
Hiding Privacy Leaks in Android Applications
Using Low-Attention Raising Covert Channels

J.-F. Lalande
ENSI de Bourges, LIFO, EA 4022

88 Bld Lahitolle, 18020 Bourges, France
jean-francois.lalande@ensi-bourges.fr

S. Wendzel
Fraunhofer FKIE
Bonn, Germany

steffen@wendzel.de

Abstract—Covert channels enable a policy-breaking com-
munication not foreseen by a system’s design. Recently,
covert channels in Android were presented and it was
shown that these channels can be used by malware to leak
confidential information (e.g., contacts) between applications
and to the Internet. Performance aspects as well as means
to counter these covert channels were evaluated. In this
paper, we present novel covert channel techniques linked to a
minimized footprint to achieve a high covertness. Therefore,
we developed a malware that slowly leaks collected private
information and sends it synchronously based on four covert
channel techniques. We show that some of our covert
channels do not require any extra permission and escape well
know detection techniques like TaintDroid. Experimental
results confirm that the obtained throughput is correlated to
the user interaction and show that these new covert channels
have a low energy consumption – both aspects contribute to
the stealthiness of the channels. Finally, we discuss concepts
for novel means capable to counter our covert channels
and we also discuss the adaption of network covert channel
features to Android-based covert channels.

Keywords-Smartphone Security; Android; Covert Chan-
nels; Privacy; Information Hiding

I. INTRODUCTION

With the increasing number of Android smartphones,
the threat for user’s privacy is growing. Users face the
problem of spyware aiming to steal sensitive data or
malware that tries to use the available functionalities of
the phone. For example, the malware Walkinwat [1] sends
short messages to each contact of the user’s address book.
These short messages inform the contacts that the user
owns a pirated version of Walk and Text. In [2], Morrow
reports that 64% of the enterprises surveyed by Infonetics
had data lost or stolen because of the use of mobile
devices. After data got leaked, it is out of the user’s control
and an attacker can, for instance, sell the leaked data, can
use the data to blackmail the user, or can use the data to
get business advantages.

To prevent the operation of malware, the user is re-
sponsible of reviewing the application’s permissions at the
time of installation. Nevertheless, the majority of the users
will probably skip such review steps since they require
technical knowledge [3], [4]. The user may also think
that, for update purposes, the application requires Internet
access [5].

Thus, a lot of papers (cf. Section II) deal with the
detection of malware or the detection of vulnerabilities in
Android. The proposed solutions are of different natures

and can be applied for automatically detecting privacy
leaks. The proposed mechanisms can be classified in three
groups. They can: statically analyze the application [6],
[7], [8], [9], [10], for example, to detect potential privacy
leaks; dynamically analyze the application [7], [8], [10],
for instance, to prevent privacy leaks; modify the operating
system [11], [12], [13], for instance, to improve the
enforcement of more fine grained security policies.

Applying one of these solutions to the problem of
privacy leaks consist in detecting (preventing) that a flow
of information occurs between private data and public
containers, e.g., between contact information and the Inter-
net. One of the most popular solutions is TaintDroid [11].
TaintDroid applies realtime checks to detect whether pri-
vate data is leaked by an application. If TaintDroid notices
that a flow of information occurs between a resource
labeled as private and a resource labeled as public, the
flow is prevented. Another similar contribution is called
CHEX [9]. CHEX enables the tracking of vulnerabilities
using static analysis in components of applications that
may leak private data. Even if these approaches provide a
powerful means for detecting a malware that violates the
user’s privacy, this paper aims at discussing the possibility
of defeating control flow monitoring solutions.

Therefore, we present the design and implementation of
a malware capable of disclosing private information while
bypassing detection solutions such as TaintDroid [11] and
CHEX [9]. As done in [14], our proposal is to split
the malware into two parts and to establish a covert
channel between the two applications. The first part of
the malware is responsible of collecting the private data
and transfers it to the second application that discloses
the private data to the Internet. As an improvement over
[14], we propose to design a covert channel with minimal
permissions that is correlated to user interactions in order
to be stealthy. Additionally, our presented covert channels
comprise separated data and control channels to achieve
a high quality of transmissions. We also show that our
application raises only few attention, has a low energy
footprint (what increases the covertness) and that it is thus
difficult to block.

Our scenario of using two applications is realistic as
one application can include advertisements for the other
application (e.g., to enhance features) and since a shared
website can offer both applications. For example, a website
can present a set of energy saving applications which



are capable to cooperate; one application could visualize
the energy consumption of the user’s smart home while
another application could be an energy advisor or a remote
control for the heating, ventilation, and air-conditioning
(HVAC) system of the user.

The remainder of this paper is structured as follows.
Section II is split into three parts and introduces related
work for Android security, covert channels, and covert
channels in Android. Section III introduces the scenario
in which the covert channel’s and the data leakage are
established as well as the properties of the malware.
Section IV describes the malware architecture and the
implemented covert channel techniques. We discuss ad-
ditional experiments done to evaluate the presented covert
channels in Section V and additional means to counter the
covert channels as well as possible means to improve the
capabilities of our channels in Section VI. We conclude
in Section VII.

II. RELATED WORK

The research on Android security and on covert chan-
nels is based on their particular roots which will be dis-
cussed separately. Afterwards, we survey related work that
combines covert channel research with Android research.

A. Android Security

1) Static and dynamic analysis: In order to build inno-
vative protection solutions for the Android platfom, the
existing research studies the possible vectors of attack
using static or dynamic analysis techniques.

Papers that are based on static analysis techniques try
to build automatic reports about applications. It may help
the user to better understand what applications are doing
and may also help to discover malware. In [7], basic
analysis techniques such as calls to JNI components or
System.getRuntime().exec() calls help to build vectors that
describe the application. Collecting static information is
usefull for building visual reports as shown by [6] for the
example of an application performing a privacy violation.

