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Stochastic (Random) Processes

a A random or stochastic process Is a mathematical
model for a phenomenon that evolves in time In an
unpredictable manner from the viewpoint of the
observer.

a It may be unpredictable because of such effects as
Interference or noise in a communication link or
storage medium, or it may be an information-bearing

signal, deterministic from the viewpoint of an
observer at the transmitter but random to an observer

at the recelver.
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Stochastic (Random) Processes

Q A stochastic (or random) process Is a mathematical
model of a probabilistic experiment that evolves In
time and generates a sequence of numerical values.

0 A stochastic process can be used to model:
> The sequence of daily prices of a stock;
> The sequence of scores in a football game;
> The sequence of failure times of a machine;

> The sequence of hourly traffic loads at a node of a communication
network;

> The sequence of radar measurements of the position of an airplane.
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N  C1C
Stochastic (Random) Processes

a Each numerical value in the sequence is modelled by
a random variable.

Q A stochastic process is simply a (finite or infinite)
sequence of random variables.

0 We are still dealing with a single basic experiment
that involves outcomes governed by a probability
law, and random variables that inherit their
probabilistic properties from that law.
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Stochastic (Random) Processes

Q Stochastic processes involve some changes with respect to
earlier models:
> Tend to focus on the dependencies in the sequence of values

generated by the process.
o How do future prices of a stock depend on past values?

> Are often interested in long-term averages involving the entire
sequence of generated values.
o What is the fraction of time that a machine is idle?
> Wish to characterize the likelihood or frequency of certain
boundary events.

o What is the probability that within a given hour all circuits of some
telephone system become simultaneously busy?
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Stochastic (Random) Processes

Q There Is a wide variety of stochastic processes.

Q Two major categories are of concern of this course:

> Arrival-Type Processes. The occurrences have the character
of an ““arrival”, such as message receptions at a receiver, job
completions in a manufacturing cell, etc. These are models In
which the interarrival times (the times between successive
arrivals) are independent random variables.

o Bernoulli process. Arrivals occur in discrete times and the
Interarrival times are geometrically distributed.

o Poisson process. Arrivals occur in continuous time and the
Interarrivals times are exponentially distributed.
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Stochastic (Random) Processes

Q Two major categories are of concern of this course:

> Markov Processes. Involve experiments that evolve In
time and which the future evolution exhibits a
probabilistic dependence on the past. As an example, the
future daily prices of a stock are typically dependent on
past prices.
o In a Markov process, it is assumed a very special type of

dependence: the next value depends on past values only
through the current value.
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Discrete-Time Markov Chains

Q Markov chains were first introduced in 1906 by
Andrey Markov (of Markov’s inequality), with the
goal of showing that the law of large numbers can
apply to random variables that are not independent.

0 Markov began the study of an important new type of
chance process. In this process, the outcome of a
given experiment can affect the outcome of the next
experiment. This type of process is called a Markov
chain.
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Discrete-Time Markov Chains

Q Since their invention, Markov chains have become
extremely important in a huge number of fields such
as biology, game theory, finance, machine learning,
and statistical physics.

0 They are also very widely used for simulations of
complex distributions, via algorithms known as
Markov chain Monte Carlo (MCMC).



N  C!C
Discrete-Time Markov Chains

Q Markov chains “live” 1n both space and time: the set
of possible values of the X is called the state space,
and the index n represents the evolution of the
process over time.

Q The state space of a Markov chain can be either
discrete or continuous, and time can also be either
discrete or continuous.

> In the continuous-time setting, we would imagine a
process X, defined for all real t > 0.
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Discrete-Time Markov Chains

Q Consider first discrete-time Markov chains, in which
the state changes at certain discrete time instants,
Indexed by an integer variable n.

0 At each time step n, the state of the chain is denoted
by X, and belongs to a finite set S of possible states,
called state space.

Q Specifically, we will assume that S = {1, 2,..., m},
for some positive integer m.
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Discrete-Time Markov Chains

a Formally, a sequence of random variables X,, X;,
X,,... taking values In the state space S = {1, 2,...,
m} is called a Markov chain if for all n > 0, the
Markov property Is satisfied:

P(}{n—l—l — j|'}{ﬂ — 'izijir-n—l = Iy , Xo = ED) — P(Xn 1 —J|Xn — 'E
= Pij

> The quantity p; = P(X,.; =] | X, =1) Is called the
transition probability from state I to state J, with 1, | € S,
for all times n, and all possible sequences i,..., I, Of
earlier states.
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Discrete-Time Markov Chains

Q Whenever the state happens to be I, there Is
probability p;; that the next state Is equal to J.

Q The key assumption underlying the Markov chains Is
that the transition probabilities p;; apply whenever
state 1 Is visited, no matter what happened in the
past, and no matter how state i1 was reached.

Q The probability law of the next state X, ., depends
on the past only through the value of the present
state X,.
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Discrete-Time Markov Chains

a In other words, given the entire past history X,, X,
X,,..., X, only the most recent term, X , matters for
predicting X, ..

a If we think of time n as the present, times before n as
the past, and times after n as the future, the Markov

property says that given the present, the past and
future are conditionally independent.

Q The transition probabilities p; must be nonnegative,
and sum to one:

pi; = 1, for all i
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Discrete-Time Markov Chains

Specification of Markov Models
e A Markov chain model is specified by identifying:
(a) the set of states S = {1,...,m},

(b) the set of possible transitions, namely, those pairs (¢, j) for which
pi; > 0, and,

(c) the numerical values of those p;; that are positive.

e The Markov chain specified by this model is a sequence of random
variables Xg, X1, X2, ..., that take values in &, and which satisfy

P(Xﬂ+1 =j1Xn — i&Xﬂ—l =in—1=-“1xﬂ =ID) = Dij,

for all times n, all states 7,7 € &, and all possible sequences ig,...,in—1
of earlier states.
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Discrete-Time Markov Chains

a All of the elements of a Markov chain model can be
encoded In a transition probability matrix P,
whose (I, J) entry Is the probability of going from
state 1 to state J in one step of the chalin.

P11 P12 Pim |
P21 P22 - P2m
pP=|. . . .
LDPm1 Pm2 *** DPmmd
> Note that P I1s a nonnegative matrix in which each row

sums to 1.
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Discrete-Time Markov Chains

a It is also helpful to lay out the model in the so-called
transition probability graph, whose nodes are the
states and whose arcs are the possible transitions.

