
International Journal of Computational Linguistics and Applications

IJCLA VOL. 5, NO. 1, JAN-JUN 2014, PP. 135–158

RECEIVED 13/04/14 ACCEPTED 02/06/14 FINAL 24/06/14

Should Syntactic N-grams Contain

Names of Syntactic Relations?

GRIGORI SIDOROV

Instituto Politécnico Nacional, Mexico

ABSTRACT

In this paper, we discuss a specific type of mixed syntactic n-

grams: syntactic n-grams with relation names, snr-grams. This

type of syntactic n-grams combines lexical elements of the

sentence with the syntactic data, but it keeps the properties of

traditional n-grams and syntactic n-grams. We discuss two

possibilities related to labelling of the relation names for snr-

grams: based on dependencies and based on constituencies.

Examples of various types of n-grams, sn-grams, and snr-grams

are given.

1 INTRODUCTION

In our previous works starting in 2012 we proposed a concept of

syntactic n-grams (Sidorov, Velasquez, Stamatatos, Gelbukh &

Chanona-Hernandez 2012, 2013, 2014; Sidorov 2013a, 2013b, 2013c).

This concept is quite on the agenda of the computational linguistics:

say, our works obtained many positive feedback comments, besides,

the same concept was implemented independently for English language

in the form of a large collection of syntactic n-grams obtained from

books by (Goldberg and Orwant, 2013), while they were working on

this project in Google.

Let us remind that syntactic n-grams are n-grams of textual

elements obtained in a specific non-linear manner based on syntactic

relations (Sidorov 2013c), i.e., instead of using the order of elements in

2 GRIGORI SIDOROV

the surface structure, the syntactic structure is used. For obtaining

syntactic n-grams, we traverse the syntactic tree and use the order of

elements in it. It is equivalent (but probably less clear) to say that we

use subtrees of a syntactic tree as syntactic n-grams. It is obvious that

the syntactic structure is non-linear with respect to the surface

structure: the order of elements is usually changed. We discuss the

concept of syntactic n-grams in greater detail in the next section.

Note that syntactic n-grams can be used in any task in the field of

the Natural Language Processing, when traditional n-grams can be

applied. It is especially important in the modern paradigm related to

application of machine learning algorithms, because this paradigm is

completely based on the concept of vector space model and feature

selection, where the features are precisely n-grams or syntactic n-

grams.

Machine learning simulates human ability for classification of

objects based on their similarity. What the best features selected for

similarity calculus are, depends on every specific task, for example, for

thematic classification of documents we need to take into account

words that are thematically related to each topic and ignore auxiliary

words, while, say, for analysis of author's writing style we would prefer

to focus precisely on auxiliary words, because they may reflect the

style. Both supervised and unsupervised machine learning algorithms

can be applied using syntactic n-grams as features in the corresponding

vector space model.

An alternative to machine learning methods is the paradigm based

on formulation and application of hand crafted rules. This paradigm

was prevalent until the end of the 20th century (Bolshakov, Gelbukh

2004). In this paradigm, the human evaluators analyze the example data

of the problem, try to propose some hypotheses about the structure and

function of the phenomena related to the problem and after this extract

problem-dependent features and formulate rules. These rules usually

correspond to selectional preferences, i.e., the generalized restrictions

on combination between elements. The current state of the art is that

machine learning algorithms—if they have sufficiently large marked

corpus for training—outperform human crafted rules. Note that the

human effort is still present, though it is moved from formulation of the

rules to marking of the corpora (Gelbukh 2013).

The advantage of machine learning algorithms over humans is that

these algorithms are consistent and consider many variants during

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 3

feature selection using vast data, while humans are not consistent,

cannot process big volumes of data, and cannot generalize over too

many examples. Obviously, the humans are better than the computers

while marking the corpora using intuition, because they can use the

extra linguistic world knowledge and common sense, which computers

do not possess, for understanding of individual sentences or texts. But it

seems that given a marked corpus, a machine learning algorithm can

perform better feature selection than a human.

The rest of the paper is organized as follows. Dependency and

constituency representations of syntactic relations are discussed in

Section 2. In Section 3, we describe the concept of syntactic n-grams

and present their various types. In Section 4 we propose the concept of

syntactic n-grams with relation names (snr-grams) and give some

examples of their extraction using formalisms of dependencies and

constituencies. Finally, conclusions are drawn in Section 5.

2 CONSTITUENCIES VS. DEPENDENCIES

AS SYNTACTIC REPRESENTATIONS

There are two main formalisms for representation of syntactic structure:

dependencies and constituents. The dependency formalism directly

reflects relations between words, usually using arrows. Since one word

in a syntactic relation is the head word, while the other one is the

dependent word, the arrow has the direction: head→dependent. The

arrows are labelled with the types of syntactic relations. If there is no

natural head, like, say, in case of a coordinative relation, some decision

about the head/dependent words should be made anyway.