Static analysis techniques can be combined with dy-
namic analysis (as proposed in [7] – one of the first
papers dealing with Android and dynamic monitoring, that
shows the counting of system calls for a fork bomb mal-
ware [15]). Recently, [10] proposed DroidMat that com-
bines static and API call analysis in order to automatically
classify applications and malware in clusters, achieving
better results than another approach called Androguard.

When a vulnerability or a suspicious behaviour is no-
ticed, the proposed prevention systems try to detect or
prevent attacks. For example, Apex [12] enables to define
contextualized constraints on the permission granted to
applications (localization, number of resource used). To
achieve this, the operating system should be adapted to
include the countermeasure.

2) Data leakage: As stated in the introduction, one
of the most important threats for Android users is the
possible leak of private data from their smartphone. Some
recent contributions are working on workflow monitoring

of personal data. One of the most popular solutions is
TaintDroid [11] and its derivatives like YAASE [13] that
allows to define improved security policies. These solu-
tions track private data leakage by tainting the resources
and propagating these taints into the program and in the
API offered by the operating system.

In [8], an extension to TaintDroid is presented, which
includes support for indirect flows that leak personal data
by sending information from one container to another
using the control flow instructions. This paper shows that
workflow monitoring solutions are not 100% accurate and
can be bypassed by attackers. We also show that solutions
like TaintDroid can be defeated by our proposed malware.

The data that is targeted by attackers can be personal
information like contacts, SMS or mobile phone infor-
mation like the IMEI. Mulliner studied the data leakage
of mobile phones using WAP proxies and discovered
that such proxies were configured to leak mobile phone
numbers (MSISDN) and subscriber numbers to website
operators [16]. Such information can be used for longterm
user tracking and can even support lookups for the identity
of website visitors [16].

A lot of regular applications of the Play Store include
data leakage features. Data leakage of Android applica-
tions was evaluated by Stirparo and Kounelis in [17].
They analyzed the top 50 Android applications of different
categories (e.g., business or shopping) regarding to their
potential to leak data at rest, i.e., data that is not currently
in use or in transit but saved on memory and can thus be
analyzed using forensic tools. In this case, an adversary
can try to steal account data when a mobile phone got lost.
Stirparo and Kounelis used basic open source tools and
discovered essential data leakage in major applications,
such as Twitter or Dropbox, which can lead to identity
theft [17].

B. Covert Channels

Covert channels are channels not foreseen to be used for
a communication [18] but for other purposes like to trans-
fer control information. The importance of covert channels
grew within the last years since these channels support
multiple scenarios: For instance, covert channels support
the freedom of speech since they allow to bypass Internet
censorship [19] but also enable botnets to implement a
stealthy command and control communication [20].

Covert channel techniques were discussed for decades
and were found in many areas of computer systems, such
as in local systems [21], in IPv4 and TCP [22], in IPv6
[23] and in business processes [24] – just to mention a few.
Means to detect, limit, and prevent covert channels were
also discussed for decades and comprise methodology
that can be applied at different steps of the software
development lifecycle, such as the Shared Resource Matrix
Methodology (SRM) [25], Covert Flow Trees [26], the
Pump [27], and the application of machine learning and
statistics for timing channel detection [28], [29].

Up to now, only few covert channels have been studied
in Android systems and only few of the existing anti-



Application 1:

Data collector

(CC sender)

Application 2:

Data submitter

(CC listener)

Internetcontacts

covert

channel

Figure 1. Malware architecture

covert channel means were adapted to the context of
Android. The next section will cover Android-specific
covert channels.

C. Covert Channels and Android

The first paper that presented a malware based on a
local covert channel in Android describes Soundcomber,
a malware that captures entered digit numbers using the
sound of the smartphone. The paper discusses different
covert channels based on the utilization of applications
(e.g., a browser) and system functions like the vibration
settings, the volume settings, or the screen state [30]. We
also use the screen state to implement a covert channel
but improve the stealthiness of the channel.

A more recent paper written by Marforio et al. [14] is
the first to exhaustively present the possibilities of using
local covert channels in Android smartphones. They show
how two applications can exchange data using overt or
covert channels in order to leak private data. This work
is very close to our own work because our malware
design, presented in Section IV, is based on the same
mechanism: a local covert channel between an application
that collects data and another one that discloses the data.
Such an architecture is visualized in Figure 1 where the
contacts are collected by application 1, are afterwards sent
to application 2 using a covert channel, and are finally
disclosed on the Internet.

Table I presents a synthesis of the proposed overt and
covert channels of [14]. The first six channels could be
monitored using a taint propagation solution like Taint-
Droid [11]: it requires to modify the taint propagation
mechanism in order to include the way the covert channel
operates. For example, for broadcast intents, it would be
necessary to taint each intent. Using such detection mech-
anism could lead to numerous false positive alarms. The
last four proposed channels exploit the reading capabilities
of the state of the operating system. Thus, it becomes very
difficult to taint such resources. Nevertheless, Marforio et
al. propose simple countermeasures to restrict the access
to operating system information.

The proposed covert channel of [14] can be defeated by
using a taint tracking solution or by restricting the access
to special device files in /dev that provide information
about the operating system. In this paper, we show how
to build a covert channel that overcomes these limitations.
Our goal is to propose covert channels that 1) cannot be
easily defeated by restricting access to the filesystem or by
solutions such as TaintDroid; 2) has a low footprint with,
as a consequence, a low throughput; 3) is difficult to detect
by the user. The next section presents our considered use
case and the properties for our malware.

III. CONSIDERED SCENARIO AND MALWARE
PROPERTIES

Before moving to the description of the proposed mal-
ware architecture in Section IV, this section describes the
properties that a malware should meet in order to be most
efficient. Its efficiency can be appreciated by measuring
the malware’s capacity to be invisible from the user’s
point of view. Thus, we do not consider the throughput
of the covert channel as the primary goal. Discussing the
efficiency of the throughput was already discussed in [14]
and the results are recalled in Table I.

