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Abstract- In this work a novd Multi-Sensor Data
Fuson (MSDF) architedure with fault tolerant
characteristics is proposed. This MSDF architedure
is based on Kalman filtering and fuzzy logic
techniques. First, the measurement coming from each
sensor isfed to afuzz—adaped Kalman filter (FKF).
The adapation is in the sense of adjusting the
measurement noise @variance matrix R using afuzz
inference system (FIS based on a covariance
matching technique. Second, another FIS, here alled
a fuzzy logic observer (FLO), is used to monitor the
performance of each FKF. The FLO asdgns a degree
of confidence to each ore of the FKFs. The degreeof
confidence indicates to what levd each FKF output
refleds the true value of the parameter being
measured. At this levd transient sensor faults are
eliminated. Finally, the fused estimated measurement
is obtained through a defuzification process based
on these anfidence \alues. At this levd persistent
sensor faults are diminated using a voting scheme.
To demondtrate the dfedivenessand accuracy of this
hybrid MSDF architedure, an example with four
noisy andfaulty sensors is outlined. The results ow
very good rformance
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1. Introduction

The Multi-Sensor Data Fusion (MSDF)
approach is described as the aaquisition,
processing, and synergistic combination of
information gathered by various knowledge
sources and sensors to provide a Dbetter
understanding of a phenomenon undy
consideration [1]. Different MSDF techniques
have been explored recently. These techniques
vary from those based on well-established
Kaman filtering methods [2, 3] to those based
on more recent ideas coming from soft
computing technology [4, 5. However, little
work has been dore in exploring hybrid
architedures that consder both these

approaches. In this work a novel MSDF
architedure with fault tolerant characteristics is
propcsed. This architecture is based ona hybrid
structure integrating fuzzy inference systems
and Kalman filtering techniques.

The general idea eplored here is the
combination d the avantages that both
techniques have. On the one hand, Kaman
filtering is reagnised as one of the most
powerful traditional techniques of estimation
[6]. On the other hand, the main advantages
derived from the use of fuzzy logic tedniques,
with respect to traditional schemes, are the
simplicity of the approach, the caability of
fuzzy systems to ded with imprecise
information, and the possibility of including
heuristic knowledge @out the phenomenon
under consideration.

The remainder of this paper is organised as
follows. Section 2 describes the Kalman filtering
technigue aad summarises the proposed
approach of fuzzy-adapted Kalman filtering [7].
Sedion 3 dbkscribes the proposed new hybrid
MSDF architecture. To show the eff ectiveness
of this approach and its fault tolerant
charaderistics, in section 4 an illustrative
example with four noisy and faulty sensors is
outlined and results are discussed. Findly, the
conclusions of thiswork are given in section 5.

2. Kalman filtering

The Kalman filter is an gptimal reaursive data
processing algorithm [6] that provides a linear,
unbiased, and minimum error variance estimate
of the unknown state vedor x, 00" at each
instant k = 1,2,...,(indexed by the subscripts) of
a discrete-time controlled process described by
the linea stochastic difference eguations:

X = AX + Beuy +w, (1)
z, = H, X +v, ),



where X isan n x 1 system state vedor, A is an
n x n transition matrix, u isan | x 1 vector of
the input forcing function, Bc isan n x | matrix,
Wi isan n x 1 processnoise vector, zcisamx 1
measurement veaor, Hy is am x n measurement
matrix, and vk is a m x 1 measurement noise
vedor.

Both wy and v ae &sumed to be
uncorrelated zero-mean Gaussian white noise
sequences with covariances:

N, i=k R, i=k
E{Wkwi}_go oy B Ho izk
E{w,v }=0  fordl kandi ©)
where E{[J] is the datistical expectation,

superscript T denotes transpose, Qg is the
process noise @variance matrix, and Ry is the
measurement NOise @variance matrix.
The Kalman filter agorithm [8, 9 is
organised in two groups of equations:
i) Time upcdete (or prediction) equations:

Xy = ALX, + B, 4
P = AR A; +Qy (5).
These equations projed, from time step k to step
k+1, the aurrent state and error covariance

estimates to aobtain the a priori (indicated by the
super minus) estimates for the next time step.

i) Meaurement update (or correction)
equations:
K,=P H/[H,P H]+R]™ (6)
X, =X +K [z, —H X] (7)
P =[I =K H IR (8).

These ejuations incorporate a new measurement
into the a priori estimate to obtain an improved
a pcsteriori estimate.