The constituency formalism represents syntactic relations with

respect to the underlying formal grammar and reflects the history of the

syntactic tree derivation according to this grammar. The syntactic

relations between words are established on the basis of the applied

grammar rules: derivation history. Note that some relations are

established not between words themselves, but between constituents,

which represent the result of the previous application of the rules.

Constituency trees have longer history in usage in the

computational linguistics, because they are directly related to

application of generative grammars (N. Chomsky). Modern approaches

pay more attention to dependency trees, because they are more natural

4 GRIGORI SIDOROV

and direct. Besides, they contain the information about the syntactic

roles of words, like “direct object”, “subject”, etc.

2.1 Example of the Representation of a Syntactic Tree

Let us present an example of the dependency and constituency

formalisms for a syntactic tree, for instance, for the phrase John sees a

black cat with a telescope. The syntactic tree that uses dependency

formalism is shown in Fig. 1. We also show the POS tags of each word

on the next line below the corresponding word.

The example of representation of the same phrase using the

formalism of constituencies is shown in Fig. 2. In this case, we mark

with wider line the part of the constituent that corresponds to the head

word. We also show in the tree structure the left parts of the applied

rules, i.e., the generalization introduced by each rule.

This constituency tree is generated by the following very simple

formal grammar. It is clear that real parsers can use more complex or

more general rules, but for our discussion this grammar is sufficient.

We mark with “*” the head elements in the rules.

S → NNP VP*

VP → VP* PP

NP → JJ NN*

NP → DT NN*

NP → DT NP*

PP → IN* NP

pobj

prep
dobj

nsubj

amod
det

det

John sees a black cat with a telescope

NNP VBZ DT JJ NN IN DT NN

Fig. 1. Example of a dependency tree.

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 5

VP → VBZ* NP

The derivation history of the phrase is the order of application of

the grammar rules. For example, we start with the rules that correspond

directly to words (terminal nodes) “NP → DT NN*”, “NP → JJ NN*”.

After this, the “intermediate” rules like “VP → VBZ* NP” are applied

and finally the “top” rule “S → NNP VP*” is used. This derivation

history corresponds to the analysis strategy “bottom-up”, being the

other possible strategy the reverse order of application of the rules:

“top-down”.

2.2 Conversion between Constituencies and Dependencies

It is well-known that dependency and constituency formalisms are

equivalent in general, i.e., there exists an algorithm that transforms the

dependency tree structure into the constituency tree structure and vice

versa (Gelbukh, Calvo, Torres 2005). It is not surprising, because both

types of trees reflect the same syntactic reality. Note that this is only

general (structural) conversion, as it does not convert the syntactic

labels in both directions.

The algorithm for constituency to dependency general conversion

is simple. For each word that is a head word (it is marked with “wider”

line) go up in the tree. At each step (while going up following the

NP

P

PP

VP

VP

NP

NP

NP

S

John sees a black cat with a telescope

NNP VBZ DT JJ NN IN DT NN

Fig. 2. Example of a constituency tree.

6 GRIGORI SIDOROV

constituents) go down to a dependent constituent. After this follow

downwards the head relations only (the “wider” line) and draw the

arrow from the head word to the obtained dependent word. Continue

going up in the tree from the point, when you start going down.

For constituency to dependency general conversion, the formal

grammar should mark the words that are heads on the right side of the

rules, because otherwise we would not know the directions of the

dependency arrows. Note that if the grammar does not mark them, the

marking can be done in a random manner, but obviously with not so

good results: the conversion will be done, but some arrows would have

anti-intuitive directions. It is also clear that the resulting dependency

tree does not contain the names of syntactic relations for the arrows.

The algorithm for dependency to constituency general conversion

is also simple. We start with arrows at the lowest level and go to upper

levels. For each arrow we establish a constituent relation for the pair of

words, being the head word the starting point of the arrow. If the head

word already forms a constituent, then this constituent should be used

instead of the word itself. Some additional conventions are necessary,

for example, in case of bifurcations, we first process the arrows that are

the closest ones to the word, or that nsubj relation is processed last.

It is clear that for dependency to constituency general conversion

the resulting constituency tree does not have the interpretation of

constituents (left parts of the rules represented in the tree structure),

because it is precisely what the formal grammar does; in certain sense,

the resulting representation will lack of generalization for constituents.

