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 A random or stochastic process is a mathematical 

model for a phenomenon that evolves in time in an 

unpredictable manner from the viewpoint of the 

observer.

 It may be unpredictable because of such effects as 

interference or noise in a communication link or 

storage medium, or it may be an information-bearing 

signal, deterministic from the viewpoint of an 

observer at the transmitter but random to an observer 

at the receiver.
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 A stochastic (or random) process is a mathematical 

model of a probabilistic experiment that evolves in 

time and generates a sequence of numerical values. 

 A stochastic process can be used to model:

 The sequence of daily prices of a stock;

 The sequence of scores in a football game;

 The sequence of failure times of a machine;

 The sequence of hourly traffic loads at a node of a communication 

network;

 The sequence of radar measurements of the position of an airplane.
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 Each numerical value in the sequence is modelled by 

a random variable.

 A stochastic process is simply a (finite or infinite) 

sequence of random variables.

 We are still dealing with a single basic experiment 

that involves outcomes governed by a probability 

law, and random variables that inherit their 

probabilistic properties from that law.
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 Stochastic processes involve some changes with respect to 

earlier models:

 Tend to focus on the dependencies in the sequence of values 

generated by the process.

o How do future prices of a stock depend on past values?

 Are often interested in long-term averages involving the entire 

sequence of generated values.

o What is the fraction of time that a machine is idle?

 Wish to characterize the likelihood or frequency of certain 

boundary events.

o What is the probability that within a given hour all circuits of some 

telephone system become simultaneously busy?
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 There is a wide variety of stochastic processes.

 Two major categories are of concern of this course:

 Arrival-Type Processes. The occurrences have the character 

of an “arrival”, such as message receptions at a receiver, job 

completions in a manufacturing cell, etc. These are models in 

which the interarrival times (the times between successive 

arrivals) are independent random variables.

oBernoulli process. Arrivals occur in discrete times and the 

interarrival times are geometrically distributed.

oPoisson process. Arrivals occur in continuous time and the 

interarrivals times are exponentially distributed.
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 Two major categories are of concern of this course:

Markov Processes. Involve experiments that evolve in 

time and which the future evolution exhibits a 

probabilistic dependence on the past. As an example, the 

future daily prices of a stock are typically dependent on 

past prices.

o In a Markov process, it is assumed a very special type of 

dependence: the next value depends on past values only 

through the current value.
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 Markov chains were first introduced in 1906 by 

Andrey Markov (of Markov’s inequality), with the 

goal of showing that the law of large numbers can 

apply to random variables that are not independent.

 Markov began the study of an important new type of 

chance process. In this process, the outcome of a 

given experiment can affect the outcome of the next 

experiment. This type of process is called a Markov 

chain.
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 Since their invention, Markov chains have become 

extremely important in a huge number of fields such 

as biology, game theory, finance, machine learning, 

and statistical physics.

 They are also very widely used for simulations of 

complex distributions, via algorithms known as 

Markov chain Monte Carlo (MCMC).
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 Markov chains “live” in both space and time: the set 

of possible values of the Xn is called the state space, 

and the index n represents the evolution of the 

process over time.

 The state space of a Markov chain can be either 

discrete or continuous, and time can also be either 

discrete or continuous.

 in the continuous-time setting, we would imagine a 

process Xt defined for all real t  0.
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 Consider first discrete-time Markov chains, in which 

the state changes at certain discrete time instants, 

indexed by an integer variable n.

 At each time step n, the state of the chain is denoted 

by Xn and belongs to a finite set S of possible states, 

called state space.

 Specifically, we will assume that S = {1, 2,…, m}, 

for some positive integer m.
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 Formally, a sequence of random variables X0, X1, 

X2,… taking values in the state space S = {1, 2,…, 

m} is called a Markov chain if for all n  0, the 

Markov property is satisfied: 

 The quantity pij = P(Xn+1 = j | Xn = i) is called the 

transition probability from state i to state j, with i, j  S, 

for all times n, and all possible sequences i0,…, in-1 of 

earlier states.
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 Whenever the state happens to be i, there is 

probability pij that the next state is equal to j.

