknown 
values of the process noise covariance matrices Qi, which represent the uncertainty in the 
process model, are the ones that are adaptively adjusted in the FL-AKFs. This will 
compensate for the modelling errors, recalling that the model used is an approximated 
model. 

 
5. During the sixth cycle, the ultimate gain and the ultimate frequency are calculated as: 
 

2
4

|)|( du
u AA

K
+

=
π

µ
          (8.50) 

21 uuu TTT +=                 (8.51) 

 
Note that (8.50) is similar to (8.32) with h = µ and 2|)|( du AAa += ; where µ is the value 

of the relay amplitude when the bias is taken out, and a is the ultimate amplitude of the 
process output. 

 
6. With Ku and Tu available, the scaling factors of the MHPID-FLC are calculated using the 

formulae given in table 8.4. 
 
7. Finally, at the end of oscillation 6, SW1 is switched to position 2 and the loop MHPID-FLC 

– Process is closed. 
 
Afterwards, the performance of the controller can be investigated by introducing a set-point 

change and a load-disturbance at particular time steps. In order to test the effectiveness of the 
proposed approach, three examples are presented in the next section. 
 
 
8.3.4 Illustrative examples 
 
The viability of the previously described approach is demonstrated by simulating three 
processes taken from [Wang et al, 1997]. The experiments were developed under the 
Matlab/Simulink simulation environment (see Appendix B). It is assumed that there are two 
sensors in the scheme shown in figure 8.11. The measurement noise in each sensor, for all the 
experiments, is defined as a Gaussian zero-mean white noise sequence with variances 0.008 and 
0.033 for v1 and v2, respectively. 
 
 Recall that the FCS inside the MHPID-FLC works with normalised inputs, in the range [-1, 
1]. This normalisation is carried out by dividing the inputs between the maximum range of 
variation of the error signal, which in this case is assumed to be [-10, 10]. Therefore, the 
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normalisation factor is (1/10) applied to both inputs, e and –y. Obviously, the controller output 
needs to be denormalised; therefore, the controller output is multiplied by a denormalisation 
factor, 10 in this case. 
 

The processes studied and the corresponding parameters obtained from the biased relay 
experiment are listed in Table 8.5. The scaling factors of the MHPID-FLC obtained from the 
auto-tuning procedure for each process are shown in Table 8.6. In order to analyse the set-point 
and load-disturbance responses, a step change of 10 units and a load disturbance, also of 10 
units, are applied at appropriate time steps. The set-point and load-disturbance responses under 
MHPID-FLC for the plant in examples 1, 2 and 3 are shown in figures 8.14(a), 8.15(a), and 
8.16(a), respectively. From these figures it can be noted that slightly sluggish set-point and load-
disturbance responses are obtained. This is more noticeable in examples 2 and 3. However, as 
was mentioned in section 8.3.2.a, the control performance can be further improved by 
modifying the value of the consequent parameters, p, q and r, in the fuzzy rules of the FCS 
inside the MHPID-FLC structure. Therefore, to improve the control performance, the 
consequent parameters are modified as is indicated in table 8.7. The improved set-point and 
load-disturbance responses under MHPID-FLC for the plants in examples 1, 2 and 3 are shown 
in figures 8.14(b), 8.15(b), and 8.16(b), respectively. Note that the scaling factors found in the 
auto-tuning procedure are left unchanged. 
 
 

Table 8.5 Estimated parameters from biased relay experiment 

 Example Process Biased relay test results
 Tu1          Tu2        Au          Ad

Model parameters
   K          T           L

1 12

2

+

−

s

e s

3.35          4.0        1.714      -1.302 1.009     1.871      2.021

2 2

2

12 )( +

−

s

e s

5.55          6.45      1.543      -1.267 1.18       4.585      2.849

3
))((

.

11 2

50

+++

−

sss

e s

2.95          3.35      2.106      -1.672 1.215     1.592      1.892

 
 

Table 8.6 Scaling factors obtained from the auto-tuning procedure 

Exam ple Process   Scaling  factors M H PID -FLC
G E       G CE      G CU          G U

1 12

2

+

−

s

e s

1            1.837      0.2757       0.5065

2 2

2

12 )( +

−

s

e s

1            3.0          0.1812       0.5437

3 ))((

.

11 2

50

+++

−

sss

e s

1            1.575      0.2568       0.4045
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Table 8.7 Modified consequent parameters 

  Example Process Consequent parameters
Rule      p        q        r

Modified cons. parameters
   Rule      p        q        r

1 12

2

+

−

s

e s    1          1          1        0
   2          1          1        0
   3          1          1        0
   4          1          1        0

      1        1.8        0.3      0
      2        0.4        0.4      0
      3        0.4        0.4      0
      4        1.8        0.3      0

2 2

2

12 )( +

−

s

e s    1          1          1        0
   2          1          1        0
   3          1          1        0
   4          1          1        0

      1        2.3        0.5      0
      2        0.4        0.4      0
      3        0.4        0.4      0
      4        2.3        0.5      0

3 ))((

.

11 2

50

+++

−

sss

e s    1          1          1        0
   2          1          1        0
   3          1          1        0
   4          1          1        0

      1        2.5        0.2      0
      2        0.1        0.1      0
      3        0.1        0.1      0
      4        2.5        0.2      0

 
 
 

 

 
Figure 8.14 Set-point and load-disturbance responses for the plant in example 1, (a) with the 
original consequent parameters, (b) with the modified consequent parameters. 
 