3 SYNTACTIC N-GRAMS

As we mentioned above, we introduced the concept of syntactic n-

grams in our previous works (Sidorov et al. 2012, 2013, 2014; Sidorov

2013a, 2013b, 2013c). Similar ideas were proposed in (Pado, Lapata

2007; Gelbukh 1999), but they were treated as very specific methods

for certain tasks of syntactic or semantic analysis. The importance of

the concept is confirmed by the fact that Google obtained and made

public syntactic n-grams for a large set of books in English (Goldberg

and Orwant, 2013).

In our early works we preferred to use the term "syntactic

dependency based n-grams", adding the words "dependency based". It

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 7

was important, because there is possible naive misinterpretation of the

term "syntactic n-grams" as "sequence of POS tags", because POS tags

are perceived as carrying some syntactic information. In fact, it is not

true: POS tags are more morphological than syntactic phenomena—the

syntactic information is used only for disambiguation between several

possible POS tags for a word. At most, we can consider them as

morphosyntactic entities. Now, as the term "syntactic n-grams, sn-

grams" is more habitual, we can omit the words "dependency based".

Note that we say "dependency based" (and not "constituency based"),

because syntactic dependencies are much more direct projection of

syntactic paths for construction of sn-grams. Constituencies can be

applied to construction of sn-grams as well, though not so naturally, see

discussion in Sections 2 and 4.

So, while traditional n-grams are sequences of textual elements

(words, POS tags, etc.) taken as they appear in texts, the general idea

behind syntactic n-grams is to take the surface textual elements in a

non-linear order by following paths in syntactic trees. In this case, the

order of textual elements is usually changed in comparison with the

surface structure.

3.1 Types of Syntactic N-grams

In our previous works, we have proposed the classification of syntactic

n-gram types. Depending on the elements that constitute them, there

can be syntactic n-grams of words/lemmas/stems (lexical elements),

POS tags, SR tags (names of Syntactic Relations), multiword

expressions (Gelbukh, Kolesnikova 2013a, 2013b; Ledeneva, Gelbukh,

García-Hernández 2008), and even of characters (Sidorov et al.

2013, 2014).

For obtaining character sn-grams, we first construct sn-gram of

lexical units (words or lemmas) and then character sn-grams are

constructed over this sequence in the same way as it is done for

traditional character n-grams. Note that for this procedure it is

preferable to use sn-grams that contain most number of elements (long

sn-grams, n-grams with large values of n), but each lexical element

should be considered at least once. There is a problem for future

research: how to calculate correctly the frequencies of character sn-

grams obtained in this manner, because many elements in sn-grams are

repeated.

8 GRIGORI SIDOROV

There also can be mixed sn-grams, for example, one element in an

sn-gram is a POS tag and the other one is a lexical unit. Note that

character sn-grams cannot be naturally mixed with other types of sn-

grams, because they have different nature: all other types of sn-grams

reflect properties of words (lexical unit, POS tag), even SR tags reflect

the relations of a word with other word, while character sn-grams are

sequences of characters obtained from already existing sn-grams of

lexical units, so they are derivate, and in a certain sense they are

secondary. We insist on considering them because in certain tasks, like,

for example, authorship attribution, traditional character n-grams quite

surprisingly give very good results, so character sn-grams should be

tried as well.

On the other hand, in (Sidorov, 2013a) we have proposed

differentiating between continuous (non-interrupted path, path without

bifurcations) and non-continuous (path with interruptions or returns (or

bifurcations)) syntactic n-grams. It is obvious that continuous sn-grams

are a special type of non-continuous sn-grams, namely sn-grams with

no returns (without bifurcations). Intuitively, we consider that

continuous sn-grams can contain more important linguistic information,

but it should be verified for various tasks in the experimental manner. It

is clear that for syntactic bigrams there is no difference between

continuous and non-continuous sn-grams, because no bifurcations are

possible in case of exactly two elements in an n-gram.

Note that here appears another possible naive misinterpretation of

the general term “syntactic n-grams” that would be “n-grams of names

of syntactic relations (SR tags)”. It is possible, because these sn-grams

can be obtained only if we apply parsing before. Nevertheless, this

interpretation is too narrow: yes, it is the possible type of sn-grams, but

there are other types as well. In general, while speaking about syntactic

n-grams we refer not to a specific type of elements (SR tags, words,

etc.), but to the manner of their construction by following paths in

syntactic trees.

Another important consideration is related to the traditional

practice of treatment of stop words (auxiliary words). There are two

possibilities: taking them into account vs. filtering out of stop words.

The possibility of filtering out of stop words can be easily applied to

syntactic n-grams: we should follow syntactic paths and when we

encounter with a stop word, we ignore it and just continue with the next

word according to the path. In fact, this idea was generalized as

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 9

“filtered n-grams” in (Sidorov 2013c): we can filter out not only stop

words, but any words that do not comply with any chosen criterion, for

example, it can be a thresholds based on tf-idf values.