 The key assumption underlying the Markov chains is 

that the transition probabilities pij apply whenever 

state i is visited, no matter what happened in the 

past, and no matter how state i was reached.

 The probability law of the next state Xn+1 depends 

on the past only through the value of the present 

state Xn.
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 In other words, given the entire past history X0, X1, 

X2,…, Xn, only the most recent term, Xn, matters for 

predicting Xn+1.

 If we think of time n as the present, times before n as 

the past, and times after n as the future, the Markov 

property says that given the present, the past and 

future are conditionally independent.

 The transition probabilities pij must be nonnegative, 

and sum to one:
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 All of the elements of a Markov chain model can be 

encoded in a transition probability matrix P,

whose (i, j) entry is the probability of going from 

state i to state j in one step of the chain.

Note that P is a nonnegative matrix in which each row 

sums to 1.
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 It is also helpful to lay out the model in the so-called 

transition probability graph, whose nodes are the 

states and whose arcs are the possible transitions.

 By recording the numerical values of pij near the 

corresponding arcs, one can visualize the entire 

model in a way that can make some of its major 

properties readily apparent.
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 Example 1. Rainy-sunny Markov chain. Suppose that on any 

given day, the weather can either be rainy or sunny. If today 

is rainy, then tomorrow will be rainy with probability 1/3 

and sunny with probability 2/3. If today is sunny, then 

tomorrow will be rainy with probability 1/2 and sunny with 

probability 1/2. Letting Xn be the weather on day n, 

X0,X1,X2, . . . is a Markov chain on the state space {R, S}, 

where R stands for rainy and S for sunny. We know that the 

Markov property is satisfied because, from the description of 

the process, only today’s weather matters for predicting 

tomorrow’s.
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 Transition probability matrix: 

 Transition probability graph:
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 Example 2. According to Kemeny, Snell, and 

Thompson, the Land of Oz is blessed by many 

things, but not by good weather. They never have 

two nice days in a row. If they have a nice day, they 

are just as likely to have snow as rain the next day. If 

they have snow or rain, they have an even chance of 

having the same the next day. If there is change from 

snow or rain, only half of the time is this a change to 

a nice day. With this information, form a Markov 

chain model.
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 Transition probability matrix: 

 Transition probability graph:
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 Example 3. Spiders and Fly. A fly moves along a 

straight line in unit increments. At each time period, 

it moves one unit to the left with probability 0.3, one 

unit to the right with probability 0.3, and stays in 

place with probability 0.4, independent of the past 

history of movements. Two spiders are lurking at 

positions 1 and m; if the fly lands there, it is 

captured by a spider, and the process terminates. 

Construct a Markov chain model, assuming that the 

fly starts in a position between 1 and m.
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 The probability of a path. Given a Markov chain 

model, can compute the probability of any particular 

sequence of future states. 

 This is analogous to the use of the multiplication rule in 

sequential (tree) probability models.
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 In particular: Let be P(n) = {pij(n)} be the matrix of 

n-step transition probabilities, where:

Where pij(n) is the probability that the state after n time 

periods will be j, given that the current state is i.

 Note that P[Xn+k = j | Xk = i] = P[Xn = j | X0 = i] for 

all n  0 and k  0, since the transition probabilities 

do not depend on time.
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 First, consider the two-step transition probabilities. 