Q By recording the numerical values of p; near the
corresponding arcs, one can visualize the entire
model in a way that can make some of its major
properties readily apparent.
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Discrete-Time Markov Chains

Q Example 1. Rainy-sunny Markov chain. Suppose that on any
given day, the weather can either be rainy or sunny. If today
IS rainy, then tomorrow will be rainy with probability 1/3
and sunny with probability 2/3. If today is sunny, then
tomorrow will be rainy with probability 1/2 and sunny with
probability 1/2. Letting X be the weather on day n,

XX, X,, . . . 1S a Markov chain on the state space {R, S},
where R stands for rainy and S for sunny. We know that the
Markov property is satisfied because, from the description of
the process, only today’s weather matters for predicting
tomorrow’s.
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Discrete-Time Markov Chains

Q Transition probability matrix:

rR S

s 1)

Q Transition probability graph:

2/3

1/3 1/2
1/2
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Discrete-Time Markov Chains

a Example 2. According to Kemeny, Snell, and
Thompson, the Land of Oz is blessed by many
things, but not by good weather. They never have
two nice days in a row. If they have a nice day, they
are just as likely to have snow as rain the next day. If
they have snow or rain, they have an even chance of
having the same the next day. If there Is change from
snow or rain, only half of the time Is this a change to
a nice day. With this information, form a Markov
chain model.
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Discrete-Time Markov Chains

Q Transition probability matrix:
R N S
R /1/2 1/4 1/4
P=N|1/2 0 1/2
S \1/4 1/4 1/2

Q Transition probability graph:

22



R CIC

Discrete-Time Markov Chains

Q Example 3. Spiders and Fly. A fly moves along a

straight line in unit increments. At each time period,

It moves one unit to the left with probability 0.3, one

unit to the right with probability 0.3, and stays In
nlace with probability 0.4, independent of the past
nistory of movements. Two spiders are lurking at
positions 1 and m; if the fly lands there, it is
captured by a spider, and the process terminates.
Construct a Markov chain model, assuming that the
fly starts in a position between 1 and m.

*@5‘%?& a




Discrete-Time Markov Chains

Let us introduce states 1,2,....m, and identify them with the corresponding
positions of the fly. The nonzero transition probabilities are

P11 = 13 Pmm = 13

03, ifj=i—-lorj=1+1, -
p”_{ﬂ.f-l? if 5 =1, fori=2,....m—1,

The transition probability graph and matrix are shown in Fig. 7.2.

AT
1.0 0| O
0.3104]0.3( 0
0.310.4]0.3
0|0 0|10
Pij
Figure 7.2: The transition probability graph and the transition probability ma-
trix in Example 7.2, for the case where m = 4.
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Discrete-Time Markov Chains

Q The probability of a path. Given a Markov chain
model, can compute the probability of any particular
sequence of future states.

> This Is analogous to the use of the multiplication rule in
sequential (tree) probability models.
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Discrete-Time Markov Chains

a In particular: Let be P(n) = {p;(n)} be the matrix of
n-step transition probabilities, where:

IU”(F‘I) — P[X”_k — J'|Xk — ."] n=».0, -"__.' = ().

> Where p;;(n) Is the probability that the state after n time
periods will be j, given that the current state is I.

a Note that P[X, ., =] | X, = 1] = P[X, =] | X, = 1] for
all n >0 and k > 0, since the transition probabilities
do not depend on time.
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Discrete-Time Markov Chains

Q First, consider the two-step transition probabilities.
The probability of going from state 1 at t = 0 passing
through state k at t = 1, and ending at state jat t = 2
IS:

P[X,=j.X; =k X,=1

P[ Xy = i]

P[X, = j| X1 = k]P[ Xy = k[ Xy = i]P[ X, = i]

P Xy = i]

= P[X, = j| X = k]P[X| = k| X, = i]

= Pik(1) pij(1).

PlX)=j,X = k|Xu:f] -

27
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Discrete-Time Markov Chains

0 Note that p;(1) and p; (1) are components of P, the
one-step transition probability matrix. We obtain
p;i(2), the probability of going from1att=0to jatt
=2, by summing over all possible intermediate

states k: E pi(1)p;(1)  foralli. ;.

> This is, the 1] entry of P(2) Is obtained by multiplying the
ith row of P(1) by the jth column of P(1). In other words,
P(2) is obtained by multiplying the one-step transition
probability matrices: P(2) = P(1)P(1) = P2

9; za @ 28




Discrete-Time Markov Chains

0 Now consider the probability of going from state i at t
= 0, passing through state k at t = m, and ending at
state J at time t = m + n. Following the same procedure
as above we obtain the Chapman-Kolmogorov
equations:

pij(m + n Ep,;‘ m)pi;(n) foralln,m = Oalli,j.

‘9; za 29
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Discrete-Time Markov Chains

0 Therefore the matrix of n + m step transition
probabilities P(n + m) = {p;; (n + m)} Is obtained by
the following matrix multiplication:

P(n + m) = P(n)P(m)
Q By induction, this implies that:

P(n) = P

30



Discrete-Time Markov Chains

Chapman-Kolmogorov Equation for the n-Step Transition
Probabilities

The n-step transition probabilities can be generated by the recursive formula

m
rij(n) = Zrik(n — 1)pk;, for n > 1, and all ¢, 7,
k=1

starting with
rij (1) = pij.

31
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Discrete-Time Markov Chains

time 0 time n-1 time n

Figure 7.5: Derivation of the Chapman-Kolmogorov equation. The probability
of being at state j at time n is the sum of the probabilities r;x(n — 1)py; of the
different ways of reaching j.

i
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Discrete-Time Markov Chains

Example

1 ]
4 3 |

0 1/4 0 3/4]
1/2 0 1/3 1/6
0o 0 1 0

0 1/2 1/4 1/4

Consider the probability of going from state 0 to state 3 in exactly 3 steps.
From the graph, all possible paths are

0-1-0-30-1-3-3,0-3—-1—-3, and0—-3-3-3

Probability of success for each path is: 3/32, 1/96, 1/16 and 3/64
respectively. Summing up the probabilities we find the total probability is
41/192.
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Discrete-Time Markov Chains

Example

Alternatively, we can compute

'3/16 7/48  29/64  41/192]
5/48 5/24 79/144  5/36
0 0 1 0

1/16 13/96 107/192 47/192

p3 =

The entry Pgﬁ_ = 41/192 gives the correct answer.
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Discrete-Time Markov Chains

Q Example 4. Transition matrix of 4-state Markov
chain. Consider the 4-state Markov chain depicted in
the Figure. When no probabilities are written over
the arrows, as in this case, it means all arrows
originating from a given state are equally likely. For
example, there are 3 arrows originating from state 1,
so the transitions 1 — 3,1 — 2, and 1 — 1 all have
probability 1/3. (a) what is the transition matrix? (b)
what Is the probability that the chain is in state 3
after 5 steps, starting at state 1?