Finally, we would like to mention that the elements of the same

level in an sn-gram can be taken as they appear in the sentence, or can

be reordered according to some criteria, for example, using the

alphabetic order of the elements. The first possibility takes into account

the word order in the sentences, while the second one tries to ignore

possible (insignificant) changes in the word order.

3.2 Extraction of Syntactic N-grams and their Representation

The software for extraction of syntactic n-grams is available on the

Web page of the author
1
. It takes as the input the file generated by the

Stanford parser (de Marneffe, MacCartney, Manning 2006) and it

produces sn-grams of the desired size and type.

Note that the software also treats in a practical manner the problem

of exponential growth of the number of sn-grams in case of too many

dependents of a word. This problem consists in the fact that if the

number of the dependent words is large, say, more than six, then the

number of possible combinations (i.e., non-continuous sn-grams) may

become too large. It is very rare situation to have so many dependent

words, but it may appear in real life, especially if something went

wrong with parsing or if we want to treat punctuation (like parenthesis)

and the parser chooses one word as their head.

For the example in Fig. 1 and Fig. 2, the Stanford parser generates

the output presented in Fig. 3 and Fig. 4 correspondingly.

Let us now discuss how to represent syntactic n-grams. If we use

only continuous sn-grams, then we can represent them using the

sequences of words just like in case of the traditional n-grams. But if

we start considering non-continuous sn-grams, then it turns out that we

need special metalanguage for their representation, namely for

distinguishing the words that form a sequence from the words that have

returns in the path (bifurcations).

For example, if we have three words A, B, C and we want to

express that both B and C are dependent from A, i.e., there is a return in

the path (a bifurcation), then we separate B and C with a comma and

1
 http://www.cic.ipn.mx/~sidorov

10 GRIGORI SIDOROV

put them into the brackets: “A [B, C]”. If there is no bifurcation that

means that C depends from B and B depends from A, then we just write

“A B C”. In the current version of our software we add more brackets:

“[A[B[C]]]” and “[A[B,C]]”. This notation reflects more consistent use

of brackets in each node and better shows the underlying tree structure.

Note that if used uniformly, it does not affect the identity of sn-grams.

3.3 Example of Extraction of Syntactic N-grams

Let us consider the example presented in Fig. 1. The second line of the

example contains the POS tags for each word. It is obvious that we can

substitute lexical units with their lemmas, for example, use see instead

of sees, as well as with their POS tags, for instance, use VBZ instead of

sees or NN instead of telescope, etc. Thus, we suppose that the reader

understands this possibility and we will not illustrate it in the figure and

in further discussion: we should just remember that while we use

words, they can as well be substituted by lemmas or POS tags, or any

combinations of these elements. As we mentioned in our previous

nsubj(sees-2, John-1)

root(ROOT-0, sees-2)

det(cat-5, a-3)

amod(cat-5, black-4)

dobj(sees-2, cat-5)

prep(sees-2, with-6)

det(telescope-8, a-7)

pobj(with-6, telescope-8)

Fig. 3. Results of the analysis using dependencies.

(ROOT

 (S

 (NP (NNP John))

 (VP (VBZ sees)

 (NP (DT a) (JJ black) (NN cat))

 (PP (IN with)

 (NP (DT a) (NN telescope))))

))

Fig. 4. Results of the analysis using constituencies.

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 11

works, it is a question of future experimental research to determine

what types of sn-grams or mixed sn-grams are useful for particular

tasks.

Let us extract all possible traditional n-grams and syntactic n-

grams of various sizes and types from the example sentence. First, we

present traditional n-grams of words of various sizes and syntactic n-

grams of the same sizes in Tables 1-6. We start with bigrams and go till

7-grams. Note that in practical tasks of the computational linguistics,

we usually do not need larger size of n-grams, because they do not

repeat any more in texts, i.e., their frequency is always equal to 1 in any

corpus and they are practically useless.

Table 1. Traditional and syntactic bigrams.

Traditional bigrams Syntactic bigrams

John sees sees[with]

sees a telescope[a]

a black sees[cat]

black cat cat[black]

cat with with[telescope]

with a cat[a]

a telescope sees[John]

Table 2. Traditional and syntactic trigrams.

Traditional trigrams Syntactic trigrams

John sees a with[telescope[a]]

sees a black sees[cat,with]

a black cat sees[John,cat]

black cat with sees[John,with]

cat with a sees[cat[a]]

with a telescope sees[with[telescope]]

 cat[a,black]

 sees[cat[black]]

12 GRIGORI SIDOROV

Table 3. Traditional and syntactic 4-grams.