In our scenario, which is the same assumption as in [14],
we suppose that a user has installed two applications
that embed malicous code. In order to make the malware
active, the attacker should include the malicious codes in
applications that have great chances to be installed on
the same system. For example, the user may installed
several games of the same type in order to compare them.
Moreover, the attacker can split its application in several
applications where each additional application can be seen
as a sort of plugin or extension for the primary one. A
thinkable example scenario is a website comprising a set of
applications that visualize, monitor or improve the user’s
energy consumption in his smart home (e.g., application
1 could be an energy advisor while application 2 could
enable the remote control of the heating in the smart
home).

When performing the installation, a smartphone user
will have the opportunity to review the requested permis-
sions of the first application that will later act as the covert
channel sender. If the requested permissions are obviously
inadequate, he may suspect the inclusion of a malware
hidden in a regular application.

Experienced users may investigate the resource con-
sumption of applications. Using too much bandwidth or
consuming too much energy may reveal that a malware
is operating [31]. This can happen for the two last covert
channels reported in Table I. Finally, the malware should
not disturb the normal operations of the Android sytem
and of other applications. Thus, we can compile require-
ments for the malicious applications:

• minimize the required security permissions;
• minimize the battery consumption and network load;
• minimize the disruptions of the smartphone use;
• maximize the throughput of privacy leaks.
To achieve these goals, we discuss how such a malware

can be designed in Section IV. Then, Section V presents
the implementation details and experimental results for our
proposed malware. The last section discusses anti covert
channel techniques and the possible means to detect our
malware.

IV. MALWARE DESIGN

After the previous section defined the scenario in which
our malware operates and the properties linked to the
scenario, we will now explain the architectural view of
the malware and how our proposed covert channels are
realized. Therefore, four different covert communication



Table I
PROPOSED OVERT AND COVERT CHANNELS IN [14]

Overt/covert channel type Required permission Side-effect Can be tainted Possible countermeasure Throughput
Shared settings Yes > 100 bps
System log READ_LOGS Yes
File WRITE_EXTERNAL_STORAGE Yes TaintDroid [11]
Broadcast intents Yes 10-100 bps
Event intents May raise attention Yes
UNIX socket Yes > 100 bps
Thread enumeration No Restrict access to /proc > 100 bps
Free space No Apply quota 10-100 bps
Processor statistics Impacts battery No Restrict access to /proc < 10 bps
Processor frequency Impacts battery No Restrict access to /sys < 10 bps

means are presented. Finally, we discuss the hiding aspects
of the different covert channels.

A. Malware Architecture

Figure 1 shows the basic workflow of information of
our malware. The first part of the malware is an applica-
tion responsible for the collection of private data, e.g.,
the contact information. Thus, this application requires
the READ_CONTACTS permission. This first part of the
malware is also the covert channel sender as it will send
the collected data via a covert channel to the receiver.

The second part of the malware is responsible for
receiving the hidden data using the covert channel and is
called the covert channel receiver. It is also responsible
of disclosing the data to a remote server. Thus, this
application needs the INTERNET permission. The proposed
architecture enables a malware that will be able to create
a privacy leak.

Depending of the nature of the covert channels, some
additional permissions may be necessary in one or both
parts of the malware. Of course, as we try to meet the first
property described in Section III, our goal is to avoid or
to minimize the use of any permission that would make
the user suspect that a malware is present.

B. Covert Channel Setup

If application 1 is allowed to access a confidential in-
formation (e.g., the address book), the access permissions
are enforced by the Android system. Thus, using a direct
communication between application 1 and application 2
will give application 2 access to confidential information
using delegation. If application 2 has access to the Internet,
the delegation of access can help the malware to create
privacy leaks.

In the following, the covert channel is responsible for
the transmission of a message m, for example, a contact
name, from the CC sender to the CC receiver. For each
character x of m, we describe the way the covert channel
operates.

We additionally split our covert channel in a control
channel used to signal whether covert information is cur-
rently transmitted, or not, and a data channel that transfers
the actual hidden information. This is similar to existing
network covert channel techniques which comprise an
internal control header (the control channel) and a payload
area (the data channel) like presented in [32], [33]. Table II

Table II
CONTROL AND DATA CHANNELS OF OUR COVERT CHANNELS.

Covert channel type Control Data Required
channel channel permission

CC#1: Task list/screen screen state task list GET_TASK
CC#2: Process prio./screen screen state process prio.
CC#3: Process priorities process prio.
CC#4: Pure screen-based screen based WAKE_LOCK

summarizes the control and data channels of the covert
channels discussed in this Section.

1) CC#1 - Task list and screen-based covert channel:
This section describes the design of a covert timing
channel exploiting the screen state (on or off) in com-
bination with the ability to examine the running tasks of
the operating system. Examining the tasks of the system
requires to add the permission GET_TASK to the CC
receiver. Nevertheless, this new permission does not reveal
directly that the CC receiver is a covert channel listener.
Such a permission is often used by administration tools,
for example by task killers or backup tools.

The covert channel is established between the two
applications when the screen goes off and the CC sender
is in the foreground. The CC sender starts to count the
elapsed time and checks whether the screen stays switched
off. It waits x∗∆T ms where x is an integer representing
the encoded information that is transmitted and ∆T is a
constant that both applications know. When x ∗ ∆T ms
is elapsed, the CC sender kills itself. The CC receiver
also monitors the elapsed time from the point where the
screen went off. Using the GET_TASK permission, the CC
receiver can determine that the CC sender is still running.
When the CC sender disappears, the CC receiver can
deduce x by dividing the counted time by ∆T .

If the user interrupts the CC sender by switching on the
screen, both applications cancel their time measurements.
Indeed, if the CC sender is killed when the screen is
on, the CC receiver cannot distinguish whether x ∗ ∆T
ms have been elapsed or if the user decided to terminate
the application. Thus, both applications consider that the
information is not reliable and the CC sender must repeat
the transmission of the x value.

Figure 2 shows a possible scenario for screen and CC
sender states. At the beginning, the user launches the CC
sender (screen is already on). Then, the screen is switched



Figure 2. Example of screen and application states

off but is resumed quickly. Thus, the CC sender has not
enough time to kill its process. Afterwards the screen goes
off again. After x ∗ ∆T , the CC sender kills itself. Later,
the screen goes on.