*@5‘%?& 35
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Discrete-Time Markov Chains
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Discrete-Time Markov Chains

Q Transition probability matrix:

( 1/3 1/3 1/3 0 )
0 0 1/2 1/2

0 1 0 0

\ /2 0 0 1/2)
(2 D

A

O D

ﬂff;zﬂ,<:>

(853/3888 509/1944 52/243 395/1296\
173/864  85/432  31/108  91/288

37/144  29/72 1/9 11/48

\499/2502 305/1296 T1/324  245/864 )

sopld) = 52/243.

37
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Discrete-Time Markov Chains

2 We now consider the long-term behavior of a Markov
chain when it starts in a state chosen by a probability
distribution on the set of states, which we will call a
probability vector.

Q A probability vector with r components is a row vector
whose entries are non-negative and sum to 1.

Q If u is a probability vector which represents the initial
state of a Markov chain, then we think of the ith
component of u as representing the probability that the
chain starts In state s;.
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Discrete-Time Markov Chains

Q Let P be the transition matrix of a Markov chain, and
let u be the probability vector which represents the
starting distribution. Then the probability that the
chain Is In state s; after n steps is the ith entry In the
vector:

u™ = up”
> We note that if we want to examine the behavior of the
chain under the assumption that it starts in a certain state

s., we simply choose u to be the probability vector with
Ith entry equal to 1 and all other entries equal to O.

9; za @ 39




Discrete-Time Markov Chains

Q Example 5. In the Land of Oz example (Example 2)
let the Initial probability vector u equal (1/3, 1/3,
1/3), meaning that the chain has equal probability of
starting in each of the three states. Calculate the |
distribution of the states after three days. R (1 2 1 i)

P=N|1/2 0 1/2
S \1/4 1/4 1/2

9; za 40




Discrete-Time Markov Chains

Q Example 5. In the Land of Oz example (Example 2)
let the Initial probability vector u equal (1/3, 1/3,
1/3), meaning that the chain has equal probability of
starting in each of the three states. Calculate the |
distribution of the states after three days. R (1 2 1 i)

P=N[|1/2 0 1/2

S \1/4 1/4 1/2
406 203 .391
u® =uP?® = (1/3, 1/3, 1;’3)(.405 188 .mﬂ)
301 .203 .406

— (.401, .198, .401) .

| 9; za 41
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Discrete-Time Markov Chains

Q Example 6. Consider the 4-state Markov chain in
Example 4. Suppose the initial conditions are t =

(1/4, 1/4, 1/4, 1/4), meaning that the chain has equal
probability of starting in each of the four states. Let X
be the position of the chain at time n. Then the
marginal distribution of X Is:
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Discrete-Time Markov Chains

Q Example 6.

( 1/3 1/3 1/3 0 \

0 0 1/2 1/2
P =

JIF 0o 1 0 0
\ /2 0 0 1/2 )
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Discrete-Time Markov Chains

0 Example 6. RURVEVEE

0 0 1/2 1/2

tQ=(1/4 1/4 1/4 1/4) 0

\1/2 0 0 1/2)

= ( 5/24 1/3 5/24 1/4 ) .
The marginal distribution of X5 is
(853/3888 509/1944 52/243 395/1296\
173/864  85/432 31/108 91/288

tQ5=(1/4 1/4 1/4 1/4)
37/144  20/72  1/9  11/48

\499/2592 305/1206 71/324  245/864 )

= ( 3379/15552 2267/7776 101/486 1469/5184 ) -
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Classification of States

Q The states of a Markov chain can be classified as
recurrent or transient, depending on whether they
are visited over and over again in the long run or are
eventually abandoned.

0 States can also be classified according to their
period, which Is a positive integer summarizing the
amount of time that can elapse between successive
VISItS to a state.
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Classification of States

Q Recurrent and transient states.

> State 1 of a Markov chain is recurrent if starting from I,
the probability is 1 that the chain will eventually return to

.
> Otherwise, the state is transient, which means that if the
chain starts from 1, there is a positive probability of never

returning to I.

Q As long as there Is a positive probability of leaving |
forever, the chain eventually will leave 1 forever.

f za @ 46
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Classification of States

Qa Example 7. In the Markov chains shown below, are
the states recurrent or transient?

47
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Classification of States

Qa Example 7. In the Markov chains shown below, are
the states recurrent or transient?

A particle moving around between

states will continue to spend time In
o all 4 states in the long run, since it

IS possible to get from any state to
é o’ any other state.
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Classification of States

Qa Example 7. In the Markov chains shown below, are
the states recurrent or transient?

Let the particle start at state 1. For a

H while, the chain may linger in the
o, triangle formed by states 1, 2, and 3,

o but eventually it will reach state 4,
4

and from there 1t can never return to
states 1, 2, or 3. It will then wander

o‘ around between states 4, 5, and 6
forever. States 1, 2, and 3 are transient
° and states 4, 5, and 6 are recurrent.

iieN
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Classification of States

a Although the definition of a transient state only
requires that there be a positive probability of never
returning to the state, we can say something
stronger:

> As long as there Is a positive probability of leaving |
forever, the chain eventually will leave 1 forever.

> In the long run, anything that can happen, will happen
(with a finite state space).

?; za @ 50
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Classification of States

0 A state j Is accessible from state 1 If for some n, the
n-step transition probability p;(n) is positive, I.e., If
there Is positive probability of reaching j, starting
from 1, after some number of time periods.

Q Let A(1) be the set of states that are accessible from 1.

> 11s recurrent If for every j that is accessible from 1, 1 also
IS accessible from j; that is, for all j that belong to A(i) we
have that I belongs to A()).

B za 51
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Classification of States

Q If 11s a recurrent state, the set of states A(i) that are
accessible from 1 form a recurrent class (or simply
class), meaning that states in A(i) are all accessible
from each other, and no state outside A(l) IS
accessible from them.

a Mathematically, for a recurrent state 1, we have A(i)
= A()) for all j that belong to A(i), as can be seen
from the definition of recurrence.
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Classification of States

Q Example 8.