2.1. Fuzzy-adapted Kalman filtering

Asauming that the process noise @variance
matrix Q is known, here an innovation-based
adaptive estimation (IAE) agorithm [7, 13 to
adapt the measurement noise covariance matrix
R and pevent filters divergence [10, 11] has
been derived. In particular, the technique known
as covariance-matching is used [13]. The basic
ideabehind this technique is to make the actual
value of the mvarianceof the residual consistent
with its theoretical value. This is dore in two
steps; first, the innovation sequence or residual r
isdefined by:

e =(z, —H.X,) 9),

anditstheoreticd covarianceis defined by,
S, =H,P H/ +R, (10),

obtained from the Kaman filter agorithm.
Seomond, if it is found that the actual covariance
of ry has a discrepancy with its theoretical value,
then adjustments are made to R in order to
correct this mismatch.

Given the availability of the innovation
sequence r,, its adua covariance ér is
approximated by its sample ovariance [12]
through averaging inside a moving estimation
window of size N,

N

1 rr’ (19),
N =1y

Crk =

where j =k-N+1 is the first sample inside the
estimation window. The windon size N is
chosen empiricdly to give some statisticad
smoathing.

Now, a new variable called the Degree of
Matching (DoM), is defined to detect the
discrepancy between Sand C. . Thisis:

DoM, =S, -C, (12).

The basic idea of adaptation used by a Fuzzy
Inference System (FIS) to derive an adjustment
of Ris as follows. It can be noted from Eq. 10
that an increment in Rwill increment S, and vice
versa. Thus, R can be used to vary S in
acordance with the value of DoM in order to
reduce the discrepancies between S and C, .
From here three general rules of adaptation are
defined:

1.1f DoM 0O (this means Sand C, match

amost perfectly) then mantan R
unchanged.
2. 1f DoM > 0O (this means Sis greater than

its actual value C, ) then deaease R.
3.1f DoM < 0 (this means Sis snaller than
its actual value C_ ) thenincrease R.

Thus Ris adjusted in this way:
Rk = Rk—l +AR1< (13)7

where AR is the factor that is added or
subtracted from R at eadh instant of time. AR is
the FIS output and DoM is the FIS inpu. A
graphica representation of the Fuzzy-adapted
Kaman Filter (FKF) isshownin Fig. 1.
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Fig. 1. Basic structure of the Fuzzy-
adapted Kalman Filter (FKF).

3. Hybrid multi-sensor data fusion
architecture

The objective of the proposed MSDF
architedure is to obtain fused measurement data
that determines the parameter being measured as
precisely as posshble. The main characteristic of
this architecture isits fault tolerance.

In the proposed MSDF architecture it is
asumed that there are n different sensors
measuring the same parameter. Each sensor has
its own characteristics of noise ad
measurement  errors. The  measurements
obtained from these sensors are fed to a fuzzy-
adapted Kaman filter (FKF), ore for each
sensor; thus there ae n sensors and n FKFs
working in paralel (see Fig. 2). A FIS, here
cdled the Fuzzy Logic Observer (FLO), is used
both to monitor the performance of ead FKF
and for the detection of transient sensor faults.
To achieve this, the FLO was designed using
three variables. the absolute value of DoM
(AbsDoM), the value of R, and a variable alled
the Residual Compatibility rC.
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Fig. 2. New hybrid MSDF architecture.

The variable rC is obtained using the
following relation:

rc, = Ind
k — (Sk

This value gives a measure of the actua
amplitude of the residual r compared to its
theoretical value ./s. For a sensor without
transient faults the value of rC is around 1, if
this value changes abruptly, this means that a
transient fault on the arresponding sensor is
present.

The FLO assigns a degreeof confidencew, a
number on the interval [0, 1], to eadh one of the
FKF (seeFig. 2). windicates to what level each
FKF output reflects the true value of the
measurement and if this value is coming from a
nonfaulty sensor (transient faults). At the same
time, the degree of confidence acts as a weight
that indicates to the fusion centre a what
confidencelevel it shoud take each FKF output
value.

The fusion centre (see Fig. 2) obtains the
fused edtimation of the parameter being
measured based on the @nfidence values. First
of al, the fusion centre gplies a voting
technique to investigate if there ae persistent
sensor faults. If one of the estimated
measurements differs markedly from the others
this means a persistent sensor fault is present in
that sensor, thus that value is not considered for
fusion purposes. Findly a defuzzfication
processis applied to dbtain the fused estimation
of the parameter being measured. Fig. 2 shows a
graphical representation of the propased MSDF
architedure.

(14).

4. lllustrative example

Consider the following linear system, which is a
modified version of atradking model [14, 15],

O;.,0 [0.77 0.20 0.000 GO Gw,C

Je.B=T025 075 0250 HebeRee (19
Ke.H .05 000 0758 B¢H BWvE
ki O
z.=fL 0 o] g+, (15D),
BeH
with initial conditions %, =0, P, =0.011,,

where x', X4, and x° are the position, velocity and
acaleration, respectively, of a flying object. In
Eg. 15, the system noise sequence {wy} is
uncorrelated zero-mean Gaussian noise with Q =
0.025.