The probability of going from state i at t = 0 passing 

through state k at t = 1, and ending at state j at t = 2 

is: 
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 Note that pik(1) and pkj (1) are components of P, the 

one-step transition probability matrix. We obtain 

pij(2), the probability of going from i at t = 0 to  j at t 

= 2, by summing over all possible intermediate 

states k:

 This is, the ij entry of P(2) is obtained by multiplying the 

ith row of P(1) by the jth column of P(1). In other words, 

P(2) is obtained by multiplying the one-step transition 

probability matrices:

28

Discrete-Time Markov Chains



CIC

 Now consider the probability of going from state i at t

= 0, passing through state k at t = m, and ending at 

state j at time t = m + n. Following the same procedure 

as above we obtain the Chapman–Kolmogorov

equations:
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 Therefore the matrix of n + m step transition 

probabilities P(n + m) = {pij (n + m)} is obtained by 

the following matrix multiplication:

 By induction, this implies that:

30

Discrete-Time Markov Chains



CIC

31

Discrete-Time Markov Chains



CIC

32

Discrete-Time Markov Chains



CIC

33

Discrete-Time Markov Chains

Example



CIC

34

Discrete-Time Markov Chains

Example



CIC

 Example 4. Transition matrix of 4-state Markov 

chain. Consider the 4-state Markov chain depicted in 

the Figure. When no probabilities are written over 

the arrows, as in this case, it means all arrows 

originating from a given state are equally likely. For 

example, there are 3 arrows originating from state 1, 

so the transitions 1 → 3, 1 → 2, and 1 → 1 all have 

probability 1/3. (a) what is the transition matrix? (b) 

what is the probability that the chain is in state 3 

after 5 steps, starting at state 1?
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 Transition probability matrix: 
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 We now consider the long-term behavior of a Markov 

chain when it starts in a state chosen by a probability 

distribution on the set of states, which we will call a 

probability vector.

 A probability vector with r components is a row vector 

whose entries are non-negative and sum to 1.

 If u is a probability vector which represents the initial 

state of a Markov chain, then we think of the ith

component of u as representing the probability that the 

chain starts in state si.
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 Let P be the transition matrix of a Markov chain, and 

let u be the probability vector which represents the 

starting distribution. Then the probability that the 

chain is in state si after n steps is the ith entry in the 

vector:

We note that if we want to examine the behavior of the 

chain under the assumption that it starts in a certain state 

si, we simply choose u to be the probability vector with 

ith entry equal to 1 and all other entries equal to 0.
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 Example 5. In the Land of Oz example (Example 2) 

let the initial probability vector u equal (1/3, 1/3, 

1/3), meaning that the chain has equal probability of 

starting in each of the three states. Calculate the 

distribution of the states after three days.

40
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 Example 5. In the Land of Oz example (Example 2) 

let the initial probability vector u equal (1/3, 1/3, 

1/3), meaning that the chain has equal probability of 

starting in each of the three states. Calculate the 

distribution of the states after three days.
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 Example 6. Consider the 4-state Markov chain in 

Example 4. Suppose the initial conditions are t =

(1/4, 1/4, 1/4, 1/4), meaning that the chain has equal 

probability of starting in each of the four states. Let Xn

be the position of the chain at time n. Then the 

marginal distribution of X5 is:
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 Example 6. 
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 Example 6. 

44

Discrete-Time Markov Chains



CIC

 The states of a Markov chain can be classified as 

recurrent or transient, depending on whether they 

are visited over and over again in the long run or are 

eventually abandoned.

 States can also be classified according to their 

period, which is a positive integer summarizing the 

amount of time that can elapse between successive 

visits to a state.
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 Recurrent and transient states.

 State i of a Markov chain is recurrent if starting from i, 

the probability is 1 that the chain will eventually return to 

i.

Otherwise, the state is transient, which means that if the 

chain starts from i, there is a positive probability of never 

returning to i.