Traditional 4-grams Syntactic 4-grams

John sees a black sees[cat[a,black]]

sees a black cat sees[John,with[telescope]]

a black cat with sees[cat[a],with]

black cat with a sees[John,cat[black]]

cat with a telescope sees[John,cat,with]

 sees[cat,with[telescope]]

 sees[John,cat[a]]

 sees[cat[black],with]

 sees[with[telescope[a]]]

Table 4. Traditional and syntactic 5-grams.

Traditional 5-grams Syntactic 5-grams

John sees a black cat sees[John,cat[black],with]

sees a black cat with sees[cat[a,black],with]

a black cat with a sees[John,with[telescope[a]]]

black cat with a telescope sees[John,cat[a,black]]

 sees[cat[black],with[telescope]]

 sees[cat[a],with[telescope]]

 sees[John,cat,with[telescope]]

 sees[cat,with[telescope[a]]]

 sees[John,cat[a],with]

Table 5. Traditional and syntactic 6-grams.

Traditional 6-grams Syntactic 6-grams

John sees a black cat with sees[John,cat[a,black],with]

sees a black cat with a sees[John,cat[a],with[telescope]]

a black cat with a telescope sees[John,cat,with[telescope[a]]]

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 13

 sees[cat[black],with[telescope[a]]]

 sees[cat[a],with[telescope[a]]]

 sees[John,cat[black],with[telescope]]

 sees[cat[a,black],with[telescope]]

Table 6. Traditional and syntactic 7-grams.

Traditional 7-grams Syntactic 7-grams

John sees a black cat with a sees[John,cat[a],with[telescope[a]]]

sees a black cat with a

telescope

sees[cat[a,black],with[telescope[a]]]

 sees[John,cat[black],with[telescope[a]]]

 sees[John,cat[a,black],with[telescope]]

It can be observed that syntactic n-grams are much more

linguistically motivated, because for their construction we use very

important linguistic knowledge: syntactic structure. For example,

traditional n-grams like “with a” or “sees a” no longer form part of the

features for machine learning algorithms. A counterargument might be

that these n-grams can appear consistently in the corpus. The answer to

this counterargument is that though it is true, these n-grams contain

more noise than real information, because there is no linguistic reality

behind them.

Now let us present syntactic n-grams of SR tags, Tables 7-12.

Obviously, there are no traditional n-grams that use this type of

elements.

Table 7. Syntactic bigrams of SR tags.

Syntactic bigrams

prep[pobj]

root[nsubj]

root[prep]

root[dobj]

dobj[amod]

14 GRIGORI SIDOROV

pobj[det]

dobj[det]

Table 8. Syntactic trigrams of SR tags.

Syntactic trigrams

prep[pobj[det]]

root[dobj,prep]

root[dobj[amod]]

root[nsubj,dobj]

dobj[det,amod]

root[prep[pobj]]

root[nsubj,prep]

root[dobj[det]]

Table 9. Syntactic 4-grams of SR tags.

Syntactic 4-grams

root[dobj,prep[pobj]]

root[nsubj,dobj,prep]

root[prep[pobj[det]]]

root[dobj[det],prep]

root[nsubj,dobj[amod]]

root[dobj[amod],prep]

root[nsubj,prep[pobj]]

root[nsubj,dobj[det]]

root[dobj[det,amod]]

Table 10. Syntactic 5-grams of SR tags.

Syntactic 5-grams

root[dobj[amod],prep[pobj]]

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 15

root[dobj,prep[pobj[det]]]

root[nsubj,dobj[amod],prep]

root[dobj[det,amod],prep]

root[nsubj,dobj[det,amod]]

root[dobj[det],prep[pobj]]

root[nsubj,prep[pobj[det]]]

root[nsubj,dobj,prep[pobj]]

root[nsubj,dobj[det],prep]

Table 11. Syntactic 6-grams of SR tags.

Syntactic 6-grams

root[nsubj,dobj[amod],prep[pobj]]

root[dobj[amod],prep[pobj[det]]]

root[dobj[det,amod],prep[pobj]]

root[nsubj,dobj[det,amod],prep]

root[dobj[det],prep[pobj[det]]]

root[nsubj,dobj[det],prep[pobj]]

root[nsubj,dobj,prep[pobj[det]]]

Table 12. Syntactic 7-grams of SR tags.