MATLAB code was developed to simulate
the process described by Eq. 15 and the
propcsed MSDF architecture wnsidering four
sensors measuring the position of the flying
object. The smulation was carried out for 500s
with a sample time of 0.5s. Q was fixed as
0.025. The actual value of R for ead sensor was
assumed urknown. The starting value of Rin al
sensors was <lected as 1. Eadh sensor
measurement is corrupted by the noise profiles
described in Fig. 3. Additiondly, persistent
faults are introduced onsensor 1 at time ranges
[100-20Q], [300-31Q, and [400-41(. During
these ranges the measurement of sensor 1 is
fixed as —15. Transient faults are introduced on
sensor 4 at times 150, B0, 350 and 40. At
these times the measurement of sensor 4 is fixed
as—20.
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Fig. 3.(a) Noise onsensor 1, (b) noise on sensor
2, (¢) noise on sensor 3, (d) noise on sensor 4.

In subsequent sections, the implementation
of each one of the comporents of the hybrid
M SDF architecture is described.

4.1 Fuzzy-adapted Kalman Filter (FKF)

Each FKF was implemented considering five
fuzzy sets for DoM: NM = Negative Medium,
NS = Negative Small, ZE = Zero, PS = Positive
Small, and PM = Positive Medium; and five for

AR IL = Increase Large, | = Increasse, M =
Maintain, D = Deaease, and DL = Decrease
Large. The membership functions for DoM and
AR are presented in Fig. 4.
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Fig. 4. Membership functions for DoM and AR.

Following the general guidelines given in
sedion 2.1 five fuzzy rules have been
formulated in order to adjust R, these are:

1. If DoM = NM, then AR=IL
If DoM = NS then AR=1

If DoM = ZE, then AR=M

If DoM = PS then AR=D

If DoM = PM, then AR=DL.

Thus using the cmpaositional rule of
inference sum-prod, R is adjusted as mentioned
in Eq. 13. The windov size N was s ected
empirically as 15.

ar®ON

4.2 Fuzzy L ogic Observer (FLO)

The membership functions for AbsDoM, R and
rC are shown in Fig. 5. Here the fuzzy labels
mean: ZE = Zero, S= Small, L = Large, NF =
No Fault, and F = Fault. For the output w, 3
fuzzy singletons were defined with the labels:
G=1=Good, AV=0.5=Average, and P=0=Poor.
Thus 18 rules complete the FLO rule base, as
shownin Table 1.

Tablel
rC=NF
— R
AbsDoM ZE S L
ZE G G AV
S G AV P
L AV P P
rC=F

\R
AbsDoM ZE S L
ZE P P P
S P P P
L P P P
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Fig. 5. Membership functions for AbsDoM, R,
andrC.

The above rules are based on two smple
heuristic considerations. First, if the AbsDoM is
nea to zero and R is nea to zero and no
transient fault is present, then it means the filter
is working almost perfectly. Sewond, if one or
both of AbsDoM and R increases far from zero
that means the filter performance is degrading.
At the same time if rC increases abruptly, this
means that atransient fault on the corresponding
sensor has been detected.

Thus, using the mpositional rule of
inference sum-prod and the ceatre of area
defuzzficaion method the FLO obtains a
degreeof confidence for each FKF.

4. 3 Thefuson centre

As afirst stage in the fusion centre (seeFig. 2) a
voting technique [16] is used to detect persistent
sensor faults. This is dore by caculaing the
factors:

2,-2,|,Cpy = |21 - 23| Ci =12 - 2],
z, - 23| 1Coy = |22 - 24| Cyy = |23 - 24|

...(16),
and then applying the following crisp rules:

1.1f Ci» and Ci3and Cy4 are = a then sensor 1
has a persistent fault.

2.1f Cp and Cy3 and Cy4 are = a then sensor 2
has a persistent fault.

3.1f Cizand Cyz and Cs4 are = o then sensor 3
has a persistent fault.

4.1f Cy4 and Cy4 and Cs4 are = o then sensor 4
has a persistent fault.

In these rulesa is a threshaold factor used to
indicate the degree of disagreament between
ead estimated measurement and the others. If
one of the estimated measurements differs
markedly from the others then this signal is
eliminated and the orresponding sensor is
asumed to be in a persistent fault state. Here a
was sected as 1.2. Finaly, a defuzzfication
processis applied to obtain the fused estimation
of the parameter being measured. In this case the
centre of areamethodis used,

n

sziwki
o= (17),
Wki
1=1
where 2, is the output of the i-th FKF

(i=1,2,34) and w,, is its respedive degree of
confidence at instant of time k. Thus, each FKF
output is weighted according to its
corresponding degree of confidence w, and if it
is found in the persstent fault state, then this
output and its corresponding weight are not
considered for fusion purposes.