(a) 

(b) 
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Figure 8.15 Set-point and load-disturbance responses for the plant in example 2, (a) with the 
original consequent parameters, (b) with the modified consequent parameters. 
 
 
 Note in figures 8.14 to 8.16 that as the order of the process increases, less noise is filtered by 
the FL-ADKF. In other words, this means that a quite accurate model is obtained when the plant 
is effectively of first-order. However, if the order of the plant increases, then the accuracy of the 
approximated model decreases. As a result, the value of the process noise covariance Q, which 
is adaptively adjusted, is increased to take into account this increased modelling error. This can 
be appreciated in figure 8.17, where the values of R1(t) and Q1(t) in the FL-AKF 1, fed by sensor 
1, are plotted for each one of the examples. Remember that R and Q controls the bandwidth of 
the filter. Thus, while R is maintained constant, Q is constantly changing increasing or 
decreasing the bandwidth of the filter and, in consequence, increasing or reducing the filtering 
action. 
 
 Therefore, from the results obtained in the simulated examples, it was demonstrated that the 
described auto-tuning procedure is effective when there are multiple noisy sensors measuring 
the process output. Good results of MSDF and signal filtering also were obtained. 
 
 
 
 

(a) 

(b) 
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Figure 8.16 Set-point and load-disturbance responses for the plant in example 3, (a) with the 
original consequent parameters, (b) with the modified consequent parameters. 
 
 

 
 

Figure 8.17 (a) Values of R1(t) and Q1(t) in the FL-AKF 1, fed by sensor 1, example 1. 
 

(a) 

(b) 
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Figure 8.17 (b) Values of R1(t) and Q1(t) in the FL-AKF 1, fed by sensor 1, example 2. 
 

 
 

Figure 8.17 (c) Values of R1(t) and Q1(t) in the FL-AKF 1, fed by sensor 1, example 3. 
 
 
8.4 Summary 
 

A new methodology for designing and tuning the scaling factors of a modified hybrid PID 
type fuzzy logic controller (MHPID-FLC) has been presented. First, a direct relationship 
between the scaling factors of the MHPID-FLC and the proportional, integral and derivative 
actions of its traditional counterpart has been derived. Second, based on this relationship, the 
scaling factors are obtained using the well-known Ziegler-Nichols frequency response method. 
A remarkable point is that based on this relationship, the auto-tuning algorithm proposed by 
Astrom and Hagglund [1984] has been extended and developed for applications to the tuning of 
the scaling factors of the MHPID-FLC. 

 
General guidelines for fine tuning and further improving the performance of the MHPID-FLC 

were given. It has been shown that this fine-tuning can be carried out in two ways: 1) modifying 
the scaling factors, 2) modifying the control surface of the fuzzy control system inside the 
MHPID-FLC structure. 

 
The application of the proposed FL-ADKF MSDF architecture in control systems has been 

studied. In particular, in this chapter a novel approach to deal with the noise issue in both the 
auto-tuning procedure and the control performance for the MHPID-FLC, in a multi-sensor 
environment has been proposed. This approach combines a low-order modelling method with 
the FL-ADKF approach. The proposed methodology was tested in several simulated benchmark 
processes. Good results were obtained. 
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CHAPTER 9 

CONCLUSIONS 
 

 
9.1 Main results and conclusions of this research work 
 
The objective of this research work was especially focused to investigate the utilisation of 
synergistic combinations of fuzzy logic, neuro-fuzzy and Kalman filtering techniques to design 
novel adaptive MSDF architectures capable of dealing with uncertain and inexact information 
provided by imperfect sensors. Having in mind the above objective, the main results and 
conclusions of this research work are summarised in this section. 
 

The different techniques used, developments achieved, and applications studied in this 
research work are graphically represented in figure 9.1. 

 

KF NN FL

NN-FLNN-KF FL-AKF

NN-FL-AKF

MSDF

Technique
Development

Application

FL-AKF-FLA

FL-ACKF

FL-ADKF

FL-AFKF

PID-FLC

TPID

MHPID-FLC

 
Figure 9.1 Different techniques used, developments achieved, and applications studied in this 
research work. 
 

As can be seen in figure 9.1, the kernel of this research work has been the utilisation of 
different combinations of three main technologies: Kalman Filtering (KF), Neural Networks 
(NN), and Fuzzy Logic (FL). Some of these combinations already are reported in the literature 
and, therefore, they are indicated as existent technologies (in green). The proposed approaches, 
which are novel synergistic combinations of the techniques mentioned, are indicated in red. 
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Obviously, these developments were designed as new architectures to perform MSDF, and for 
this reason the MSDF approach is indicated as an application in the graphic, marked in cyan. 
The application of the developed MSDF approaches to MHPID-FLC, also is indicated in figure 
9.1. This is a new development and a novel application of MSDF, therefore, that block is 
marked in both red and cyan. A short description of the main developments achieved in this 
research programme is given as follows. 
 
 
• The development of a novel Fuzzy Logic-based Adaptive Kalman Filter (FL-AKF) which 

synergistically combines Kalman filtering and fuzzy logic techniques. 
 
 In this work, a general application adaptive Kalman filter approach was proposed. This novel 
development is referred to as fuzzy logic-based adaptive Kalman filter (FL-AKF). The 
adaptation is in the sense of dynamically adjusting the measurement noise covariance matrix R 
and/or the process noise covariance matrix Q from data as they are obtained. The adaptation 
task is carried out by a fuzzy inference system (FIS), which uses a covariance-matching 
technique and “common sense” rules to determine if adjustments to R and/or Q are needed. 
 