 As long as there is a positive probability of leaving i

forever, the chain eventually will leave i forever.
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 Example 7. In the Markov chains shown below, are 

the states recurrent or transient?  
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 Example 7. In the Markov chains shown below, are 

the states recurrent or transient?  
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A particle moving around between

states will continue to spend time in

all 4 states in the long run, since it

is possible to get from any state to

any other state.
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 Example 7. In the Markov chains shown below, are 

the states recurrent or transient?  
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Let the particle start at state 1. For a

while, the chain may linger in the

triangle formed by states 1, 2, and 3,

but eventually it will reach state 4,

and from there it can never return to

states 1, 2, or 3. It will then wander

around between states 4, 5, and 6

forever. States 1, 2, and 3 are transient

and states 4, 5, and 6 are recurrent.
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 Although the definition of a transient state only 

requires that there be a positive probability of never 

returning to the state, we can say something 

stronger:

As long as there is a positive probability of leaving i

forever, the chain eventually will leave i forever.

 In the long run, anything that can happen, will happen 

(with a finite state space).
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 A state j is accessible from state i if for some n, the 

n-step transition probability pij(n) is positive, i.e., if 

there is positive probability of reaching j, starting 

from i, after some number of time periods.

 Let A(i) be the set of states that are accessible from i.

 i is recurrent if for every j that is accessible from i, i also 

is accessible from j; that is, for all j that belong to A(i) we 

have that i belongs to A(j). 
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 If i is a recurrent state, the set of states A(i) that are 

accessible from i form a recurrent class (or simply 

class), meaning that states in A(i) are all accessible 

from each other, and no state outside A(i) is 

accessible from them.

 Mathematically, for a recurrent state i, we have A(i) 

= A(j) for all j that belong to A(i), as can be seen 

from the definition of recurrence.
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 Example 8.
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 Examples of Markov chain decompositions:
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 From Markov chain decomposition:

 (a) once the state enters (or starts in) a class of recurrent 

states, it stays within that class; since all states in the class 

are accessible from each other, all states in the class will 

be visited an infinite number of times

 (b) if the initial state is transient, then the state trajectory 

contains an initial portion consisting of transient states 

and a final portion consisting of recurrent states from the 

same class.
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 For the purpose of understanding long-term

behaviour of Markov chains, it is important to 

analyse chains that consist of a single recurrent 

class.

 For the purpose of understanding short-term

behaviour, it is also important to analyse the 

mechanism by which any particular class of 

recurrent states is entered starting from a given 

transient state.
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 Periodicity. A recurrent class is said to be periodic

if its states can be grouped in d ˃ 1 disjoint subsets 

S1,…, Sd so that all transitions from one subset lead 

to the next subset:

 A recurrent class that is not periodic, is said to be 

aperiodic.
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 In a periodic recurrent class, we move through the 

sequence of subsets in order, and after d steps, we 

end up in the same subset.

 Example:
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 Irreducible and reducible chain. A Markov chain 

with transition matrix P is irreducible if for any two 

states i and j, it is possible to go from i to j in a finite 

number of steps (with positive probability). That is, 

for any states i, j there is some positive integer n

such that the (i, j) entry of Pn is positive. A Markov 

chain that is not irreducible is called reducible.

 In an irreducible Markov chain with a finite state space, 

all states are recurrent.
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 Example 8. Gambler’s ruin as a Markov chain. Let N  2 be 

an integer and let 1  i  N 1. Consider a gambler who 

starts with an initial fortune of $i and then on each 

successive gamble either wins $1 or loses $1 independent of 

the past with probabilities p and q = 1 p respectively. Let Xn

denote the total fortune after the nth gamble. The gambler's 

objective is to reach a total fortune of $N, without first 

getting ruined (running out of money). If the gambler 

succeeds, then the gambler is said to win the game. In any 

case, the gambler stops playing after winning or getting 

ruined, whichever happens first.
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Xn yields a Markov chain (MC) on the 

state space S = 0, 1,…, N}. The 

transition probabilities are given by

Pi,i+1 = p; Pi,i-1 = q, 0 < i < N, and both 0 

and N are absorbing states, P00 = PNN = 1.
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Once the Markov chain reaches 0 or N, signifying bankruptcy for 

player A or player B, the Markov chain stays in that state forever. The 

probability that either A or B goes bankrupt is 1, so for any starting 

state i other than 0 or N, the Markov chain will eventually be absorbed 

into state 0 or N, never returning to i. Therefore, for this Markov chain, 

states 0 and N are recurrent, and all other states are transient. The chain 

is reducible because from state 0 it is only possible to go to state 0, and 

from state N it is only possible to go to state N.
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Gambler’s Ruin Problem

Solution

 There is nothing special about starting with $1, more generally the 

gambler starts with $i where 0 < i < N.
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 The concepts of recurrence and transience are 

important for understanding the long-run behavior of 

a Markov chain.