In order to prevent possible anflicts, the
following crisp rule was incorporated: If the sum
of the degrees of confidence is equal to zero,
then the fused autput is simply the average of
the non-faulty FKF outputs.

4. 4 Results

For comparison purposes, the following
performance measures were adopted:

a\/1;<> a9
- ig _5 2 19),
J, \/n;(zak 2,) (19

where za, isthe actud value of the position; zis
the measured position; and 2, is the estimated

position at an instant of time k; n = No. of
samples.

Table 2 shows the performance measures of
ead individual FKF and those obtained by the
propcsed MSDF architecture where the fusion
of the four sensors is made for both cases: with
nonfaulty and faulty sensors (NFS and FS).
From the analysis of the data, it is noted that the
most acarate etimation o the postion is
obtained with the MSDF architecure for both
cases NFSand FS. For the case of NFSthe aror
in the estimation is 6.24% less compared to that



obtained with FKF 1 (for sensor 1), which hes
the best individual performance measure. At the
same time this error is 58.86% lesscompared to
that obtained with FKF 2 (for sensor 2) which
has the worst individual performance measure.
Fig. 6 shows the actual and fused estimated
position and the correspondng error in the
estimation for the NFS case.

Table2

Without faults With faults

Sensor | Ju e J e

Sensor 1 | 0.7285]| 0.2693 | 7.8075| 7.4804

Sensor 2 | 3.9066 | 0.6137 | 3.9066 | 0.6137

Sensor 3 | 2.5633| 0.4200 | 2.5633 | 0.4200

Sensor 4 | 2.5928| 0.3973| 2.9549| 0.6371

Fused 0.2525 0.2831

[ actualpositon N
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Fig. 6. Actual and fused estimated position and
the corresponding error obtained with the MSDF
architedure for nonfaulty sensors.

For the @se of faulty sensors the
performance measure for the fused estimated
paosition is only a little larger than that for the
case previously analysed (see Table 2). The
error only increases by 12.12% in spite of the
faults introduced on sensor 1 and 4.
Additionally, this estimation error is 326%
small er than that observed in the best individual
FKF (in this case number 3). Thus both fused
estimated measurements are more acarate than
those obtained with any individual FKF. Fig. 7
shows the estimated pasition oliained with FKF
1; here the dfects caused by the introduction of
persistent sensor faults can be seen. Fig 8 shows
the estimated position obtained with FKF 4; here
the effeds caused by the introduction of

transient sensor faults can be observed. Finally,
Fig. 9 shows the actual and fused estimated
position and the correspondng error for the
faulty sensors case.

20 =
— actual position
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Position
=

1 1 1 | 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Time {sec)

Fig. 7. Estimated pasition dotained with FKF 1.
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Fig 8. Estimated pasition dotained with FKF 4.
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Fig. 9. Actua and fused estimated position and
the corresponding error obtained with the MSDF
architedure for faulty sensors.

5. Conclusions

A novel hybrid MSDF architecture integrating
Kaman filtering and fuzzy logic techniques has
been presented. The main characterigtic of this
architedure is its tolerance to persistent and
transient sensor faults. This characteristic is



obtained by exploiting the advantages that both
approadches have: the optimality of the Kalman
filter and the cpability of fuzzy systemsto ded
with impredse information using fuzzy sets and
common sense rules.

In this novel approach the linea estimations
of the individua Kaman filters are improved
through the adaptation of the measurement noise
covariance matrix R by means of a FIS. This
prevents filter divergence and relaxes the a
priori assumption d the value of R It is
noteworthy that only five rules were needed to
cary out this adaptation.

The role of the FLO in the proposed MSDF
architedure is of great importance. This is
because the fusion of the information is carried
ou based on the degrees of confidence
generated onthis element. At this level transient
sensor faults are automaticaly removed.

The results obtained in the illustrative
example ae promising. They show that this
novel hybrid MSDF architecture is effedive in
situations where there ae several sensors
measuring the same parameter and ead sensor
measurement is contaminated with a different
kind d noise. This approach is also capable of
tolerating transient and persistent sensor faults
in an efficient way. Both fused estimated
measurements (with faulty sensors and non
faulty sensors) produced better approximations
to the atua value of the parameter being
measured than that obtained with any single
FKF. Thus the general idea of exploring the
combination d traditional together with non
traditional techniques appears to be apromising
avenue of investigation.

The system employed to illustrate the
effediveness of the @gproach presented is
simple and orly one parameter is considered as
being measured. However the approach can be
easily extended for systems with more than ore
parameter being measured. In fad this is the
subject of current work being done by the
authors.
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