 The role of the matrices R and Q in the standard Kalman filter (SKF) setting is to adjust the 
Kalman gain in such a way that it controls the filter bandwidth as the state and measurement 
errors vary. A major drawback of the SKF formulation is that at steady state its bandwidth and 
Kalman gain remain constant regardless of the changes in the system dynamics or the updated 
measurement quality. This is due to its fixed constant matrices R and Q. Conversely, the 
bandwidth and Kalman gain in the FL-AKF keeps changing as long as the system dynamics and 
statistics of the noise under which it operates change. This dynamic adaptive property of the FL-
AKF is a direct result of adapting R and/or Q. 

 
Another main characteristic of the developed FL-AKF approach is that the filter a priori 

statistical information is of secondary importance because it is estimated within the algorithm 
itself. It must be remembered that the quality of these a priori noise statistics is of great 
importance in the SKF formulation. 
 

The size of the sliding window over which the actual covariance of the residual is estimated 
has an impact on the adaptive filter performance. The smaller the window size, the faster the 
changes that can be captured by the FL-AKF. From numerous simulations it was found that a 
good empirical value for the size of the sliding window is between 10 to 20 samples. 
 
 The numerical complexity added to the SKF in order to build a FL-AKF is marginal. From 
the simulations carried out it was observed that using only three simple fuzzy sets (triangular 
membership functions) and only three fuzzy rules for each element in the main diagonal of Q 
and/or R are sufficient to ensure good adaptation. 
 
 An example showing the efficiency of the FL-AKF was presented. Superior performance 
was obtained with the FL-AKF over those obtained with a SKF and two different traditional 
adaptive Kalman filter approaches. 
 
 
• The development of a novel MSDF architecture based on FL-AKFs and a fuzzy logic 

performance assessment scheme (FL-AKF-FLA architecture). 
 
 A novel hybrid MSDF architecture integrating the developed FL-AKF and a fuzzy logic 
performance assessment scheme was proposed (referred to as FL-AKF-FLA). This architecture 
merges the measurement vectors coming from N disparate sensors, each one with different 
measurement dynamics and noise characteristics, and obtains a fused state-vector estimate 
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which better reflects the actual value of the parameters being measured. This is achieved in 
several stages, first each measurement-vector coming from each sensor is fed to a FL-AKF. 
Second, a subsystem called a fuzzy logic assessor (FLA) is monitoring and assessing the 
performance of each FL-AKF. Thus, there are N sensors, N FL-AKFs, and N FLAs working in 
parallel. The task of each FL-AKF is to obtain a state-vector estimate based on the 
measurement-vector coming from its own sensor; while the task of each FLA is to assess the 
performance of its corresponding FL-AKF through assigning to it a degree of confidence factor, 
a number on the interval [0, 1]. Finally, the fused state-vector estimate is obtained using a 
weighting average scheme based on the assigned degree of confidence factors. 
 

The role of the FLA in the proposed FL-AKF-FLA approach is of great importance because 
the fusion of the information is carried out based on the degrees of confidence generated by this 
component. It is noteworthy to indicate that only two variables are needed to monitor the 
performance of each FL-AKF and only nine ‘common sense’ rules are used in the FIS used in 
the FLA. 
 

A simple FLA-weighting average structure is used to fuse the data in the FL-AKF-FLA 
architecture. Compared to the other proposed architectures, this makes this structure less 
demanding in computing terms to carry out the data fusion process. 
 
 

• The development of three hybrid adaptive MSDF architectures based on the proposed FL-
AKF: fuzzy logic-based adaptive centralised Kalman filter (FL-ACKF), fuzzy logic-based 
adaptive decentralised Kalman filter (FL-ADKF), and fuzzy logic-based adaptive federated 
Kalman filter (FL-AFKF). 

 
 An examination of the literature reported three MSDF architectures based on the standard 
Kalman filter: centralised Kalman filter (CKF), decentralised Kalman filter (DKF), and 
federated Kalman filter (FKF). Therefore, an obvious extension of the proposed FL-AKF 
approach was the development of the corresponding adaptive MSDF architectures based on it. 
These novel architectures are referred to as: fuzzy logic-based adaptive centralised Kalman filter 
(FL-ACKF), fuzzy logic-based adaptive decentralised Kalman filter (FL-ADKF), and fuzzy 
logic-based adaptive federated Kalman filter (FL-AFKF). 
 
 In the FL-ACKF the sensor measurements, the measurement covariance matrices and the 
measurement sensitivity matrices are merged to form the observation information to a central 
FL-AKF. Therefore, the application of the FL-AKF as the global estimator in an adaptive 
centralised data fusion scheme is straightforward. 
 

The FL-ADKF processes the information in two stages. In the first stage, the local FL-AKFs 
process their own data in parallel to yield the best possible local estimates. In the second stage, 
the master filter fuses the local estimates, yielding the best global estimate. This architecture is 
similar to that of the standard DKF, but instead of having N local SKFs there are considered N 
local FL-AKFs working in parallel. In addition, instead of having local constant matrices Rik, 
they are dynamically adjusted to fit the actual statistics of the noise profiles present in the 
sensors. This makes the whole FL-ADKF structure adaptive. 
 