At first, the chain may spend time in transient states.

 Eventually though, the chain will spend all its time in 

recurrent states. But what fraction of the time will it spend 

in each of the recurrent states?

 This question is answered by the stationary 

distribution of the chain, also known as the steady-

state behaviour.
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 In Markov chain models, it is interesting to 

determine the long-term state occupancy behaviour

 in the n-step transition probabilities pij when n is very 

large.

 pij may converge to steady-state values that are 

independent of the initial state.

 For every state j, the probability pij(n) of being at state j

approaches a limiting value that is independent of the 

initial state i, provided we exclude two situations, 

multiple recurrent classes/or a periodic class.
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 This limiting value, denoted as j , has the 

interpretation:

 And is called the steady-state probability of j. 
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 Consider a Markov chain with a single recurrent class, which is 

aperiodic. Then, the states j are associated with steady-state 

probabilities j that have the following properties:

(a) For each j, we have:

(b) The j are the unique solution to the system of equations below:

(c) We have:

73

Steady-State Convergence Theorem



CIC

 The steady-state property j  sum to 1 and form a 

probability distribution on the state space, called the 

stationary distribution (PMF) of the chain.

 Thus, if the initial state is chosen according to this 

distribution, i.e., if:

 Then, using the total probability theorem, we have:
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 where the last equation follows from part (b) of the 

steady-state theorem.

 Similarly, we obtain P(Xn = j) = j, for all n and j.

 Thus, if the initial state is chosen according to the 

stationary distribution, the state at any future time 

will have the same distribution.
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 In other words, as n → , the n-step transition 

probability matrix approaches a matrix in which all 

the rows are equal to the same pmf, that is,
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 The equations: 

are called the balance equations.

 Once the convergence of pij(n) to some j is taken 

for granted, we can consider the equation:

take the limit of both sides as n → , and recover the 

balance equations.
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 Together with the normalization equation:

 The balance equation can be solved to obtain the j .
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 Find the steady-state probability of the Markov 

chain.

 Solution. The balance equations are:
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 Example 2. Find the stationary distribution for the 

two-state Markov chain:
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 Example 2. Find the stationary distribution for the 

two-state Markov chain:

 Solution:
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 One way to visualize the stationary distribution of a 

Markov chain is to imagine a large number of particles, 

each independently bouncing from state to state according 

to the transition probabilities. After a while, the system of 

particles will approach an equilibrium where, at each time 

period, the number of particles leaving a state will be 

counterbalanced by the number of particles entering that 

state, and this will be true for all states. As a result, the 

system as a whole will appear to be stationary, and the 

proportion of particles in each state will be given by the 

stationary distribution.
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 Consider, for example, a Markov chain involving a 

machine, which at the end of any day can be in one of 

two states, working or broken down. Each time it brakes 

down, it is immediately repaired at a cost of $1. How are 

we to model the long-term expected cost of repair per 

day?

 View it as the expected value of the repair cost on a randomly 

chosen day far into the future; this is just the steady-state 

probability of the broken down state.

 Calculate the total expected repair cost in n days, where n is 

very large, and divide it by n.

86
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 Based on this interpretation, j is the long-term expected fraction of 

time that the state is equal to j.

 Each time that state j is visited, there is probability pjk that the next 

transition takes us to state k.