Syntactic 7-grams

root[nsubj,dobj[det,amod],prep[pobj]]

root[nsubj,dobj[amod],prep[pobj[det]]]

root[dobj[det,amod],prep[pobj[det]]]

root[nsubj,dobj[det],prep[pobj[det]]]

In a similar manner, we can construct syntactic n-grams using

constituency trees, namely, the derivation history, on the basis of

considerations presented in section 4. We give the example of bigrams

of relations based on derivation history in Table 13. The parentheses

are used for containing the corresponding fragment of the derivation

16 GRIGORI SIDOROV

history. In this case we consider that the relation “root” corresponds to

the left part of the rule with the element “S”. For comparison, we give

also the syntactic bigrams based on SR tags from Table 7.

Table 13. Syntactic bigrams of derivation history fragments.

Syntactic bigrams

based on derivation history

Syntactic bigrams

based on SR tags

(VP,VP,PP)[(PP,NP)] prep[pobj]

(S)[(NN)] root[nsubj]

(S)[(VP,VP,PP)] root[prep]

(S)[(VP,NP,NP)] root[dobj]

(VP,NP,NP)[(NP)] dobj[amod]

(PP,NP)[(NP)] pobj[det]

(VP,NP,NP)[(NP)] dobj[det]

4 SYNTACTIC N-GRAMS WITH RELATION NAMES

(SNR-GRAMS)

We hope that the reader now has clear idea about the concept of

syntactic n-grams and their types. Among types of syntactic n-grams

we mentioned that there can be mixed syntactic n-grams. In this sense,

we already considered the fact that syntactic n-grams can contain

names of syntactic relations mixed with other elements. Nevertheless,

there are considerations for drawing attention to this particular type of

sn-grams: they contain both lexical/morphological elements (words,

lemmas, POS tags) and at the same time the names of syntactic

relations (SR tags). Let us call these sn-grams that contain relation

names “snr-grams”, when we prefer to use the abbreviation.

It can be observed that snr-grams convey more information than

any other type of n-grams or sn-grams, and still they can be used as

features in machine learning tasks, when other n-grams can be used.

So, we believe that this type of sn-grams deserves special attention. We

have preliminary information that snr-grams performed better in the

task of the periphrasis as compared to n-grams and other types of sn-

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 17

grams (personal communication of Hiram Calvo, the corresponding

paper will be published soon).

There is also a certain problem that consists in how to count the

number of elements in snr-grams. If we count both words/POS tags

together with SR tags then, say, there will be no bigrams, and in

general, no n-grams with even values of n. So our suggestion, if we

deal with snr-grams, is counting only the elements different from SR

tags. In case that we deal with sn-grams of SR tags only, then,

obviously, we should count these elements (SR tags). In general, if we

want to use mixed n-grams, when certain elements are word based

(words, POS tags) and the other elements are relation based (SR tags),

we should count SR tags only if we do not want to take into account the

word based elements. For example, if we want to consider syntactic

bigrams, where the first element is the word and the second one is the

SR tag, then we treat the SR tags as the proper element of the bigrams.

On the other hand, if we are working with snr-grams, then SR tags

should not be counted for determining the snr-gram size.

Let us present snr-grams from the example above using SR tags as

part of snr-grams, Tables 14-16. We use parentheses to contain the

relation name, which is placed before each word. Note that it should

appear immediately before the word because of ambiguities of possible

bifurcations.

There are two possibilities for the first word in an snr-gram:

1. We can add to the first word of an snr-gram the

corresponding SR tag (the name of the corresponding

incoming arrow), because it always exists, or

2. We can leave the first word in an snr-gram without the SR

tag, because it does not connect this word to any other

element of the given snr-gram.

We choose the second option. For example, instead of the bigram

(pobj)telescope[(det)a], we write the bigram telescope[(det)a].

Table 14. Snr-grams of size 2 (SR tags).

Snr-grams

sees[(prep)with]

telescope[(det)a]

18 GRIGORI SIDOROV

sees[(dobj)cat]

cat[(amod)black]

with[(pobj)telescope]

cat[(det)a]

sees [(nsubj)John]

Table 15. Snr-grams of size 3 (SR tags).

Snr-grams

with[(pobj)telescope[(det)a]]

sees[(dobj)cat,(prep)with]

sees[(nsubj)John,(dobj)cat]

sees[(nsubj)John,(prep)with]

sees[(dobj)cat[(det)a]]

sees[(prep)with[(pobj)telescope]]

cat[(det)a,(amod)black]

sees[(dobj)cat[(mod)black]]

Table 16. Snr-grams of size 4 (SR tags).