Since the scheduler is not easily predictable, covert
channels that use such synchronization cannot guarantee
a 100% accuracy. Nevertheless, using a reasonable value
for ∆T and synchronizing the channel with the screen
guarantee to operate with a low workload. Thus, the
proposed covert channel works flawlessly. Of course, if
the workload increases and ∆T is small, problems could
arise on a real-world system.

This covert channel has two specificities that may help
the user to discover it. First, it requires the permission
GET_TASK for the receiver which is stated when installing
the CC receiver. Second, the CC sender kills itself after
a certain amount of time if the user switches off or
locks the smartphone. This behaviour is not so suspicious
for an Android smartphone because the operating system
is allowed to destroy any activity in order to recover
some extra memory. These aspects are discussed later in
Section IV-C where we present how our malware can be
hidden in an efficient manner.

2) CC#2 - Process priority and screen-based covert
channel: We propose another variant of a covert timing
channel that does not require any extra permission, i.e.,
that eliminates the need for the GET_TASK permission. As
for the previous covert channel, we propose to synchronize
the two applications using the extinction of the screen
state. Then, the CC sender changes its UNIX priority
to a value p known by both, the CC sender and the
CC receiver, by calling the Process.setThreadPriority(p)
static method. This way, the CC receiver can iterate
over all possible UNIX process IDs in order to detect
the appearance of this process priority p by calling the
Process.getThreadPriority(uid) static method.

Figure 3 shows an example where the CC sender
changes its priority to 4. If the screen goes on too early,
the sending of the message is canceled. When the priority
is set to 4 during a certain amount of time and returns to
0, the CC receiver can deduce x by measuring x ∗ ∆T .

Since it is thinkable that a regular process is also
running with the priority p, the covert channel should be
configured to choose an uncommon priority value for p,
i.e., a value used by as few processes as possible. However,
a drawback of this channel is that it cannot ensure that

Figure 3. Example of screen and process priority states

no other process exists that indeed uses priority p as well.
Therefore, parity codes could be used to detect error-prone
data transmitted.

3) CC#3 - Process priority-based covert channel: The
third technique we propose is a pure process priority-based
covert channel. Compared to CC#2, we do not use the
control channel to start the transmission. Thus the CC
receiver will monitor the priorities of all possible UNIX
processes in order to detect the appearance of the known
value p. Then, the CC receiver measures x ∗∆T in order
to deduce x.

As discussed in section IV-C, this covert channel has
a high throughput but may raise attention because of its
energy consumption.

4) CC#4 - Pure screen state covert channel: CC#3 was
a derivative solution of CC#2 where we removed the use
of the screen state. The last covert channel we present
in this section, CC#4, is a derivative of CC#2 where we
keep only the screen state functionality. The CC sender
waits for the screen to turn off during a given amount
of time meaning that the user is probably away. Then, it
switches on the screen, waits that it returns off and counts
the x∗∆T delay. Then, it switches on the screen again to
inform the CC receiver about the end of the transmission.
Thus, the CC receiver just needs to monitor the state of
the screen to receive x.

This channel may seem to be the most effi-
cient. Nevertheless, waking up the screen requires the
WAKE_LOCK permission (for regular applications) or the
DEVICE_POWER permission (for system applications).
Moreover, the user may discover the channel by noticing
suspicious actions of the screen.

C. Malware hiding capabilities

This section discusses the characteristics of the pro-
posed malware that addresses the properties presented in
Section III. It also presents how to increase the stealthiness
of the malware.

1) Permission: Using the GET_TASK permission for
CC#1 can help to exploit covert channels that are linked to
the operating system capabilities. Other types of permis-
sions relative to smartphone sensors can also be exploited,
for example using the smartphone camera. Nevertheless,
using such extra permissions could reveal the presence
of malicious code. Thus, we show with CC#2, CC#3,
and CC#4 that Android offers primitives that enable to



easily create a covert channel that does not require extra
permission.

2) Battery consumption: Our proposal has a very low
impact on the battery usage as the covert channel has
a low throughput: the covert channel is not based on
CPU usage and runs limited code each ∆T time while
its battery consumption is small if the choosen ∆T is
high. Section V-B presents results regarding the energy
consumption.

Moreover, the synchronization of CC#1 and CC#2 is
based on the screen usage. Thus, the malware is only
consuming energy after the user interacts with the smart-
phone and will stop consuming energy when a byte has
been received. Thus, the consumption stays limited and
correlated with the user actions. Correlating the malware
consumption to the user interaction helps to increase the
invisibility. On the contrary, CC#3 and CC#4 do not
use the control channel that is correlated to the user
interaction. Thus, these two covert channels will increase
their throughput and energy consumption which may raise
the attention of the user.

3) Hiding the malware: Using the covert channel
CC#1, the attacker should not use a small ∆T . As the
CC sender will kill itself, the user may suspect an issue
when switching back the screen on. Using a large value
for ∆T (more than a minute) could help the user to forget
the state of the application he left in foreground.

CC#2 provides the best stealthiness from a user’s
perspective: It only operates when the screen goes off,
receives a part of the message and stays idle until the
next user interaction takes place. Even if it consumes
more energy than CC#1 (cf. Section V-B), it is the covert
channel with the highest stealthiness of the four.

Moreover, CC#1 and CC#2 will stop any operation if
the screen goes back on. Thus, the smartphone is not
impacted when the users is using it.

V. EXPERIMENTS

In this section, we first cover implementational details
on which our analyses are based. Afterwards, we discuss
results regarding the throughput of the channels, their
energy consumption and the channel’s hiding potential in
the context of TaintDroid.

A. Implementation Details

All presented covert channels have been implemented
and tested by using the Android Emulator as well as by
using a regular Samsung Galaxy SIII1. Figure 4 gives the
details about the algorithms of CC#1 and CC#2. At each
step of the algorithm, the CC receiver checks the condition
four times more frequently than the CC sender, in order
to improve its accuracy in calculating x ∗ ∆T .