 As the FL-ADKF, the FL-AFKF was developed by substituting the local SKFs with FL-
AKFs. However, in this case, due to the use of the information sharing principle, an additional 
routine was added to the algorithm. The objective of the additional routine was to obtain local 
theoretical residual covariance matrices representing the information corresponding to local 
filters only. With that, the local measurement noise covariance matrices Rik can be dynamically 
adjusted to fit the statistics of the actual measured data. 
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 Therefore, these three approaches exploit the advantages that both Kalman filtering and 
fuzzy logic techniques have: the optimality of the Kalman filter and the capability of fuzzy 
systems to deal with imprecise information using “common sense” rules. 
 
 An illustrative example was presented to demonstrate the effectiveness and accuracy of the 
proposed FL-AKF-FLA, FL-ACKF, FL-ADKF, and FL-AFKF approaches. Exhaustive 
simulations under different measurement noise conditions and with or without the presence of 
faults were carried out. The results from the simulations showed that the proposed hybrid 
adaptive MSDF architectures are effective in situations where there are several sensors 
measuring the same parameters, but each one has different measurement dynamic and noise 
statistics. From the results of the illustrative example, it was concluded that the FL-AKF-FLA 
architecture is the fastest, the FL-ADKF gives the most accurate fused data, and the most fault-
tolerant (for transient and persistent faults) architecture is the FL-AKF-FLA. 

 
The selection of one of the proposed hybrid adaptive MSDF architectures for a particular 

application can be made taking into account their characteristics and the objectives followed in 
the problem at hand. For example, if it is necessary to have fast processing without the 
requirement of a lot of computational resources, the FL-AKF-FLA approach is adequate for this 
task. However, if accuracy is the main concern then the FL-ADKF can be applied. If the sensors 
are subjected to transient or persistent faults, then both the FL-AKF-FLA and the FL-ADKF 
approaches are the indicated. The FL-AFKF appears to be more suitable for fault detection 
purposes. The FL-ACKF could be applied in cases where there are only two or three sensors 
and the state vectors are of dimension two or three only. This is because of the computational 
resources needed to process all the information at the same time, which increases as the number 
of sensors grows. 
 
 

• The simplification of both the neuro-fuzzy modelling network structure and the neuro-fuzzy-
standard Kalman filter (neuro-fuzzy-SKF) state estimator, proposed by Harris et al [1999, 
2000, 2002]. 

 
 The first layer of the neuro-fuzzy modelling network proposed by Harris et al [1999, 2000, 
2002] is composed of n FISs. All the FISs have as input the vector x and use the same fuzzy rule 
base. Consequently, all these FISs share the same vector φ, formed with the degree of truth 
values µi(x) of the antecedent parts of the fuzzy rules. Instead of considering n complete FISs, it 
was proposed here to build the neuro-fuzzy modelling network considering a single antecedent 
rule evaluator in which the calculation of the degree of truth values µi(x) is performed. Then, 

these values are distributed among n vector blocks 
iaθ , which constitute the consequent parts of 

the n rule sets, to obtain the corresponding output parameters. This simplifies the neuro-fuzzy 
network structure obtaining the same results, as was demonstrated in chapter 7. 
 
 The simplification of the neuro-fuzzy network does not alter its characteristic of being easy 
to translate to a state-space representation as is required by the SKF. In fact, exactly the same 
procedure used in the original network can be followed. Therefore, it is straightforward to 
include the simplified neuro-fuzzy network in the indirect and direct neuro-fuzzy-SKF schemes 
to perform state estimations. In both the indirect and direct neuro-fuzzy-SKF schemes, instead 
of using the original neuro-fuzzy modelling network, the simplified neuro-fuzzy modelling 
network is employed. Therefore a simplified neuro-fuzzy-SKF state estimator structure is 
obtained. 
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• The development of a novel neuro-fuzzy-adaptive Kalman filter (neuro-fuzzy-AKF) state 
estimator which synergistically combines Kalman filtering, fuzzy logic, and neuro-fuzzy 
techniques. 

 
 A novel adaptive state estimator, referred to as a neuro-fuzzy-AKF, was proposed by 
substituting the SKF with a FL-AKF in the simplified neuro-fuzzy-SKF state estimator 
structure. 
 
 The neuro-fuzzy-AKF has as its main characteristic the possibility of using the error signal 
in the identification process as the measurement signal for the FL-AKF in order to estimate the 
modelling error at the same time in which the identification process is performed. This has a 
stabilising effect during the training process. 
 
 In practice, system identification using the neuro-fuzzy-AKF can be implemented using two 
different approaches. The first is a series-parallel model, while the second is merely a parallel 
model. In the series-parallel model the previous process input and output are fed into the neuro-
fuzzy-AKF and the error signal is used as a measurement signal for the FL-AKF. Hence, the 
past values of the input and output of the plant form the input vector to the neuro-fuzzy-AKF 
whose output )(ˆ ty  corresponds to the estimate of the plant output at any instant of time t. This 
model is similar to the direct neuro-fuzzy-SKF approach and, therefore, the same learning 
procedure used for that case can be applied here. 
 

In the parallel model the previous neuro-fuzzy-AKF output is fed back to the identification 
model and the error signal is used as measurement signal for the FL-AKF. Due to the feedback, 
the identification model becomes nonlinear in the parameters. This makes the gradient 
calculations a nonlinear optimisation problem, which requires a different learning technique. 
Due to this, it was proposed that a series-parallel neuro-fuzzy-AKF model be used during the 
process of system identification. Once the system under consideration has been identified, and 
assuming that the output error tends to a small value asymptotically so that y(k)≈ )(ˆ ty , the 
series-parallel model can be replaced by a parallel neuro-fuzzy-AKF model without serious 
consequences [Narendra and Parthasarathy, 1990]. 
 