Recurrent Transient Recurrent Recurrent

Figure 7.8: Classification of states given the transition probability graph. Start-
ing from state 1, the only accessible state is itself. and so 1 is a recurrent state.
States 1. 3, and 4 are accessible from 2. but 2 is not accessible fromn any of them.
so state 2 is transient. States 3 and 4 are accessible from each other. and they are
both recurrent.

8l 5
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Classification of States

Markov Chain Decomposition
o A Markov chain can be decomposed into one or more recurrent classes,
plus possibly some transient states.

o A recurrent state is accessible from all states in its class, but is not
accessible from recurrent states in other classes.

o A transient state is not accessible from any recurrent state.

o At least one, possibly more, recurrent states are accessible from a given
transient state.

m “cl @ B
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Classification of States

a Examples of Markov chain decompositions:

(3)
SN

‘-

®© O

Single class of recurrent states (1 and 2)

Single class of recurrent states

and one transient state (3)

. Two classes of recurrent states

‘G Q‘Q 0.6 (class of state 1 and class of states 4 and 5)

and two transient states (2 and 3)

D =
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Classification of States

a From Markov chain decomposition:

> (a) once the state enters (or starts in) a class of recurrent
states, it stays within that class; since all states in the class
are accessible from each other, all states in the class will
be visited an infinite number of times

> (b) If the initial state is transient, then the state trajectory
contains an initial portion consisting of transient states
and a final portion consisting of recurrent states from the
same class.

) 6




Classification of States

Q For the purpose of understanding long-term
behaviour of Markov chains, It is important to

analyse chains that consist of a single recurrent
class.

Q For the purpose of understanding short-term
behaviour, it Is also Important to analyse the
mechanism by which any particular class of

recurrent states Is entered starting from a given
transient state.
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Classification of States

Q Periodicity. A recurrent class Is said to be periodic
IT Its states can be grouped in d > 1 disjoint subsets
Sq,..., S4 S0 that all transitions from one subset lead
to the next subset:

JE Sky1. k=10, d-1.

it 7€ 5 and pi; > 0. then {j €S. ifk=d

0 A recurrent class that Is not periodic, Is said to be
aperiodic.

9; za 58
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Classification of States

Q In a periodic recurrent class, we move through the
sequence of subsets in order, and after d steps, we
end up in the same subset.

Q Example:

59
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Classification of States

Q Irreducible and reducible chain. A Markov chain
with transition matrix P is irreducible if for any two
states 1 and |, It Is possible to go from 1 to J in a finite
number of steps (with positive probability). That is,
for any states I, | there is some positive integer n
such that the (1, ) entry of P" is positive. A Markov
chain that is not irreducible is called reducible.

> In an irreducible Markov chain with a finite state space,
all states are recurrent.
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Classification of States

0 Example 8. Gambler’s ruin as a Markov chain. Let N > 2 be
an integer and let 1 <1 <N —1. Consider a gambler who
starts with an initial fortune of $i and then on each
successive gamble either wins $1 or loses $1 independent of
the past with probabilities p and q = 1 —p respectively. Let X,
denote the total fortune after the nth gamble. The gambler's
objective is to reach a total fortune of $N, without first
getting ruined (running out of money). If the gambler
succeeds, then the gambler is said to win the game. In any
case, the gambler stops playing after winning or getting
ruined, whichever happens first.
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Classification of States

1 P L P P P 1
----- (DG - D ®D
q q q q q
100..... |
{Xn} yields a Markov chain (MC) on the gOpO0 ..
state space S = {0, 1,..., N}. The 0g0Opo0 .
transition probabilities are given by P =
Piiss=P; Piin=0,0<i<N,andbothO |~ """ """ "~
and N are absorbing states, Py, = Py = 1. 0gOp
...... 01
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Classification of States

1 P L P P P 1
----- ENOMEDESNCEENOP
q q q q q

Once the Markov chain reaches 0 or N, signifying bankruptcy for
player A or player B, the Markov chain stays In that state forever. The
probability that either A or B goes bankrupt is 1, so for any starting
state 1 other than O or N, the Markov chain will eventually be absorbed
Into state O or N, never returning to 1. Therefore, for this Markov chain,
states O and N are recurrent, and all other states are transient. The chain
IS reducible because from state O it is only possible to go to state 0, and
from state N it is only possible to go to state N.
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Gambler’s Ruin Problem

Solution

Q There is nothing special about starting with $1, more generally the
gambler starts with $i where 0 <i <N.

While the game proceeds, {R,, : n > 0} forms a simple random walk
anﬂl‘l‘"“l"&n: RD:'E:':

where {A,} forms an i.i.d. sequence of r.v.s. distributed as P(A=1)=p, PIA=-1)=¢q=
1 — p, and represents the earnings on the succesive gambles.
Since the game stops when either R, =0 or R,, = N, let

Ro=i}.

denote the time at which the game stops when Ry =i. If R, = N, then the gambler wins, if
R;, =0, then the gambler is ruined.

7, =min{n > 0: R, € {0,N}

|5
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Gambler’s Ruin Problem

Solution
Let P; = P(R;, = N) denote the probability that the gambler wins When Ry = i. Clearly
Fy =0 and Py =1 by definition, and we next proceed to compute P;, 1 <i < N —1.
The key idea is to condition on the outcome of the first gamble, A; = 1 or Al = —1, yielding
P, =pPii1 +qP 1. (1)

The derivation of this recursion is as follows: If A; = 1, then the gambler’s total fortune
increases to ) = i+1 and so by the Markov property the gambler will now win with probability
Piiy. Similarly, if A; = -1, then the gambler’s fortune decreases to Ry = i — 1 and so
by the Markov property the ffamhler will now win with probability P;_;. The probabilities

corresponding to the two outcomes are p and ¢ yielding (1). Since p+q = 1, (1) can be
re-written as pP; + ¢F; = pPi11 4+ ¢P;—1, yielding

Py - P = %(P-i _Py).
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Gambler’s Ruin Problem

Solution

In particular, P» — Pr = (q/p)(PA — Fbo) = (q/p) P (since Fy = 0), so that
Py— Py = (¢/p)(Pa — P) = (¢/p)* Pi, and more generally

H+1—H=(%)1Ph 0<i<N.