In order to be persistent, both sender and receiver are
implemented using services. When the screen is on and is
unlocked, the services are stopped. When the screen goes
off or if the user terminates one of the applications, the

1A video of CC#1 / CC#2 can be viewed at url1: http://dai.ly/x10lbre.
A QR code for this url can be found at the end of this paper.

Figure 4. Principle of covert channel algorithms of CC#1 and CC#2

user input interval (s)

0 10 20 30 40 50 60

th
ro

u
g

h
p

u
t 

(b
p

s
)

0

0.2

0.4

0.6

0.8

1
deltaT=400 ms

Figure 5. Throughput of the process based covert channel CC#2 during
a period of 3h20min of experiment

onPause() method is called and the services are launched.
For CC#3 and CC#4 the services are persistent. CC#3 can
work even if the user is using the smartphone whereas
CC#4 waits for a period of inactivity.

B. Statistics

1) Throughput and user interaction: As the covert
channels CC#1 and CC#2 rely on the user interaction, the
throughput is correlated to the use of the smartphone. To
evaluate their throughput, we simulated the interaction of
the user that switches on/off the screen.

In Figure 5 we show the throughput of CC#2 in bits per
second during an experiment of 3 hours 20 minutes. At
regular intervals, a fake user is switching off the screen and
waits during a certain amount of time ∆U . Then, the fake
user wakes up the screen during two seconds and begins
again the process. Using this fake user, we measured the
throughput of an infinite alphanumeric random message
transmitted using different values of ∆U .

If the value of ∆U is too small, it impacts the through-
put because the user breaks the transmission by waking up
the screen. The results show that, for ∆T = 400 ms, the
best throughput is obtained for a user interaction interval
∆U of 4 s. For a large ∆U , the throughput is low but has
better energy characteristics, as described later in V-B2.



E
n

e
rg

y
 (

m
J
)

.1

1

10

100

1000

deltaT (s)

0.8 2 5 10 15 20 25 30

CC#1 − task based + screen state CC

CC#2 − priority based + screen state CC

CC#3 − pure priority based CC

Kernel

Figure 6. Energy consumption of CCs during a 1 minute period of
transmission

However, we used an equally distributed set of symbols
to transfer our hidden message. If we reduce the number
of symbols we can transfer (e.g., no numbers or only upper
case letters), we can improve the bandwidth of the covert
channel since we are not required to distinguish as many
timing delta values as in the current version. Besides, since
some symbols are usually more likely to occur than other
symbols (e.g., in the English language, the letter ‘e’ is
more likely to occur than the letter ’z’ [34]), an improved
coding (such as Huffman) would additionally improve the
channel’s bandwidth. Additionally, CC#2 can also use the
whole interval of possible priorities for a process (-20 to
+19) in order to better encode the information.

For CC#3, using ∆T = 800 ms makes the application
running smoothly using a Galaxy SIII. For the Galaxy SIII,
we measured a throughput of 17.6 bps which is greater
than the throughput of CC#1 and CC#2. Increasing the
throughput of CC#3 by decreasing ∆T is still possible, but
the application may get freezed especially while searching
for the process ID that has the priority p: 20 000 process
IDs (maybe more, depending of the range allocated by
Android for numbering processes) must be tested during
one cycle of ∆T which requires a lot of CPU time (cf.
Section V-B2).

For CC#4, we measured a throughput of 0.22 bps using
∆T = 800. Decreasing ∆T is also possible for this covert
channel but the configuration of the smartphone introduces
a strong limitation: the waiting time for the screen to go
off. Indeed, when waking up the screen for a short time
to mark the beginning/ending of the transmission, the CC
sender should wait that the screen goes off which usually
takes several seconds. Thus, it explains that the throughput
is lower than CC#3.

2) Energy consumption: Figure 6 compares the energy
consumption of CC#1 and CC#2 during one minute of
transmission of a byte when no user interaction occurs. It
also includes the average consumption of energy of CC#3
during one minute of one hour of running. The energy
consumption has been monitored using Power Tutor [35]
during an interval of one minute of transmission.

The results shows that the priority based covert channel
using the screen state detection CC#2 is approximatively
two times more efficient than CC#1. This is probably due

to the fact that the task based algorithm should scan the
list of all tasks whereas the process priority algorithm only
needs to check the priority of the identified process.

Regarding CC#3, the energy consumption is very high
because the CC receiver waits for the CC sender between
each transmission. Indeed, the CC receiver needs to scan
the 20 000 PIDs in order to discover the target process
that will change its priority. Worse, if the CC sender is
not installed, the CC receiver will scan all the 20 000
PIDs forever, consuming a lot of energy for nothing. We
measured a consumption of 60 J during one minute by the
CC receiver without an active CC sender.

Finally, the graphic of Figure 6 shows that covert
channels CC#1 and CC#2 have a very low footprint for a
∆T greater than 10 s compared to Android’s kernel that
consumes approximatively 80 mJ during a minute of such
a transmission.

C. Defeating Solutions Capable of Detecting Covert
Channels

We also checked that our solution can defeat the Taint-
Droid tool [11] that tracks information flows2. For this
evaluation, we read the IMEI of the phone using the CC
sender and we implemented an SMS-based data leakage
into the CC receiver. Therefore, we transmitted several
digits of the IMEI from the sender to the receiver and sent
an SMS to exfiltrate the data. TaintDroid did not report the
information leak and the logs only shows the taint marking
event that occurs when the CC sender reads the IMEI:
dalvikvm(673): TaintLog: addTaintFile(36): adding 0x00000400 to 0x00000000 =

0x00000400}.

Of course, when performing the two operations into the
same application (reading IMEI and sending it), Taint-
Droid would detect the data leakage and would notify the
user.

We could not evaluate our malware against CHEX [9]
and QuantDroid [36] because they are not available online
or not released yet. Nevertheless, we think that CHEX
and QuantDroid would miss our covert channels because
CHEX focuses on component hijacking when exposing
some components of an application and QuantDroid mon-
itors IPC communication to detect implicit flows.