Snr-grams

sees[(dobj)cat[(det)a,(amod)black]]

sees[(nsubj)John,(prep)with[(pobj)telescope]]

sees[(dobj)cat[(det)a],(prep)with]

sees[(nsubj)John,(dobj)cat[(amod)black]]

sees[(nsubj)John,(dobj)cat,(prep)with]

sees[(dobj)cat,(prep)with[(pobj)telescope]]

sees[(nsubj)John,(dobj)cat[(det)a]]

sees[(dobj)cat[(amod)black],(prep)with]

sees[(prep)with[(pobj)telescope[(det)a]]]

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 19

In the tables above, we used dependency trees for extraction of snr-

grams, but constituency trees can be used as well. There are several

possibilities related to which part of the derivation history of the

corresponding constituency tree should be included into the description

of each relation:

 Use the derivation history that is below the node vs. above

the node vs. both parts (above and below). These

strategies correspond to bottom-up parsing and top-down

parsing.

 Use only the left part of the rule vs. use the whole rule,

 Use only the last derivation vs. use the whole derivation

chain or several last steps (say, two, three, etc.).

We present the example for (1) the whole derivation chain,

(2) below the node, and (3) using the left part of the rule. Other

possibilities should be tried as well in experiments for particular tasks.

We start from the left element of a constituent, go up to the least

common node, and then go down to the right element. At each step we

take the left part of the corresponding rule. In tables 17-19 we present

the snr-grams of sizes 2, 3, and 4 extracted from the example sentence.

Table 17. Snr-grams of size 2 (derivation history).

Snr-grams based on constituencies

sees[(VP,VP,PP)with]

telescope[(NP)a]

sees[(VP,NP,NP)cat]

cat[(NP)black]

with[(PP,NP)telescope]

cat[(NP)a]

sees [(S,VP,VP)John]

Table 18. Snr-grams of size 3 (derivation history).

Snr-grams based on constituencies

with[(PP,NP)telescope[(NP)a]]

20 GRIGORI SIDOROV

sees[(VP,NP,NP)cat,(VP,VP,PP)with]

sees[(S,VP,VP)John,(VP,NP,NP)cat]

sees[(S,VP,VP)John,(VP,VP,PP)with]

sees[(VP,NP,NP)cat[(NP)a]]

sees[(VP,VP,PP)with[(PP,NP)telescope]]

cat[(NP)a,(NP)black]

sees[(VP,NP,NP)cat[(NP)black]]

Table 19. Snr-grams of size 4 (derivation history).

Snr-grams based on constituencies

sees[(VP,NP,NP)cat[(NP)a,(NP)black]]

sees[(S,VP,VP)John,(VP,VP,PP)with[(PP,NP)telescope]]

sees[(VP,NP,NP)cat[(NP)a],(VP,VP,PP)with]

sees[(S,VP,VP)John,(VP,NP,NP)cat[(NP)black]]

sees[(S,VP,VP)John,(VP,NP,NP)cat,(VP,VP,PP)with]

sees[(VP,NP,NP)cat,(VP,VP,PP)with[(PP,NP)telescope]]

sees[(S,VP,VP)John,(VP,NP,NP)cat[(NP)a]]

sees[(VP,NP,NP)cat[(NP)black],(VP,VP,PP)with]

sees[(VP,VP,PP)with[(PP,NP)telescope[(NP)a]]]

If we use SR tags, then the usefulness of snr-grams is explained by

the fact that they allow to distinguish the syntactic role of each element

in the n-gram, for example, “sees[(nsubj)John]” vs. “sees[(dobj)cat]”,

when the only difference in the verb-noun combination is the relation

name. Obviously, it depends on the task if this difference is relevant

or not.

In case of derivation history fragments, their function is not so

clear as in case of SR tags, for example sees[(S,VP,VP)John] vs.

sees[(VP,NP,NP)cat]. We can deduce that one of the fragments

includes the tree root (“S”), while the other does not. We can also see

how far is the distance between these two nodes in terms of the number

of the applied rules and their types. Future experiments should

demonstrate how useful this information is.

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 21

5 CONCLUSIONS

In this paper we introduced and discussed the concept of the syntactic

n-grams with relation names, snr-grams, which is a special type of

mixed syntactic n-grams. We presented examples of snr-grams of

various sizes, constructed for both tags of names of syntactic relations

(SR tags) and for fragments of derivation history. We consider that snr-

grams can be applied in many tasks of the Natural Language Processing

as features for machine learning algorithms. Future experiments should

confirm in which tasks their usage is beneficial.

For having the possibility of discussion of the concept of the snr-

grams, we described the formalisms of dependencies and constituents

used for the representation of the syntactic information and several

related algorithms. We also described several issues related to the

introduced in our previous works concept of syntactic n-grams.

ACKNOWLEDGEMENTS This work was done under partial support of

the Mexican Government (CONACYT, SNI, COFAA-IPN, SIP-IPN

20144274) and FP7-PEOPLE-2010-IRSES: “Web Information Quality

– Evaluation Initiative (WIQ-EI)” European Commission project

269180.