Thus Py —Pi= (Ps1 — P)+(P-P_)+ (P — P+ + (- P)

Po1—-P = Z(PJH—I — Pi)
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Gambler’s Ruin Problem

Solution
; k t k
Piy1 = P1+P1Z(g) = P (ﬂ)
k=1 p k=0 p
-2y
_ )Py itp#Fg ,
Pi(i4+1), ifp=q=0.5 2)

'i. ]_—H.H-l
l-a !

for any number a and

(Here we are using the “geometric series” equation )., _,a' =
any integer i > 1.)
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Gambler’s Ruin Problem
Solution

Choosing i = N — 1 and using the fact that Py = 1 yields

1_pN_{

from which we conclude that

1=(4)V
Pty
P
PN,

if p # q;
if p=¢qg=20.5,
it p # q;
if p=¢q=20.5,
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Gambler’s Ruin Problem

Solution

thus obtaining from (2) (after algebra) the solution

P =

9

(=%
)y P76

| ¥ if p=¢q=0.5.

(Note that 1 — P; is the probability of ruin.)
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Steady State Behaviour

Q The concepts of recurrence and transience are
Important for understanding the long-run behavior of
a Markov chain.

> At first, the chain may spend time in transient states.

> Eventually though, the chain will spend all its time In
recurrent states. But what fraction of the time will it spend
In each of the recurrent states?
Q This question Is answered by the stationary
distribution of the chain, also known as the steady-
state behaviour.
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Steady State Behaviour

a In Markov chain models, It Is interesting to
determine the long-term state occupancy behaviour
> In the n-step transition probabilities p; when n is very
large.
Q p;; may converge to steady-state values that are

Independent of the initial state.
> For every state J, the probability p;(n) of being at state |
approaches a limiting value that is independent of the

Initial state 1, provided we exclude two situations,
multiple recurrent classes/or a periodic class.
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Steady State Behaviour

Q This limiting value, denoted as =;, has the
Interpretation:

i = P(X, = j), when n is large,

0 And is called the steady-state probability of j.
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Steady-State Convergence Theorem

a Consider a Markov chain with a single recurrent class, which is
aperiodic. Then, the states j are associated with steady-state
probabilities =; that have the following properties:

(a) For each J, we have:  lim p;j(n) = =, for all 1.
(b) The ; are the unique solution to the system of equations below:

m
Wj:zﬁkpkjm j=1:"':m:
k=1

m
1= Z?Tk.
k=1

m; =0, for all transient states j,

(c) We have:

m; > 0, for all recurrent states j.
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Steady State Behaviour

Q The steady-state property 7; sum to 1 and form a
probability distribution on the state space, called the
stationary distribution (PMF) of the chain.

Q Thus, If the initial state iIs chosen according to this
distribution, 1.e., If:

Q Then, using the total probability theorem, we have:

P(X; = ZP Xo = k)prj = Zi’rkpkj = 7},
k=1
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Steady State Behaviour

a where the last equation follows from part (b) of the
steady-state theorem.
a Similarly, we obtain P(X, = J) = x;, for all nand J.

Q Thus, If the initial state is chosen according to the
stationary distribution, the state at any future time
will have the same distribution.
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Steady State Behaviour

2 In other words, as n — oo, the n-step transition
probability matrix approaches a matrix in which all
the rows are equal to the same pmf, that is,

pij(n) — m; foralli (11.17a)

We can express the above in matrix notation as:
P"— 1w (11.17b)
where 1 is a column vector of all 1’s, that is, 1' = (1. 1,...) and @ = (7, m(,... ).

From Eq. (11.16a). the convergence of P" implies the convergence of the state pmf’s:

pj(” Epu .U.r({ ) — ETT;P;({ ) = |- (11.18)

We say that the system reaches “equilibrium™ or “steady state.”

0 =l @ .
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Steady State Behaviour

We can find the pmf 7 = {7;} in Eq. (11.18) (when it exists) by noting that as
n— 00, pi(n) —m;and p;(n — 1) = m;, so Eq. (11.15) approaches

w = D, Ppijmi. (11.19a)
I
which in matrix notation is
m = wP. (11.19b)

Equation (11.19b) is underdetermined and requires the normalization equation:
>Mai=1. (11.19¢)
i

We refer to 7 as the stationary state pmf of the Markov chain. If we start the
Markov chain with initial state pmf p(0) = ar, then by Egs. (11.16b) and (11.19b) we
have that the state probability vector

p(n) = @P" =7 for all n.
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Steady State Behaviour

Q The equations: m
?Tj:Z?Tkpkj? 1=1,....,m,
k=1

are called the balance equations.

0 Once the convergence of p;(n) to some ; Is taken
for granted, we can consider the equation:

p'-!j Zplk pk_]a

take the limit of both S|des as n — oo, and recover the
balance equations.

O “cl a
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Steady State Behaviour

Q Together with the normalization equation:

m
St
k=1

a The balance equation can be solved to obtain the ;.
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Steady State Behaviour

Example 7.1. Alice is taking a probability class and in each week, she can be
either up-to-date or she may have fallen behind. If she is up-to-date in a given
week, the probability that she will be up-to-date (or behind) in the next week is
0.8 (or 0.2, respectively). If she is behind in the given week, the probability that
she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). We
assume that these probabilities do not depend on whether she was up-to-date or
behind in previous weeks, so the problem has the typical Markov chain character
(the future depends on the past only through the present).

P11 = 0.8, P12 = 0.2,

p21 = 0.6, p22 = 0.4.
05 02 Neommor

P= {[}.6 0_4] up-to-date 0.6 behind
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Steady State Behaviour

Q Find the steady-state probability of the Markov
chain.

Q Solution. The balance equations are:
1 = M1p11 + M2Pp21, Mo = M1p12 + M2pP22,
m = 0.8-m + 0.6 - 7o, e =0.2-m +0.4- m.
T = 3m2. T+ T2 =1,

me = (.25, m = 0.75.
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Steady State Behaviour

W C

>
0 n
n-step transition probabilities as a function of the number n of transitions
U B
0.8 | 0.2 76 | .24 792 | .248 .7504|.2496( |.7501|.2499
06 | 04 J2 | .28 744 | .256 .74881.2512| |.7498].2502
rij (1) rij (2) rij (3) rij (4) rij (5)

Sequence of n-step transition probability matrices
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Steady State Behaviour

a Example 2. Find the stationary distribution for the
two-state Markov chain:

1/3 2/3
P =
(1/2 1/2)
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Steady State Behaviour

a Example 2. Find the stationary distribution for the
two-state Markov chain:

1/3 2/3
P —
1/2 1/2
a Solution: (9 1_q) 1/3 2/3 :(S 1_9)
| Iz 12 |
1 1

s =3/7

(3/7,4/7) is the unique stationary distribution of
the Markov chain.
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Steady State Behaviour

a One way to visualize the stationary distribution of a
Markov chain is to imagine a large number of particles,
each independently bouncing from state to state according
to the transition probabilities. After a while, the system of
particles will approach an equilibrium where, at each time
period, the number of particles leaving a state will be
counterbalanced by the number of particles entering that
state, and this will be true for all states. As a result, the
system as a whole will appear to be stationary, and the
proportion of particles in each state will be given by the
stationary distribution.
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Long-Term Frequency
Interpretation

Qa Consider, for example, a Markov chain involving a
machine, which at the end of any day can be in one of
two states, working or broken down. Each time it brakes
down, it is immediately repaired at a cost of $1. How are
we to model the long-term expected cost of repair per
day?