An approach called XManDroid [37] is capable to defeat
covert channels in Android [30]. To achieve this goal,
XManDroid inspects the inter-component communication
(ICC) calls or the use of the system API in order to prevent
forbidden information flows. The approach monitors the
data written by an application into the system API and
afterwards read by another application. We assume that
XManDroid is capable of detecting at least our screen
state-based covert channel and it is possible that the
other covert channels will be detected as well. Neverthe-
less, it requires to correctly define the security policy of
XManDroid for all possible covert channels. Moreover,
using a too restrictive security policy may break regular
applications.

2A video of this experiment is available at url2: http://dai.ly/x10lcyq.
A QR code for this url can be found at the end of this paper.



VI. DISCUSSION

In this section, we will first highlight means to counter
our presented covert channels and we will afterwards
discuss further means adapted from the area of network
covert channels to improve the functionality of the chan-
nels.

A. Covert Timing Channel Limitation Means

Since we observe the process priority, the screen state,
or the task list at given time intervals to realize the data
transfer, our covert channels must be considered as covert
timing channels. The limitation of a covert timing channel
as well as its detection were discussed in the related work
section but will be set in the specific context of our covert
channels in this section.

1) Fuzzy Time: In 1991, Hu developed the concept of
fuzzy time to limit the timing channel capacity between
virtual machines in the VAX security kernel [38]. While
only the kernel knows the exact current time, all virtual
machines were provided with slightly different timing
information. If this concept would be applied to Android,
only the kernel would know the real system time but
applications would be provided with slightly incorrect
times in a way that it does not effect the general operation
of the applications. It is also thinkable to turn off a
fuzzy time for selected system applications. However, by
configuring the fuzzy time, the channel capacity of our
screen state-based channel could be limited but the covert
channel could not be completely eliminated.

Alternatively, using delays can help to reduce the covert
channel throughput. In our case, requests to the process
list and their priorities could be delayed. Nevertheless, if
only few information (e.g., a password) shall be leaked,
even a tiny channel capacity must be considered valuable
for an attacker – especially since many smartphones are
permanently connected to the Internet and can thus provide
a slow but constant data leakage.

2) Machine Learning and Barrier Values: While fuzzy
time aims on limiting the covert channel capacity, we
assume that an a posteriori detection would be feasible
as well.

The detection of covert timing channels usually eval-
uates inter packet gaps [28], [29], i.e., the timing inter-
vals between network packets. Since our covert channels
change the usual screen behavior or process list/prior-
ity API call behavior of the Android phone, statistical
differences between the normal API call behavior and
the behavior with a running malware are generated. It
must be assumed, that these statistical differences can
be detected similarly like inter packet gap-based timing
channels. However, up to now, no detection approach for
the anomalies created by our channels is available.

We assume that a machine learning-based detection
could be applied to the screen state behavior (e.g., using
the C4.5 algorithm to create a decision tree and by
providing it with recorded behavior such as screen state
switches per second within a list of time slices). The C4.5
algorithm was already applied in [29] to detect covert

timing channels based on the timing intervals between
network packets. We will evaluate the machine learning-
based detection in future work for which screen state data
of smart phones from different users must be recorded in
order to provide a high number of data sets for regular
smart phone behavior and use. These recordings are nec-
essary to obtain accurate results when regular behavior is
compared with malicious behavior. Similarly, process list
requests could be observed and C4.5 could be used to
detect such process list-based covert channels.

In an eased version, barrier values could be used. In
such a case, a covert channel alert could be generated if,
for instance, more than n screen state switches per second,
more than n requests to the process table, or more than
n process priority requests (e.g., n ≥ 1/2 process priority
requests per second) occur over a period of i seconds
(e.g., i ≥ 10 seconds). This approach is very similar
to common port scan detection algorithms which alert a
system’s administrator if more than n ports are scanned
for a period of i seconds.

It is also thinkable to introduce fuzzy results into
methods if a given barrier is reached: in order to test
the effect that a barrier can have against the covert
channel CC#3, we implemented a barrier into the JNI call
from Process.getThreadPriority(pid). The JNI call executes
the function android_os_Process_setCallingThreadPriority
that we patched using the following code:

static int barrier = 0;
jint android_os_Process_getThreadPriority(JNIEnv∗ env, jobject clazz, jint pid)
{

int barrier_size = 1; // controls barrier size
barrier++;
if (barrier >= 1000 && barrier < 1000 + barrier_size)

return −1;
if (barrier >= 1000 + barrier_size)

barrier = 0;
...

This way, the variable end_of_barrier controls the
amount of times a fake value is returned to the calling ap-
plication. In Figure 7, we measured the effect of the barrier
size on the correctness of the transmission of a message
containing 52 characters (the message is "A. . . Za. . . z"
and ∆ T = 2s). With barrier_size = 0, the barrier
is inactive. With barrier_size = 1, the barrier will be
activated one time over 1001 calls, which is not a big
issue for CC#3 because it will probably happen during
the scan of all processes. The barrier has an impact on
CC#3 if the barrier is activated during the transmission.
Figure 7 shows that increasing the barrier size increases
the disruption of the message. Even if this countermeasure
seems to easily defeat our covert channel, it is not sure
that such a code could be deployed at a large scale without
impacting the use of normal applications.

B. Adaptive Covert Channel Techniques

We proposed a communication between sending and
receiving applications based on time intervals and task
monitoring/process priorities to provide a high-quality
communication. However, it would be feasible to extend
our approach to become more reliable if existing covert



G
o

o
d

 /
 w

ro
n

g
 /

 d
ro

p
p

e
d

 b
y
te

s
 r

a
ti
o

0

10

20

30

40

50

barrier size (int)

0 510 40 80 120 160 200 250 300
Good: byte accurately received

Error: wrong byte received

Dropped: the byte has not been received

Figure 7. Transmission errors depending of the barrier size for CC#3

channel features such as internal control protocols [32],
[39] or adaptive covert communication [40] would be
included. The features discussed in this section are used
in the context of network covert channels and this paper
is the first to propose such features for local covert timing
channels.