 

• The application of the FL-AKF-FLA MSDF architecture to merge the estimates obtained 
from multiple neuro-fuzzy-AKFs. 

 
 The implementation of the FL-AKF-FLA MSDF architecture using neuro-fuzzy-AKFs was 
proposed. This architecture is similar to that presented initially, but now the FL-AKFs are 
substituted by neuro-fuzzy-AKFs. Therefore, in this case the information that is being fused are 
the estimated nonlinear plant outputs ŷi(t), performed by different neuro-fuzzy-AKFs. The 
fusion process is carried out through a weighted average scheme based on the confidence values 
calculated by the Fuzzy Logic Assessors (FLAs). The FLAs assess the performance of each 
neuro-fuzzy-AKF, and calculate a degree of confidence value using a fuzzy inference system 
(FIS). Each FIS has as inputs the absolute value of the Degree of Mismatch (DoM) and the 
estimated value of R(t), calculated in each neuro-fuzzy-AKF (specifically, in each FL-AKF). 
Therefore, the application of the FL-AKF-FLA for MSDF using neuro-fuzzy-AKFs is 
straightforward. 
 
 Two simulated examples of neuro-fuzzy-AKF state estimation, system identification, and 
MSDF were presented. The identification process was carried out based on noisy signals 
coming from different sensors and using a series-parallel model, while the identified models 
were validated using a parallel model. MSDF of the estimates performed by two neuro-fuzzy-
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AKFs were carried out using the FL-AKF-FLA algorithm. Good results in both system 
identification and MSDF were obtained. 
 
 Therefore, both modelling and estimation problems to improve the performance, reliability 
and accuracy of the Kalman filter approach and the MSDF architectures based on it were 
studied. Solutions for both problems were proposed and by simulating several examples it was 
demonstrated that these solutions work very well. 
 
 

• The development of a novel design and tuning procedure for PID type fuzzy logic 
controllers. 

 
 A new methodology for designing and tuning the scaling factors of a modified hybrid PID 
type fuzzy logic controller (MHPID-FLC) was presented. This procedure was derived from the 
establishment of a direct relationship between the three actions of traditional PID (TPID) 
control and the scaling factors of the MHPID-FLC. It was proved that the MHPID-FLC works 
like a TPID controller with set-point weighting factor of 0.5 and modified derivative term. 
Based on this relationship, a set of formulae were derived to calculate the scaling factors of the 
MHPID-FLC employing the well-known Ziegler-Nichols frequency response method. 
 

General guidelines for fine tuning and further improving the performance of the MHPID-FLC 
were given. It was shown that this fine-tuning can be carried out in two ways: 1) modifying the 
scaling factors, 2) modifying the control surface of the fuzzy control system inside the MHPID-
FLC structure. 
 
 

• The development of an auto-tuning procedure for PID type fuzzy logic controllers. 
 
 Based on the relationship established between TPID and the MHPID-FLC, the systematic 
design and tuning methods of TPID control can be extended and developed for applications in 
designing and tuning of the MHPID-FLC. In particular, the relay auto-tuning algorithm 
proposed by Astrom and Hagglund [1984] was extended and developed for applications to the 
auto-tuning of the scaling factors of the MHPID-FLC. 
 

The proposed methodology was tested in several simulated benchmark processes. In all cases 
the MHPID-FLC performance is equivalent to its traditional counterpart. Thus, the set-point 
weighting factor is embedded in the MHPID-FLC structure; it is not necessary to specify it as 
another variable. However, in this case it is a fixed value (0.5). 
 
 

• The application of the developed FL-ADKF architecture in the auto-tuning of PID type fuzzy 
logic controllers using multiple noisy sensors. 

 
 Although the developed MSDF architectures can be applied to a broad range of problems, in 
this work the application in the PID type fuzzy logic control approach was explored. In 
particular, the FL-ADKF was employed in a novel structure to design and auto-tune the 
MHPID-FLC embedded in a multiple sensory environment. The proposed approach combines a 
low-order modelling method with the FL-ADKF MSDF architecture. This approach effectively 
deals, as was demonstrated by simulating several examples, with the noise issue in both the 
auto-tuning procedure and the control performance for the MHPID-FLC. 
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9.2 Future work 
 
 The choice of the form and parameters that define the fuzzy sets used in the FISs inside the 
FL-AKF structure to adjust R and/or Q was made out using a trial and error scheme. Obviously, 
this process is time consuming and depends on the problem under consideration. In order to 
save time in an actual application, some guidelines to determine the parameters that define the 
fuzzy sets were given based on the experience gained through simulating many examples. 
However, it may be possible that for a particular application these guidelines do not work and 
some time must be spent in experimentation and simulation to find the correct parameters. This 
can be a drawback of the adjustment algorithm, and so a solution should be found. The author 
suggests the idea of exploring the utilisation of a neuro-fuzzy system or a genetic algorithm to 
automatically adjust the fuzzy sets to the requirements of the problem at hand. 
 
 From the illustrated example of the FL-AKF, it was demonstrated that the adaptation 
procedure is stable when R-only or Q-only are adjusted. However, this characteristic is not very 
clear when both R and Q are adjusted simultaneously. A deeper analysis of this case is needed to 
determine in what circumstances this adaptation procedure is stable. In addition, an adaptive 
procedure, that was not explored here, is the adaptation of R and Q in an alternating manner. 
That is, adapt one of these matrices for a certain period of time, and then adapt the other matrix 
for another certain period of time, and so on. It would be interesting to observe the performance 
of the FL-AKF using this procedure and determine when it can be applied. 
 