> View it as the expected value of the repair cost on a randomly

chosen day far into the future; this is just the steady-state
probability of the broken down state.

> Calculate the total expected repair cost in n days, where n is
very large, and divide it by n.
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Long-Term Frequency
Interpretation

Steady-State Probabilities as Expected State Frequencies

For a Markov chain with a single class which is aperiodic, the steady-state
probabilities m; satisfy
. Uii(n
m; = lim —2 ( ),
n—00 )

where v;;(n) is the expected value of the number of visits to state 7 within
the first n transitions, starting from state i.
> Based on this interpretation, r; is the long-term expected fraction of

time that the state Is equal to j.
> Each time that state ] Is visited, there Is probability p;, that the next
transition takes us to state k.

> We can conclude that m;p;, can be viewed as the long-term expected
fraction of transitions that move state from j to k.
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Long-Term Frequency
Interpretation

Expected Frequency of a Particular Transition

Consider n transitions of a Markov chain with a single class which is aperi-
odic, starting from a given initial state. Let g;x(n) be the expected number
of such transitions that take the state from j to k. Then, regardless of the

initial state, we have

TARL
lim Q_j-‘i—) = T;Pjk-

a Given the frequency interpretation of x; and =, p,;, the balance
equation: m
T = Z TkPkj
k=1

expresses the fact that the expected frequency r; of visits to j Is equal
to the sum of the expected frequencies , p,; of transitions that lead

to J.

Gdo .



Long-Term Frequency
Interpretation

mPmj

Figure 7.13: Interpretation of the balance equations in terms of frequencies. In
a very large number of transitions, we expect a fraction mypk; that bring the state
from k to j. (This also applies to transitions from j to itself, which occur with
frequency m;p;;.) The sum of the expected frequencies of such transitions is the
expected frequency m; of being at state j.
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Birth-Death Process

Q A birth-death process iIs a Markov chain in which the
states are linearly arranged and transitions can only
occur to a neighbouring state, or else leave the state

unchanged.
1-b 1-b,-d,

b“ bl

T = P(Xn+1 =1+ 1 |Xﬂ - E)
S P(Xnir =i —1]| X =),

d (1,”

m-1"""m-=1

(“birth” probability at state ),
(“death™ probability at state 2).
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Birth-Death Process

2 In this case the balance equation can be substantially
simplified. Let focus on two neighbouring states, | and |
+ 1. In any trajectory of the Markov chain, a transition
fromito 1+ 1 hasto be followed by a transition from 1 +
1 to 1, before another transition fromito 1 + 1 occur.

0 The expected frequency transitions from 1 to 1 + 1, which
IS m;b;, must be equal to the expected frequency of

transitions from 1 + 1 to 1, which is w;,,d:,,. This leads to
the local balance equations:

mibi = mist1dig, 1 =0,1.....m—1
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Birth-Death Process

0 Using the local balance equation, we obtain:

boby - - - bi—1 .
T; = 70 1211....?‘?‘11

did> - - - d; '

a From which, using the normalization equation
>.; T; = 1, the steady state probabilities =; are easily
computed.
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Birth-Death Process

Example 7.8. Random Walk with Reflecting Barriers. A person walks along
a straight line and, at each time period. takes a step to the right with probability
b. and a step to the left with probability 1 — b. The person starts in one of the
positions 1,2,...,m, but if he reaches position 0 (or position m + 1), his step is
instantly reflected back to position 1 (or position m, respectively). Equivalently, we
may assume that when the person is in positions 1 or m, he will stay in that position
with corresponding probability 1 — b and b, respectively. We introduce a Markov
chain model whose states are the positions 1,..., m. The transition probability

graph of the chain is given in Fig. 7.15. | |
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Birth-Death Process

2 The local balance equations are:

mb=mi1(1 = b), i=1.....m—1.

a Thus, &, = pm;, Where: .
P = 1-p
0 And we can express all the ; In terms of =, as:

i—1 .
T =0 M. t=1..... m.

a Using the normalization equation 1 = &y, + --- + 7, We

obtain:
L=ml+p+ - +p"7")
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Birth-Death Process

a which leads to:
pi—l

:1+p+--'+pm_]? 1=1,...,m.

T

Q Note that If p =1 (left and right steps are equally likely),
then mt; = 1/m for all 1.
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Long-Term Frequency

Interpretation

a The long-term behavior of a Markov chain is related to
the types of its state classes.

State
j
Classification of states and associated long-
term behavior. The proportion of time spent
_ in state j is denoted by ;.
Transient Recurrent /
Positive Null
recurrent recurrent
m >0 m; =0
Aperiodic Periodic

'N ﬁ @ I1mpﬂ(n) ; unp [(nd) = dm; .
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Absorption Probabilities and

Expected Time to Absorption

a What is the short-time behaviour of Markov
chains??
> Consider the case where the Markov chain starts at a
transient state.
> We are interested In the first recurrent state to be entered,
as well as in the time until this happens.
0 When addressing such guestions, the subsequent
behaviour of the Markov chain (after a recurrent
state Is encountered) Is immaterial.
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Absorbing Markov Chains

1 1
1/2

/’\ N
-

Figure 11.3: Drunkard’s walk.

Definition 11.1 A state s; of a Markov chain is called absorbing if it is impossible
to leave it (i.e., p;; = 1). A Markov chain is absorbing if it has at least one absorbing
state, and if from every state it is possible to go to an absorbing state (not necessarily
in one step). O

Definition 11.2 In an absorbing Markov chain, a state which is not absorbing is
called transient. O
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Absorption Probabilities

Q Focusing on the case where every recurrent state K Is
absorbing, I.e.,

Pk = 1, prj =0 forall j #k

Q If there Is a unique absorbing state k, its steady-state
probability is 1, and will be reached with probability
1, starting from any initial state.