Internal control protocols for covert channels are tiny
protocol headers placed inside the covert information.
These additional information slow down a covert channel
but add sequence numbers, acknowledgement values, flags
to indicate connection states, or small checksums to the
covert channel. Such control protocol headers must not
be represented by an area in a network packet but could
also be encoded in our covert channels if the control
channel is extended to encode additional values which
are usually encoded in header fields (e.g., one could use
multiple process IDs at the same time to represent more
information).

Since covert channels do only provide limited space
for meta information such as sequence numbers, Ray and
Mishra implemented the stop-and-wait automatic repeat
request (ARQ) approach for their reliable communication
[32]. In ARQ, a sender waits for the acknowledgement
of a packet before the next packet is sent. Ray and
Mishra implemented a two bit sequence number and a
two bit expected sequence number for ARQ. Using ARQ,
a sequence number cannot be used twice and thus, an
overrun of a sequence number is prevented although it
only comprises few bits. Being easy to implement, ARQ
could be realized using additional process priorities as an
extended control channel for Android.

Adaptive covert channels, on the other hand, are ca-
pable of changing their communication behavior based
on the current situation [40]. For instance, if a covert
channel utilizes the ICMP protocol for a connection and
a change in a firewall configuration results in blocked
ICMP packets, an adaptive covert channel is capable to
switch to another network protocol (e.g. IRC, HTTP, or a
streaming protocol) to bypass the firewall. In the context
of Android, multiple covert channel techniques could be
utilized simultaneously in order to bypass future protection
means. For instance, if the data channel is blocked, the
application will – if full-duplex – receive no response and
thus, can try using another data channel to bypass the new
protection means.

VII. CONCLUSION

We presented novel covert channels for Android. Our
covert channels overcome existing protection means like
TaintDroid. Although the bandwidth of our presented
channels is low in comparison to existing covert channels,
the quality of the data transmission is high since we split
our covert channels into a control channel to start and stop
a transaction, and a data channel that transfers the actual
hidden information. To minimize the raised attention, our
channels comprise a low energy consumption, minimize
disruptions of the smartphone use, and require only few
privileges in the Android system.

The experimental results indicate that a good malware
design helps to obtain a low energy consumption during
the transmission which is important in order to achieve
stealthiness. Choosing the right way of implementing the
covert channel is also important to utilize as less Android
permissions as possible. Two of our covert channels do
not require any Android permission in order to work.

Future work will add adaptive covert channel techniques
to our approach as well as it will evaluate the use of a
machine learning-based covert channel detection.

REFERENCES

[1] I. Asrar, “Android Threat Tackles Piracy Using Austere
Justice Measures,” Irfan Asrar’s blog, 2011.

[2] B. Morrow, “BYOD security challenges: control and protect
your most sensitive data,” Network Security, vol. 2012,
no. 12, pp. 5–8, Dec. 2012.

[3] D. Barrera and P. Van Oorschot, “Secure Software Installa-
tion on Smartphones,” IEEE Security & Privacy Magazine,
vol. 9, no. 3, pp. 42–48, 2011.

[4] C. Orthacker, P. Teufl, S. Kraxberger, A. Marsalek, J. Lei-
betseder, and O. Prevenhueber, “Android Security Permis-
sions – Can we trust them?” in 3rd Int. ICST Conf. on
Security and Privacy in Mobile Information and Commu-
nication Systems (MOBISEC 2011), vol. 3, 2011, p. 12.

[5] S. Mansfield-Devine, “Android architecture: attacking the
weak points,” Network Security, vol. 2012, no. 10, pp. 5–
12, Oct. 2012.

[6] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A.-D.
Schmidt, and S. Albayrak, “Using static analysis for auto-
matic assessment and mitigation of unwanted and malicious
activities within Android applications,” in 6th International
Conference on Malicious and Unwanted Software. IEEE
Computer Society, Oct. 2011, pp. 66–72.

[7] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and
S. Albayrak, “An Android Application Sandbox system
for suspicious software detection,” in 5th International
Conference on Malicious and Unwanted Software. IEEE,
Oct. 2010, pp. 55–62.

[8] M. Graa, N. Cuppens-boulahia, and A. Cavalli, “Detecting
Control Flow in Smarphones: Combining Static and Dy-
namic Analyses,” in The 4th International Symposium on
Cyberspace Safety and Security. Melbourne, Australia:
Springer, Dec. 2012, pp. 33–47.

[9] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX:
statically vetting Android apps for component hijacking
vulnerabilities,” in ACM conference on Computer and com-
munications security - CCS ’12. Raleigh, NC, USA: ACM
Press, 2012, p. 229.

[10] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-
P. Wu, “DroidMat: Android Malware Detection through
Manifest and API Calls Tracing,” 2012 Seventh Asia Joint
Conference on Information Security, pp. 62–69, Aug. 2012.



[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “TaintDroid: an information-
flow tracking system for realtime privacy monitoring on
smartphones,” in 9th USENIX Symposium on Operating
Systems Design and Implementation. Vancouver, BC,
Canada: USENIX Association, Oct. 2010, pp. 393–407.

[12] M. Nauman, S. Khan, and X. Zhang, “Apex: extending An-
droid permission model and enforcement with user-defined
runtime constraints,” in 5th ACM Symposium on Informa-
tion, Computer and Communications Security. Beijing,
China: ACM Press, Apr. 2010, pp. 328–332.

[13] G. Russello, B. Crispo, E. Fernandes, and Y. Zhauniarovich,
“YAASE: Yet Another Android Security Extension,” in
Third IEEE International Conference on Information Pri-
vacy, Security, Risk and Trust. MIT, USA: IEEE Computer
Society, Oct. 2011, pp. 1033–1040.

[14] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun,
“Analysis of the communication between colluding appli-
cations on modern smartphones,” in 28th Annual Computer
Security Applications Conference. Orlando, Florida, USA:
ACM Press, Dec. 2012, pp. 51–60.