 We can conclude that jpjk can be viewed as the long-term expected 

fraction of transitions that move state from j to k.
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 Given the frequency interpretation of j and k pkj, the balance 

equation:

expresses the fact that the expected frequency j of visits to j is equal 

to the sum of the expected frequencies k pkj of transitions that lead 

to j.
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 A birth-death process is a Markov chain in which the 

states are linearly arranged and transitions can only 

occur to a neighbouring state, or else leave the state 

unchanged.

90

Birth-Death Process



CIC

 In this case the balance equation can be substantially 

simplified. Let focus on two neighbouring states, i and i

+ 1. In any trajectory of the Markov chain, a transition 

from i to i + 1 has to be followed by a transition from i + 

1 to i, before another transition from i to i + 1 occur.

 The expected frequency transitions from i to i + 1, which 

is ibi, must be equal to the expected frequency of 

transitions from i + 1 to i, which is i+1di+1. This leads to 

the local balance equations:
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 Using the local balance equation, we obtain:

 From which, using the normalization equation 

σ𝑖 𝑖 = 1, the steady state probabilities i are easily 

computed.
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 The local balance equations are:

 Thus, i+1 = i, where: 

 And we can express all the j in terms of 1, as:

 Using the normalization equation 1 = 1, +  + m, we 

obtain: 
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 which leads to:

 Note that if  = 1 (left and right steps are equally likely), 

then i = 1/m for all i. 
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 The long-term behavior of a Markov chain is related to 

the types of its state classes.
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 What is the short-time behaviour of Markov 

chains??

Consider the case where the Markov chain starts at a 

transient state.

We are interested in the first recurrent state to be entered, 

as well as in the time until this happens.

 When addressing such questions, the subsequent 

behaviour of the Markov chain (after a recurrent 

state is encountered) is immaterial. 
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Absorption Probabilities and 
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 Focusing on the case where every recurrent state k is 

absorbing, i.e., 

 If there is a unique absorbing state k, its steady-state 

probability is 1, and will be reached with probability 

1, starting from any initial state.

Because all other states are transient and have zero 

steady-state probability.
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 If there are multiple absorbing states, the probability 

that one of them will be eventually reached is still 1, 

but the identity of the absorbing state to be entered is 

random and the associated probabilities may depend 

on the starting state.

 Thus, we fix a particular absorbing state, denoted by 

s, and consider the absorption probability ai that s is 

eventually reached, starting from i:
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 Absorption probabilities can be obtained by solving 

a system of linear equations.

Absorption Probability Equations. Consider a Markov 

chain where each state is either transient or absorbing, and 

fix a particular absorbing state s. Then, the probabilities ai

of eventually reaching state s, starting from i, are the 

unique solution to the equations:
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 The equations as = 1, and ai = 0, for all absorbing i 

s, are evident from the definition. 

 The remaining equations are verified as follows:

Consider a transition state i and let A be the event that 

state s is eventually reached. We have:
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 The probabilities of eventually reaching state 6, 

starting from the transient states 2 and 3, satisfy the 

following equation:

 Using the fact that a1 = 0 and a6 = 1, we obtain:

 Solving gives a2 = 21/31 and a3 = 29/31.
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 What is the expected number of steps until a 

recurrent state is entered (an event referred to as 

“absorption”), starting from a particular transient 

state?

 For any state i, we denote:

 Note that if i is recurrent, then i = 0 according to 

this definition.
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 Calculate the expected number of steps until the fly is captured.
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 We have:

 And

 This equations can be solved in a variety of ways, such as for 

example by successive substitutions. 

 As an illustration, let m = 4, in which case, the equations reduce 

to:

 The first equation yields                                     which can be 

substituted in the second equation to give                  and by 

substitution again, 
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 The idea used to calculate the expected time to 

absorption can also be used to calculate the expected 

time to reach a particular recurrent state, starting 

from any other state.