 The four developed hybrid Kalman filter-fuzzy logic adaptive MSDF architectures (FL-
AKF-FLA, FL-ACKF, FL-ADKF, and FL-AFKF) demonstrated good intrinsic fault-tolerant 
characteristics against transient and persistent faults. This was not the case against permanent 
faults. However, permanent faults are easy to detect by analysing the adjusted measurement 
noise covariance matrices or by analysing the residual sequences. Therefore, it will not be too 
difficult to develop a fault detection and recovery algorithm, for example applying a voting 
technique or a residual-based scheme, to overcome the existence of this kind of fault. 
 
 In the two simulated examples presented of neuro-fuzzy-AKF state estimation and system 
identification a chirp signal (sine wave whose frequency varies linearly with time) was used to 
obtain the data to train the network. By using this kind of signal as a training signal and the error 
signal as a measurement noise signal for the FL-AKF inside the neuro-fuzzy-AKF structure, the 
training of the neuro-fuzzy-AKF using the series-parallel identification model is stable as was 
proved practically. However, further investigation is needed to determine if this is true for a 
broader class of systems or to define under what conditions and for what kind of systems this is 
the case. This task is left as future work to follow on from this research. 
 

System identification using the neuro-fuzzy-AKF was performed in a series-parallel model 
configuration. In practice, a parallel model configuration also can be applied. However, due to 
the feedback, the identification model becomes nonlinear in the parameters. This makes the 
gradient calculations a nonlinear optimisation problem, which requires a different learning 
technique. Therefore, the determination of the kind of learning algorithms (e. g. dynamic back 
propagation [Narendra and Parthasarathy, 1990]) that can be applied in this case should be 
studied. 
 

The neuro-fuzzy-AKF state estimator was proposed for single-input-single-output (SISO) 
non-linear systems. The case for multiple-input-multiple-output (MIMO) non-linear systems 
was not considered here and is left as a future work. 

 
The proposed neuro-fuzzy-AKF state estimator suffers the problem of the curse of 

dimensionality [Brown and Harris, 1994] associated with medium or large input space 
modelling tasks. This means that the number of rules in the neuro-fuzzy modelling network (and 
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the associated data required for training) is an exponential function of the input space 
dimension. This poses a practical limitation to systems with a small input space dimension (e. g. 
<6). In the literature several constructional algorithms have been proposed as a solution to the 
above problem. Two examples are the adaptive spline modelling algorithm (ASMOD) [Harris et 
al, 1997] and the neuro-fuzzy system design and construction algorithm (NeuDec) [Hong and 
Harris, 2001]. The possible application of these algorithms in the neuro-fuzzy-AKF for large 
input space modelling is an interesting point worth investigating. 
 

The proposed design and auto-tuning procedure for the MHPID-FLC was tested on several 
simulated benchmark processes. General guidelines for fine tuning and further improving the 
performance of the MHPID-FLC by modifying the scaling factors were given. Alternatively, 
fine-tuning can be carried out by modifying the control surface (by modifying the consequent 
parameters of the rules) of the FCS inside the MHPID-FLC structure. This was practically 
exemplified for the multiple sensor case. However, more research on the effects that the 
modification of the control surface has on the performance of the MHPID-FLC is needed. 
General guidelines for this type of fine-tuning procedure need to be determined and 
investigated. This opens another interesting avenue of investigation. 
 
 The application of the proposed FL-ADKF MSDF architecture in control systems under a 
multi-sensor scheme was proposed. In this case only linear systems were considered. Recently, 
in the literature has been reported the development of the so-called multiple model adaptive 
control approach [Schott and Bequette, 1997]. An extension of that approach including multiple 
sensors could be referred to as multiple-sensors multiple-model adaptive control. This approach 
may be developed for both linear and non-linear systems using the FL-AKF and the neuro-
fuzzy-AKF approaches. 
 
 Finally, in the development of the MSDF approaches presented here, it has been assumed 
that the data being reported by the sensors is “true” information. However, in some applications 
(e. g. defence) artificial information may be produced to intentionally mislead the sensors. 
Therefore, the data produced by the sensors would be “false” information, although no 
indication of it is actually present in the data itself. In these cases, additional features would 
need be added in order to produce a MSDF system capable of effectively discriminating 
between true and false information before the fusion process is carried out. This area has not 
been investigated in this work but offers an intriguing avenue of future research. 
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APPENDIX A 

THEORY OF FUZZY SETS: NOTATION, 

TERMINOLOGY AND BASIC OPERATIONS 
 

 
A.1 Fuzzy sets and terminology 
 
Let U be a collection of objects, concepts or mathematical constructions denoted generically by 
{ u}. U is called the universe of discourse and u represents the generic element of U [Zadeh, 
1977]. For example, U may be the set of all real numbers; the set of integers 0, 1, 2,…, 100; the 
set of all residents in a city; the set of all students in a course; the set of objects in a room; the 
set of all names in a telephone directory, etc. Universes of discourse are usually denoted by the 
symbols U, V, W,…, with or without subscripts and/or superscripts. 
 
Definition A.1 Fuzzy set and membership function 
A fuzzy subset A of a universe of discourse U is characterised by a membership function 

],[: 10→UAµ  which associates with each element u of U a number )(uAµ  in the interval 

[0,1], with )(uAµ  representing the grade of membership of u in A [Zadeh, 1965, 19977]. A 
fuzzy set in U or, equivalently, a fuzzy subset of U, is usually denoted by one of the uppercase 
symbols A, B, C, D, E, F, G, H, with or without subscripts and/or superscripts. 
 