> Because all other states are transient and have zero
steady-state probability.
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Absorption Probabilities

Q If there are multiple absorbing states, the probability
that one of them will be eventually reached is still 1,
but the identity of the absorbing state to be entered is

random and the associated probabilities may depend
on the starting state.

Q Thus, we fix a particular absorbing state, denoted by

s, and consider the absorption probability a; that s Is
eventually reached, starting from i:

a; = P(X,, eventually becomes equal to the absorbing state s | Xo = 1)
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Absorption Probabilities

Q Absorption probabilities can be obtained by solving
a system of linear equations.
> Absorption Probability Equations. Consider a Markov
chain where each state is either transient or absorbing, and
fix a particular absorbing state s. Then, the probabilities a;

of eventually reaching state s, starting from i, are the
unique solution to the equations:

a; = 0, for all absorbing i # s,

a; = E pija;, for all transient .

Giadl ) 7=1 .




Absorption Probabilities

a The equations a, = 1, and a; = 0, for all absorbing 1 #
s, are evident from the definition.

Q The remaining equations are verified as follows:

» Consider a transition state 1 and let A be the event that
state s Is eventually reached. We have:
a; =P(A|Xo =1)

()

=) P(A|Xo=1,X1=j)P(X1=7]|Xo=1)

j=1

= Z P(A| X1 = 7)pij (Markov property)

m
= E a;pij-
j=1 102

(total probability thm.)




Absorption Probabilities

Example 7.10.  Consider the Markov chain shown in Fig. 7.17(a). Note that
there are two recurrent classes, namely {1} and {d.5}. We would like to calculate
the probability that the state eventually enters the recurrent class {4,5} starting
from one of the transient states. For the purposes of this problem, the possible
transitions within the recurrent class {4, 5} are immaterial. We can therefore lump
the states in this recurrent class and treat them as a single absorbing state (call it
state 6), as in Fig. 7.17(b). It then suffices to compute the probability of eventually
entering state 6 in this new chain.
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Absorption Probabilities




N CC
Absorption Probabilities

Q The probabilities of eventually reaching state 6,
starting from the transient states 2 and 3, satisfy the
following equation:.

a2 = 0.2ay, 4+ 0.3a2 + 0.4az + 0.1as.
az = 0.2a2 + 0.8as.
a Using the fact that a, = 0 and a; = 1, we obtain:
az = 0.3a2 + 0.4a3 + 0.1,
as = 0.2a2 + 0.8.
a Solving gives a, = 21/31 and a; = 29/31.
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Expected Time to Absorption

0 What is the expected number of steps until a
recurrent state is entered (an event referred to as
“absorption”), starting from a particular transient
state?

Q For any state I, we denote:
i =E [number of transitions until absorption, starting from 1]
= E|[min{n > 0| X, is recurrent} | Xo = i].

a Note that If 1 Is recurrent, then & = 0 according to
this definition.
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Expected Time to Absorption

Equations for the Expected Time to Absorption

The expected times to absorption, ui,...,um, are the unique solution to
the equations

i = 0, for all recurrent states 1,
i

i =1+ Z Dijlj, for all transient states 1.
=1

We argue that the time to absorption starting from a transient state 7 is equal to

1 plus the expected time to absorption starting from the next state, which is j
with probability p;;.
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Expected Time to Absorption

Example 7.12. Spiders and Fly. Consider the spiders-and-fly model of Ex-
ample 7.2. This corresponds to the Markov chain shown in Fig. 7.19. The states
correspond to possible fly positions. and the absorbing states 1 and m correspond
to capture by a spider.

0.4

Q Calculate the expected number of steps until the fly is captured.
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Expected Time to Absorption

0 We have: 1 = pm = 0.
a And
pe = 1 +0.3pi—1 + 0.4p, + 0.3p041. fori =2..... m — L.

Q This equations can be solved in a variety of ways, such as for
example by successive substitutions.

a As an illustration, let m = 4, in which case, the equations reduce

to:
o = 1 + &4;..-:2 + 0.3;13. Ha = 1+ '[].3,[1-9 —+ ﬂ.-i,u-;j.

Q The first equation yields p2 = (1/0.6) + (1/2)us, which can be
substituted in the second equation to give #3 = 10/3 and by
substitution again, u, = 10/3.
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Mean First Passage and Recurrence

Times

0 The i1dea used to calculate the expected time to
absorption can also be used to calculate the expected
time to reach a particular recurrent state, starting
from any other state.

Q For simplicity, consider a Markov chain with a
single recurrent class.
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Mean First Passage and Recurrence

Times

Q Let focus on a special recurrent state s, and denote
by t; the mean first passage time from state I to
state s, defined by:

t; = E[number of transitions to reach s for the first time, starting from z]
= E[min{n > 0| X, = s} | Xo =1].

Qa The transitions out of state s are Irrelevant to the
calculation of the mean first passage times.
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Mean First Passage and Recurrence

Times

Q Consider thus a new Markov chain which is identical
to the original, except that the special state s Is
converted into an absorbing state (by setting p = 1,
and p;; = 0 forall j = s).

a Whit this transformation, all states other than s
become transient.
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Mean First Passage and Recurrence

Times

Q Then, compute t; as the expected number of steps to
absorption starting from 1, using the formulas given

earlier: m
t; =1+ Zpij:tj, for all 7 # s,

Q This system of linear equations can be solved for the
unknowns t;, and has a unique solution.

0 These equations give the expected time to reach the
special state s starting from any other state.
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Mean First Passage and Recurrence

Times

0 We may also want to calculate the mean recurrence
time of the special state s, which is defined as:

ts = E[number of transitions up to the first return to s, starting from s

= E[min{n > 1| X,, = s} | Xo =s|.

Q Then t° can be obtained once we have the first
passage times t;, by using the equation:

m
t3 =14 ) psjt;.
j=1
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Mean First Passage and Recurrence

Times

Q This equation can be justified saying that the time to
return to s, starting from s, is equal to 1 plus the
expected time to reach s from the next state, which is
J with probability p;. Then apply the total
expectation theorem.
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Mean First Passage and Recurrence

Times

Equations for Mean First Passage and Recurrence Times

Consider a Markov chain with a single recurrent class, and let s be a par-
ticular recurrent state.

e The mean first passage times ¢; to reach state s starting from ¢, are
the unique solution to the system of equations

ts =0, t: =1+ Zpijtj, for all i # s.
=1
e The mean recurrence time t3 of state s is given by

™m
ts=1+Y pajt;.
j=1
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Mean First Passage and Recurrence

Times

Example 7.13. Consider the “up-to-date”-"“behind” model of Example 7.1. States
1 and 2 correspond to being up-to-date and being behind, respectively, and the

transition probabilities are
P p11 = 0.8, p12 = 0.2,

p21 = 0.6, p22 = 0.4.