 For simplicity, consider a Markov chain with a 

single recurrent class.
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 Let focus on a special recurrent state s, and denote 

by ti the mean first passage time from state i to 

state s, defined by:

 The transitions out of state s are irrelevant to the 

calculation of the mean first passage times.
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 Consider thus a new Markov chain which is identical 

to the original, except that the special state s is 

converted into an absorbing state (by setting pss = 1, 

and psj = 0 for all j  s).

 Whit this transformation, all states other than s

become transient.
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 Then, compute ti as the expected number of steps to 

absorption starting from i, using the formulas given 

earlier:

 This system of linear equations can be solved for the 

unknowns ti, and has a unique solution.

 These equations give the expected time to reach the 

special state s starting from any other state.
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 We may also want to calculate the mean recurrence 

time of the special state s, which is defined as:

 Then t*
s can be obtained once we have the first 

passage times ti, by using the equation:
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 This equation can be justified saying that the time to 

return to s, starting from s, is equal to 1 plus the 

expected time to reach s from the next state, which is 

j with probability psj. Then apply the total 

expectation theorem.
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 In discrete Markov chains models it is assumed that 

the transitions between states take unit time.

 Continuous time Markov chains evolve in 

continuous time.

Can be used to study systems involving continuous-time 

arrival processes.

 Examples: Distribution centres or nodes in 

communication networks where some events of interest 

are described in terms of Poisson processes.
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 Similar to the discrete Markov chains, continuous 

time Markov chains involve transitions from one 

state to the next:

According to a given transition probabilities

 The time spend between transitions is modelled as 

continuous random variables.

 It is assumed that the number of states is finite

 In absence of a statement to the contrary, the state space is 

the set S = {1,…, m}.
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 To describe a continuous Markov chain, some 

random variables of interest are introduced:

 For completeness,  X0 denotes the initial state,  and 

Y0 = 0.
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 The above assumptions are a complete description of 

the process and provide an unambiguous method for 

simulating it

Given that we just entered state i, we remain at state i for a 

time that is exponentially distributed with parameter vi, and 

then move to a next state j according to the transition 

probabilities pij.

 Thus, the sequence of states Xn obtained after successive 

transitions is a discrete-time Markov chain, with transition 

probabilities pij, called embedded Markov chain.
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 In mathematical terms, let:

be an event that captures the history of the process until 

the nth transition.

 We then have:
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 The expected time to the next transition is:

 So we can interpret vi as the average number of 

transitions out of state i, per unit time spent at state i.

 vi is called the transition rate out of state i.
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 Since only a fraction pij of the transitions out of state i

will led to state j, we may also view:

as the average number of transitions from i to j, per unit 

time spent at i.

 Thus, qij is called the transition rate from i to j.
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 Given the transition rates qij, one can obtain the 

transition rate vi using the formula:

 And the transition probabilities using the formula:
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 The model allows for self transitions, from a state 

back to itself, which can happen if a self-transition 

probability pii is nonzero.

 Self-transitions have no observable effects

Because the memorylessness of the exponential 

distribution, the remaining time until the next transition is 

the same, irrespective of whether a self-transition just 

occurred or not.

 Then, self-transitions can be ignored and assume that:

127

Continuous Time Markov Chains



CIC

128

Continuous Time Markov Chains



CIC

129

Continuous Time Markov Chains



CIC

130

Continuous Time Markov Chains

 Similar to its discrete-time counterpart, the 

continuous-time process has a Markov property: the 

future is independent of the past, given the present. 
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 Approximation by a discrete-time Markov Chain

 Let us fix a small positive number  and consider the 

discrete-time Markov chain Zn that is obtained by 

observing X(t) every  time units:

As Zn is a MC, means that the future is independent from 

the past, given the present (The Markov property of X(t))

 Let use ҧ𝑝𝑖𝑗 to describe the transition probabilities of Zn
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 Approximation by a discrete-time Markov Chain

Given that Zn = i, there is a probability approximately 

equal to i that there is a transition between times n and 

(n + 1), and in that case there is a further probability pij

that the next state is j:
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 Steady-state behavior

 Birth-Death Processes
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