 A fuzzy set can be denoted as follows: 
 





= ∫
∑ ∈

U A

Uu iiA

uu

uu
A i

)(

)(

µ

µ
 

 
The summation and integration signs en (A.1) stand for the union of (u, )(uAµ ) pairs; they 

do not indicate summation or integration. Similarly, the symbol “/” is only a marker and does 
not imply arithmetic division. 
 
Definition A.2 Support 
The support of A is the set of points in U at which )(uAµ  is positive, 
 

})(|{)( 0>= uuA Aµsupport           (A.2). 
 
Definition A.3 Height 
The height of A is the supremum of )(uAµ  over A, 
 

)}()( uA A
Uu

µ{
∈

= suphgt           (A.3). 

 
Definition A.4 Crossover point 
A crossover point of A is a point in U whose grade of membership in A is 0.5, 
 

}.)(|{)( 50== uuA Aµcrossover         (A.4). 

           ,    if U is a collection of discrete objects. 
 

,    if U is a continuous space (usually the real line ℜ). 

 
(A.1). 
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Definition A.5 Normality 
A is normal if its height is unity and subnormal if this is not the case. 
 
Definition A.6 Fuzzy singleton 
A fuzzy set whose support is a single point in U with 01.)( =uAµ  is called a fuzzy singleton. 
 
Definition A.7: αααα-level set 
If A is a fuzzy subset of U, then an α-level set of A is a non-fuzzy set denoted by Aα which 
comprises all elements of U whose grade of membership in A is greater than or equal to α. In 
symbols: 
 

})(|{ αµα ≥= uuA A             (A.5). 

 
Definition A.8 Convex and concave fuzzy sets 
A fuzzy set A is convex if and only if for all λ ∈ [0,1] and all u1, u2 in U: 
 

))(),(())(( 2121 1 uuuu AAA µµλλµ min≥−+        (A.6). 
 
 In terms of the α-level set of A, A is convex if and only if the Aα are convex for all α ∈ (0,1]. 
Dually, A is concave if and only if: 
 

))(),(())(( 2121 1 uuuu AAA µµλλµ max≤−+        (A.7). 
 
 
A.2 Operations on fuzzy sets 
 
Assume that A and B are fuzzy subsets of U. Among the basic operations which can be 
performed on fuzzy sets are the following: 
 
1. The complement of A is denoted by A′ and is defined by, 
 

∫ −∆′
U A uuA ))(( µ1            (A.8). 

 
2. The union of fuzzy sets A and B is denoted by A∪B and is defined by, 
 

∫ ∨∆∪
U BA uuuBA ))()(( µµ        (A.9), 

 
where ∨ is the symbol for max. 
 
3. The intersection of A and B is denoted by A∩B and is defined by: 
 

∫ ∧∆∩
U BA uuuBA ))()(( µµ        (A.10), 

 
where ∧ is the symbol for min. 
 
4. The product of A and B is denoted by AB and is defined by, 
 

∫∆
U BA uuuAB )()( µµ          (A.11). 
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5. The involution or Aα, where α is any positive number, is defied as: 
 

∫∆
U A uuA αα µ ))((            (A.12). 

 
 As a special case of (A.12), the operation of concentration (CON) is defined as: 
 

2AACON ∆)(            (A.13), 

 
while that of dilation (DIL) is expressed by, 
 

50.)( AADIL ∆            (A.14). 

 
6. The bounded sum of A and B is denoted by A ⊕ B and is defined by, 
 

∫ +∧∆⊕
U BA uuuBA ))()(( µµ1        (A.15), 

 
where + is the arithmetic sum. 
 

7. The bounded difference of A and B is denoted by A ⊝ B and is defined by, 
 

A ⊝ ∫ −∨∆
U BA uuuB ))()(( µµ0       (A.16) 

 
where − is the arithmetic difference. 
 
8. The left-square of A is denoted by 2A and is defined by, 
 

∫∆
V A uuA 22 )(µ          (A.17), 

 

where }|{ UuuV ∈∆ 2 . More generally, 

 

∫∆
V A uuA αα µ )(          (A.18), 

 

where }|{ UuuV ∈∆ α . 

 
9. If A1,…,An are fuzzy subsets of U, and w1,…,wn are non-negative weights adding up to 

unity, then a convex combination of A1,…,An is a fuzzy set A whose membership function is 
expressed by, 

 

nAnAA ww µµµ ++= L
11         (A.19), 

 
where + denotes the arithmetic sum. 
 
10. If A1,…,An are fuzzy subsets of U1,…,Un, respectively, the cartesian product of A1,…,An is 

denoted by A1× ⋅⋅⋅ ×An and is defined as a fuzzy subset of U1× ⋅⋅⋅ ×Un whose membership 
function is expressed by, 
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)()(),,( nAAnAA uuuu
nn

µµµµ ∧∧=×× LKL 11 11
      (A.20). 

 
 Equivalently, 
 

∫
××

∧∧=××
n

n

UU

nnAAn uuuuAA L KLL

1

1 111 ),,()()(( µµ       (A.21). 

 
 
A.3 T-norm and S-norm 
 
Definition A.9 T-norm 
A T-norm operator [Jang et al, 1997] is a two-place function T(⋅,⋅) satisfying: 
 
     T(0,0) = 0, T(a,1) = T(1,a) = a  (boundary) 
     T(a,b) ≤ T(c,d) if a ≤ c and b ≤ d (monotonicity) 
     T(a,b) = T(b,a)       (commutativity) 
     T(a,T(b,c)) = T(T(a,b),c)    (associativity) 
 
 The first requirement imposes the correct generalization to crisp sets. The second 
requirement implies that a decrease in the membership values in A and B cannot produce an 
increase in the membership value in A∩B. The third requirement indicates that the operator is 
indifferent to the order of the fuzzy sets to be combined. Finally, the fourth requirement allows 
us to take the intersection of any number of sets in any order of pair-wise groupings. Four of the 
most frequently used T-norm operators are: 
 
     Minimum:    Tmin(a,b) = min(a,b) = a ∧ b. 
     Algebraic product:  Tap(a,b) = ab. 
     Bounded product:  Tbp(a,b) = 0 ∨ (a + b – 1). 

     Drastic product:  Tdp(a,b) =  <
=
=

.,,

.,

.,

10

1

1

baif

aifb

bifa
 

 
Definition A.10 S-norm (T-conorm) 
A S-norm (or T-conorm) operator [Jang et al, 1997] is a two-place function S(⋅,⋅) satisfying: 
 
     S(1,1) = 1, S(0,a) = S(a,0) = a  (boundary) 
     S(a,b) ≤ S(c,d) if a ≤ c and b ≤ d (monotonicity) 
     S(a,b) = S(b,a)       (commutativity) 
     S(a,S(b,c)) = S(S(a,b),c)    (associativity) 
 
 The justification of these basic requirements is similar to that of the requirements for T-norm 
operators. Four of the most frequently used S-norm operators are: 
 
     Maximum:    Smax(a,b) = max(a,b) = a ∨ b. 
     Algebraic sum:   Sas(a,b) = a + b – ab. 
     Bounded sum:   Sbs(a,b) = 1 ∧ (a + b). 

     Drastic sum:    Sds(a,b) =  >
=
=

.,,

.,

.,

00

0

0

baif

aifb

bifa
 

 

 
(A.22). 

 
(A.23). 

 
(A.24). 

 
(A.25). 
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APPENDIX B 

SIMULINK MODELS 
 

 
B.1 Main SIMULIK models used in Chapter 5 
 

 
Figure B.1 The FL-AKF model. 

 

 
Figure B.2 Subsystem ADJUST R: FL-AKF model. 
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Figure B.3 Subsystem ADJUST Q: FL-AKF model. 

 

 
Figure B.4 The TAKF-IAE model. 



APPENDIX B SIMULINK MODELS 192

 
 

Figure B.5 The TAKF-MMAE model. 
 

 
 

Figure B.6 Subsystem HCPC1: TAKF-MMAE model. 
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Figure B.7 Subsystem SKF1: TAKF-MMAE model. 

 
 
B.2 Main SIMULIK models used in Chapter 6 
 

 
Figure B.8 The FL-AKF-FLA model. 
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Figure B.9 Subsystem Processmod1: FL-AKF-FLA model. 

 

 
Figure B.10 Subsystem FL-AKF1: FL-AKF-FLA model. 
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Figure B.11 (a) Subsystem FLA; (b) subsystem Subs: FL-AKF-FLA model. 

 

 
Figure B.12 The FL-ACKF model. 

 

 
Figure B.13 Subsystem FL-AKF1: FL-ACKF model. 

(a) (b) 
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Figure B.14 The FL-ADKF model. 

 

 
Figure B.15 Subsystem M-Filter: FL-ADKF model. 
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Figure B.16 Subsystem FL-AKF1: FL-ADKF model. 
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Figure B.17 The FL-AFKF model. 

 

 
Figure B.18 Subsystem FL-AKFm: FL-AFKF model. 
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Figure B.19 Subsystem FL-AKF1: FL-AFKF model. 
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B.3 Main SIMULIK models used in Chapter 7 
 

 
Figure B.20 The Neuro-Fuzzy-AKF and FL-AKF-FLA fusion model. 
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Figure B.21 Subsystem Rulantev: Neuro-Fuzzy-AKF, FL-AKF-FLA model. 

 
 

 
Figure B.22 Subsystem tethai: Neuro-Fuzzy-AKF, FL-AKF-FLA model. 

 

Subsystem bspline1 

Subsystem ai(X)1 



APPENDIX B SIMULINK MODELS 202

 
 

 
Figure B.23 Subsystem Defuzz: Neuro-Fuzzy-AKF, FL-AKF-FLA model. 

 

 
Figure B.24 Subsystem SKF: Neuro-Fuzzy-AKF, FL-AKF-FLA model. 
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Figure B.25 Subsystem processmod: Neuro-Fuzzy-AKF, FL-AKF-FLA model. 

 

 
Figure B.26 Subsystem DOM: Neuro-Fuzzy-AKF, FL-AKF-FLA model. 

 

 
Figure B.27 Subsystem AdjustR: Neuro-Fuzzy-AKF, FL-AKF-FLA model. 
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Figure B.28 Subsystem FUSION: Neuro-Fuzzy-AKF, FL-AKF-FLA model. 

 
 
B.4 Main SIMULIK models used in Chapter 8 
 

 
Figure B.29 The MHPID-FLC and MSDF model. 
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Figure B.30 Subsystem MHPID-FLC: MHPID-FLC and MSDF model. 

 

 
Figure B.31 Subsystem Model Identifier: MHPID-FLC and MSDF model. 

 

 
Figure B.32 Subsystem Plant Parameter Calculator: MHPID-FLC and MSDF model. 
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