Let us focus on state s = 1 and calculate the mean first passage time to state 1.

starting from state 2. We have t; = 0 and
t2 = 1 4+ p21t1 + p22t2 = 1 + 0.4¢5.

from which
1 15
fg = — = -,

0 3

.6
The mean recurrence time to state 1 is given by

» 5
ti = 1+ puts + prata = l+0+0.2«§ -

0.2

0.8 ‘O‘Q 0.4

up-to-date 0.6 behind

0.8 0.2
0.6 04

|
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Continuous Time Markov Chains

a In discrete Markov chains models 1t 1s assumed that
the transitions between states take unit time.

a Continuous time Markov chains evolve In
continuous time.

> Can be used to study systems involving continuous-time
arrival processes.

> Examples: Distribution centres or nodes in
communication networks where some events of interest
are described in terms of Poisson processes.
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Continuous Time Markov Chains

a Similar to the discrete Markov chains, continuous
time Markov chains involve transitions from one
state to the next:

> According to a given transition probabilities

> The time spend between transitions is modelled as
continuous random variables.

> It IS assumed that the number of states is finite

> In absence of a statement to the contrary, the state space is
theset S= {1,..., m}.
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Continuous Time Markov Chains

Q To describe a continuous Markov chain, some
random variables of interest are introduced:

Xn : the state right after the nth transition:
Y, : the time of the nth transition:

T, : the time elapsed between the (n — 1)st and the nth transition.

a For completeness, X, denotes the initial state, and
Y,=0.
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Continuous Time Markov Chains

Continuous-Time Markov Chain Assumptions

o If the current state is ¢, the time until the next transition is exponen-
tially distributed with a given parameter v;, independent of the past
history of the process and of the next state.

o If the current state is 7, the next state will be j with a given probability
7ij, independent of the past history of the process and of the time until
the next transition.
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Continuous Time Markov Chains

0 The above assumptions are a complete description of
the process and provide an unambiguous method for
simulating It

> Glven that we just entered state I, we remain at state i for a
time that is exponentially distributed with parameter v;, and
then move to a next state j according to the transition
probabilities p;;.

> Thus, the sequence of states X, obtained after successive

transitions is a discrete-time Markov chain, with transition
probabilities p;;, called embedded Markov chain.
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Continuous Time Markov Chains

Q In mathematical terms, let:
A= {T] =t1,...,Tn =tn, X[_'} =3'[}......Xn_1 =in_1, Xn =2}

be an event that captures the history of the process until
the nth transition.

a We then have:

PXnt1=J, Tnt1 2t |A) =P(Xns+1 =7, Th1 2t | X =1)
= P(Xng1 = | X =) P(Tos1 >t | Xn = i)
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Q The expected time to the next transition Is:

> 1
E[Tn+1 |Xn = ?,] = / TV € ViT dr = —_
0 Vi

Q So we can interpret v; as the average number of
transitions out of state 1, per unit time spent at state |I.

Q v; Is called the transition rate out of state I.
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Continuous Time Markov Chains

a Since only a fraction p;; of the transitions out of state |
will led to state j, we may also view:

q:j = ViDij
as the average number of transitions from 1 to j, per unit
time spent at I.
Q Thus, g is called the transition rate from i to .
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a Given the transition rates g, one can obtain the
transition rate v; using the formula:

m
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Qa The model allows for self transitions, from a state
back to itself, which can happen If a self-transition
probability p;; IS nonzero.

a Self-transitions have no observable effects

> Because the memorylessness of the exponential
distribution, the remaining time until the next transition is
the same, Irrespective of whether a self-transition just
occurred or not.

> Then, self-transitions can be ignored and assume that:

Pii = Qiz = 0, for all :.
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Example 7.14. A machine, once in production mode, operates continuously until
an alarm signal is generated. The time up to the alarm signal is an exponential
random variable with parameter 1. Subsequent to the alarm signal, the machine is
tested for an exponentially distributed amount of time with parameter 5. The test
results are positive, with probability 1/2, in which case the machine returns to pro-
duction mode, or negative, with probability 1/2, in which case the machine is taken
for repair. The duration of the repair is exponentially distributed with parameter
3. We assume that the above mentioned random variables are all independent and
also independent of the test results.

‘9; za 128




N  C!C
Continuous Time Markov Chains

Let states 1, 2, and 3, correspond to production mode, testing, and repair,
respectively. The transition rates are 11 = 1, vo = 5, and v3 = 3. The transition
probabilities and the transition rates are given by the following two matrices:

0 1 0 0 1 0
P=[1/2 0 1/2}, Q=[5/2 0 5/2}.
1 0 0 3 0 0

129



N  C!C
Continuous Time Markov Chains

Q Similar to its discrete-time counterpart, the
continuous-time process has a Markov property: the
future Is independent of the past, given the present.
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Q Approximation by a discrete-time Markov Chalin

> Let us fix a small positive number 6 and consider the
discrete-time Markov chain Z, that is obtained by
observing X(t) every o time units:

Zn = X(nd), n=20.1.....

> As Z 1s a MC, means that the future is independent from
the past, given the present (The Markov property of X(t))

» Let use p;; to describe the transition probabilities of Z,
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Q Approximation by a discrete-time Markov Chalin

> Glven that Z, = I, there is a probability approximately
equal to viothat there Is a transition between times né and
(n +1)6, and In that case there Is a further probability p;;
that the next state Is j:

Pi; = P(Znt1 =7|2Zn =1) = vipij0 + 0(d) = ¢ij0 + 0(9), if 7 # 1,

where o(d) is a term that is negligible compared to J, as § gets smaller. The

probability of remaining at i [i.e., no transition occurs between times nd and
(n+1)d] is
Py =P(Znt1=1|Zp=i)=1-) P
J#i
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Alternative Description of a Continuous-Time Markov Chain

Given the current state i of a continuous-time Markov chain, and for any
j # 1, the state 0 time units later is equal to j with probability

Qija T 0(5)1

independent of the past history of the process.
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Example 7.14 (continued). Neglecting o(0) terms, the transition probability
matrix far the corresponding discrete-time Markov chain Z, is

-6 4§ 0 °
56/2 1-56 56/2 |
3% 0 1-36
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Q Steady-state behavior
0 Birth-Death Processes
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