References

1. Bolshakov, I.A., Gelbukh, A.: Computational linguistics: Models,

resources, applications. IPN–UNAM–FCE, (2004) 187 pp.

2. Calvo, H., Gelbukh, A. Improving Prepositional Phrase Attachment

Disambiguation Using the Web as Corpus. Lecture Notes in Computer

Science 2905 (2003) 604–610

3. de Marneffe, M.C., MacCartney, B. Manning, C.D.: Generating typed

dependency parses from phrase structure parses. In: Proceedings of LREC

2006 (2006)

4. Gelbukh, A.: Natural language processing: Perspective of CIC-IPN. In:

Proceedings of the International Conference on Advances in Computing,

Communications and Informatics, ICACCI 2013, IEEE (2013) 2112–2121

5. Gelbukh, A.: Syntactic disambiguation with weighted extended

subcategorization frames. In: Proceedings of PACLING-99, Pacific

Association for Computational Linguistics, University of Waterloo,

Canada (1999) 244–249

http://www.gelbukh.com/
http://www.gelbukh.com/clbook
http://www.gelbukh.com/clbook
http://www.ipn.mx/
http://www.unam.mx/

22 GRIGORI SIDOROV

6. Gelbukh, A., Calvo, H. Torres, S.: Transforming a Constituency Treebank

into a Dependency Treebank. Procesamiento de Lenguaje Natural 35

(2005) 145-152

7. Gelbukh, A., Kolesnikova, O.: Multiword Expressions in NLP: General

Survey and a Special Case of Verb-Noun Constructions. In: Emerging

Applications of Natural Language Processing: Concepts and New

Research. IGI Global. (2013) 1–21

8. Gelbukh, A., Kolesnikova, O.: Semantic Analysis of Verbal Collocations

with Lexical Functions. Studies in Computational Intelligence 414 (2013)

146 pp.

9. Goldberg, Y., Orwant, J.: A Dataset of Syntactic-Ngrams over Time from

a Very Large Corpus of English Books. Available:

http://googleresearch.blogspot.mx/2013/05/syntactic-ngrams-over-

time.html. Published May 23 (2013)

10. Ledeneva, Y., Gelbukh, A., García-Hernández, R.A.: Terms Derived from

Frequent Sequences for Extractive Text Summarization. In: Proceedings

of the International Conference on Intelligent Text Processing and

Computational Linguistics, CICLing 2008. Lecture Notes in Computer

Science 4919 (2008) 593–604

11. Pado, S., Lapata, M.: Dependency-based construction of semantic space

models. Computational Linguistics, 33(2) (2007) 161–199

12. Padró, L., Collado, M., Reese, S., Lloberes, M., Castellón, I.: Freeling 2.1:

Five years of open-source language processing tools. In: Proceedings of

7th Language Resources and Evaluation Conference (LREC 2010), ELRA

(2010)

13. Sidorov, G: Syntactic Dependency Based N-grams in Rule Based

Automatic English as Second Language Grammar Correction.

International Journal of Computational Linguistics and Applications 4(2)

(2013) 169–188.

14. Sidorov, G.: Non-continuous Syntactic N-grams. Polibits 48 (2013) 67–75

(in Spanish, abstract and examples in English).

15. Sidorov, G.: Non-linear construction of n-grams in computational

linguistics: syntactic, filtered and generalized n-grams. (in Spanish)

Mexico (2014) 166 pp.

16. Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-

Hernandez, L.: Syntactic dependency-based n-grams as classification

features. Lecture Notes in Artificial intelligence 7630 (2012) 1–11

17. Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-

Hernandez, L.: Syntactic dependency-based n-grams: More evidence of

usefulness in classification. In: Proceedings of the International

Conference on Intelligent Text Processing and Computational Linguistics,

CICLing 2013. Lecture Notes in Computer Science 7816 (2013) 13–24

18. Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-

Hernandez, L. Syntactic N-grams as machine learning features for natural

http://www.cic.ipn.mx/~sidorov/Polibits_48_2013_Sidorov.pdf

SHOULD SYNTACTIC N-GRAMS CONTAIN...? 23

language processing. Expert Systems with Applications 41(3) (2014) 853–

860

GRIGORI SIDOROV

NATURAL LANGUAGE AND TEXT PROCESSING LABORATORY,

CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN,

INSTITUTO POLITÉCNICO NACIONAL (IPN),

MEXICO CITY, MEXICO

WEB: <WWW.CIC.IPN.MX/~SIDOROV>

http://www.informatik.uni-trier.de/~ley/db/journals/eswa/eswa41.html#SidorovVSGC14