[15] A. Armando, A. Merlo, M. Migliardi, and L. Verderame,
“Would you mind forking this process? a denial of service
attack on android (and some countermeasures),” in SEC,
ser. IFIP Advances in Information and Communication
Technology, D. Gritzalis, S. Furnell, and M. Theoharidou,
Eds., vol. 376. Springer, 2012, pp. 13–24.

[16] C. Mulliner, “Privacy leaks in mobile phone internet ac-
cess,” in Proc. 14th International Conference on Intel-
ligence in Next Generation Networks, Berlin, Germany,
October 2010, pp. 1–6.

[17] P. Stirparo and I. Kounelis, “The MobiLeak project: Foren-
sics methodology for mobile application privacy assess-
ment,” in Proc. 7th International Conference for Internet
Technology and Secured Transactions, London, UK, 2012,
pp. 297–303.

[18] B. W. Lampson, “A note on the confinement problem,”
Commun. ACM, vol. 16, no. 10, pp. 613–615, 1973.

[19] S. Zander, G. J. Armitage, and P. Branch, “A survey of
covert channels and countermeasures in computer network
protocols,” IEEE Communications Surveys and Tutorials,
vol. 9, pp. 44–57, 2007.

[20] Z. Li, A. Goyal, and Y. Chen, “Honeynet-based botnet scan
traffic analysis,” in Botnet Detection, 2008, pp. 25–44.

[21] J. C. Wray, “An analysis of covert timing channels,” in
Proc. 1991 Symposium on Security and Privacy. Oakland,
CA: IEEE Computer Society, 1991, pp. 2–7.

[22] C. H. Rowland, “Covert channels in the TCP/IP protocol
suite,” First Monday, vol. 2, no. 5, May 1997.

[23] N. B. Lucena, G. Lewandowski, and S. J. Chapin, “Covert
channels in IPv6,” in 5th Int. Workshop on Privacy Enhanc-
ing Technologies, ser. LNCS. Cavtat, Croatia: Springer,
2005, vol. 3856, pp. 147–166.

[24] R. Accorsi and C. Wonnemann, “Detective information
flow analysis for business processes,” in Business Pro-
cesses, Services Computing and Intelligent Service Man-
agement, ser. Lecture Notes in Informatics, vol. 147,
Leipzig, Germany, 2009, pp. 223–224.

[25] R. A. Kemmerer, “Shared resource matrix methodology:
an approach to identifying storage and timing channels,”
ACM Transactions on Computer Systems, vol. 1, no. 3, pp.
256–277, 1983.

[26] P. A. Porras and R. A. Kemmerer, “Covert flow trees:
A technique for identifying and analyzing covert storage
channels,” in 1991 IEEE Symp. on Security and Privacy,
Oakland, CA, 1991, pp. 36–51.

[27] M. H. Kang and I. S. Moskowitz, “A pump for rapid,
reliable, secure communication,” in Proceedings of the

1st ACM Conference on Computer and Communication
Security, 1993, pp. 119–129.

[28] V. H. Berk, A. Giani, and G. V. Cybenko, “Detection
of covert channel encoding in network packet delays,”
Department of Computer Science - Dartmouth College,
Tech. Rep., 2005.

[29] S. Zander, “Performance of selected noisy covert chan-
nels and their countermeasures in ip networks,” Ph.D.
dissertation, Centre for Advanced Internet Architectures,
Swinburne University of Technology, 2010.

[30] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia,
and X. Wang, “Soundcomber: A Stealthy and Context-
Aware Sound Trojan for Smartphones,” in Network and
Distributed System Security Symposium. San Diego,
California, USA: The Internet Society, Feb. 2011.

[31] H. Kim, J. Smith, and K. G. Shin, “Detecting energy-
greedy anomalies and mobile malware variants,” in The 6th
international conference on Mobile systems, applications,
and services. Breckenridge, Colorado, USA: ACM Press,
Jun. 2008, pp. 239–252.

[32] B. Ray and S. Mishra, “A protocol for building secure
and reliable covert channel,” in Proceedings of the Sixth
Annual Conference on Privacy, Security and Trust (PST
2008). Fredericton, New Brunswick, Canada: IEEE, 2008,
pp. 246–253.

[33] S. Wendzel and J. Keller, “Systematic engineering of con-
trol protocols for covert channels,” in Proc. 13th Conf. on
Communications and Multimedia Security, ser. LNCS, vol.
7394. Springer, 2012, pp. 131–144.

[34] R. L. Solso and J. F. King, “Frequency and versatility of
letters in the english language,” Behavior Research Methods
& Instrumentation, vol. 8, pp. 283–286, 1976.

[35] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang, “Accurate online power estimation and
automatic battery behavior based power model generation
for smartphones,” in IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign and system synthesis,
ser. CODES/ISSS ’10. ACM, 2010, pp. 105–114.

[36] T. Markmann, D. Gessner, and D. Westhoff, “QuantDroid:
Quantitative approach towards mitigating privilege esca-
lation on android,” in IEEE International Conference on
Communications, Budapest, Hungary, 2013.

[37] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R.
Sadeghi, “XManDroid: a new android evolution to mitigate
privilege escalation attacks,” TU Darmstadt, Tech. Rep. TR-
2011-04, 2011.

[38] W.-M. Hu, “Reducing timing channels with fuzzy time,” in
1991 Symposium on Security and Privacy, IEEE Computer
Society, Oakland, CA, 1991, pp. 8–20.

[39] D. Stødle, “Ping tunnel – for those times when everything
else is blocked,” 2009.

[40] F. V. Yarochkin, S.-Y. Dai, C.-H. Lin, Y. Huang, and S.-Y.
Kuo, “Introducing P2P architecture in adaptive covert com-
munication system,” in First Asian Himalayas International
Conference on Internet, 2009. AH-ICI 2009, Kathmandu,
Nepal, 2009, pp. 1–7.

ACKNOWLEDGMENT

This work is supported by French National Agency
(ANR) through the “Ingénierie Numérique et Sécurité”
Program (Project LYRICS noANR-11-INSE-0013).

url1: url2:


